The information contained in this manual is the property of Kidde Fire Protection Services Limited and may not
be reproduced or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, nor stored in any retrieval system of any nature without the express written authority of Kidde Fire
Protection Services Limited.
6.1 STATUS NORMAL ...................................................................................................................................18
6.2 GAINING ACCESS TO LEVEL 2 OR 3 ....................................................................................................18
6.2 FIRE CONDITION.....................................................................................................................................18
6.3RESETTING THE SYSTEM AFTER A FIRE CONDITION ......................................................................20
6.4.1 System Faults ........................................................................................................................................... 20
6.4.3 Group Fault Conditions .............................................................................................................................22
8.FIRE & PLANT ZONE INDICATIONS ......................................................................................................23
9. MENU STRUCTURE ................................................................................................................................23
9.1 MAIN MENU .............................................................................................................................................23
9.3 LIST MENU ...............................................................................................................................................25
9.4 SET MENU ...............................................................................................................................................26
9.5 TEST MENU .............................................................................................................................................27
10.1 SYSTEM CHECKS ...................................................................................................................................28
10.2 INITIAL POWER UP .................................................................................................................................28
10.3 POWERING DOWN .................................................................................................................................29
10.4 CONNECTING THE DETECTION LOOP.................................................................................................29
10.5 ADDING OR REMOVING LOOP DEVICES .............................................................................................29
10.5.1 Power Down..............................................................................................................................................29
10.5.3 Auto Learn ................................................................................................................................................30
11.2ZONE FIRE INFORMATION ....................................................................................................................32
11.3 LOOP DEVICE INFORMATION ...............................................................................................................32
11.4 PANEL FUNCTIONS (STANDARD OR BLC OUTPUTS) ........................................................................34
11.5 OUTPUT GROUP INFORMATION...........................................................................................................34
11.5.1 Fire Output ................................................................................................................................................35
11.6 SET ACTIVATIONS ..................................................................................................................................35
11.6.1 Common Alarm Installations.....................................................................................................................35
11.6.2 Zone by Zone Alarm Installations .............................................................................................................36
13.2 TEST MODE .............................................................................................................................................47
14. PANEL AND LOOP DEVICE FAULT CODES..........................................................................................48
This manual covers the Vega LT2000 and LT2001 Control Panel. The Vega LT fire control panel provides
analogue addressable detection of fire and is compatible with devices manufactured by Apollo and Hochiki.
Designed to comply with EN54: parts 2 & 4, the Vega LT provides a single detection loop and can cover 16
zones. The panel is mains powered and also has space for two 12 amp-hour standby batteries (not supplied) A
range of optional equipment is available to enhance the panel’s standard, fixed format configuration.
The Vega LT2000 provides support for Apollo series 90,95, Discovery and Explorer detectors and the Vega
LT2001 supports the Hochiki ESP range of detectors. Both versions of control panel provide the following key
features: -
!
Single detection loop
!
Two conventional programmable sounder circuits
!
Two auxiliary volt free programmable relay contacts
!
Fault volt free relay contact
!
Four auxiliary input connections
!
Membrane control fascia
!
8 system status indications
!
16 zone indications
!
8 line – 40 character liquid crystal display
!
Integral 2.5 amp power supply unit
!
Battery back-up facility
Figure 1: Vega LT Fire Control Panel
1.1 DESCRIPTION
The Vega LT consists of a backbox with 20 mm knockouts for cable entry and has a hinged, removable door
which is retained with a locking screw and incorporates the panel display membrane. The panel display has 16
zonal windows, status windows, user control and a liquid crystal display. The backbox has a keyhole locating
hole for positioning and can be secured through the four 4 mm indented holes located near each corner. Refer
to Figure 1.
A range of optional add-ons can be supplied separately and installed during commissioning to enhance the
systems capabilities. These options include: -
!
Loop card – to extend the panel to a maximum of two detection loops.
!
Repeater driver card – enables the Vega LT to communicate with VR3000 repeater panel(s)
Network interface – provides communication to VegaNET graphics display system. VN2107.
!
Network interface – provides communication to Common Zone Network CZN System. VN2108.
TM0081 Page 4 of 51 Issue 1.01
1.2ABOUT THIS MANUAL
This installation manual details how to install and commission the Vega LT fire control panel and range of
optional equipment. It has been carefully checked for accuracy and is presumed to be correct. The
manufacturer assumes no responsibility for inaccuracies and reserves the right to modify the contents without
notice.
1.3SYSTEM DESIGN
The design of the fire detection and alarm system should be in accordance with BS 5839 part 1 Fire detection
and fire alarm systems for buildings -“Code of practice for system design, installation, commissioning and
maintenance” and may be supplemented with customer’s specific installation requirements. The fire alarm
system design is beyond the scope of this document. It is therefore assumed that a basic knowledge of general
fire alarm system practices, components and their use is understood.
We recommend that a suitably qualified and competent person is consulted in connection with the design of the
fire alarm system and that the system is commissioned and services in accordance with the laid down
specification and national standards.
The Fire Officer responsible for the property should be contacted at an early stage to discuss of any site-specific
requirements.
1.4ELECTRICAL SAFETY
Before handling any part of the control panel, ensure that adequate precautions are taken against damage to
the sensitive electronic components located within the control panel. Operators and engineers should discharge
themselves of any personal electro-static charge by momentarily touching a convenient earthed object.
Static charges are collected on adjacent conductors and are delivered in the form of sparks passing between
the conductors through insulating space or material. The sweat layer on the human skin is a sufficient medium
to store induced static charges and deliver them to any receptive conductor such as an electronic component or
printed circuit board. Following these guidelines can reduce static discharges:
!
Always use conductive or anti-static containers for transportation and storage.
!
Wear an earth wrist strap whilst handling devices, ensuring a good earth connection is maintained.
!
Never subject a static sensitive device to sliding movement over any surface and avoid any direct
contact with the pins.
!
Avoid placing sensitive devices onto plastic or vinyl surfaces.
!
Minimise the handling of sensitive devices and printed circuit boards.
All static sensitive devices are marked accordingly, but it is good engineering practice to treat all components
and boards with the same degree of protection.
WARNING:
The static handling procedures must be adhered to and extreme caution must be exercised when
working inside the control panel due to the presence of mains voltage 230 V AC. Failure to do so may
invalidate product warranty.
TM0081 Page 5 of 51 Issue 1.01
2. GLOSSARY OF TERMS AND ABBREVIATIONS
AbbreviationTranslationDescription
MCPMain Control ProcessorPart number 44782-K071, the MCP card is located on the
back of the outer door and is responsible for controlling the
LCD Display, event printer, LED indications, reading in the
control button key actions, VIPER upload \ download
software. The card is also responsible for communicating
with BLC loop processor cards, repeater output ports and
network cards.
BLCBasic Loop ControllerThere are two types of BLC cards, the master and slave.
MBLCMaster Basic Loop ControllerPart number 44782-K073, the MBLC card is responsible for
communicating externally with detection loops 1 and 2. The
card also provides 2 monitored sounder circuits, 2 auxiliary
VFCO contacts & a failsafe fault VFCO contact. The MBLC
card also provides connections to the repeater and network
interface cards.
SBLCSlave Basic Loop ControllerNot applicable on Vega LT
CCTCircuitReference to loop or sounder monitored circuitry.
SNDSounder
VFCOVoltage Free Change OverAlso known as dry contact
PCBPrinted Circuit Board
BGUBreak Glass UnitAlso known as Manual Call Point
EMCElectro Magnetic Compatibility
EOLEnd of LineEOL monitoring device used on sounder circuits
LEDLight Emitting Diode
PSUPower Supply Unit
LCDLiquid Crystal Display
SLASealed Lead AcidType of battery used within fire control panels
Cause & EffectOperation of programmable outputs and functions as a
result of an event being registered.
I/OInput / Output
PCPersonal Computer
mAMilli amp
BSBritish Standard
ENEuropean Norm
AhAmperes Hour
dB (A)Decibel
IPIngress Protection
m!Milli ohm
K!Kilo ohm
CommsCommunicationsCommunications abbreviated to fit display
ConfigConfigurationConfiguration abbreviated to fit display
TM0081 Page 6 of 51 Issue 1.01
3.INSTALLATION
Installation of the fire detection and alarm system must comply with the current editions of:
!
The IEE wiring regulations.
!
The British Standard for Fire Detection and Alarm Systems for buildings BS 5839: part 1
!
Local country legislation if outside of the United Kingdom.
Take care not to install the cables in the proximity of high voltage cables or in areas likely to induce electrical
interference. Junction boxes should be avoided, but if they have to be installed then they must be clearly
labelled "FIRE ALARM".
Special attention should be made in the selection of loop wiring conductor size to ensure that the voltage drop
does not prevent devices operating within their specification even under minimum supply and maximum load
conditions. Consideration should also be given for future expansion of the system.
It is not permissible to run more than one detection loop in single cable, but a four-core cable can be used for
the feed and return of an individual loop. However, to increase the integrity of the loop it is recommended that
the feed and return cable pairs use different paths around the building.
It is not permissible to run any other circuits in the same cable as a detection loop, i.e. sounder circuits, power
supplies, plant shut downs etc, as the induction capacities of the cable can cause corruption of loop information
and/or inter-loop "cross talk".
3.1SYSTEM SCHEMATIC - Figure 2
Figure 2: System Schematic Diagram
The control panel has a number of internal 2.5mm terminals for connection to the external field cables.
TM0081 Page 7 of 51 Issue 1.01
3.2 APPROVED CABLES
To comply with EMC (Electro Magnetic Compatibility) regulations and to reduce the risk of electrical interference
in the system wiring, it is recommended that screened cables be used throughout the installation. Reference to
BS 5839 part 1, states there is two categories of cable,
!
Category 1: required to operate for prolonged periods during a fire condition
!
Category 2: not required to operate for prolonged periods during a fire condition
Cables complying to BS 6387 categories C,W, Z can be used for both categories 1 and 2, Cables deemed
suitable as Category 1 can be used as category 2, but not visa versa. The following commonly available
screened cables have been approved for use on sounder and detection circuits:
!
Pirelli FP200 Gold™
!
MICC (Pyro™)
!
Firetuff™
!
Firecel™
Connection to the Kidde network and repeater panels should be made using Beldon 9729, UL2493 or MICC.
Satisfactory operation of the system with inferior cable types cannot be guaranteed especially when not wired in
accordance with to the appropriate regulations, i.e. loop wiring run in proximity to high voltage (AC mains and
above) cabling.
3.3INTERNAL CABLE ROUTING
It is important that the following procedures on internal cable routing and cable terminations inside the control
panel are adhered to fully. These procedures have been established to ensure the control panel complies with
the European Directive on Electromagnetic Compatibility (89/336/EEC).
The external cables must be kept to an absolute minimum length from the cable entering the enclosure to the
terminating position on the relevant printed circuit board. Special attention should be made to ensure that cables
do not cross over other cables where possible, as this may generate interference/electrical noise.
The detection loop and sounder circuit cabling is classed as Low Voltage and should be segregated from mains
voltages. The pre-formed knockouts shown in figure 3 must be carefully removed, where required, using a flat
broad-bladed screwdriver and hammer. Use of excessive force should not be required and may damage the
enclosure around the knockout. The surrounding paint must be carefully removed to permit metal to metal
contact between the enclosure and cable gland.
Figure 3: Knockouts and Cable Routing
TM0081 Page 8 of 51 Issue 1.01
Care must be taken to ensure metal filings or swarf does not fall onto the printed circuit boards. An adequate
number of pre-formed knockouts have been provided on the top of the enclosure so there should be no
requirement to drill any additional holes. Ensure that if a knockout is removed and unused, that the hole is filled
with a good quality cable gland that is securely blanked off.
3.4 ENCLOSURE MOUNTING
The control panel should be installed within the building to be protected at a prominent location and at a height
where it can be easily accessed during an emergency. The control panel should ideally be located in the
entrance, foyer or hallway of the building at eye level. The panel should not be positioned where conditions may
affect its performance. Areas prone to salt air, moisture, high humidity, physical abuse, and extreme
temperatures should be avoided.
Remove the control panel from its packing and unlock the door using the Allen Key provided.
Note, A spare parts bag is not provided with this control panel. Battery leads and End of Line resistors are
factory fitted to the associated output terminals. A spare sounder fuse is provided. Refer figure 2 for location.
Hold the panel to the wall at the desired mounting height and mark the position of the top centre keyhole. The
enclosure fixing positions are shown in figure 4. The keyhole is provided on the backbox to allow the panel to be
hooked onto the wall whilst the remaining four screws are located, marked and drilled accordingly. Secure the
panel to the wall using suitable fixings such that adequate support is provided.
Figure 4: Enclosure Fixing Positions
TM0081 Page 9 of 51 Issue 1.01
3.5 EXTERNAL CONNECTIONS
3.5.1 Mains Wiring
The Vega LT control panel receives power from either a 230V, 50Hz or 120V, 60Hz power supply. The mains
supply cable must take the shortest route possible from entering the enclosure to the mains supply terminals.
Refer figure 5. The cable must maintain an air gap of 50mm minimum between it and any other conductors.
The mains supply requirement for the fire alarm panel is fixed wiring, using three core cable (no less than
0.75mm² and no more than 2.5mm²) or a suitable three conductor system and should be fed from an isolating
switched fused spur rated at 5amp. The fused spur isolator cover should be red and marked: FIRE ALARM –DO NOT SWITCH OFF. The fused spur isolator must be fed from a dedicated switch or protective device at the
local mains supply distribution board.
The incoming power feed cable Earth (Green or Green/Yellow) wire should be connected to the terminal block
earth connection – Left hand terminal. The Neutral (Blue) wire should be connected to the middle terminal
marked (N) and the Live (Brown) wire connected to the right hand terminal marked (L). Refer to Figure 5.
Figure 5: Mains Supply Input
3.5.2 Detection Loop Wiring
The external detection circuit wiring should be wired to form a loop to allow the system to maintain a degree of
integrity and still function even if a section of cable becomes open circuit. It is also recommended during the
system design that short circuit isolators are fitted to the detection loop, so that in the event of an external short
circuit no more than 32 addressable devices will be lost. Refer to Figure 6.
Figure 6: Typical Loop Wiring
TM0081 Page 10 of 51 Issue 1.01
The detection loop connections are made on the Loop card terminals marked LOOP. The loop card has built in
isolators so it is not required to fit additional isolators directly on the loop output. Additional short circuit isolators
should be fitted at the boundaries of each fire zone.
Reference should be made to the detector manufacturer’s data sheets and installation guides supplied with the
detector or module for information on terminal connection etc. Ensure that the devices connected to the
detection loop wiring are correctly orientated for positive and negative connections.
The detection loop cable must be stripped in accordance with the manufacturer's guidelines. The cable must be
secured to the enclosure using metal compression glands and metal locking nuts in conjunction with a metal
shake proof washer to ensure that the cable metal sheath is bonded to the enclosure. Refer to figure 7.
Figure 7: Loop and Sounder Circuit Compression Gland Details
When all bases are connected but before any devices are installed and with loop isolators linked out, the
following tests should be carried out: -
!
Loop short-circuit. Using an ohmmeter, check for short-circuit between +ve and -ve feeds.
!
Loop open-circuit. Check continuity of the +ve and -ve leads. +ve to +ve and –ve to –ve.
!
Loop short to earth. Check using an ohmmeter between the +ve and -ve leads and an earth connection.
Warning.
Do not undertake high voltage insulation testing on external wiring after loop devices are installed as
this could seriously damage the equipment.
TM0081 Page 11 of 51 Issue 1.01
3.5.3Sounder Circuit Wiring
Two programmable conventional sounder circuits are available on the control panel. Each circuit is rated at
1amp however it is recommended that the maximum total load shared between both circuits should not exceed
1amp. Each sounder circuit is monitored for open and short circuits. An end of line (EOL) 10 K" resistor 0.5W
minimum should be fitted after the last sounder attached to the circuit to allow the wiring to be monitored.
All sounders must be polarised, as non-polarised sounders will signal a fault condition on the control panel.
Refer to figure 8. Each sounder therefore must have an integral blocking diode that prevents the sounder from
using power during normal monitoring. The polarity of the sounder output voltage is reversed when the sounder
circuit is operated allowing the sounders devices to operate.
Should non polarised alarm devices such as mechanical bells be connected to the system, then a diode will
have to be placed in line with the device to prevent faults occurring and to enable fault monitoring. A
suppression diode will also be required across the device. Refer to Figure 9.
Figure 9: Typical Bell Circuit Wiring
The sounder circuit cable must be stripped in accordance with the manufacturer's guidelines and must be
secured to the enclosure using metal compression glands as shown in figure 7.
3.5.4Auxiliary Output Wiring
Auxiliary Fire Output
Two voltage free (dry contact) changeover contacts are provided which operate during any fire condition and
can be used for driving local fire fighting equipment such as sprinkler systems, door release systems and roller
shutter doors etc. Refer to Figure 10.
Figure 10: Typical Auxiliary Fire Output Wiring
TM0081 Page 12 of 51 Issue 1.01
Auxiliary Fault output
A single voltage free changeover contact is provided and operates on any panel fault condition. This output is
failsafe and is normally energised. When a fault occurs, the output turns off to ensure failsafe operation, or
should the system suffer a failure to all power supplies. Refer to Figure 11.
Figure 11: Typical Auxiliary Fault Output Wiring
External cables connected to the auxiliary contacts should be secured to the enclosure using metal
compression glands as shown in figure7.
3.5.6Auxiliary Input Wiring
Four non-latching input connections are available on the fire alarm panel. The inputs are located on the loop
processor card, part number 44782-K073 at terminal block TB7. Applying a 0-volt connection to the terminal
activates the inputs. Refer to Figure 12. The inputs are provided at the following terminal numbers: -
1 External Fault Input
2 Level 2-access/inhibit override
3 Programmable Input A
4 Programmable Input B
The programmable input settings are:
!
Remote Alarm (Class Change): operates the sounders continuously (default setting for input A) or
!
Day Mode: initiates pre programmed day mode settings (default setting for input B) or
!
Isolate Outputs: inhibits the operation of pre-programmed isolation group setting
Figure 12: Typical Auxiliary Input Wiring
Cables connected directly to the auxiliary inputs should not be taken external to the control panel. Interposing
relays located within interface enclosures and mounted directly adjacent to the control panel should be used.
TM0081 Page 13 of 51 Issue 1.01
3.5.7 Battery Installation
To provide an emergency battery back up facility in the event of mains failure for the system, two new fully
charged 12 volt sealed lead acid batteries are required. The batteries should be connected in series using the
battery leads connected to the power supply unit and should be located in the bottom left hand corner of the
control panel enclosure. The enclosure has space for 2x 12 Ah SLA batteries. The capacity of the batteries used
will depend upon the required stand-by time and the system configuration. For battery sizes greater than 12 Ah
these should be installed in a separate enclosure suitable for fire protection equipment using appropriate metal
gland fixings and cables.
Before installing the batteries carry out the following procedures:
!
Check the batteries for transit damage.
!
Check the battery open circuit terminal voltage.
!
Record the installation date.
The +ve of one battery is connected to the red battery lead and the –ve of the second battery is connected to
the black battery lead. The –ve of the first battery is connected to the +ve of the second battery using the battery
link supplied. Refer to Figure 13.
Figure 13: Internal Battery Connections
CAUTION:
Do not connect the batteries to the power supply unit leads at this stage.
The control panel power supply unit has a thermistor, which monitors the temperature of the batteries and
automatically adjusts the charging current accordingly. This should be placed as close as possible to the first
battery.
3.5.8Network and Repeater Cable Wiring (Optional)
When connecting to optional network and repeater wiring, the outer insulating sheath of the cable must be
removed using a proprietary cable stripper. This will expose a number of cable pairs, which will be individually
wrapped in a protective sheath. This sheath must be folded back over the remaining outer insulating sheath and
the metallic compression gland to ensure that the protective metallic sheath has a permanent bonding to the
enclosure. The compression gland must be secured to the enclosure using a metal locking nut in conjunction
with a metal shake proof washer.
TM0081 Page 14 of 51 Issue 1.01
4.ACCESS CONTROL LEVELS
The Vega LT has four levels of system control. Refer to Table 1. The control panel will indicate the true status
condition of the installation during all four levels using the membrane display panels. Pass codes are entered on
the numeric keypad. Each operation of the keypad operates an internal buzzer and updates the liquid crystal
display to confirm entry.
Access
Level
1Normal
2User7179All control buttons are functional with restricted menu
3Engineer &
4Kidde
The operation of the control panel is dependent upon the selected pass code, as certain keys only operate in
specific access levels. Table 2 details the control keys and the access levels they are allowed to operate in.
N/AControl buttons inhibited. During an alarm condition certain
7134All control buttons are functional, All menu levels become
N/AAs level 3 with option to clear panel memory back to factory
""
""
""
""
""
""
""
Comments
control buttons are functional.
access. System configuration inhibited.
available and system configuration is possible.
default setting.
Table 1: Access Levels
"
"
"
Table 2: Control buttons
4.1 ACCESS INHIBIT KEYSWITCH
An input terminal (TB7) labelled input 6 is positioned on Master Basic Loop Controller MBLC card (refer to
Figure 12 for wiring information) which when shorted to 0-volts, via a switch, causes the control panel to enter
into access level 2. Only by removal of the 0-volt input to the terminal will the access level be terminated.
TM0081 Page 15 of 51 Issue 1.01
5. CONTROLS AND INDICATION
5.1PANEL DISPLAY
The Vega LT front panel display is divided into four discrete sections containing the control buttons, zone
windows, status windows and liquid crystal display (LCD). Refer to Figure 14.
Figure 14: Front Panel Display
5.2 CONTROL BUTTON FUNCTIONS
The control buttons located on the panel front perform a number of operations. Refer to Table 3.
Control ButtonFunction
Numeric KeysAllows the user to enter numbers 0 – 9.
Cancel (
Enter (
Arrow KeysAllows the user to scroll through menu display options, active alarm messages and view
Silence BuzzerSilences the internal buzzer for any fire or fault alarm condition.
ScrollPress to display the next alarm message at the current event level.
Delay OverrideOverrides any pre-programmed delays and immediately operates the outputs.
Silence AlarmsPress to turn off All sounder circuits
ResetPress to cancel All fire & fault alarm conditions and reset the system back to normal.
EvacuatePress to turn on All sounder circuits and evacuate the building.
←←←←
)
↵↵↵↵
)
Allows the user to answer No, quit menu display options or terminate access levels 2 & 3
completely.
Allows the user to answer Yes, enter menu display options, and confirm input for numeric
information.
priority pending alarm messages. Also used during programming of the control panel.
Table 3: Control Button Functions
TM0081 Page 16 of 51 Issue 1.01
Loading...
+ 35 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.