Keysight N9020A Specification Guide

Keysight X-Series Signal Analyzers
This manual provides documentation for the following model:
N9020A MXA Signal Analyzer
MXA Specification Guide
(Comprehensive Reference Data)
© Keysight Technologies, Inc. 2008-2020
No part of this manual may be reproduced in any form or by any means (including electronic storage and retrieval or translation into a foreign language) without prior agreement and written consent from Keysight Technologies, Inc. as governed by United States and international copyright laws.
Trademark Acknowledgments
Manual Part Number
N9020-90113
Edition
Edition 1, December 2020
Supersedes: September 2020
Published by: Keysight Technologies 1400 Fountaingrove Parkway Santa Rosa, CA 95403
Warranty
THE MATERIAL CONTAINED IN THIS DOCUMENT IS PROVIDED “AS IS,” AND IS SUBJECT TO BEING CHANGED, WITHOUT NOTICE, IN FUTURE EDITIONS. FURTHER, TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, KEYSIGHT DISCLAIMS ALL WARRANTIES, EITHER EXPRESS OR IMPLIED WITH REGARD TO THIS MANUAL AND ANY INFORMATION CONTAINED HEREIN, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. KEYSIGHT SHALL NOT BE LIABLE FOR ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, USE, OR PERFORMANCE OF THIS DOCUMENT OR ANY CONTAINED HEREIN. SHOULD KEYSIGHT AND THE USER HAVE A SEPARATE WRITTEN AGREEMENT WITH WARRANTY TERMS COVERING THE MATERIAL IN THIS
INFORMATION
DOCUMENT THAT CONFLICT WITH THESE TERMS, THE WARRANTY TERMS IN THE SEPARATE AGREEMENT WILL CONTROL.
Technology Licenses
The hardware and/or software described in this document are furnished under a license and may be used or copied only in accordance with the terms of such license.
U.S. Government Rights
The Software is “commercial computer software,” as defined by Federal Acquisition Regulation (“FAR”) 2.101. Pursuant to FAR
12.212 and 27.405-3 and Department of Defense FAR Supplement (“DFARS”) 227.7202, the U.S. government acquires commercial computer software under the same terms by which the software is customarily provided to the public. Accordingly, Keysight provides the Software to U.S. government customers under its standard commercial license, which is embodied in its End User License Agreement (EULA), a copy of which can be found at
http://www.keysight.com/find/s weulaThe license set forth in the
EULA represents the exclusive authority by which the U.S. government may use, modify, distribute, or disclose the Software. The EULA and the license set forth therein, does not require or permit, among other things, that Keysight: (1) Furnish technical information related to commercial computer software or commercial computer software documentation that is not customarily provided to the public; or (2) Relinquish to, or otherwise provide, the government rights in excess of these rights customarily provided to the public to use, modify, reproduce, release, perform, display, or disclose commercial computer software or commercial computer software documentation. No additional
government requirements beyond those set forth in the EULA shall apply, except to the extent that those terms, rights, or licenses are explicitly required from all providers of commercial computer software pursuant to the FAR and the DFARS and are set forth specifically in writing elsewhere in the EULA. Keysight shall be under no obligation to update, revise or otherwise modify the Software. With respect to any technical data as defined by FAR 2.101, pursuant to FAR 12.211 and 27.404.2 and DFARS 227.7102, the U.S. government acquires no greater than Limited Rights as defined in FAR 27.401 or DFAR 227.7103-5 (c), as applicable in any technical data.
Safety Notices
A CAUTION notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in damage to the product or loss of important data. Do not proceed beyond a CAUTION notice until the indicated conditions are fully understood and met.
A WARNING notice denotes a hazard. It calls attention to an operating procedure, practice, or the like that, if not correctly performed or adhered to, could result in personal injury or death. Do not proceed beyond a WARNING notice until the indicated conditions are fully understood and met.
Where to Find the Latest Information
Documentation is updated periodically. For the latest information about these products, including instrument software upgrades, application information, and product information, browse to one of the following URLs, according to the name of your product:
http://www.keysight.com/find/mxa
To receive the latest updates by email, subscribe to Keysight Email Updates at the following URL:
http://www.keysight.com/find/MyKeysight
Information on preventing instrument damage can be found at:
www.keysight.com/find/PreventingInstrumentRepair
Is your product software up-to-date?
Periodically, Keysight releases software updates to fix known defects and incorporate product enhancements. To search for software updates for your product, go to the Keysight Technical Support website at:
http://www.keysight.com/find/techsupport
3
4
Contents
1. MXA Signal Analyzer
Definitions and Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Conditions Required to Meet Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Certification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Standard Frequency Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Precision Frequency Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Frequency Readout Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Frequency Counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Frequency Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Sweep Time and Trigger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Gated Sweep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Number of Frequency Sweep Points (buckets). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Nominal Measurement Time vs. Span [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Resolution Bandwidth (RBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Preselector Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Video Bandwidth (VBW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Amplitude Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Maximum Safe Input Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Display Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Marker Readout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Nominal Frequency Response Band 0 [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Input Attenuation Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Nominal VSWR [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Resolution Bandwidth Switching Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Display Scale Fidelity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Nominal Display Scale Fidelity [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Available Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Gain Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
1 dB Gain Compression Point (Two-tone). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Displayed Average Noise Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Displayed Average Noise Level (DANL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Spurious Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5
Contents
Third Order Intermodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Nominal TOI vs. Mixer Level and Tone Separation [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Nominal Dynamic Range at 1 GHz [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Nominal Dynamic Range Bands 1-4 [Plot]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Nominal Dynamic Range vs. Offset Frequency vs. RBW(SN prefix MY/SG/US5233,
ship standard with N9020A-EP2) [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Nominal Dynamic Range vs. Offset Frequency vs. RBW (SN prefix <MY/SG/US5233) [Plot] . . . . 52
Phase Noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Nominal Phase Noise of Different LO Optimizations
(SN prefix MY/SG/US5233, Ship standard with N9020A-EP2) [Plot]. . . . . . . . . . . . . . . . . . . . . . 55
Nominal Phase Noise of Different LO Optimizations (SN prefix <MY/SG/US5233) [Plot]. . . . . . . . 55
Nominal Phase Noise at Different Center Frequencies
(SN prefix MY/SG/US5233, Ship standard with N9020A-EP2) [Plot] . . . . . . . . . . . . . . . . . . . . . . 56
Nominal Phase Noise at Different Center Frequencies (SN prefix <MY/SG/US5233) [Plot]. . . . . . 56
Power Suite Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Adjacent Channel Power (ACP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Multi-Carrier Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Burst Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
TOI (Third Order Intermodulation) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Front Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Rear Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2. I/Q Analyzer
Specifications Affected by I/Q Analyzer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Clipping-to-Noise Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Time Record Length (IQ pairs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
3. VXA Vector Signal Analysis Application
Vector Signal Analysis Performance (N9064A-1FP/1TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Center Frequency Tuning Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86
Frequency Span, Maximum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
FFT Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Frequency Points per Span. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6
Contents
FFT Window Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
ADC overload. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Absolute Amplitude Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Amplitude Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
IF Flatness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Sensitivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Third Order Intermodulation Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Noise Density at 1 GHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Residual Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Image Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
LO Related Spurious . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Other Spurious. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Analog Modulation Analysis (N9064A-1FP/1TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
AM Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
PM Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
FM Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Flexible Digital Modulation Analysis (N9064A-2FP/2TP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Residual EVM for MSK Modulation Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Residual EVM for Video Modulation Formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
WLAN Modulation Analysis (N9064A-3FP/3TP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
IEEE 802.11a/g OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
IEEE 802.11b/g DSSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4. Option B25 - 25 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
IF Spurious Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Time Record Length (IQ pairs). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5. Option B40 - 40 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
SFDR (Spurious-Free Dynamic Range). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
IF Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Nominal Phase Linearity [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7
Contents
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Capture Time [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6. Option B85/B1A/B1X - 85/125/160 MHz Analysis Bandwidth
Specifications Affected by Analysis Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Other Analysis Bandwidth Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
SFDR (Spurious-Free Dynamic Range) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
IF Residual Responses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
IF Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
IF Phase Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
EVM measurement floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Data Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Time Record Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
ADC Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Capture Time [Plot] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7. Option BBA - Analog Baseband IQ (BBIQ) Inputs
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Amplitude Accuracy and Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Nominal Channel Match, 50 Input, Single-Ended input mode, 0.25V Range [Plot]. . . . . . . . . . 127
Nominal Phase Match, 50 Input, Single-Ended input mode, 0.25V Range [Plot] . . . . . . . . . . . 127
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Application Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Capture Length vs. Span, 2-channel with 89600 VSA, I+jQ Mode [Plot] . . . . . . . . . . . . . . . . . . .140
Inputs/Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
8. Option CR3 - Connector Rear, 2nd IF Output
Specifications Affected by Connector Rear, 2nd IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Other Connector Rear, 2nd IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Aux IF Out Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Second IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9. Option CRP - Connector Rear, Arbitrary IF Output
Specifications Affected by Connector Rear, Arbitrary IF Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Other Connector Rear, Arbitrary IF Output Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Aux IF Out Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Arbitrary IF Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10. Option EA3 - Electronic Attenuator, 3.6 GHz
Specifications Affected by Electronic Attenuator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Other Electronic Attenuator Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153
Range (Frequency and Attenuation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Distortions and Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Frequency Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Absolute Amplitude Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Electronic Attenuator Switching Uncertainty. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
8
Contents
11. Option EMC - Precompliance EMI Features
Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
EMI Resolution Bandwidths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
EMI Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Quasi-Peak Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
RMS Average Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
12. Option ESC - External Source Control
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Frequency Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Power Sweep Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Measurement Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Supported External Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
13. Option EXM - External Mixing
Specifications Affected by External mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Other External Mixing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Connection Port EXT MIXER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Mixer Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
IF Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
LO Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
14. Option MPB - Microwave Preselector Bypass
Specifications Affected by Microwave Preselector Bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
Other Microwave Preselector Bypass Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Additional Spurious Responses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
15. Option NFE - Noise Floor Extension
Specifications Affected by Noise Floor Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Displayed Average Noise Level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Displayed Average Noise Level with Noise Floor Extension Improvement. . . . . . . . . . . . . . . . . . 181
Displayed Average Noise Level with Noise Floor Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
16. Options P03, P08, P13, P26 - Preamplifiers
Specifications Affected by Preamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Other Preamp Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Noise figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
1 dB Gain Compression Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Displayed Average Noise Level (DANL) — Preamp On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Frequency Response — Preamp On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
RF Input VSWR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Nominal VSWR — Preamp On (Plot) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Second Harmonic Distortion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
Third Order Intermodulation Distortion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
9
Contents
Nominal Dynamic Range at 1 GHz, Preamp On (Plot). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
17. Option PFR - Precision Frequency Reference
Specifications Affected by Precision Frequency Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
18. Options RT1, RT2 - Real-time Spectrum Analyzer (RTSA)
Real-time Spectrum Analyzer Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
General Frequency Domain Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Density View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Spectrogram View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Frequency Mask Trigger (FMT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
19. Option TDS - Time Domain Scan
Specifications Affected by Time Domain Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Other Time Domain Scan Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
20. Option YAS - Y-Axis Screen Video Output
Specifications Affected by Y-Axis Screen Video Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Other Y-Axis Screen Video Output Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
General Port Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Screen Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
Continuity and Compatibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
21. Analog Demodulation Measurement Application
RF Carrier Frequency and Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Maximum Information Bandwidth (Info BW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Capture Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .213
Post-Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Maximum Audio Frequency Span . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Filters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
FM Measurement Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
FM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
FM Rate Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Carrier Frequency Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Frequency Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Post-Demod Distortion Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
AM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
AM Depth Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
AM Rate Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Amplitude Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Post-Demod Distortion Residual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
10
Contents
FM Rejection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
Conditions required to meet specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
FM Measurement Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
PM Deviation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
PM Rate Accuracy Carrier Frequency Error
Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Post-Demod Distortion Residual. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Post-Demod Distortion Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Analog Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
FM Stereo/Radio Data System (RDS) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
FM Stereo Modulation Analysis Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
22. Noise Figure Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Noise Figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
Noise Figure Uncertainty Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
Uncertainty versus Calibration Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Nominal Instrument Noise Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Nominal Instrument Input VSWR, DC Coupled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
b
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
23. Phase Noise Measurement Application
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Maximum Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Measurement Accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Offset Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Amplitude Repeatability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Nominal Phase Noise at Different Center Frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
24. Pulse Measurement Software
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Maximum Carrier Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Hardware Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Software Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
25. 1xEV-DO Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Channel Pow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
Spectrum Emission Mask and Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
QPSK EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
11
Contents
Modulation Accuracy (Composite Rho) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
Alternative Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
26. 802.16 OFDMA Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
In-Band Frequency Range for Warranted Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
27. Bluetooth Measurement Application
Basic Rate Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Modulation Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Initial Carrier Frequency Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Low Energy Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Output Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
Modulation Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Initial Carrier Frequency Tolerance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
Carrier Frequency Drift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
LE In-band Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
Enhanced Data Rate (EDR) Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
EDR Relative Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
EDR Modulation Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
EDR Carrier Frequency Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
EDR In-band Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Bluetooth Basic Rate and Enhanced Data Rate (EDR) System . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Bluetooth Low Energy System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
28. cdma2000 Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
QPSK EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
12
Contents
Modulation Accuracy (Composite Rho) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
29. CMMB Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Modulation Analysis Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
Modulation Analysis Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
CMMB Modulation Analysis Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
30. Digital Cable TV Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
DVB-C 64QAM EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
31. DTMB Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
16QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
32. DVB-T/H with T2 Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Spurious Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
DVB-T 64QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
DVB-T2 256QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
33. GSM/EDGE Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
EDGE Error Vector Magnitude (EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Power vs. Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
EDGE Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Power Ramp Relative Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
13
Contents
Phase and Frequency Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Output RF Spectrum (ORFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
In-Band Frequency Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
34. iDEN/WiDEN/MotoTalk Measurement Application
Frequency and Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Amplitude Accuracy and Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Dynamic Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Application Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Parameter Setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
iDEN Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
iDEN Signal Demod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
MotoTalk Signal Demod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
35. ISDB-T Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Channel Power with Shoulder Attenuation View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Modulation Analysis Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Modulation Analysis Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
ISDB-T Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332
ISDB-Tmm Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
36. LTE Measurement Application
Supported Air Interface Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Transmit On/Off Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Adjacent Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Operating Band, FDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
Operating Band, TDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343
37. LTE-A Measurement Application
Supported Air Interface Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
Transmit On/Off Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
14
Contents
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
NB-IoT Modulation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
C-V2X Modulation Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
C-V2X Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
NB-IoT Operating Band . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
LTE FDD Operating Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
LTE TDD Operating Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
38. TD-SCDMA Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Power vs. Time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Single Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
Modulation Accuracy (Composite EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
39. W-CDMA Measurement Application
Conformance with 3GPP TS 25.141 Base Station Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Channel Power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376
Adjacent Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Power Statistics CCDF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Occupied Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
Code Domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
QPSK EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Modulation Accuracy (Composite EVM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384
Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386
40. Single Acquisition Combined Fixed WiMAX Measurement Application
Measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Tx Output Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
64QAM EVM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
In-Band Frequency Range for Warranted Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
15
Contents
41. Multi-Standard Radio Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Spurious Emissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Conformance EVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
In-Band Frequency Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
42. WLAN Measurement Application
Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Channel Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Power Statistics CCDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Occupied Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Power vs. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Spectrum Emission Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Spurious Emission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
CCK 11Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
List Sequence Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Transmit Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Transmit Output Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
CCK 11Mbps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
In-Band Frequency Range for Warranted Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
16
Keysight X-Series Signal Analyzer N9020A
Specification Guide
1 MXA Signal Analyzer
This chapter contains the specifications for the core signal analyzer. The specifications and characteristics for the measurement applications and options are covered in the chapters that follow.
17
MXA Signal Analyzer Definitions and Requirements
Definitions and Requirements
This book contains signal analyzer specifications and supplemental information. The distinction among specifications, typical performance, and nominal values are described as follows.
Definitions
— Specifications describe the performance of parameters covered by the
product warranty (temperature = 5 to 55°C temperature range" or "Full range", unless otherwise noted).
— 95th percentile values indicate the breadth of the population (≈2σ) of
performance tolerances expected to be met in 95% of the cases with a 95% confidence, for any ambient temperature in the range of 20 to 30°C. In addition to the statistical observations of a sample of instruments, these values include the effects of the uncertainties of external calibration references. These values are not warranted. These values are updated occasionally if a significant change in the statistically observed behavior of production instruments is observed.
1
also referred to as "Full
— Typical describes additional product performance information that is not
covered by the product warranty. It is performance beyond specification that 80% of the units exhibit with a 95% confidence level over the temperature range 20 to 30°C. Typical performance does not include measurement uncertainty.
— Nominal values indicate expected performance, or describe product
performance that is useful in the application of the product, but is not covered by the product warranty.
Conditions Required to Meet Specifications
The following conditions must be met for the analyzer to meet its specifications.
— The analyzer is within its calibration cycle. See the General section of this
chapter.
— Under auto couple control, except that Auto Sweep Time Rules = Accy. — For signal frequencies < 10 MHz, DC coupling applied.
— Any analyzer that has been stored at a temperature range inside the
allowed storage range but outside the allowed operating range must be stored at an ambient temperature within the allowed operating range for at least two hours before being turned on.
1. For earlier instruments ( S/N prefix <MY/SG/US5051), the operating temperature ranges from 5 to 50°C
18 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Definitions and Requirements
— The analyzer has been turned on at least 30 minutes with Auto Align set to
Normal, or if Auto Align is set to Off or Partial, alignments must have been run recently enough to prevent an Alert message. If the Alert condition is changed from “Time and Temperature” to one of the disabled duration choices, the analyzer may fail to meet specifications without informing the user. If Auto Align is set to Light, performance is not warranted, and nominal performance will degrade to become a factor of 1.4 wider for any specification subject to alignment, such as amplitude tolerances.
Certification
Keysight Technologies certifies that this product met its published specifications at the time of shipment from the factory. Keysight Technologies further certifies that its calibration measurements are traceable to the International System of Units (SI) via national metrology institutes (www.keysight.com/find/NMI) that are signatories to the CIPM Mutual Recognition Arrangement.
Keysight N9020A MXA Specification Guide 19
MXA Signal Analyzer Frequency and Time
Frequency and Time
Description Specifications Supplemental Information
Frequency Range
Maximum Frequency
Option 503 3.6 GHz
Option 508 8.4 GHz
Option 513 13.6 GHz
Option 526 26.5 GHz
Preamp Option P03 3.6 GHz
Preamp Option P08 8.4 GHz
Preamp Option P13 13.6 GHz
Preamp Option P26 26.5 GHz
Minimum Frequency
Preamp
Off 10 MHz 10 Hz
On 10 MHz 100 kHz
Band Harmonic
0 (20 Hz to 3.6 GHz) 1 1 Options 503, 508, 513, 526
1 (3.5 GHz to 8.4 GHz) 1 1 Options 508, 513, 526
2 (8.3 GHz to 13.6 GHz) 1 2 Options 513, 526
3 (13.5 to 17.1 GHz) 2 2 Options 526
4 (17.0 to 26.5 GHz) 2 4 Options 526
a. AC Coupled only applicable to Freq Options 503, 508, 513, and 526. b. N is the LO multiplication factor. For negative mixing modes (as indicated by the “” in the “Harmonic Mixing
Mode” column), the desired 1st LO harmonic is higher than the tuned frequency by the 1st IF (5.1225 GHz for band 0, 322.5 MHz for all other bands).
AC Coupled
Mixing Mode
a
DC Coupled
LO Multiple (N
b
)
Band Overlaps
c
20 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Frequency and Time
c. In the band overlap regions, for example, 3.5 to 3.6 GHz, the analyzer may use either band for measurements, in
this example Band 0 or Band 1. The analyzer gives preference to the band with the better overall specifications (which is the lower numbered band for all frequencies below 26 GHz), but will choose the other band if doing so is necessary to achieve a sweep having minimum band crossings. For example, with CF = 3.58 GHz, with a span of 40 MHz or less, the analyzer uses Band 0, because the stop frequency is 3.6 GHz or less, allowing a span without band crossings in the preferred band. If the span is between 40 and 160 MHz, the analyzer uses Band 1, because the start frequency is above 3.5 GHz, allowing the sweep to be done without a band crossing in Band 1, though the stop frequency is above 3.6 GHz, preventing a Band 0 sweep without band crossing. With a span greater than 160 MHz, a band crossing will be required: the analyzer sweeps up to 3.6 GHz in Band 0; then executes a band crossing and continues the sweep in Band 1. Specifications are given separately for each band in the band overlap regions. One of these specifications is for the preferred band, and one for the alternate band. Continuing with the example from the previous paragraph (3.58 GHz), the preferred band is band 0 (indicated as frequencies under 3.6 GHz) and the alternate band is band 1 (3.5 to 8.4 GHz). The specifications for the preferred band are warranted. The specifications for the alternate band are not warranted in the band overlap region, but performance is nominally the same as those warranted specifications in the rest of the band. Again, in this example, consider a signal at 3.58 GHz. If the sweep has been configured so that the signal at 3.58 GHz is measured in Band 1, the analysis behavior is nominally as stated in the Band 1 specification line (3.5 to 8.4 GHz) but is not warranted. If warranted performance is necessary for this sig­nal, the sweep should be reconfigured so that analysis occurs in Band 0. Another way to express this situation in this example Band 0/Band 1 crossing is this: The specifications given in the “Specifications” column which are described as “3.5 to 8.4 GHz” represent nominal performance from 3.5 to 3.6 GHz, and warranted performance from 3.6 to 8.4 GHz.
Description Specifications Supplemental
Information
Standard Frequency Reference
Accuracy ±[(time since last adjustment × aging
rate) + temperature stability + calibration accuracy
a
]
Temperature Stability
20 to 30°C
Full temperature range
Aging Rate
Achievable Initial Calibration Accuracy
Settability
Residual FM
(Center Frequency = 1 GHz
±2 × 10
±2 × 10
±1 × 10
±1.4 × 10
±2 × 10
6
6
6
8
/year
6
b
10 Hz × N
c
p-p in 20 ms
(nominal)
10 Hz RBW, 10 Hz VBW)
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the adjust-
ment procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration
Accuracy.” b. For periods of one year or more. c. N is the LO multiplication factor.
Keysight N9020A MXA Specification Guide 21
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Precision Frequency Reference
(Option PFR)
Accuracy ±[(time since last adjustment ×
aging rate) + temperature stability + calibration accuracy
a]b
Temperature Stability
20 to 30°C
Full temperature range
Aging Rate
±1.5 × 10
±5 × 10
8
8
Nominally linear
10
±5 × 10
Total Aging
7
1 Year
2 Years
Settability
Warm-up and Retrace
d
300 s after turn on
900 s after turn on
Achievable Initial Calibration Accuracy
e
±1 × 10
±1.5 × 10
±2 × 10
±4 × 10
9
8
7
Nominal
±1 × 10
±1 × 10
7
of final frequency
8
of final frequency
Standby power to reference oscillator Not supplied
Residual FM
(Center Frequency = 1 GHz
0.25 Hz × N (nominal)
10 Hz RBW, 10 Hz VBW)
c
/day (nominal)
f
p-p in 20 ms
a. Calibration accuracy depends on how accurately the frequency standard was adjusted to 10 MHz. If the adjust-
ment procedure is followed, the calibration accuracy is given by the specification “Achievable Initial Calibration
Accuracy.” b. The specification applies after the analyzer has been powered on for four hours. c. Narrow temperature range performance is nominally linear with temperature. For example, for
25±3º C, the stability would be only three-fifths as large as the warranted 25±5º C, thus ±0.9 × 10
8
.
d. Standby mode does not apply power to the oscillator. Therefore warm-up applies every time the power is
turned on. The warm-up reference is one hour after turning the power on. Retracing also occurs every time
warm-up occurs. The effect of retracing is included within the “Achievable Initial Calibration Accuracy” term of
the Accuracy equation.
22 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Frequency and Time
e. The achievable calibration accuracy at the beginning of the calibration cycle includes these effects:
1) Temperature difference between the calibration environment and the use environment
2) Orientation relative to the gravitation field changing between the calibration environment and the use envi-
ronment
3) Retrace effects in both the calibration environment and the use environment due to turning the instrument
power off.
4) Settability
f. N is the LO multiplication factor.
Description Specifications Supplemental Information
Frequency Readout Accuracy ±(marker freq × freq ref accy. + 0.25% ×
a
+ 2 Hz + 0.5 × horizontal
)
Example for EMC
span + 5% × RBW resolution
d
b
Single detector only
±0.0032% (nominal)
a. The warranted performance is only the sum of all errors under autocoupled conditions. Under non-autocoupled
conditions, the frequency readout accuracy will nominally meet the specification equation, except for conditions in which the RBW term dominates, as explained in examples below. The nominal RBW contribution to frequency readout accuracy is 2% of RBW for RBWs from 1 Hz to 390 kHz, 4% of RBW from 430 kHz through 3 MHz (the widest autocoupled RBW), and 30% of RBW for the (manually selected) 4, 5, 6 and 8 MHz RBWs. First example: a 120 MHz span, with autocoupled RBW. The autocoupled ratio of span to RBW is 106:1, so the RBW selected is 1.1 MHz. The 5% × RBW term contributes only 55 kHz to the total frequency readout accu­racy, compared to 300 kHz for the 0.0.25% × span term, for a total of 355 kHz. In this example, if an instrument had an unusually high RBW centering error of 7% of RBW (77 kHz) and a span error of 0.20% of span (240 kHz), the total actual error (317 kHz) would still meet the computed specification (355 kHz). Second example: a 20 MHz span, with a 4 MHz RBW. The specification equation does not apply because the Span: RBW ratio is not autocoupled. If the equation did apply, it would allow 50 kHz of error (0.25%) due to the span and 200 kHz error (5%) due to the RBW. For this non-autocoupled RBW, the RBW error is nominally 30%, or 1200 kHz.
b. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by
span/(Npts –1), where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector mode is “normal” and the span > 0.25 × (Npts –1) × RBW, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is autocoupled and there are 1001 sweep points, that exception occurs only for spans > 750 MHz.
c. Specifications apply to traces in most cases, but there are exceptions. Specifications always apply to the peak
detector. Specifications apply when only one detector is in use and all active traces are set to Clear Write. Spec­ifications also apply when only one detector is in use in all active traces and the "Restart" key has been pressed since any change from the use of multiple detectors to a single detector. In other cases, such as when multiple simultaneous detectors are in use, additional errors of 0.5, 1.0 or 1.5 sweep points will occur in some detectors, depending on the combination of detectors in use.
d. In most cases, the frequency readout accuracy of the analyzer can be exceptionally good. As an example, Key-
sight has characterized the accuracy of a span commonly used for Electro-Magnetic Compatibility (EMC) testing using a source frequency locked to the analyzer. Ideally, this sweep would include EMC bands C and D and thus sweep from 30 to 1000 MHz. Ideally, the analysis bandwidth would be 120 kHz at 6 dB, and the spacing of the points would be half of this (60 kHz). With a start frequency of 30 MHz and a stop frequency of 1000.2 MHz and a total of 16168 points, the spacing of points is ideal. The detector used was the Peak detector. The accuracy of frequency readout of all the points tested in this span was with ±0.0032% of the span. A perfect analyzer with this many points would have an accuracy of ±0.0031% of span. Thus, even with this large number of display points, the errors in excess of the bucket quantization limitation were negligible.
c
Keysight N9020A MXA Specification Guide 23
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Frequency Counter
a
See note
b
Count Accuracy ±(marker freq × freq ref accy. + 0.100 Hz)
Delta Count Accuracy ±(delta freq. × freq ref accy. + 0.141 Hz)
Resolution 0.001 Hz
a. Instrument conditions: RBW = 1 kHz, gate time = auto (100 ms), S/N 50 dB, frequency = 1 GHz b. If the signal being measured is locked to the same frequency reference as the analyzer, the specified count
accuracy is ±0.100 Hz under the test conditions of footnote a. This error is a noisiness of the result. It will increase with noisy sources, wider RBWs, lower S/N ratios, and source frequencies > 1 GHz.
Description Specifications Supplemental Information
Frequency Span
Range
Option 503 0 Hz, 10 Hz to 3.6 GHz
Option 508 0 Hz, 10 Hz to 8.4 GHz
Option 513 0 Hz, 10 Hz to 13.6 GHz
Option 526 0 Hz, 10 Hz to 26.5 GHz
Resolution 2 Hz
Span Accuracy
Swept
FFT
±(0.25% × span + horizontal resolution
±(0.1% × span + horizontal resolution
a
)
a
)
a. Horizontal resolution is due to the marker reading out one of the sweep points. The points are spaced by
span/(Npts 1), where Npts is the number of sweep points. For example, with the factory preset value of 1001 sweep points, the horizontal resolution is span/1000. However, there is an exception: When both the detector mode is “normal” and the span > 0.25 × (Npts − 1) × RBW, peaks can occur only in even-numbered points, so the effective horizontal resolution becomes doubled, or span/500 for the factory preset case. When the RBW is auto coupled and there are 1001 sweep points, that exception occurs only for spans > 750 MHz.
24 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Sweep Time and Trigger
Sweep Time Range Span = 0 Hz Span 10 Hz
1 μs to 6000 s 1 ms to 4000 s
Sweep Time Accuracy Span 10 Hz, swept Span 10 Hz, FFT Span = 0 Hz
±0.01% (nominal) ±40% (nominal) ±0.01% (nominal)
Sweep Trigger Free Run, Line, Video, External 1,
External 2, RF Burst, Periodic Timer
Delayed Trigger
a
Range
Span 10 Hz 150 ms to 500 ms
Span = 0 Hz
10 s to +500 ms
b
Resolution 0.1 μs
a. Delayed trigger is available with line, video, RF burst and external triggers. b. Prior to A.19.28 software, zero span trigger delay was limited to -150 ms to 500 ms.
Keysight N9020A MXA Specification Guide 25
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Triggers Additional information on some of the triggers
and gate sources
Video Independent of Display Scaling and Reference
Level
Minimum settable level 170 dBm Useful range limited by noise
Maximum usable level
Highest allowed mixer level
a
+ 2 dB (nominal)
Detector and Sweep Type relationships
Sweep Type = Swept
Detector = Normal, Peak, Sample or Negative Peak
Triggers on the signal before detection, which is similar to the displayed signal
Detector = Average Triggers on the signal before detection, but with a
single-pole filter added to give similar smoothing to that of the average detector
Sweep Type = FFT Triggers on the signal envelope in a bandwidth
wider than the FFT width
RF Burst
Level Range
40 to 10 dBm plus attenuation (nominal)
b
Level Accuracy ±2 dB + Absolute Amplitude Accuracy (nominal)
Bandwidth (10 dB)
Most cases 16 MHz (nominal)
Sweep Type = FFT;
30 MHz (nominal)
FFT Width = 25 MHz; Span 8 MHz
Frequency Limitations If the start or center frequency is too close to
zero, LO feedthrough can degrade or prevent triggering. How close is too close depends on the bandwidth listed above.
External Triggers See “Trigger Inputs” on page 74
TV Triggers Triggers on the leading edge of the selected sync
pulse of standardized TV signals.
Amplitude Requirements –65 dBm minimum video carrier power at the
input mixer, nominal
26 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Compatible Standards NTSC-M, NTSC-Japan,
NTSC-4.43, PAL-M, PAL-N, PAL-N Combination, PAL-B/-D/-G/-H/-I. PAL-60, SECAM-L
Field Selection Entire Frame, Field One,
Field Two
Line Selection 1 to 525, or 1 to 625,
standard dependent
a. The highest allowed mixer level depends on the IF Gain. It is nominally –10 dBm for Preamp Off and IF Gain =
Low.
b. Noise will limit trigger level range at high frequencies, such as above 15 GHz.
Description Specifications Supplemental Information
Gated Sweep
Gate Methods Gated LO
Gated Video Gated FFT
Span Range Any span
Gate Delay Range 0 to 100.0 s
Gate Delay Settability 4 digits, 100 ns
Gate Delay Jitter 33.3 ns p-p (nominal)
Gate Length Range
(Except Method = FFT)
Gated Frequency and Amplitude Errors
Gate Sources External 1
100 ns to 5.0 s Gate length for the FFT method is fixed at
1.83/RBW, with nominally 2% tolerance.
Nominally no additional error for gated measurements when the Gate Delay is greater than the MIN FAST setting
Pos or neg edge triggered External 2 Line RF Burst Periodic
Keysight N9020A MXA Specification Guide 27
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Number of Frequency Sweep Points (buckets)
Factory preset 1001
Range 1 to 100,001 Zero and non-zero spans
Nominal Measurement Time vs. Span [Plot]
28 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Resolution Bandwidth (RBW)
Range (3.01 dB bandwidth) Standard
1 Hz to 8 MHz Bandwidths above 3 MHz are 4, 5, 6, and 8 MHz. Bandwidths 1 Hz to 3 MHz are spaced at 10% spacing using the E24 series (24 per decade): 1.0, 1.1, 1.2, 1.3, 1.5, 1.6,
1.8, 2.0, 2.2, 2.4, 2.7, 3.0, 3.3, 3.6, 3.9,
4.3, 4.7, 5.1, 5.6, 6.2, 6.8, 7.5, 8.2, 9.1 in each decade.
a
With Option B85 or B1A, and Option RBE
10, 15, 20, 25, 30, 40, 50, 60, and 70 MHz, in Spectrum Analyzer mode and zero span.
With Option B1X and Option RBE
a
10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 100, and 133 MHz, in Spectrum Analyzer mode and zero span.
Power bandwidth accuracy
b
RBW Range CF Range
1 Hz to 750 kHz All ±1.0% (0.044 dB)
820 kHz to 1.2 MHz <3.6 GHz ±2.0% (0.088 dB)
1.3 to 2.0 MHz <3.6 GHz ±0.07 dB (nominal)
2.2 to 3 MHz <3.6 GHz 0 to0.2 dB (nominal)
4 to 8 MHz <3.6 GHz 0 to0.4 dB (nominal)
Noise BW to RBW ratio
Accuracy (−3.01 dB bandwidth)
c
d
1.056 ±2% (nominal)
1 Hz to 1.3 MHz RBW ±2% (nominal)
1.5 MHz to 3 MHz RBW
CF 3.6 GHz CF > 3.6 GHz
±7% (nominal) ±8% (nominal)
4 MHz to 8 MHz RBW
CF 3.6 GHz CF > 3.6 GHz
±15% (nominal) ±20% (nominal)
Selectivity (60 dB/3 dB) 4.1:1 (nominal)
a. Option RBE enables wider bandwidth filters in zero span in the Signal Analyzer mode. Available detectors are
Peak+ and Average. VBW filtering is disabled. Minimum sweep time is the greater of 200 μS or 200ns/pt. The filter shape is approximately square. Support for Average detector was first added in SW Version A.23.05.
Keysight N9020A MXA Specification Guide 29
MXA Signal Analyzer Frequency and Time
b. The noise marker, band power marker, channel power and ACP all compute their results using the power band-
width of the RBW used for the measurement. Power bandwidth accuracy is the power uncertainty in the results of these measurements due only to bandwidth-related errors. (The analyzer knows this power bandwidth for each RBW with greater accuracy than the RBW width itself, and can therefore achieve lower errors.) The war­ranted specifications shown apply to the Gaussian RBW filters used in swept and zero span analysis. There are four different kinds of filters used in the spectrum analyzer: Swept Gaussian, Swept Flattop, FFT Gaussian and FFT Flattop. While the warranted performance only applies to the swept Gaussian filters, because only they are kept under statistical process control, the other filters nominally have the same performance.
c. The ratio of the noise bandwidth (also known as the power bandwidth) to the RBW has the nominal value and
tolerance shown. The RBW can also be annotated by its noise bandwidth instead of this 3 dB bandwidth. The accuracy of this annotated value is similar to that shown in the power bandwidth accuracy specification.
d. Resolution Bandwidth Accuracy can be observed at slower sweep times than auto-coupled conditions. Normal
sweep rates cause the shape of the RBW filter displayed on the analyzer screen to widen by nominally 6%. This widening declines to 0.6% nominal when the Swp Time Rules key is set to Accuracy instead of Normal. The true bandwidth, which determines the response to impulsive signals and noise-like signals, is not affected by the sweep rate.
Description Specification Supplemental information
Analysis Bandwidth
a
Standard 10 MHz
With Option B25
b
25 MHz
With Option B40 40 MHz
With Option B85 85 MHz
With Option B1A 125 MHz
With Option B1X 160 MHz
a. Analysis bandwidth is the instantaneous bandwidth available about a center frequency over which the input sig-
nal can be digitized for further analysis or processing in the time, frequency, or modulation domain.
b. Option B25 is standard for instruments ordered after May 1, 2011.
30 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Frequency and Time
Description Specifications Supplemental Information
Preselector Bandwidth
Center Frequency
Mean BW at 4 dB
a
Standard Deviation (nominal)
(nominal)
5 GHz 58 MHz 9%
10 GHz 57 MHz 8%
15 GHz 59 MHz 9%
20 GHz 64 MHz 9%
25 GHz 74 MHz 9%
3 dB Bandwidth 7.5% relative to 4 dB bandwidth, nominal
a. The preselector can have a passband ripple up to 3 dB. To avoid ambiguous results, the –4 dB bandwidth is
characterized.
Description Specifications Supplemental Information
Video Bandwidth (VBW)
Range Same as Resolution Bandwidth range
plus wide-open VBW (labeled 50 MHz)
Accuracy ±6% (nominal)
in swept mode and zero span
a
a. For FFT processing, the selected VBW is used to determine a number of averages for FFT results. That number is
chosen to give roughly equivalent display smoothing to VBW filtering in a swept measurement. For example, if VBW = 0.1 × RBW, four FFTs are averaged to generate one result.
Keysight N9020A MXA Specification Guide 31
MXA Signal Analyzer Amplitude Accuracy and Range
Amplitude Accuracy and Range
Description Specifications Supplemental Information
Measurement Range
Preamp Off Displayed Average Noise Level to +30 dBm
Preamp On Displayed Average Noise Level to +30 dBm Options P03, P08, P13, P26
Input Attenuation Range 0 to 70 dB, in 2 dB steps
Description Specifications Supplemental Information
Maximum Safe Input Level Applies with or without preamp
(Options P03, P08, P13, P26)
Average Total Power +30 dBm (1 W)
Peak Pulse Power
(≤10 μs pulse width,1% duty cycle,
input attenuation 30 dB)
DC voltage
DC Coupled ±0.2 Vdc
AC Coupled ±100 Vdc
Description Specifications Supplemental Information
Display Range
Log Scale Ten divisions displayed;
Linear Scale Ten divisions
Description Specifications Supplemental Information
Marker Readout
+50 dBm (100 W)
0.1 to 1.0 dB/division in 0.1 dB steps, and 1 to 20 dB/division in 1 dB steps
Resolution
Log (decibel) units
Trace Averaging Off, on-screen 0.01 dB
Trace Averaging On or remote 0.001 dB
Linear units resolution ≤1% of signal level (nominal)
32 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Amplitude Accuracy and Range
Frequency Response
Description Specifications Supplemental Information
Frequency Response Refer to the footnote for
(Maximum error relative to reference condition (50 MHz)
Mechanical attenuator only Swept operation
c
b
Attenuation 10 dB)
20 to 30°CFull range 95th Percentile (≈2σ)
20 Hz to 10 MHz ±0.6 dB ±0.8 dB ±0.28 dB
Band Overlaps on page 20.
Modes above 18 GHz
a
10 MHz
3.5 to 8.4 GHz
8.3 to 13.6 GHz
13.5 to 17.1 GHz
17.0 to 22.0 GHz
22.0 to 26.5 GHz
d
to 3.6 GHz
ef
ef
±0.45 dB ±0.57 dB ±0.17 dB
±1.5 dB ±2.5 dB ±0.48 dB
±2.0 dB ±2.7 dB ±0.47 dB
ef
ef
ef
±2.0 dB ±2.7 dB ±0.52 dB
±2.0 dB ±3.5 dB ±0.52 dB
±2.5 dB ±3.7 dB ±0.71 dB
a. Signal frequencies above 18 GHz are prone to response errors due to modes in the Type-N connector used.
With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes.
The effect of these modes with this connector are included within these specifications. b. See the Electronic Attenuator (Option EA3) chapter for Frequency Response using the electronic attenuator. c. For Sweep Type = FFT, add the RF flatness errors of this table to the IF Frequency Response errors. An addi-
tional error source, the error in switching between swept and FFT sweep types, is nominally ±0.01 dB and is
included within the “Absolute Amplitude Error” specifications. d. Specifications apply with DC coupling at all frequencies. With AC coupling, specifications apply at frequencies of
50 MHz and higher. Statistical observations at 10 MHz and lower show that most instruments meet the specifi-
cations, but a few percent of instruments can be expected to have errors that, while within the specified limits,
are closer to those limits than the measurement uncertainty guardband, and thus are not warranted. The effect
at 20 to 50 MHz is negligible, but not warranted. e. Specifications for frequencies > 3.5 GHz apply for sweep rates 100 MHz/ms. f. Preselector centering applied.
Keysight N9020A MXA Specification Guide 33
MXA Signal Analyzer Amplitude Accuracy and Range
Nominal Frequency Response Band 0 [Plot]
34 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
IF Frequency Response
a
Modes above 18 GHz
b
(Demodulation and FFT response relative to the center frequency)
Center Freq (GHz)
Span (MHz)
c
Preselector
Max Errord
(Exception
e
)
Midwidth (95th Percentile)
Error
Slope (dB/MHz) (95th Percentile)
RMSf (nominal)
<3.6 10 ±0.40 dB ±0.12 dB ±0.10 0.04 dB
3.6, 26.5 10 On 0.25 dB
3.6, 26.5 10
Off
±0.45 dB ±0.12 dB ±0.10 0.04 dB
g
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF fre-
quency, in addition to the IF passband effects.
b. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum Analyzer Mode, this would
be the FFT width.
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression
± [Midwidth Error + (f × Slope)], but never exceeds ±Max Error. Here the Midwidth Error is the error at the center frequency for a given FFT span. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. When using the Spectrum Analyzer mode with an analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple cen­ters of FFT widths; in this case the f in the equation is the offset from the nearest center. Performance is nominally three times better at most center frequencies.
e. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT widths of 7.2 to 8
MHz.
f. The “rms” nominal performance is the standard deviation of the response relative to the center frequency, inte-
grated across the span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
g. Option MPB is installed and enabled.
Keysight N9020A MXA Specification Guide 35
MXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
IF Phase Linearity Deviation from mean phase linearity
Modes above 18 GHz
a
Center Freq (GHz) Span
(MHz)
Preselector Peak-to-peak
(nominal)
RMS (nominal)
0.02, <3.6 10 n/a 0.4° 0.1°
c
3.6, 26.5 10
Off
0.4° 0.1°
3.6, 26.5 10 On 1.0° 0.2°
a. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. With the use Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
b. The listed performance is the standard deviation of the phase deviation relative to the mean phase deviation from
a linear phase condition, where the rms is computed across the span shown and over the range of center fre­quencies shown.
c. Option MPB is installed and enabled.
Description Specifications Supplemental Information
Absolute Amplitude Accuracy
At 50 MHz
20 to 30°C Full temperature range
a
±0.33 dB
±0.15 dB
(95th percentile)
±0.36 dB
b
At all frequencies
20 to 30°C Full temperature range
95th Percentile Absolute Amplitude Accuracy
a
±(0.33 dB + frequency response) ±(0.36 dB + frequency response)
±0.23 dB
b
(Wide range of signal levels, RBWs, RLs, etc.,
0.01 to 3.6 GHz, Atten = 10 dB)
Amplitude Reference Accuracy ±0.05 dB (nominal)
Preamp On
c
±(0.39 dB + frequency response)
(Options P03, P08, P13, P26)
36 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Amplitude Accuracy and Range
a. Absolute amplitude accuracy is the total of all amplitude measurement errors, and applies over the following
subset of settings and conditions: 1 Hz ≤ RBW ≤ 1MHz; Input signal 10 to 50 dBm (details below); Input attenuation 10 dB; span < 5 MHz (nominal additional error for span 5 MHz is 0.02 dB); all settings auto-cou­pled except Swp Time Rules = Accuracy; combinations of low signal level and wide RBW use VBW 30 kHz to reduce noise. When using FFT sweeps, the signal must be at the center frequency. This absolute amplitude accuracy specification includes the sum of the following individual specifications under the conditions listed above: Scale Fidelity, Reference Level Accuracy, Display Scale Switching Uncertainty, Res­olution Bandwidth Switching Uncertainty, 50 MHz Amplitude Reference Accuracy, and the accuracy with which the instrument aligns its internal gains to the 50 MHz Amplitude Reference. The only difference between signals within the range ending at –50 dBm and those signals below that level is the scale fidelity. Our specifications show the possibility of increased errors below –80 dBm at the mixer, thus –70 dBm at the input. Therefore, one reasonably conservative approach to estimating the Absolute Amplitude Uncertainty below –70 dBm at the mixer would be to add an additional ±0.05 dB (the difference between the above –80 dBm at the mixer scale fidelity at the lower level scale fidelity) to the Absolute Amplitude Uncertainty.
b. Absolute Amplitude Accuracy for a wide range of signal and measurement settings, covers the 95th percentile
proportion with 95% confidence. Here are the details of what is covered and how the computation is made: The wide range of conditions of RBW, signal level, VBW, reference level and display scale are discussed in foot­note a. There are 44 quasi-random combinations used, tested at a 50 MHz signal frequency. We compute the 95th percentile proportion with 95% confidence for this set observed over a statistically significant number of instruments. Also, the frequency response relative to the 50 MHz response is characterized by varying the signal across a large number of quasi-random verification frequencies that are chosen to not correspond with the fre­quency response adjustment frequencies. We again compute the 95th percentile proportion with 95% confi­dence for this set observed over a statistically significant number of instruments. We also compute the 95th percentile accuracy of tracing the calibration of the 50 MHz absolute amplitude accuracy to a national stan­dards organization. We also compute the 95th percentile accuracy of tracing the calibration of the relative fre­quency response to a national standards organization. We take the root-sum-square of these four independent Gaussian parameters. To that rss we add the environmental effects of temperature variations across the 20 to 30°C range. These computations and measurements are made with the mechanical attenuator only in circuit, set to the reference state of 10 dB. A similar process is used for computing the result when using the electronic attenuator under a wide range of settings: all even settings from 4 through 24 dB inclusive, with the mechanical attenuator set to 10 dB. Then the worst of the two computed 95th percentile results (they ere very close) is shown.
c. Same settings as footnote a, except that the signal level at the preamp input is 40 to 80 dBm. Total power at
preamp (dBm) = total power at input (dBm) minus input attenuation (dB). This specification applies for signal frequencies above 100 kHz.
Keysight N9020A MXA Specification Guide 37
MXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Input Attenuation Switching Uncertainty Refer to the footnote for
Band Overlaps on page 20
50 MHz (reference frequency) ±0.20 dB ±0.08 dB (typical)
Attenuation > 2 dB, preamp off
(Relative to 10 dB (reference setting))
20 Hz to 3.6 GHz ±0.3 dB (nominal)
3.5 to 8.4 GHz ±0.5 dB (nominal)
8.3 to 13.6 GHz ±0.7 dB (nominal)
13.5 to 26.5 GHz ±0.7 dB (nominal)
Description Specifications Supplemental Information
RF Input VSWR
(at tuned frequency, DC Coupled)
10 dB attenuation, 50 MHz (ref condition) 1.07:1 (nominal)
0 dB atten, 0.01 to 3.6 GHz <2.2:1 (nominal)
95th Percentile
a
Band 0 (0.01 to 3.6 GHz, 10 dB atten) 1.142
Band 1 (3.5 to 8.4 GHz, 10 dB atten) 1.33
Band 2 (8.3 to 13.6 GHz, 10 dB atten) 1.48
Band 3 (13.5 to 17.1 GHz, 10 dB atten) 1.46
Band 4 (17.0 to 26.5 GHz, 10 dB atten) 1.55
Nominal VSWR vs. Freq. 10 dB See plots following
Atten > 10 dB Similar to atten = 10 dB
RF calibrator (e.g. 50 MHz) is On Open input
Alignments running Open input for some, unless "All but RF" is
selected
Preselector Centering Open input
a. X-Series analyzers have a reflection coefficient that is excellently modeled with a Rayleigh probability
distribution. Keysight recommends using the methods outlined in Application Note 1449-3 and companion
Average Power Sensor Measurement Uncertainty Calculator to compute mismatch uncertainty. Use this 95th
percentile VSWR information and the Rayleigh model (Case C or E in the application note) with that process.
38 Keysight N9020A MXA Specification Guide
Nominal VSWR [Plot]
MXA Signal Analyzer Amplitude Accuracy and Range
Keysight N9020A MXA Specification Guide 39
MXA Signal Analyzer Amplitude Accuracy and Range
Description Specifications Supplemental Information
Resolution Bandwidth Switching Uncertainty Relative to reference BW of 30 kHz,
1.0 Hz to 1.5 MHz RBW ±0.05 dB
verified in low band
a
1.6 MHz to 3 MHz RBW ±0.10 dB
Manually selected wide RBWs: 4, 5, 6, 8 MHz ±1.0 dB
a. RBW switching uncertainty is verified at 50 MHz. It is consistent for all measurements made without the prese-
lector, thus in Band 0 and also in higher bands with the Preselector Bypass option. In preselected bands, the slope of the preselector passband can interact with the RBW shape to make an apparent additional RBW switching uncertainty of nominally ±0.05 dB/MHz times the RBW.
Description Specifications Supplemental Information
Reference Level
Range
Log Units 170 to +30 dBm, in 0.01 dB steps
Linear Units 707 pV to 7.07 V, with 0.01 dB resolution (0.11%)
Accuracy
0 dB
a
a. Because reference level affects only the display, not the measurement, it causes no additional error in measure-
ment results from trace data or markers.
Description Specifications Supplemental Information
Display Scale Switching Uncertainty
Switching between Linear and Log
Log Scale Switching
0 dB
0 dB
a
a
a. Because Log/Lin and Log Scale Switching affect only the display, not the measurement, they cause no additional
error in measurement results from trace data or markers.
40 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer
3
σ
320dB()110
SN 3dB+()20dB()
+log=
Amplitude Accuracy and Range
Description Specifications Supplemental Information
Display Scale Fidelity
ab
Absolute Log-Linear Fidelity
(Relative to the reference condition: 25 dBm input through 10 dB attenuation, thus
35 dBm at the input mixer)
Input mixer level
c
Linearity
80 dBm ML 10 dBm ±0.10 dB
ML < −80 dBm ±0.15 dB
Relative Fidelity
d
Applies for mixer levelc range from 10 to
80 dBm, mechanical attenuator only, preamp off, and dither on.
Sum of the following terms: Nominal
high level term
instability term
slope term
prefilter term
Up to ±0.045 dB
Up to ±0.018 dB
From equation
Up to ±0.005 dB
e
f
g
a. Supplemental information: The amplitude detection linearity specification applies at all levels below 10 dBm at
the input mixer; however, noise will reduce the accuracy of low level measurements. The amplitude error due to
noise is determined by the signal-to-noise ratio, S/N. If the S/N is large (20 dB or better), the amplitude error
due to noise can be estimated from the equation below, given for the 3-sigma (three standard deviations) level.
The errors due to S/N ratio can be further reduced by averaging results. For large S/N (20 dB or better), the
3-sigma level can be reduced proportional to the square root of the number of averages taken. b. The scale fidelity is warranted with ADC dither set to Medium. Dither increases the noise level by nominally only
0.24 dB for the most sensitive case (preamp Off, best DANL frequencies). With dither Off, scale fidelity for low
level signals, around 60 dBm or lower, will nominally degrade by 0.2 dB. c. Mixer level = Input Level Input Attenuation d. The relative fidelity is the error in the measured difference between two signal levels. It is so small in many cases
that it cannot be verified without being dominated by measurement uncertainty of the verification. Because of
this verification difficulty, this specification gives nominal performance, based on numbers that are as conserva-
tively determined as those used in warranted specifications. We will consider one example of the use of the error
equation to compute the nominal performance.
Example: the accuracy of the relative level of a sideband around 60 dBm, with a carrier at 5dBm, using atten-
uation = 10 dB, RBW = 3 kHz, evaluated with swept analysis. The high level term is evaluated with P1 =
15 dBm and P2 = 70 dBm at the mixer. This gives a maximum error within ±0.025 dB. The instability term is
±0.018 dB. The slope term evaluates to ±0.050 dB. The prefilter term applies and evaluates to the limit of
±0.005 dB. The sum of all these terms is ±0.098 dB.
Keysight N9020A MXA Specification Guide 41
MXA Signal Analyzer Amplitude Accuracy and Range
e. Errors at high mixer levels will nominally be well within the range of ±0.045 dB × {exp[(P1 Pref)/(8.69 dB)]
x
exp[(P2 Pref)/(8.69 dB)]} (exp is the natural exponent function, e
). In this expression, P1 and P2 are the pow-
ers of the two signals, in decibel units, whose relative power is being measured. Pref is 10 dBm (10 dBm is
the highest power for which linearity is specified). All these levels are referred to the mixer level. f. Slope error will nominally be well within the range of ±0.0009 × (P1 P2). P1 and P2 are defined in footnote e. g. A small additional error is possible. In FFT sweeps, this error is possible for spans under 4.01 kHz. For non-FFT
measurements, it is possible for RBWs of 3.9 kHz or less. The error is well within the range of ±0.0021 × (P1 -
P2) subject to a maximum of ±0.005 dB. (The maximum dominates for all but very small differences.) P1 and P2
are defined in footnote e.
Nominal Display Scale Fidelity [Plot]
Description Specifications Supplemental Information
Available Detectors Normal, Peak, Sample, Negative Peak,
Average
Average detector works on RMS, Voltage and Logarithmic scales
42 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Dynamic Range
Dynamic Range
Gain Compression
Description Specifications Supplemental Information
1 dB Gain Compression Point (Two-tone)
20 to 500 MHz 0 dBm +3 dBm (typical)
500 MHz to 3.6 GHz +1 dBm +5 dBm (typical)
3.6 to 26.5 GHz 0 dBm +4 dBm (typical)
Clipping (ADC Over-range)
Any signal offset 10 dBm
Signal offset > 5 times IF prefilter bandwidth and IF Gain set to Low
IF Prefilter Bandwidth
Zero Span or Sweep Type = FFT, –3 dB Bandwidth
f
Swept
, RBW =
3.9 kHz < 4.01 kHz 8.9 kHz
4.3 to 27 kHz < 28.81 kHz 79 kHz
FFT Width = (nominal)
abc
Maximum power at mixer
d
Low frequency exceptions
+12 dBm (nominal)
e
30 to 160 kHz < 167.4 kHz 303 kHz
180 to 390 kHz < 411.9 kHz 966 kHz
430 kHz to 8 MHz < 7.99 MHz 10.9 MHz
a. Large signals, even at frequencies not shown on the screen, can cause the analyzer to incorrectly measure
on-screen signals because of two-tone gain compression. This specification tells how large an interfering signal must be in order to cause a 1 dB change in an on-screen signal.
b. Specified at 1 kHz RBW with 100 kHz tone spacing. The compression point will nominally equal the specification
for tone spacing greater than 5 times the prefilter bandwidth. At smaller spacings, ADC clipping may occur at a level lower than the 1 dB compression point.
Keysight N9020A MXA Specification Guide 43
MXA Signal Analyzer Dynamic Range
c. Reference level and off-screen performance: The reference level (RL) behavior differs from some earlier analyz-
ers in a way that makes this analyzer more flexible. In other analyzers, the RL controlled how the measurement was performed as well as how it was displayed. Because the logarithmic amplifier in these analyzers had both range and resolution limitations, this behavior was necessary for optimum measurement accuracy. The logarith­mic amplifier in this signal analyzer, however, is implemented digitally such that the range and resolution greatly exceed other instrument limitations. Because of this, the analyzer can make measurements largely independent of the setting of the RL without compromising accuracy. Because the RL becomes a display function, not a mea­surement function, a marker can read out results that are off-screen, either above or below, without any change in accuracy. The only exception to the independence of RL and the way in which the measurement is performed is in the input attenuation setting: When the input attenuation is set to auto, the rules for the determination of the input attenuation include dependence on the reference level. Because the input attenuation setting controls the tradeoff between large signal behaviors (third-order intermodulation, compression, and display scale fidel­ity) and small signal effects (noise), the measurement results can change with RL changes when the input atten­uation is set to auto.
d. Mixer power level (dBm) = input power (dBm) input attenuation (dB). e. The ADC clipping level declines at low frequencies (below 50 MHz) when the LO feedthrough (the signal that
appears at 0 Hz) is within 5 times the prefilter bandwidth (see table) and must be handled by the ADC. For example, with a 300 kHz RBW and prefilter bandwidth at 966 kHz, the clipping level reduces for signal frequen­cies below 4.83 MHz. For signal frequencies below 2.5 times the prefilter bandwidth, there will be additional reduction due to the presence of the image signal (the signal that appears at the negative of the input signal fre­quency) at the ADC.
f. This table applies without Option FS1 or FS2, fast sweep, enabled. Option FS1 or FS2 is only enabled if the
license for FS1 or FS2 is present and one or more of the following options are also present:B40, MPB, or DP2. With Option FS1 or FS2, this table applies for sweep rates that are manually chosen to be the same as or slower than "traditional" sweep rates, instead of the much faster sweep rates, such as autocoupled sweep rates, available with FS1. Sweep rate is defined to be span divided by sweep time. If the sweep rate is 1.1 times RBW-squared, the table applies. Otherwise, compute an "effective RBW" = Span / (SweepTime × RBW). To determine the IF Prefilter Bandwidth, look up this effective RBW in the table instead of the actual RBW. For example, for RBW = 3 kHz, Span = 300 kHz, and Sweep time = 42 ms, we compute that Sweep Rate = 7.1 MHz/s, while RBW-squared is 9 MHz/s. So the Sweep Rate is < 1.1 times RBW-squared and the table applies; row 1 shows the IF Prefilter Bandwidth is nominally 8.9 kHz. If the sweep time is 1 ms, then the effective RBW computes to 100 kHz. This would result in an IF Prefilter Bandwidth from the third row, nominally 303 kHz.
44 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Dynamic Range
Displayed Average Noise Level
Description Specifications Supplemental Information
Displayed Average Noise Level (DANL)
a
Input terminated Sample or Average detector
Refer to the footnote for
Band Overlaps on page 20.
Averaging type = Log 0 dB input attenuation IF Gain = High
1 Hz Resolution Bandwidth
20 to 30°C Full range Typical
Option 503, 508,513, 526
10 Hz –95 dBm (nominal)
20 Hz –105 dBm (nominal)
100 Hz –110 dBm (nominal)
1 kHz –120 dBm (nominal)
9 kHz to 1 MHz –130 dBm
1 to 10 MHz
b
150 dBm 148 dBm 153 dBm
10 MHz to 2.1 GHz 151 dBm 149 dBm 154 dBm
2.1 to 3.6 GHz 149 dBm 147 dBm 152 dBm
Option 508,513, 526
3.6 GHz to 8.4 GHz 149 dBm 147 dBm 153 dBm
Option 513, 526
8.3 GHz to 13.6 GHz 148 dBm 146 dBm 151 dBm
Option 526
13.5 to 17.1 GHz 144 dBm 141 dBm 147 dBm
17.0 to 20.0 GHz 143 dBm 140 dBm 146 dBm
20.0 to 26.5 GHz 136 dBm 132 dBm 142 dBm
Option 526 w/Option B40, DP2, or MPB
13.5 to 17.1 GHz 143 dBm 140 dBm 146 dBm
17.0 to 20.0 GHz 142 dBm 139 dBm 145 dBm
20.0 to 26.5 GHz 136 dBm 132 dBm 141 dBm
Additional DANL, IF Gain=Low
c
160.5 dBm (nominal)
Keysight N9020A MXA Specification Guide 45
MXA Signal Analyzer Dynamic Range
a. DANL for zero span and swept is measured in a 1 kHz RBW and normalized to the narrowest available RBW,
because the noise figure does not depend on RBW and 1 kHz measurements are faster.
b. DANL below 10 MHz is affected by phase noise around the LO feedthrough signal. Specifications apply with the
best setting of the Phase Noise Optimization control, which is to choose the “Best Close-in φ Noise" for fre­quencies below 25 kHz, and “Best Wide Offset φ Noise" for frequencies above 25 kHz.
c. Setting the IF Gain to Low is often desirable in order to allow higher power into the mixer without overload, bet-
ter compression and better third-order intermodulation. When the Swept IF Gain is set to Low, either by auto coupling or manual coupling, there is noise added above that specified in this table for the IF Gain = High case. That excess noise appears as an additional noise at the input mixer. This level has sub-decibel dependence on center frequency. To find the total displayed average noise at the mixer for Swept IF Gain = Low, sum the pow­ers of the DANL for IF Gain = High with this additional DANL. To do that summation, compute DANLtotal = 10 × log (10^(DANLhigh/10) + 10^(AdditionalDANL / 10)). In FFT sweeps, the same behavior occurs, except that FFT IF Gain can be set to autorange, where it varies with the input signal level, in addition to forced High and Low settings.
46 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Dynamic Range
Spurious Responses
Description Specifications Supplemental Information
Spurious Responses
Preamp Off
a
(see Band Overlaps on page 20)
Residual Responses
200 kHz to 8.4 GHz (swept) Zero span or FFT or other frequencies
b
100 dBm
100 dBm (nominal)
Image Responses
Tuned Freq (f) Excitation Freq
Mixer Level
c
Response
10 MHz to 26.5 GHz f+45 MHz 10 dBm 80 dBc 103 dBc (typical)
10 MHz to 3.6 GHz f+10245 MHz 10 dBm 80 dBc 107 dBc (typical)
10 MHz to 3.6 GHz f+645 MHz 10 dBm 80 dBc 108 dBc (typical)
3.5 to 13.6 GHz f+645 MHz 10 dBm 78 dBc 87 dBc (typical)
13.5 to 17.1 GHz f+645 MHz 10 dBm 74 dBc 85 dBc (typical)
17.0 to 22 GHz f+645 MHz 10 dBm 70 dBc 81 dBc (typical)
22 to 26.5 GHz f+645 MHz 10 dBm 68 dBc 77 dBc (typical)
Other Spurious Responses
Carrier Frequency ≤26.5 GHz
First RF Order (f 10 MHz from carrier)
Higher RF Order (f 10 MHz from carrier)
LO-Related Spurious Responses
d
f
10 dBm 80 dBc + 20
e
× log(N
)
40 dBm 80 dBc + 20 × log(Ne)
Includes IF feedthrough, LO harmonic mixing responses
Includes higher order mixer responses
10 dBm 60 dBc 90 dBc (typical)
(f > 600 MHz from carrier 10 MHz to 3.6 GHz)
Sidebands, offset from CW signal
200 Hz
200 Hz to 3 kHz
70 dBc
73 dBc
g
(nominal)
g
(nominal)
3 kHz to 30 kHz 73 dBc (nominal)
30 kHz to 10 MHz 80 dBc (nominal)
a. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, per-
formance is nominally the same as long as the mixer level is interpreted to be: Mixer Level = Input Level Input Attenuation + Preamp Gain
b. Input terminated, 0 dB input attenuation.
Keysight N9020A MXA Specification Guide 47
MXA Signal Analyzer Dynamic Range
c. Mixer Level = Input Level Input Attenuation. d. With first RF order spurious products, the indicated frequency will change at the same rate as the input, with
higher order, the indicated frequency will change at a rate faster than the input. e. N is the LO multiplication factor. f. RBW=100 Hz. With higher RF order spurious responses, the observed frequency will change at a rate faster
than the input frequency. g. Nominally 40 dBc under large magnetic (0.38 Gauss rms) or vibrational (0.21 g rms) environmental stimuli.
Second Harmonic Distortion
Description Specifications Supplemental
Information
Second Harmonic Distortion
Mixer Level
a
Distortion
SHI
b
SHI (typical)
Source Frequency
Serial Prefix ≥SG/MY/US5051
c
10 MHz to 1.0 GHz –15 dBm –60 dBc +45 dBm +54 dBm
1.0 to 1.8 GHz –15 dBm –56 dBc +41 dBm +50 dBm
1.75 to 6.5 GHz –15 dBm –80 dBc +65 dBm +68 dBm
6.5 to 11 GHz –15 dBm –70 dBc +55 dBm +64 dBm
11 to 13.25 GHz –15 dBm –65 dBc +50 dBm +60 dBm
Serial Prefix <SG/MY/US5051
c
10 MHz to 1.8 GHz 15 dBm 60 dBc +45 dBm
1.75 to 7 GHz 15 dBm 80 dBc +65 dBm
7 to 11 GHz 15 dBm 70 dBc +55 dBm
11to 13.25 GHz 15 dBm +50 dBm
a. Mixer level = Input Level Input Attenuation b. SHI = second harmonic intercept. The SHI is given by the mixer power in dBm minus the second harmonic dis-
tortion level relative to the mixer tone in dBc.
c. To see the serial number, press the following keys: System, Show, System
48 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Dynamic Range
Third Order Intermodulation
Description Specifications Supplemental Information
Third Order Intermodulation
Refer to the footnote for
Band Overlaps on page 20.
(Tone separation > 5 times IF Prefilter Bandwidth
a
Verification conditionsb)
20 to 30°C
Intercept
c
Extrapolated Distortion
d
Intercept (typical)
10 to 100 MHz +12 dBm 84 dBc +17 dBm
100 to 400 MHz +15 dBm 90 dBc +20 dBm
400 MHz to 1.7 GHz +16 dBm 92 dBc +20 dBm
1.7 to 3.6 GHz +16 dBm 92 dBc +19 dBm
3.6 to 8.4 GHz +15 dBm 90 dBc +18 dBm
8.3 to 13.6 GHz +15 dBm 90 dBc +18 dBm
13.5 to 26.5 GHz +15 dBm 90 dBc +18 dBm
Full temperature range
10 to 100 MHz +10 dBm −80 dBc
100 to 400 MHz +13 dBm −86 dBc
400 MHz to 1.7 GHz +14 dBm −88 dBc
1.7 to 3.6 GHz +14 dBm −88 dBc
3.6 to 8.4 GHz +13 dBm −86 dBc
8.3 to 13.6 GHz +13 dBm −86 dBc
13.5 to 26.5 GHz +13 dBm −86 dBc
a. See the IF Prefilter Bandwidth table in the Gain Compression specifications on page 43. When the tone sepa-
ration condition is met, the effect on TOI of the setting of IF Gain is negligible. TOI is verified with IF Gain set to its best case condition, which is IF Gain = Low.
b. TOI is verified with two tones, each at 18 dBm at the mixer, spaced by 100 kHz. c. TOI = third order intercept. The TOI is given by the mixer tone level (in dBm) minus (distortion/2) where distor-
tion is the relative level of the distortion tones in dBc.
d. The distortion shown is computed from the warranted intercept specifications, based on two tones at −30 dBm
each, instead of being measured directly. The choice of 30 dBm is based on historic industry practice.
Keysight N9020A MXA Specification Guide 49
MXA Signal Analyzer Dynamic Range
Nominal TOI vs. Mixer Level and Tone Separation [Plot]
50 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Dynamic Range
Nominal Dynamic Range at 1 GHz [Plot]
Nominal Dynamic Range Bands 1-4 [Plot]
Keysight N9020A MXA Specification Guide 51
MXA Signal Analyzer Dynamic Range
Nominal Dynamic Range vs. Offset Frequency vs. RBW(SN prefix MY/SG/US5233, ship standard with N9020A-EP2) [Plot]
Nominal Dynamic Range vs. Offset Frequency vs. RBW (SN prefix <MY/SG/US5233) [Plot]
52 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Dynamic Range
Phase Noise
Description Specifications Supplemental Information
Phase Noise Noise Sidebands
(Center Frequency = 1 GHz Optimization Internal Reference
b
c
a
Best-case
)
SN prefix <MY/SG/US5233
SN prefix ≥MY/SG/US5233, Ship standard with N9020A-EP2
Offset Frequency 20 to 30°CFull range
10 Hz x 80 dBc/Hz (nominal)
100 Hz x 91 dBc/Hz 90 dBc/Hz 100 dBc/Hz (typical)
100 Hz
x 84 dBc/Hz 82 dBc/Hz 88 dBc/Hz (typical)
1 kHz x 112 dBc/Hz (nominal)
1 kHz
x 101 dBc/Hz (nominal)
10 kHz x 113 dBc/Hz 113 dBc/Hz 114 dBc/Hz (typical)
10 kHz
x 103 dBc/Hz 101 dBc/Hz 106 dBc/Hz (typical)
100 kHz x 116 dBc/Hz 115 dBc/Hz 117 dBc/Hz (typical)
100 kHz
x 115 dBc/Hz 114 dBc/Hz 117 dBc/Hz (typical)
1 MHz x 135 dBc/Hz 134 dBc/Hz 136 dBc/Hz (typical)
d
1 MHz
10 MHz
d
x 135 dBc/Hz 134 dBc/Hz 137 dBc/Hz (typical)
x x 148 dBc/Hz (nominal)
a. The nominal performance of the phase noise at center frequencies different than the one at which the specifica-
tions apply (1 GHz) depends on the center frequency, band and the offset. For low offset frequencies, offsets well under 100 Hz, the phase noise increases by 20 × log[(f + 0.3225)/1.3225]. For mid-offset frequencies such as 10 kHz, band 0 phase noise changes as 20 × log[(f + 5.1225)/6.1225]. For mid-offset frequencies in other bands, phase noise changes as 20 × log[(f + 0.3225)/6.1225] except f in this expression should never be lower than 5.8. For wide offset frequencies, offsets above about 100 kHz, phase noise increases as 20 × log(N). N is the LO Mul­tiple as shown on page 20; f is in GHz units in all these relationships; all increases are in units of decibels.
b. Noise sidebands for lower offset frequencies, for example, 10 kHz, apply with the phase noise optimization
(PhNoise Opt) set to Best Close-in φ Noise. Noise sidebands for higher offset frequencies, for example, 1 MHz, as shown apply with the phase noise optimization set to Best Wide-offset φ Noise.
c. Specifications are given with the internal frequency reference. The phase noise at offsets below 100 Hz is
impacted or dominated by noise from the reference. Thus, performance with external references will not follow the curves and specifications. The internal 10 MHz reference phase noise is about –120 dBc/Hz at 10 Hz offset; external references with poorer phase noise than this will cause poorer performance than shown.
Keysight N9020A MXA Specification Guide 53
MXA Signal Analyzer Dynamic Range
d. Analyzer-contributed phase noise at the low levels of this offset requires advanced verification techniques
because broadband noise would otherwise cause excessive measurement error. Keysight uses a high level low phase noise CW test signal and sets the input attenuator so that the mixer level will be well above the normal top-of-screen level (-10 dBm) but still well below the 1 dB compression level. This improves dynamic range (car­rier to broadband noise ratio) at the expense of amplitude uncertainty due to compression of the phase noise sidebands of the analyzer. (If the mixer level were increased to the "1 dB Gain Compression Point," the compres­sion of a single sideband is specified to be 1 dB or lower. At lower levels, the compression falls off rapidly. The compression of phase noise sidebands is substantially less than the compression of a single-sideband test sig­nal, further reducing the uncertainty of this technique.) Keysight also measures the broadband noise of the ana­lyzer without the CW signal and subtracts its power from the measured phase noise power. The same techniques of overdrive and noise subtraction can be used in measuring a DUT, of course.
54 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Dynamic Range
Nominal Phase Noise of Different LO Optimizations (SN prefix MY/SG/US5233, Ship standard with N9020A-EP2) [Plot]
Nominal Phase Noise of Different LO Optimizations (SN prefix <MY/SG/US5233) [Plot]
Keysight N9020A MXA Specification Guide 55
MXA Signal Analyzer Dynamic Range
Nominal Phase Noise at Different Center Frequencies (SN prefix MY/SG/US5233, Ship standard with N9020A-EP2) [Plot]
Nominal Phase Noise at Different Center Frequencies (SN prefix <MY/SG/US5233) [Plot]
56 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Power Suite Measurements
Power Suite Measurements
The specifications for this section apply only to instruments with Frequency Option 503, 508, 513, or 526. For instruments with higher frequency options, the performance is nominal only and not subject to any warranted specifications.
The measurement performance is only slightly different between instruments with the lower and higher frequency options. Because the hardware performance of the analyzers is very similar but not identical, you can estimate the nominal performance of the measurements from the specification in this chapter.
Description Specifications Supplemental Information
Channel Power
Amplitude Accuracy
Case: Radio Std = 3GPP W-CDMA, or IS-95
Absolute Power Accuracy
(20 to 30°C, Attenuation = 10 dB)
a. See “Absolute Amplitude Accuracy” on page 36. b. See “Frequency and Time” on page 20. c. Expressed in dB.
Description Specifications Supplemental Information
Occupied Bandwidth
Frequency Accuracy ±(Span/1000) (nominal)
±0.82 dB
Absolute Amplitude Accuracy Power Bandwidth Accuracy
±0.23 dB (95th percentile)
a
+
bc
Keysight N9020A MXA Specification Guide 57
MXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Adjacent Channel Power (ACP)
Case: Radio Std = None
Accuracy of ACP Ratio (dBc)
Accuracy of ACP Absolute Power (dBm or dBm/Hz)
Accuracy of Carrier Power (dBm), or Carrier Power PSD (dBm/Hz)
Passband Width
e
Case: Radio Std = 3GPP W-CDMA
Display Scale Fidelity
Absolute Amplitude Accuracy Power Bandwidth Accuracy
Absolute Amplitude Accuracy Power Bandwidth Accuracy
3 dB
(ACPR; ACLR)
a
b
+
cd
b
+
cd
f
Minimum power at RF Input −36 dBm (nominal)
ACPR Accuracy
g
RRC weighted, 3.84 MHz noise bandwidth, method RBW
Radio Offset Freq
MS (UE) 5 MHz ±0.14 dB At ACPR range of 30 to 36 dBc with optimum
mixer level
h
MS (UE) 10 MHz ±0.18 dB At ACPR range of 40 to 46 dBc with optimum
i
j
BTS 5 MHz
±0.49 dB
mixer level
h
At ACPR range of 42 to 48 dBc with optimum mixer level
BTS 10 MHz ±0.42 dB At ACPR range of 47 to 53 dBc with optimum
i
k
BTS 5 MHz ±0.22 dB
mixer level
At 48 dBc non-coherent ACPR
Dynamic Range RRC weighted, 3.84 MHz noise
bandwidth
l
Noise Correction
Offset Freq
Method
ACLR (typical)
Optimum MLm (Nominal)
Off 5 MHz Filtered IBW 73 dB 8 dBm
Off 5 MHz Fast 72 dB 9 dBm
Off 10 MHz Filtered IBW 79 dB 2 dBm
On 5 MHz Filtered IBW 78 dB 8 dBm
On 10 MHz Filtered IBW 82 dB 2 dBm
58 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
RRC Weighting Accuracy
White noise in Adjacent Channel TOI-induced spectrum rms CW error
n
0.00 dB nominal
0.001 dB nominal
0.012 dB nominal
a. The effect of scale fidelity on the ratio of two powers is called the relative scale fidelity. The scale fidelity speci-
fied in the Amplitude section is an absolute scale fidelity with –35 dBm at the input mixer as the reference point.
The relative scale fidelity is nominally only 0.01 dB larger than the absolute scale fidelity. b. See Amplitude Accuracy and Range section. c. See Frequency and Time section. d. Expressed in decibels. e. An ACP measurement measures the power in adjacent channels. The shape of the response versus frequency of
those adjacent channels is occasionally critical. One parameter of the shape is its 3 dB bandwidth. When the
bandwidth (called the Ref BW) of the adjacent channel is set, it is the 3 dB bandwidth that is set. The passband
response is given by the convolution of two functions: a rectangle of width equal to Ref BW and the power
response versus frequency of the RBW filter used. Measurements and specifications of analog radio ACPs are
often based on defined bandwidths of measuring receivers, and these are defined by their 6 dB widths, not
their 3 dB widths. To achieve a passband whose 6 dB width is x, set the Ref BW to be x 0.572 × RBW. f. Most versions of adjacent channel power measurements use negative numbers, in units of dBc, to refer to the
power in an adjacent channel relative to the power in a main channel, in accordance with ITU standards. The
standards for W-CDMA analysis include ACLR, a positive number represented in dB units. In order to be consis-
tent with other kinds of ACP measurements, this measurement and its specifications will use negative dBc
results, and refer to them as ACPR, instead of positive dB results referred to as ACLR. The ACLR can be deter-
mined from the ACPR reported by merely reversing the sign. g. The accuracy of the Adjacent Channel Power Ratio will depend on the mixer drive level and whether the distor-
tion products from the analyzer are coherent with those in the UUT. These specifications apply even in the worst
case condition of coherent analyzer and UUT distortion products. For ACPR levels other than those in this spec-
ifications table, the optimum mixer drive level for accuracy is approximately −37 dBm − (ACPR/3), where the
ACPR is given in (negative) decibels. h. To meet this specified accuracy when measuring mobile station (MS) or user equipment (UE) within 3 dB of the
required 33 dBc ACPR, the mixer level (ML) must be optimized for accuracy. This optimum mixer level is
22 dBm, so the input attenuation must be set as close as possible to the average input power (22 dBm).
For example, if the average input power is −6 dBm, set the attenuation to 16 dB. This specification applies for
the normal 3.5 dB peak-to-average ratio of a single code. Note that, if the mixer level is set to optimize dynamic
range instead of accuracy, accuracy errors are nominally doubled. i. ACPR accuracy at 10 MHz offset is warranted when the input attenuator is set to give an average mixer level of
14 dBm.
j. In order to meet this specified accuracy, the mixer level must be optimized for accuracy when measuring node B
Base Transmission Station (BTS) within 3 dB of the required 45 dBc ACPR. This optimum mixer level is 19
dBm, so the input attenuation must be set as close as possible to the average input power − (−19 dBm). For
example, if the average input power is 7 dBm, set the attenuation to 12 dB. This specification applies for the
normal 10 dB peak-to-average ratio (at 0.01% probability) for Test Model 1. Note that, if the mixer level is set to
optimize dynamic range instead of accuracy, accuracy errors are nominally doubled.
Keysight N9020A MXA Specification Guide 59
MXA Signal Analyzer Power Suite Measurements
k. Accuracy can be excellent even at low ACPR levels assuming that the user sets the mixer level to optimize the
dynamic range, and assuming that the analyzer and UUT distortions are incoherent. When the errors from the
UUT and the analyzer are incoherent, optimizing dynamic range is equivalent to minimizing the contribution of
analyzer noise and distortion to accuracy, though the higher mixer level increases the display scale fidelity
errors. This incoherent addition case is commonly used in the industry and can be useful for comparison of
analysis equipment, but this incoherent addition model is rarely justified. This derived accuracy specification is
based on a mixer level of 14 dBm. l. Keysight measures 100% of the signal analyzers for dynamic range in the factory production process. This mea-
surement requires a near-ideal signal, which is impractical for field and customer use. Because field verification
is impractical, Keysight only gives a typical result. More than 80% of prototype instruments met this “typical”
specification; the factory test line limit is set commensurate with an on-going 80% yield to this typical.
The ACPR dynamic range is verified only at 2 GHz, where Keysight has the near-perfect signal available. The
dynamic range is specified for the optimum mixer drive level, which is different in different instruments and dif-
ferent conditions. The test signal is a 1 DPCH signal.
The ACPR dynamic range is the observed range. This typical specification includes no measurement uncertainty. m. ML is Mixer Level, which is defined to be the input signal level minus attenuation. n. 3GPP requires the use of a root-raised-cosine filter in evaluating the ACLR of a device. The accuracy of the
passband shape of the filter is not specified in standards, nor is any method of evaluating that accuracy. This
footnote discusses the performance of the filter in this instrument. The effect of the RRC filter and the effect of
the RBW used in the measurement interact. The analyzer compensates the shape of the RRC filter to accommo-
date the RBW filter. The effectiveness of this compensation is summarized in three ways:
White noise in Adj Ch: The compensated RRC filter nominally has no errors if the adjacent channel has a
spectrum that is flat across its width.
TOIinduced spectrum: If the spectrum is due to thirdorder intermodulation, it has a distinctive shape. The
computed errors of the compensated filter are 0.001 dB for the 100 kHz RBW used for UE testing with the
IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing with the Filtered IBW method. The
worst error for RBWs between 27 and 390 kHz is 0.05 dB for a 330 kHz RBW filter.
rms CW error: This error is a measure of the error in measuring a CWlike spurious component. It is evaluated
by computing the root of the mean of the square of the power error across all frequencies within the adjacent
channel. The computed rms error of the compensated filter is 0.012 dB for the 100 kHz RBW used for UE test-
ing with the IBW method. It is 0.000 dB for the 27 kHz RBW filter used for BTS testing. The worst error for
RBWs between 27 kHz and 470 kHz is 0.057 dB for a 430 kHz RBW filter.
60 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Multi-Carrier Adjacent Channel Power
Case: Radio Std = 3GPP W-CDMA RRC weighted, 3.84 MHz noise bandwidth
ACPR Dynamic Range
70 dB (nominal)
(5 MHz offset, Two carriers)
ACPR Accuracy
±0.42 dB (nominal)
(Two carriers, 5 MHz offset, −48 dBc ACPR)
ACPR Accuracy
(4 carriers)
Radio Offset
Coher
a
NC UUT ACPR Range
MLOpt
b
BTS 5 MHz no Off ±0.43 dB 42 to 48 dB 12 dBm
BTS 5 MHz no On ±0.18 dB 42 to 48 dB 15 dBm
ACPR Dynamic Range
Nominal DR
Nominal MLOpt
(4 carriers, 5 MHz offset)
Noise Correction (NC) off Noise Correction (NC) on
64 dB
72 dB
12 dBm
15 dBm
a. Coher = no means that the specified accuracy only applies when the distortions of the device under test are not
coherent with the third-order distortions of the analyzer. Incoherence is often the case with advanced multi-carrier amplifiers built with compensations and predistortions that mostly eliminate coherent third-order effects in the amplifier.
b. Optimum mixer level (MLOpt). The mixer level is given by the average power of the sum of the four carriers
minus the input attenuation.
c. Optimum mixer level (MLOpt). The mixer level is given by the average power of the sum of the four carriers
minus the input attenuation.
c
Description Specifications Supplemental Information
Power Statistics CCDF
Histogram Resolution
a
0.01 dB
a. The Complementary Cumulative Distribution Function (CCDF) is a reformatting of a histogram of the power
envelope. The width of the amplitude bins used by the histogram is the histogram resolution. The resolution of the CCDF will be the same as the width of those bins.
Keysight N9020A MXA Specification Guide 61
MXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Burst Power
Methods Power above threshold
Power within burst width
Results Output power, average
Output power, single burst Maximum power Minimum power within burst Burst width
Description Specifications Supplemental Information
TOI (Third Order Intermodulation)
Results Relative IM tone powers (dBc)
Absolute tone powers (dBm)
Intercept (dBm)
Description Specifications Supplemental Information
Harmonic Distortion
Maximum harmonic number 10th
Results Fundamental Power (dBm)
Relative harmonics power (dBc)
Total harmonic distortion (%, dBc)
Measures TOI of a signal with two dominant tones
62 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Spurious Emissions Table-driven spurious signals;
search across regions
Case: Radio Std = 3GPP W-CDMA
Dynamic Range
a
, relative (RBW=1 MHz)
81.3 dB 82.2 dB (typical)
(1 to 3.6 GHz)
Sensitivity
b
, absolute (RBW=1 MHz)
84.5 dBm 89.5 dBm (typical)
(1 to 3.6 GHz)
Accuracy Attenuation = 10 dB
20 Hz to 3.6 GHz ±0.29 dB (95th percentile)
3.5 to 8.4 GHz ±1.17 dB (95th percentile)
8.3 to 13.6 GHz ±1.54 dB (95th percentile)
a. The dynamic range is specified at 12.5 MHz offset from center frequency with mixer level of 1 dB compression
point, which will degrade accuracy 1 dB.
b. The sensitivity is specified at far offset from carrier, where phase noise does not contribute. You can derive the
dynamic range at far offset from 1 dB compression mixer level and sensitivity.
Keysight N9020A MXA Specification Guide 63
MXA Signal Analyzer Power Suite Measurements
Description Specifications Supplemental Information
Spectrum Emission Mask Table-driven spurious signals;
measurement near carriers
Case: Radio Std = cdma2000
Dynamic Range, relative (750 kHz offset
ab
)
Sensitivity, absolute (750 kHz offset
c
)
Accuracy (750 kHz offset)
d
Relative
Absolute
e
(20 to 30°C)
Case: Radio Std = 3GPP W−CDMA
Dynamic Range, relative (2.515 MHz offset
ad
)
Sensitivity, absolute (2.515 MHz offset
c
)
Accuracy (2.515 MHz offset)
d
Relative
78.6 dB 84.8 dB (typical)
99.7 dBm 104.7 dBm (typical)
±0.12 dB
±0.88 dB ±0.27 dB (95th percentile 2σ)
81.9 dB 88.1 dB (typical)
99.7 dBm 104.7 dBm (typical)
±0.15 dB
Absolute
e
±0.88 dB
±0.27 dB (95th percentile 2σ)
(20 to 30°C)
a. The dynamic range specification is the ratio of the channel power to the power in the offset specified. The
dynamic range depends on the measurement settings, such as peak power or integrated power. Dynamic range specifications are based on default measurement settings, with detector set to average, and depend on the mixer level. Default measurement settings include 30 kHz RBW.
b. This dynamic range specification applies for the optimum mixer level, which is about 18 dBm. Mixer level is
defined to be the average input power minus the input attenuation.
c. The sensitivity is specified with 0 dB input attenuation. It represents the noise limitations of the analyzer. It is
tested without an input signal. The sensitivity at this offset is specified in the default 30 kHz RBW, at a center frequency of 2 GHz.
d. The relative accuracy is a measure of the ratio of the power at the offset to the main channel power. It applies for
spectrum emission levels in the offsets that are well above the dynamic range limitation.
e. The absolute accuracy of SEM measurement is the same as the absolute accuracy of the spectrum analyzer. See
“Absolute Amplitude Accuracy” on page 36 for more information. The numbers shown are for
0 to 3.6 GHz, with attenuation set to 10 dB.
64 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Options
Options
The following options and applications affect instrument specifications.
Option 503: Frequency range, 20 Hz to 3.6 GHz
Option 508: Frequency range, 20 Hz to 8.4 GHz
Option 513: Frequency range, 20 Hz to 13.6 GHz
Option 526: Frequency range, 20 Hz to 26.5 GHz
Option B1A: Analysis bandwidth, 125 MHz
Option B1X: Analysis bandwidth, 160 MHz
Option B25: Analysis bandwidth, 25 MHz
Option B40: Analysis bandwidth, 40 MHz
Option B85: Analysis bandwidth, 85 MHz
Option BBA: BBIQ inputs, analog
Option CR3: Connector Rear, second IF Out
Option CRP: Connector Rear, arbitrary IF Out
Option EA3: Electronic attenuator, 3.6 GHz
Option EMC: Precompliance EMC Features
Option ESC: External source control
Option MPB: Preselector bypass
Option NFE: Noise floor extension, instrument alignment
Option P03: Preamplifier, 3.6 GHz
Option P08: Preamplifier, 8.4 GHz
Option P13: Preamplifier, 13.6 GHz
Option P26: Preamplifier, 26.5 GHz
Option PFR: Precision frequency reference
Option RT1: Real-time analysis up to 160 MHz, basic detection
Option RT2: Real-time analysis up to 160 MHz, optimum detection
Option TDS: Time domain scan
Option YAS: Y-Axis Screen Video output
N6149A: iDEN/WiDEN/MotoTalk measurement application
N6152A: Digital Cable TV measurement application
N6153A: DVB-T/H measurement application
Keysight N9020A MXA Specification Guide 65
MXA Signal Analyzer Options
N6155A: ISDB-T with T2 measurement application
N6156A: DTMB measurement application
N6158A: CMMB measurement application
N9051A: Pulse measurement software
N9063A: Analog Demodulation measurement application
N9064A: VXA Vector Signal and WLAN measurement application
N9068A: Phase Noise measurement application
N9069A: Noise Figure measurement application
N9071A: GSM/EDGE/EDGE Evolution measurement application
N9072A: cdma2000/cdmaOne measurement application
N9073A: W-CDMA/HSPA/HSPA+ measurement application
N9074A: Single Acquisition Combined Fixed WiMAX measurement application
N9075A: 802.16 OFDMA measurement application
N9076A: 1xEV-DO measurement application
N9077A: WLAN measurement application
N9079A: TD-SCDMA measurement application
N9080A: LTE-FDD measurement application
N9080B: LTE-Advanced FDD measurement application
N9081A: Bluetooth measurement application
N9082A: LTE-TDD measurement application
N9082B: LTE-Advanced TDD measurement application
N9083A: Multi-Standard Radio (MSR) measurement application
66 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer General
General
Description Specifications Supplemental Information
Calibration Cycle 2 years
Description Specifications Supplemental Information
Temperature Range
Operating
a
Altitude ≤ 2,300 m0 to 55°C
Altitude = 4,500 m 0 to 47°C
Derating
Storage
Altitude
b
c
d
40 to +70°C
4,500 m (approx 15,000 feet)
Humidity
Relative humidity Type tested at 95%, +40°C
(non-condensing)
a. For earlier instruments (S/N prefix <MY/SG/US5051), the operating temperature ranges from 5 to 50°C. b. The maximum operating temperature derates linearly from altitude of 4,500 m to 2,300 m. c. For earlier instruments (S/N prefix <MY/SG/US5051), and installed with hard disk drives, the storage tempera-
ture ranges from –40 to +65°C.
d. For earlier instrument (S/N prefix <MY/SG/US5051), the altitude was specified as 3,000 m (approximately
10,000 feet).
Description Specifications Supplemental Information
Environmental and Military Specifications
Samples of this product have been type tested in accordance with the Keysight Environmental Test Manual and verified to be robust against the environmental stresses of Storage, Transportation and End-use; those stresses include but are not limited to temperature, humidity, shock, vibration, altitude and power line conditions. Test Methods are aligned with IEC 60068-2 and levels are similar to MIL-PRF-28800F Class 3.
Keysight N9020A MXA Specification Guide 67
MXA Signal Analyzer General
Description Specifications
EMC Complies with the essential requirements of the European EMC Directive as well as
current editions of the following standards (dates and editions are cited in the Declaration of Conformity):
— IEC/EN 61326-1 or IEC/EN 61326-2-1 — CISPR 11, Group 1, Class A — AS/NZS CISPR 11 —ICES/NMB-001
This ISM device complies with Canadian ICES-001. Cet appareil ISM est conforme a la norme NMB-001 du Canada.
Acoustic statement (European Machinery Directive 2002/42/EC, 1.7.4.2u
Acoustic noise emission LpA <70 dB
Operator position
Normal operation mode
Description Specification Supplemental Information
Acoustic Noise--Further Information
Ambient Temperature
< 40°C Nominally under 55 dBA Sound Pressure. 55 dBA is generally
40°C Nominally under 65 dBA Sound Pressure. 65 dBA is generally
Description Specifications
Safety Complies with European Low Voltage Directive 2006/95/EC
— IEC/EN 61010-1 3rd Edition — Canada: CSA C22.2 No. 61010-1-12 — USA: UL 61010-1 3rd Edition
Values given are per ISO 7779 standard in the "Operator Sitting" position
considered suitable for use in quiet office environments.
considered suitable for use in noisy office environments. (The fan speed, and thus the noise level, increases with increasing ambient temperature.)
68 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer General
Description Specification Supplemental Information
Power Requirements
a
Low Range
Voltage 100 /120 V
Frequency
Serial Prefix < MY4801,
50/60 Hz
SG4801, or US4801
Serial Prefix MY4801,
50/60/400 Hz
SG4801, or US4801
High Range
Voltage 220/240 V
Frequency 50/60 Hz
Power Consumption, On 465 W Maximum
Power Consumption, Standby 20 W Standby power is not supplied to
frequency reference oscillator.
Typical instrument configuration Power (nominal)
Base 3.6 GHz instrument (N9020A-503) 180 W
Base 8.4 GHz instrument (N9020A-508) 183 W
Base 13 GHz instrument (N9020A-513) 187 W
Base 26.5 GHz instrument (N9020A-526) 198 W
Adding Option B40, B85, B1A, B1X, MPB, or DP2 to
+45 W
base instrument
Adding Option BBA to base instrument +46 W
a. Mains supply voltage fluctuations are not to exceed 10% of the nominal supply voltage.
Keysight N9020A MXA Specification Guide 69
MXA Signal Analyzer General
Description Supplemental Information
Measurement Speed
a
Local measurement and display update rate
Remote measurement and LAN transfer rate
cd
cd
Nominal
Serial Prefix before MY4910/US4910/ SG4910
Serial Prefix MY4910/US4910/
SG4910
b
11 ms (90/s) 4 ms (250/s)
6 ms (167/s) 5 ms (200/s)
Marker Peak Search 5 ms 1.5 ms
Center Frequency Tune and Transfer (RF) 22 ms 20 ms
Center Frequency Tune and Transfer (µW) 49 ms 47 ms
Measurement/Mode Switching 75 ms 39 ms
Measurement Time vs. Span See page 28
a. Sweep Points = 101. b. Also applies to earlier instruments upgraded to Option PC2. c. Factory preset, fixed center frequency, RBW = 1 MHz, 10 MHz < span 600 MHz, stop frequency 3.6 GHz,
Auto Align Off.
d. Phase Noise Optimization set to Fast Tuning, Display Off, 32 bit integer format, markers Off, single sweep, mea-
sured with IBM compatible PC with 2.99 GHz Pentium® 4 with 2 GB RAM running Windows® XP, Keysight I/O Libraries Suite Version 14.1, one meter GPIB cable, National Instruments PCI-GPIB Card and NI-488.2 DLL.
Description Specifications Supplemental Information
Display
a
Resolution 1024 × 768 XGA
Size 213 mm (8.4 in) diagonal (nominal)
a. The LCD display is manufactured using high precision technology. However, there may be up to six bright points
(white, blue, red or green in color) that constantly appear on the LCD screen. These points are normal in the man­ufacturing process and do not affect the measurement integrity of the product in any way.
Description Specifications Supplemental Information
Data Storage
Internal Total
Removeable solid state drive (80 GB)
Internal User 9 GB available for user data
a. For earlier instruments (S/N<MY50200419/SG502000010/US50200102) a hard disk drive (>80 GB) was
installed as a standard feature unless ordered with Option SSD.
a
70 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer General
Description Specifications Supplemental Information
Weight Weight without options
Net 18 kg (40 lbs) (nominal)
Shipping 30 kg (66 lbs) (nominal)
Cabinet Dimensions Cabinet dimensions exclude front and rear
Height 177 mm (7.0 in)
Width 426 mm (16.8 in)
Length 368 mm (14.5 in)
protrusions.
Keysight N9020A MXA Specification Guide 71
MXA Signal Analyzer Inputs/Outputs
Inputs/Outputs
Front Panel
Description Specifications Supplemental Information
RF Input
Connector
Standard Type-N female Frequency Option 503, 508, 513, and 526
Impedance 50Ω (nominal)
Description Specifications Supplemental Information
Probe Power
Voltage/Current +15 Vdc, ±7% at 0 to 150 mA (nominal)
12.6 Vdc, ±10% at 0 to 150 mA (nominal)
GND
Description Specifications Supplemental Information
USB 2.0 Ports See Rear Panel for other ports
Host (2 ports)
Connector USB Type “A” (female)
Output Current 0.5 A (nominal)
Description Specifications Supplemental Information
Headphone Jack
Connector miniature stereo audio jack 3.5 mm (also known as "1/8 inch")
Output Power 90 mW per channel into 16Ω (nominal)
72 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Inputs/Outputs
Rear Panel
Description Specifications Supplemental Information
10 MHz Out
Connector BNC female
Impedance 50Ω (nominal)
Output Amplitude 0 dBm (nominal)
Output Configuration AC coupled, sinusoidal
Frequency 10 MHz ×
(1 + frequency reference accuracy)
Description Specifications Supplemental Information
Ext Ref In
Connector BNC female Note: Analyzer noise sidebands and spurious
response performance may be affected by the quality of the external reference used. See
footnote within the Dynamic Range section on page 53.
Impedance 50Ω (nominal)
Input Amplitude Range
sine wave square wave
Input Frequency 1 to 50 MHz (nominal)
6
Lock range
Description Specifications Supplemental Information
Sync Reserved for future use
Connector BNC female
±2 × 10 reference input frequency
of ideal external
5 to +10 dBm (nominal)
0.2 to 1.5 V peak-to-peak (nominal)
(selectable to 1 Hz resolution)
c
in the Phase Noise specifications
Keysight N9020A MXA Specification Guide 73
MXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Trigger Inputs
(Trigger 1 In, Trigger 2 In)
Connector BNC female
Impedance 10 kΩ (nominal)
Trigger Level Range 5 to +5 V 1.5 V (TTL) factory preset
Description Specifications Supplemental Information
Trigger Outputs
(Trigger 1 Out, Trigger 2 Out)
Connector BNC female
Impedance 50Ω (nominal)
Level 0 to 5 V (CMOS)
Description Specifications Supplemental Information
Monitor Output
Connector
Format
Resolution
VGA compatible, 15-pin mini D-SUB
1024 × 768
Either trigger source may be selected
XGA (60 Hz vertical sync rates, non-interlaced) Analog RGB
Description Specifications Supplemental Information
Analog Out Refer to Chapter 20, “Option YAS - Y-Axis
Screen Video Output”, on page 205 for
more details.
Connector BNC female
Impedance
Without DP2, B40 (or wider BW), or MPB
With DP2, B40 (or wider BW), or MPB 50Ω (nominal)
74 Keysight N9020A MXA Specification Guide
50Ω (nominal)
MXA Signal Analyzer Inputs/Outputs
Description Specifications Supplemental Information
Noise Source Drive +28 V (Pulsed)
Connector BNC female
Output voltage on 28.0 ± 0.1 V 60 mA maximum current
Output voltage off < 1.0 V
Description Specs Supplemental Information
SNS Series Noise Source For use with Keysight/Agilent Technologies SNS Series noise sources
Description Specifications Supplemental Information
Digital Bus This port is intended for use with the Agilent/Keysight N5105 and N5106
Connector MDR-80
products only. It is not available for general purpose use.
Description Specifications Supplemental Information
USB 2.0 Ports See Front Panel for additional ports
Host (3 ports)
a
Connector USB Type “A” (female)
Output Current 0.5 A (nominal)
Device (1 port)
Connector USB Type “B” (female)
a. Earlier instruments with SN prefix <MY/SG/US55320000 shipped with 4 USB ports.
Description Specifications Supplemental Information
GPIB Interface
Connector IEEE-488 bus connector
GPIB Codes SH1, AH1, T6, SR1, RL1, PP0, DC1, C1, C2, C3
and C28, DT1, L4, C0
Mode Controller or device
Description Specifications Supplemental Information
LAN TCP/IP Interface RJ45 Ethertwist
1000BaseT
a
a. For Serial Prefix MY4910/US4910/SG4910 or later or with N9020A-PC2. For earlier instruments this is
100BaseT.
Keysight N9020A MXA Specification Guide 75
MXA Signal Analyzer Regulatory Information
Regulatory Information
This product is designed for use in Installation Category II and Pollution Degree 2 per IEC 61010 3rd ed, and 664 respectively.
This product has been designed and tested in accordance with accepted industry standards, and has been supplied in a safe condition. The instruction documentation contains information and warnings which must be followed by the user to ensure safe operation and to maintain the product in a safe condition.
This product is intended for indoor use.
The CE mark is a registered trademark of the European Community (if accompanied by a year, it is the year when the design was proven). This product complies with all relevant directives.
ccr.keysight@keysight.co
The Keysight email address is required by EU directives applicable to our product.
m
ICES/NMB-001 “This ISM device complies with Canadian ICES-001.”
“Cet appareil ISM est conforme a la norme NMB du Canada.”
ISM 1-A (GRP.1 CLASS A) This is a symbol of an Industrial Scientific and Medical Group 1 Class A product.
(CISPR 11, Clause 4)
The CSA mark is a registered trademark of the CSA International.
The RCM mark is a registered trademark of the Australian Communications and Media Authority.
This symbol indicates separate collection for electrical and electronic equipment mandated under EU law as of August 13, 2005. All electric and electronic equipment are required to be separated from normal waste for disposal (Reference WEEE Directive 2002/96/EC).
China RoHS regulations include requirements related to packaging, and require compliance to China standard GB18455-2001.
This symbol indicates compliance with the China RoHS regulations for paper/fiberboard packaging.
South Korean Certification (KC) mark; includes the marking’s identifier code which follows this format:
MSIP-REM-YYY-ZZZZZZZZZZZZZZ.
76 Keysight N9020A MXA Specification Guide
MXA Signal Analyzer Regulatory Information
EMC: Complies with the essential requirements of the European EMC Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):
— IEC/EN 61326-1
— CISPR 11, Group 1, Class A
— AS/NZS CISPR 11
— ICES/NMB-001
This ISM device complies with Canadian ICES-001.
Cet appareil ISM est conforme a la norme NMB-001 du Canada.
This is a sensitive measurement apparatus by design and may have some performance loss (up to 25 dBm above the Spurious Responses, Residual specification of -100 dBm) when exposed to ambient continuous electromagnetic phenomenon in the range of 80 MHz -2.7 GHz when tested per IEC 61000-4-3.
South Korean Class A EMC declaration:
This equipment has been conformity assessed for use in business environments. In a residential environment this equipment may cause radio interference. This EMC statement applies to the equipment only for use in business environment.
SAFETY: Complies with the essential requirements of the European Low Voltage Directive as well as current editions of the following standards (dates and editions are cited in the Declaration of Conformity):
IEC/EN 61010-1 — Canada: CSA C22.2 No. 61010-1
USA: UL std no. 61010-1
Keysight N9020A MXA Specification Guide 77
MXA Signal Analyzer Regulatory Information
Acoustic statement: (European Machinery Directive)
Acoustic noise emission
LpA <70 dB
Operator position
Normal operation mode per ISO 7779
To find a current Declaration of Conformity for a specific Keysight product, go to:
http://www.keysight.com/go/conformity
78 Keysight N9020A MXA Specification Guide
Keysight X-Series Signal Analyzer N9020A
Specification Guide
2 I/Q Analyzer
This chapter contains specifications for the I/Q Analyzer measurement application (Basic Mode).
79
I/Q Analyzer Specifications Affected by I/Q Analyzer
Specifications Affected by I/Q Analyzer
Specification Name Information
Number of Frequency Display Trace Points (buckets)
Resolution Bandwidth See “Frequency” on page 81 in this chapter.
Video Bandwidth Not available.
Clipping-to-Noise Dynamic Range See “Clipping-to-Noise Dynamic Range” on page 82 in this
Resolution Bandwidth Switching Uncertainty Not specified because it is negligible.
Available Detectors Does not apply.
Spurious Responses The “Spurious Responses” on page 47 of core specifications still
IF Amplitude Flatness See “IF Frequency Response” on page 35 of the core
IF Phase Linearity See “IF Phase Linearity” on page 36 of the core specifications for
Does not apply.
chapter.
apply. Additional bandwidth-option-dependent spurious responses are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
specifications for the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
the 10 MHz bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
Data Acquisition See “Data Acquisition” on page 83 in this chapter for the 10 MHz
bandwidth. Specifications for wider bandwidths are given in the Analysis Bandwidth chapter for any optional bandwidths in use.
80 Keysight N9020A MXA Specification Guide
I/Q Analyzer Frequency
Frequency
Description Specifications Supplemental Information
Frequency Span
Standard instrument 10 Hz to 10 MHz
Option B25 10 Hz to 25 MHz
Option B40 10 Hz to 40 MHz
Option B85 10 Hz to 85 MHz
Option B1A 10 Hz to 125 MHz
Option B1X 10 Hz to 160 MHz
Resolution Bandwidth
(Spectrum Measurement)
Range
Overall Span = 1 MHz Span = 10 kHz Span = 100 Hz
Window Shapes Flat Top, Uniform, Hanning, Hamming,
Analysis Bandwidth (Span)
(Waveform Measurement)
Standard instrument 10 Hz to 10 MHz
Option B25 10 Hz to 25 MHz
Option B40 10 Hz to 40 MHz
Option B85 10 Hz to 85 MHz
Option B1A 10 Hz to 125 MHz
Option B1X 10 Hz to 160 MHz
100 mHz to 3 MHz 50 Hz to 1 MHz 1 Hz to 10 kHz 100 mHz to 100 Hz
Gaussian, Blackman, Blackman-Harris, Kaiser Bessel (K-B 70 dB, K-B 90 dB & K-B 110 dB)
Keysight N9020A MXA Specification Guide 81
I/Q Analyzer Clipping-to-Noise Dynamic Range
Clipping-to-Noise Dynamic Range
Description Specifications Supplemental Information
Clipping-to-Noise Dynamic Range
a
Excluding residuals and spurious responses
Clipping Level at Mixer Center frequency 20 MHz
IF Gain = Low 10 dBm 8 dBm (nominal)
IF Gain = High 20 dBm 17.5 dBm (nominal)
Noise Density at Mixer at center frequency
c
(DANL
+ IFGainEffectd) + 2.25
b
dB
e
Example
f
a. This specification is defined to be the ratio of the clipping level (also known as “ADC Over Range”) to the noise
density. In decibel units, it can be defined as clipping_level [dBm] − noise_density [dBm/Hz]; the result has units
of dBFS/Hz (fs is “full scale”). b. The noise density depends on the input frequency. It is lowest for a broad range of input frequencies near the
center frequency, and these specifications apply there. The noise density can increase toward the edges of the
span. The effect is nominally well under 1 dB. c. The primary determining element in the noise density is the “Displayed Average Noise Level” on
page 45.
d. DANL is specified with the IF Gain set to High, which is the best case for DANL but not for Clipping-to-noise
dynamic range. The core specifications “Displayed Average Noise Level” on page 45, gives a line entry
on the excess noise added by using IF Gain = Low, and a footnote explaining how to combine the IF Gain noise
with the DANL. e. DANL is specified for log averaging, not power averaging, and thus is 2.51 dB lower than the true noise density.
It is also specified in the narrowest RBW, 1 Hz, which has a noise bandwidth slightly wider than 1 Hz. These two
effects together add up to 2.25 B. f. As an example computation, consider this: For the case where DANL = 151 dBm in 1 Hz, IF Gain is set to low,
and the “Additional DANL” is 160 dBm, the total noise density computes to 148.2 dBm/Hz and the Clip-
ping-to-noise ratio for a 10 dBm clipping level is −138.2 dBFS/Hz.
82 Keysight N9020A MXA Specification Guide
I/Q Analyzer Data Acquisition
Data Acquisition
Description Specifications Supplemental Information
Time Record Length (IQ pairs)
IQ Analyzer 4,000,000 IQ sample pairs 335 ms at 10 MHz Span
Sample Rate
At ADC
Option DP2, B40, B85, B1A, B1X, or MPB
Option B40, B85, B1A or B1X,
Option B85, B1A or B1X, 400 MSa/s IF Path 85 MHz
None of the above 90 MSa/s
IQ Pairs Integer submultiple of 15 Mpairs/s
ADC Resolution
Option DP2, B40, B85, B1A, B1X, or MPB
Option B40, B85, B1A or B1X, 12 bits IF Path = 40 MHz
Option B85, B1A or B1X, 14 bits IF Path 85 MHz
None of the above 14 bits
100 MSa/s IF Path 25 MHz
200 MSa/s IF Path = 40 MHz
depending on the span for spans of 8 MHz or narrower.
16 bits IF Path 25 MHz
Keysight N9020A MXA Specification Guide 83
I/Q Analyzer Data Acquisition
84 Keysight N9020A MXA Specification Guide
Keysight X-Series Signal Analyzer N9020A
Specification Guide
3 VXA Vector Signal Analysis Application
This chapter contains specifications for the N9064A1 VXA vector signal modulation analysis measurement application.
Additional Definitions and Requirements
Specs & Nominals These specifications summarize the performance for the X-Series Signal
Because digital communications signals are noise-like, all measurements will have variations. The specifications apply only with adequate averaging to remove those variations.
The specifications apply in the frequency range documented in In-Band Frequency Range.
Analyzer and apply to the VXA measurement application inside the analyzer. Values shown in the column labeled "Specs & Nominals" are a mix of warranted specifications, guaranteed-by-design parameters, and conservative but not warranted observations of performance of sample instruments.
1. In software versions prior to A.06.00, the VXA measurement application product number was 89601X. Software versions A.06.00 and beyond have renamed 89601X to N9064A.
85
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Vector Signal Analysis Performance (N9064A-1FP/1TP)
Frequency
Description Specs & Nominals Supplemental Information
Range See “Frequency Range” on
page 20
Center Frequency Tuning Resolution 1 mHz
Frequency Span, Maximum
FFT Spectrum 25 MHz (Option B25)
Frequency Points per Span
FFT Window Type
Window
Flat Top 0.41 0.01 dB >95 dBc
Gaussian Top 0.25 0.68 dB >125 dBc
Hanning 0.11 1.5 dB >31 dBc
10 MHz (standard)
40 MHz (Option B40)
85 MHz (Option B85)
125 MHz (Option B1A)
160 MHz (Option B1X)
Calibrated points: 51 to 409,601 Displayed points: 51 to 524,288
Passband
Selectivity
Flatness
Rejection
The window choices allow the user to optimize as needed for best amplitude accuracy, best dynamic range, or best response to transient signal characteristics.
Uniform 0.0014 4.0 dB >13 dBc
86 Keysight N9020A MXA Specification Guide
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Input
Description Specs & Nominals Supplemental
Information
Range Full Scale, combines
attenuator setting and ADC gain
Standard 20 dBm to 30 dBm
Option P03, P08, P13, or P26 40 dBm to 30 dBm, up to 3.6 GHz
Option P08 50 dBm to 30 dBm, 3.6 to 8.4 GHz
Option P13 50 dBm to 30 dBm, 3.6 to 13.6 GHz
Option P26 50 dBm to 30 dBm, 3.6 to 26.5 GHz
ADC overload +2 dBFS
Keysight N9020A MXA Specification Guide 87
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Amplitude Accuracy
Description Specs & Nominals Supplemental Information
Absolute Amplitude Accuracy See “Absolute Amplitude Accuracy” on
page 36
Amplitude Linearity See “Display Scale Fidelity” on page 41
IF Flatness
Span 10 MHz See “IF Frequency Response” on page 35
Span 25 MHz (Option B25) See “IF Frequency Response” on
page 100
Span 40 MHz (Option B40) See “IF Frequency Response” on
page 106
Span 85 MHz (Option B85) See “IF Frequency Response” on
page 115
Span ≤ 125 MHz (Option B1A) See “IF Frequency Response” on
page 115
Span 160 MHz (Option B1X) See “IF Frequency Response” on
page 115
Sensitivity
20 dBm range
40 dBm range Requires preamp option. Compute from Preamp
a. DANL is specified in the narrowest resolution bandwidth (1 Hz) with log averaging, in accordance with industry
and historic standards. The effect of log averaging is to reduce the noise level by 2.51 dB. The effect of using a 1 Hz RBW is to increase the measured noise because the noise bandwidth of the 1 Hz RBW filter is nominally
1.056 Hz, thus adding 0.23 dB to the level. The combination of these effects makes the sensitivity, in units of dBm/Hz, 2.27 dB higher than DANL in units of dBm in a 1 Hz RBW.
Compute from DANL
Average Noise Level (DANL)” on page 45
a
DANL
; see “Displayed Average Noise
Level (DANL) — Preamp On” on page 187
a
; see “Displayed
88 Keysight N9020A MXA Specification Guide
VXA Vector Signal Analysis Application Vector Signal Analysis Performance (N9064A-1FP/1TP)
Dynamic Range
Description Specs & Nominals Supplemental Information
Third Order Intermodulation Distortion
(Two 20 dBFS tones, 400 MHz to 13.6 GHz, tone separation > 5 × IF Prefilter BW)
Noise Density at 1 GHz
Input Range
≥−10 dBm 140 dBFS/Hz
20 dBm to 12 dBm 131 dBFS/Hz
30 dBm to 22 dBm 133 dBFS/Hz requires preamp option
40 dBm to 32 dBm 123 dBFS/Hz requires preamp option
Residual Responses
(Range ≥ −10 dBm)
200 kHz to 8.4 GHz 90 dBFS
8.4 GHz to 26.5 GHz −90 dBFS (nominal)
Image Responses 78 dBc
90 dBc (nominal)
(10 MHz to 13.6 GHz, <8 MHz span)
LO Related Spurious −70 dBc
(10 MHz to 3.6 GHz, f > 600 MHz from carrier)
Other Spurious
(<8 MHz span)
100 Hz < f < 10 MHz from carrier
f 10 MHz from carrier 80 dBc
70 dBc
Keysight N9020A MXA Specification Guide 89
VXA Vector Signal Analysis Application Analog Modulation Analysis (N9064A-1FP/1TP)
Analog Modulation Analysis (N9064A-1FP/1TP)
Description Specs & Nominals Supplemental Information
AM Demodulation
(Span 12 MHz, Carrier ≤ −17 dBFS)
Demodulator Bandwidth Same as selected measurement span
Modulation Index Accuracy ±1%
Harmonic Distortion 60 dBc Relative to 100% modulation index
Spurious 60 dBc Relative to 100% modulation index
Cross Demodulation 0.3% AM on an FM signal with
50 kHz modulation rate, 200 kHz deviation
PM Demodulation
(Deviation < 180°, modulation rate 500 kHz, span 12 MHz)
Demodulator Bandwidth Same as selected measurement span,
except as noted
Modulation Index Accuracy ±0.5°
Harmonic Distortion 0.3%
Spurious 60 dBc
Cross Demodulation 1° PM on an 80% modulation index AM
signal, modulation rate 1 MHz
90 Keysight N9020A MXA Specification Guide
VXA Vector Signal Analysis Application Analog Modulation Analysis (N9064A-1FP/1TP)
Description Specs & Nominals Supplemental Information
FM Demodulation
Demodulator Bandwidth Same as selected measurement span
Modulation Index Accuracy (deviation 2 MHz, modulation rate 500 kHz)
Harmonic Distortion
Modulation Rate
50 kHz500 kHz
Spurious
Modulation Rate
50 kHz500 kHz
Cross Demodulation 0.5% of span of FM on an 80%
Deviation
200 kHz2 MHz
Deviation
200 kHz2 MHz
±0.1% of span
60 dBc
55 dBc
50 dBc
45 dBc
modulation index AM signal, modulation rate 1 MHz
Keysight N9020A MXA Specification Guide 91
VXA Vector Signal Analysis Application Flexible Digital Modulation Analysis (N9064A-2FP/2TP)
Flexible Digital Modulation Analysis (N9064A-2FP/2TP)
Description Specs & Nominals Supplemental Information
Accuracy Modulation formats include BPSK, D8PSK, DQPSK, QPSK,
(16/32/128/256/512/1024) QAM, (16/32/128/256)DVBQAM, π/4-DQPSK, 8-PSK. EVM normalization reference set to Constellation Maximum. Transmit filter is Root Raised Cosine with alpha = 0.35. Center frequency 1 GHz. Signal amplitude of 16 dBm, analyzer range set to −10 dBm. Result length set to at least 150 symbols, or 3 × (Number of ideal state locations). RMS style averaging with a count of 10. Phase Noise Optimization is adjusted based on the symbol rate of the measurement. Available span is dependent on the analyzer hardware bandwidth options.
Residual Errors
Residual EVM
Symbol rate/Span
1 Msps/5 MHz
RF 0.7% rms
Baseband 0.5% rms Option BBA required
10 Msps/25 MHz
RF 0.7% rms
Baseband 0.5% rms Option BBA required
25 Msps/40 MHz
RF 1.1% rms
Baseband 0.6% rms Option BBA required
100 Msps/160 MHz
RF 1.3% rms
Magnitude Error
Symbol rate/Span
1 Msps/5 MHz
RF 0.5% rms
Baseband 0.5% rms Option BBA required
92 Keysight N9020A MXA Specification Guide
VXA Vector Signal Analysis Application Flexible Digital Modulation Analysis (N9064A-2FP/2TP)
Description Specs & Nominals Supplemental Information
10 Msps/25 MHz
RF 0.5% rms
Baseband 0.5% rms Option BBA required
25 Msps/40 MHz
RF 0.8% rms
Baseband 0.6% rms Option BBA required
100 Msps/160 MHz
RF 1.0% rms
Phase Error
Symbol rate/Span
1 Msps/5 MHz
RF 0.6% rms
Baseband 0.6% rms Option BBA required
10 Msps/25 MHz
RF 0.6% rms
Baseband 0.6% rms Option BBA required
25 Msps/40 MHz
RF 1.1% rms
Baseband 0.6% rms Option BBA required
100 Msps/160 MHz
RF 1.3% rms
Frequency Error Symbol rate/500,000 Added to frequency accuracy if applicable
IQ Origin Offset
a
Residual EVM for MSK Modulation Formats
≤−60 dB
Modulation formats include MSK and MSK2. Transmit filter is Gaussian with BT = 0.3. Center Frequency is 1 GHz. Signal amplitude of 16 dBm. Analyzer range set to -10 dBm. Result length set to 150 symbols. RMS style averaging with a count of 10. Available span is dependent on the analyzer hardware bandwidth options.
Keysight N9020A MXA Specification Guide 93
VXA Vector Signal Analysis Application Flexible Digital Modulation Analysis (N9064A-2FP/2TP)
Description Specs & Nominals Supplemental Information
Residual Errors
Residual EVM
Symbol rate/Span
10 Msps/25 MHz
RF 0.9% rms
Baseband 0.8% rms Option BBA required
80 Msps/160 MHz
RF 1.8% rms
Phase Error
Symbol rate/Span
10 Msps/25 MHz
RF 0.5% rms
Baseband 0.5% rms Option BBA required
80 Msps/160 MHz
RF 1.3% rms
Residual EVM for Video Modulation Formats
8 or 16 VSB 1.5% (SNR 36 dB) Symbol rate = 10.762 MHz,
16, 32, 64, 128, 256, 512, or 1024 QAM
a. I+jQ measurements performed using signal amplitude and analyzer range near 0 dBm, with a 0 Hz center fre-
quency offset. I/Q origin offset metric does not include impact of analyzer DC offsets.
1.0% (SNR 40 dB) Symbol rate = 6.9 MHz,
Results apply for Option BBA Baseband IQ inputs, except as noted.
α= 0.115, frequency < 3.6 GHz, 7 MHz span, full-scale signal, range ≥ −30 dBm, result length = 800, averages = 10
α= 0.15, frequency < 3.6 GHz, 8 MHz span, full-scale signal, range ≥ −30 dBm, result length = 800, averages = 10
94 Keysight N9020A MXA Specification Guide
VXA Vector Signal Analysis Application WLAN Modulation Analysis (N9064A-3FP/3TP)
WLAN Modulation Analysis (N9064A-3FP/3TP)
Description Specs & Nominals Supplemental Information
IEEE 802.11a/g OFDM 20 averages
Center Frequency/Level combinations at which nominal performance has been characterized
Residual EVM
Equalizer training = chan est seq and data
Equalizer training = chan est seq
Frequency Error
Subcarrier spacing 312.5 kHz default
2.4 GHz, with input range ≥ −30 dBm, within 2 dB of full scale
5.8 GHz, with input range ≥ −20 dBm
47 dB –44 dB (Baseband IQ input)
45 dB –41 dB (Baseband IQ input)
user settable
1
Maximum subcarrier spacing is approximately the analysis BW/57, thus 438 kHz for Option B25 (25 MHz BW), and 700 kHz for Option B40 (40 MHz BW).
Lock range ±2 × sub-carrier spacing,
±625 kHz default
Frequency accuracy
IEEE 802.11b/g DSSS
Center Frequency/Level combination at which nominal performance has been characterized
Residual EVM
without equalizer with equalizer enabled
Frequency Error
Lock Range ±2.5 MHz
Accuracy
a. tfa = transmitter frequency × frequency reference accuracy.
±8 Hz + tfa
2.4 GHz with total power within 2 dB of full scale
1.5%
0.5% Reference filter = Transmit filter =
±8 Hz + tfa
a
a
Gaussian with BT = 0.5
1. These options were discontinued January 2014.
Keysight N9020A MXA Specification Guide 95
VXA Vector Signal Analysis Application WLAN Modulation Analysis (N9064A-3FP/3TP)
96 Keysight N9020A MXA Specification Guide
Keysight X-Series Signal Analyzer N9020A
Specification Guide
4 Option B25 - 25 MHz Analysis Bandwidth
This chapter contains specifications for the Option B25 25 MHz Analysis Bandwidth, and are unique to this IF Path.
97
Option B25 - 25 MHz Analysis Bandwidth Specifications Affected by Analysis Bandwidth
Specifications Affected by Analysis Bandwidth
The specifications in this chapter apply when the 25 MHz path is in use. In IQ Analyzer, this will occur when the IF Path is set to 25 MHz, whether by Auto selection (depending on Span) or manually.
Specification Name Information
IF Frequency Response See specifications in this chapter.
IF Phase Linearity See specifications in this chapter.
Spurious and Residual Responses The “Spurious Responses” on page 47 still apply. Further,
bandwidth-option-dependent spurious responses are contained within this chapter.
Displayed Average Noise Level, Third-Order Intermodulation and Phase Noise
The performance of the analyzer will degrade by an unspecified extent when using this bandwidth option. This extent is not substantial enough to justify statistical process control.
98 Keysight N9020A MXA Specification Guide
Option B25 - 25 MHz Analysis Bandwidth Other Analysis Bandwidth Specifications
Other Analysis Bandwidth Specifications
Description Specifi-
cations
IF Spurious Response
a
Supplemental Information
Preamp Off
b
IF Second Harmonic
Apparent Freq Excitation Freq
Mixer Level
c
IF Gain
Any on-screen f (f + fc + 22.5 MHz)/2 15 dBm Low 54 dBc (nominal)
25 dBm High 54 dBc (nominal)
IF Conversion Image
Apparent Freq Excitation Freq
Mixer Level
c
IF Gain
Any on-screen f 2 × fc f + 45 MHz 10 dBm Low 70 dBc (nominal)
20 dBm High 70 dBc (nominal)
a. The level of these spurs is not warranted. The relationship between the spurious response and its excitation is
described in order to make it easier for the user to distinguish whether a questionable response is due to these mechanisms. f is the apparent frequency of the spurious signal, fc is the measurement center frequency.
b. The spurious response specifications only apply with the preamp turned off. When the preamp is turned on, per-
formance is nominally the same as long as the mixer level is interpreted to be Mixer Level = Input Level Input Attenuation Preamp Gain.
c. Mixer Level = Input Level Input Attenuation.
Keysight N9020A MXA Specification Guide 99
Option B25 - 25 MHz Analysis Bandwidth Other Analysis Bandwidth Specifications
Description Specifications Supplemental Information
IF Frequency Response
a
Modes above 18 GHz
b
(Demodulation and FFT response relative to the center frequency)
Center Freq (GHz)
Span (MHz)
c
Preselector
Max Error
20 to 30°C Full range
d
(Exceptionse)
Midwidth Error (95th Percentile)
Slope (dB/MHz) (95th Percentile)
RMS
f
(nominal)
3.6 10 to 25 n/a ±0.45 dB ±0.45 dB ±0.12 dB ±0.10 0.051 dB
3.6 to 26.5 10 to
25
3.6 to 26.5 10 to
25
g
h
On 0.45 dB
Off
h
±0.45 dB ±0.80 dB ±0.12 dB ±0.10 0.049 dB
a. The IF frequency response includes effects due to RF circuits such as input filters, that are a function of RF fre-
quency, in addition to the IF passband effects.
b. Signal frequencies above 18 GHz are prone to additional response errors due to modes in the Type-N connector
used. With the use of Type-N to APC 3.5 mm adapter part number 1250-1744, there are nominally six such modes. These modes cause nominally up to 0.35 dB amplitude change, with phase errors of nominally up to ±1.2°.
c. This column applies to the instantaneous analysis bandwidth in use. In the Spectrum analyzer Mode, this would
be the FFT width. For Span < 10 MHz. see “IF Frequency Response” on page 35.
d. The maximum error at an offset (f) from the center of the FFT width is given by the expression ± [Midwidth Error +
(f × Slope)], but never exceeds ±Max Error. Here the Midwidth Error is the error at the center frequency for the given FFT span. Usually, the span is no larger than the FFT width in which case the center of the FFT width is the center frequency of the analyzer. In the Spectrum Analyzer mode, when the analyzer span is wider than the FFT width, the span is made up of multiple concatenated FFT results, and thus has multiple centers of FFT widths so the f in the equation is the offset from the nearest center. These specifications include the effect of RF frequency response as well as IF frequency response at the worst case center frequency. Performance is nominally three times better at most center frequencies.
e. The specification does not apply for frequencies greater than 3.6 MHz from the center in FFT widths of 7.2 to 8
MHz.
f. The “RMS” nominal performance is the standard deviation of the response relative to the center frequency, inte-
grated across the span. This performance measure was observed at a center frequency in each harmonic mixing band, which is representative of all center frequencies; it is not the worst case frequency.
g. For information on the preselector which affects the passband for frequencies above 3.6 GHz when Option MPB
is not in use, see “Preselector Bandwidth” on page 31.
h. Option MPB is installed and enabled.
100 Keysight N9020A MXA Specification Guide
Loading...