Keithley 165 Instruction Manual

INSTRUCTION MANUAL
MODEL I65
DIGITAL MULTIMETER
0 COPYRIGHT 1975 KEITHLEY INSTRUMENTS, INC.
PRINTED JANUARY,
1977,
CLEVELAND, OHIO U. S. A.
CONTENTS
MODEL 165
CONTENTS
Tit12 Page . CO”td”LS . . . LiSC Of IllusCrac.ions. . .
Specifications . . . . .
1. General DeSCriprion 1-l. Introduction . . l-2. warranty Information 1-3. Change sotice. . .
1-4. Features . . .
3. circuit Descripeion
3-1. General. . . . . . .
3-2.
*c-"o1cs Preamplifier. .
3-3.
DC-vo1rs PraamplFfLer. .
3-4. OhrnP circuitry . . . . .
3-5. 1-d currene source. .
3-b. DC-r\mps Preamplifier . 3-7.
*c-Amps Preamplifier . . 3-8. hipolar Amplifier . .
3-9. AD ConverCer . . . .
3-m. Clock. . . . . . . .
3-11. Logic. . . . . . . . .
3-12. Display. . . . . . . . .
1-13. Power supply . . . . . .
4
5 5 5 5 6
7 . 8 . 9
9
10
. 10 . 10 . 11
11 . 11 . 11
. 11 . 12 . 13 .
13
. 13 . 13
4. Accessories 4-1.
General. .
4-2. operating Instructions . 4-3. Model 1651 50-Ampere S~UOL 4-4.
Model 1653 Rack Mounting K~L
5. Maintenance
5-1. General. . . .
5-2. Recommended Tesr Equipment 5-3.
Performance YerificaLia" .
5-4.
Calibration. .
5-5. companenr an* Calibration
Layouts . . .
5-b.
some Semiconductor case ouc1ines
and Pin Identificarions .
5-7. Tra"bleshoati.ng. .
6. Replaceable P,,CS b-l.
General. . . . .
b-2.
Electrical Schematics and
Diagrams. . . . . . .
b-3. How to "se the Parts list. .
b-4. How LO Order Parts . .
6-5. Chassis Pares List .
b-6.
Electrical Parts List. . .
6-7.
Mechanical Parts IAt.
b-8.
Code-to-Name List, . . .
7. scbmatic Diagrams
7-l.
253950 Block DFagram. . . . .
7-2. 2539ZE AC & DC Preampltiier
SwiCchtig . . . . . .
7-3.
253930 "*ipolar Amplifier 61
A-D canverrer . . .
7-4.
255080 Clack & Switching Logic. 7-5. 25511D Re y b Drivers. . . 7-6. 25394E Readout and logic. 7-7.
25391c Power supply . . .
15 15 15 15
16
16 16 20
27
29 31
34 34
34 34 35
35 49 50
52
53 54
55 56 57 58
ILLUSTRATIONS
‘ii
t .
SPECIFICATIONS
AS A DC VOLTMETER
SECTION 1.
GENERAL DESCRIPTION
I
h,.:, ,‘,I,.,.:\’
I4
165 AUTORANGING MULTIMETER
POWER ON CR”“Nu
INPUT INPUT
s-301 3403
‘0 HI SOURCE S40lA S4OlB
5402 3401
5402
CAL CONTROLS
ANALOG
CAL POWER LINE
LINE
FLiSE
OUTPUTS CONTROL INPUT SWITCH
SWITCH
F301
P304
5303
s302
MODEL 165
SECTION 2.
1. Tbermoelecrric Naise. Potentials generate* by rhermal differences Bf rtle junction a= ,unctions of Ed0 dissimilar metals are thermoelectric noises, more commn1y called thermal mm. These potencia1s may be significant when making millivolt or mic=o­volt mea*uremencs. TO minimize ehermal nOiS* --­which may appear as a drift --- caused by thermal FXYO, use PUT* capper circuirry emi tswinaricms thrau*iw*t the source an* in a11 connectians to ehe 165.
The KeicNey accessory Model 1483 Low Thermal Connection Kit contains all necessa=y ma­cerias for making very law-thermal copper connec­tions for minimir*n* tharmal mm..
2. AC Power Line Noise.
The presence of electric fields generated by power lines o= other power .9O"TceB can haYe an effect 0" inaaur,ent operarim.
Also ac vok?.ges presenr in Ehe BOUrCe which are very large vith reapact. to the full-scale range sensitivity of the Model 165 could drive the analog amplifier into sa~uracio". producing an e==OneO"a digiral display.
a). Shielding.
Proper shielding of the sowxe or cabling can minimize noise pickup when the instrument is in tile presence of large ac fields or when very seneirive me*e"rements are being
rude. ‘ornoiae shielded cable, such as Keith+,
SC-9 cable, should do a sufficient job of shield­ing rhe inpur signal.
Metal shields may be re-
quired LO be installed arD""d the BOUIICB. me
shields of the inpur cable and source should be connected together co ground at ooe point only,
typically at the input of the Model 165. This
one-point-ground method ia a frtree'f configuracio", which minimi=es ground L,ape in the measured cir­cuiery.
Ground loops are a secondary source of interfering noise Which may also be considered in larle"el meee"reme"ts.
OPERATION
b). AC Ke,ecrim. The Model 165 provides artenuation of line frequency noise superimpose* on a dc input signal. The ac re,ection Of the 165 is specified as follows:
NOWL MODE kE.lECTION RATIO (NMI(Io: Greater
than
60
dB above one digit for a voltage of line frequency o= twice line frequency with at leas= 10% of full-range dc applied.
COMmN MODE REJECTION RATlO (cxea): 120 dB on the 10 mv, 100 mv. and 1" ranges; 80 da 0" the 10" range; 70 da on the 100" range; and 60 dB an the 1000" range; far a dc, 50 HZ, o= 60 Hz voltage with at least 10% of full-range dc applkd.
3. Magnetic-fFeld Noise. The presence of strong
magnetic fields can be a possible so"=ce of obJec-
eionable ac noise. The Model 165 has been suffi­ciently sbialded from typical magnetic incerfarence; however, additional shielding may be required at the eo"rce or in the cabling to the 165. Magnetic flux lines which cue a conductor --- like an input cable
--- can produce large ac noise, especially at power line frequencies. me voltage induced due to nag­neric flux is proportional to the area enclosed by the Circuit *s well as the rate of change of mag­netic flux.
POC example, the motion of a ,-inch *iemeeer loop in the earth'. magnetic field will induce a signal of several tenths of a microvolt. The ac rejecrion characteristics of ebe Model 165 vi.11 help minimize specific effects of magnetio fields.
Magnetic pickup may be furthe= minimized, by arranging all so"=ce and input-cable wiring so L&E the loop area enclosed 18 BB small as possible
(such as by rwisring input leads). "sing conetic
(magnetic) shielding in cables and around cirwia-j
may further help in seve=e cases.
b. Effective Shielding. Here are general shielding
rules fo consider far measurements in the three func­tion categories of the 165. Be sure that shielding is even needed before proceeding.
1. Yolemeeer maaurements. Consider shielding input leads when sou=ce resistances a=e g=eaCe= than 100 kilc,hm o= when long input cables are used. Avoid
even slight movements of input cabling a= Ct\e oource when making high s.au=ce resistance measurements.
2. C"rrenC Mea8"reme"C*, on the mA and ii.4 current
ranges, generally no ape&a1 shielding precautions need ba taken.
However, consider shielded input
leads for me~~"=ements an the lowese ranges.
3. Reeiscance *easuremenc*. Shielding Of the input cabling and sou=‘ce may be necessary far meas-
"remente on the 10 megohm and 100 megohm ranges.
4
1073
.~.
P .
C. If 400 HZ line “OlrageS are LO be used, COnSUlt
the factory applications deparcmenr or your local Keithley rrpresenrarive for instructions.
d. Turn ox power Switch 5301.
2-3.
CONNECTIONS. (refer ta Figures 2 and 3).
a. Innut. Three binding posts are provided an the frO"C piln.21 LOT input connections. The cermina1s are color-coded a* follows: red = input high (HI) 5401, black = input low (LO) ,402, and green = power­line ground (Clm) ,403. These terminals mace Wifh individual "ban*"*" plugs similar LO Keichley Parr NO. c-5, The from pane1 terminals are spaced with ,/Ii-inch bewee" centers to mate wit,, a standard
dual "banana" plug such as Keitbley Part No. Lx-,.
Banana-plug-co-alligator-clip cables (available through my local electronics supply house), such as two Keithley Part No. 181620 cables, are ideal for fast connections to the 165 input. The shorting link provided at the input should be connected between LO
and cm for grounded operacian.
IC is preferable,
to minimize rhe pas5ible effects of ground loops
(small mrrents flowing in the ground system), that there be only one ground point in the measuring syseem.
If possible, connect all grounds together
at one poinr, ideally ac the CND input terminal of
the 165. 'Tire input ShorrFng link should be removed
for floaLi"g OpcrdLiO".
b. AC VOLTS OwraCion. The Model 165 provide5
five and one-half decades (six ranees, of ac vo1caee
T .
2.
I”WL Resistance. me input reSiSCa”ce of the 165 on all ac voltage ranges is I megohm 110% shunted by less rhan 75 picafarads of capacirance.
3. Accuracy. The Model 165 detects the average value Of a" applied input ac waveform. The display of the 165 is calibcnted LO indicate the n,,s value of an applied sinewave.
The accuracy (error Limit)
calculations given in Paragraph Z-ha, ah.0 apply
far ac measurements, except cilai 20 HE and ZOlcHZ, the specified accuracy is asymmetica1. Reference
the specified ac-volts accuracy ranges a~ 20 Hz, lkkiz, an* 20w*. Typical aCCUraCy bands at non­specified frequencies ace shown in Figure 6.
5. rlaximum Allowable Input. Ihe maximum contin­uous or i"termifLe"t input voltage which calI be safely applied 0" manually selected l-volt and lower ranges is 250 "0lt.S rms. when aperacing manually on the 10 volt to 500 volt mls ranges or in the auroranging mode on a11 ranges, the maximum con­cinuous or inrermiCce*t inpur voltage which can be safely applied is 1200 volts peak ac + dc. on the 5O&volc rms range (1000 volt range pasitio") in either ranging mode, the 165 display will flash
when the inpui exceeds 499 volts rms, although a
reading beyond this level is displayed.
2-7. OPERATION AS AN AXXETER. The Xodel 165 can be used to measure C"rre"L from 21 nanoamp to t2 amps dc and 100 nanoamps to 2 amps C"S ac.
3. Accuracy.
The dc-current accuracy Of the 165 is t(o.3% of reading + 0.3% Of range). The error limit of a given measurement can b< Cal­culated using this specifiearia" (see Paragraph Z-6=3) and the voltage burden (see Paragraph Z;i,l,
OPERXION
diodes Will prorect the sensing resistors from cur­renfs UP to levels which cause excessive heating or vaporization of pc-board tapes.
1. Measuremenr Procedure. Selecr ehe AC AMPS function using the FUNCTION switch, set the RANGE switch. and make input connections to the front-
pane1 cermina1s. The digital display indicates the decimal point locaeion and engineering units Of a reading. The polarity Lag” “ill not light
when AC amps is eeleceed.
If the display exceeds 1999 on the 100 milliamp or lower raoges, the three right-hand digits will blank and ehe overrange "1"
digit will remain lit. See Paragraph 2-?a5 far
details af the maximum allowable Fnpur.
2. Input Resistance. See Paragraph 2-7a2.
3. Accuracy. The aC-C"rre"f accuracy apecifi-
cation of the 165 is used co calculate the error
limit of a Specific mea*ureme"t (see Paragraph
2-6a3). except at 20 Hz and 2OkHz where specified accuracy is asymmtri~al. Reference the specified ac-amps accuracy ranges a~ 20 "z, lkI+z, and 2O&. Typical accuracy bands af non-specified frequencies are shown in Figure 6, alrhough rhe 10-1000 mA ran8e has somewhar flatter responsa at 2Ok"z than char shawn. Voltage burden (see Paragraph 2-7b2) can also produce error, depending on the level of rhe source "alcage.
4. Half-dIgit I"terpo1ari.o". see Paragraph 2-74.
5. Marimum Allowable Input. See Paragraph 2-7a5.
2-8.
OPERATION AS AN OHMMETER. The Model 165 can be used CO measure resistance from 0.1 ohm co 200 meg­ohms. The Model 165 ~ravides se"en full-range decades of resisrance fram 100 ahms LO 100 megohms. Range seleccio" can be accomplished either manually x autamarically.
w selection is accomplished by setting the RANGE switch S401B LO any ""e of seven positions, g including the secand position from
full clockwise.
i"his wsicion may be used but it just duplicates the operarion of the 100 megohm runs, which is the third position from full clock-
*
NODEt 165
wise. As the RANGE switch is rotated counterclock­wise. the 165 resistance sensitivity is increased. Automatic selection of range is accomplished by
rotating the RANGE switch to rhe extreme clockwise
position marked AUTO.
a. Measurement Procedure. Select the OHMS func­tion "siw, the FUNCTION switch. set the RANGE switch. and make input c""necrio"s t" ;he front-pa"el ter-
minals. The digital d$splay indicates decimal 1
location and engineering units of a reading. ':
POlEdry sign "ill not light when ohms is selec:~
If the display exceeds 1999 "n any range, the three right-band digits will blank and the overrange "1" *igir Will remain Iit. 1" the AUTO mode or manually on the oueside IOO-megobm position, a" open-circuit input ca"~es a flashing 01.7 W display. With an open in~ue, the inside IN,-megohm range, the third p"si~ion from full clockwise, may flash or blank de­pending a" whether it was entered from the outside lOO-megobm renge or the lo-megohm range. Also, if the RANGE switch is rotated rapidly while in the AUTO made, the display may blank. Neither candician just discussed represents a problem or malfunction.
aa shown in Table 2-4. The HI input t&inal 5401 is.
negative with respect to the LO input terminal 3402. The rermina1 voltage is 100 mulLvolts at full ranz>.
(200 millivolta at maximum overrange reading).
maximum open-circuit voltage is less than 1 volt.
TABLE 2-4.
Ohm Test C”rrenr
Full
Pull-Range
Teat
Range
Terminal VAtaga
Current
100 n 100 In"
1 k0
100 02"
1~0 k"
I"0 rn"
lm.4 ,.
100 "A
10 p.4
100 kn
100 I"" 1 UA
1 I%
100 r&Y 100 "A
10 MO
100 mv 10 "A
100 ML-z
100 mv 1”A
C. *muracY. The accuracy far all abms ranges is
as specified.
This apecificario" applies far envi-
ronmental conditions of 35'C at up to 10% relative
humidify.
Accuracy on the l-megohm and higher ranges
is typically two-times better than specifications.
The error limit of a given mea*urement can be cal­culatcd using the specified accuracies as described
in Paragraph 2-6~~3.
d. Half-digit Interwlation. When the m"st right­hand digit of the 165 display is flashing berwee" two adjacen; numbers, the percentage of time spent on each
is a half-digit intarpalario" of zhe incoming signal
level.
POT example, 1.000 kilOhmS flashing in near­equal intervals LO 1.001 kilobms would indicate a reading of 1.0005 kilobma.
e. Maximum Allowable Input. The maximum Yolrage which can be applied to the input Fn the OHMS func­tion ia 250 va1ts rms on any range. This voltage
may be applied continuously or ineermictenely with-
out damage or degradation af ~pecificati""s.
1073
7,.
MODEL 165
2-9. OPERATION OF THE l-m.4 SOURCE. The ImA front-pane1 pushbutton aCti”*fes * cLIrre*t source of +1 mA *10x. The current 18 internally injected into the HI input
terminal 5401. voltage compliance is cypica11y *rearer than 4 vo1r.s.
a. Reeiarance Measurements. If the DC VOLTS func-
tion is selected while usinp. the 1 mA current BOUXCB, the Model 165 becomes a dir&-reading autora”ginS z manual ranging ohmmeter having 100% overran&g on ranges
from 10.00 ohs co 1.000 kilohms full-scale (corresponding respectively co 10.00 millivolr through 1.000 volt dc ***ges).
Useful measurements are available to 4.00 kilohms (corresponding LO 4.00 volts on the 10.00 volt dc range). I” any c**e. the Yoltage compliance limif
is also the 1iraiL of resistance measurements using
the 1mA C”rre”t source.
Note that rhe engineerI.“* uni~a on the display will scFll indicate volts, which is the voltage compliance at which maaauremenrs are being made.
Af the 8-a time, the displayed numbers in the reading indicate the value of the resistance being measured. For example, * reading of 100.0 milli-
volts dc indicates the meaeured resistance is 100.0 ohms and a reading of 1.999 volts dc indicates 1.999 kildlm.
1. Measuremanr Procedure. The ImA current source feature of rhe Model 165 may be used to measure low resistances or to check continuity. A” open cir­C”it or resisrsnce grearer aaLl the range limit is indicated by a display of the full compliance volt­age. This voltage ia eaefly determined by open­cFccuiting in the input terminals of the 165 and
depressing the lmA pushburro” “bile operating in the DC YOLTS~funcfio” eithsr manvally on the IO­volt range or in the AUTO range mode.
2. Compensaring for Lead Resistance. A precise
value of the ImA current source (I) can be obtained by open-circuiting the input terminals, eelecting the DC AMPS function, and depressing rbe ImA push­button; The resistance of the test leads and in-
ternal connections (P& CB” be directly measured
by shorting the teat leads’while in the DC VOLTS
function
and depressing the 1mA pushbucto”. The” the measured resistance (R) cm be more arrnrately defermined as follows:
where ” is the observed voltage during the actual measurement of R.
b. Semiconductor Testi”~. In the DC YOLTS function
and AUTO range mode, the ImA current source may be used to determine polarity of a semiconductor junc­tion. The forward voltage drop of this juncria” at lti is displayed a” the Model 165 if Lhe junction is connecred between the input terminals in the foward polarity.
Note thaf the lmA c”rre”f *.a”rce is inter-
nally injected into the HI input terminal 5401. I” the m palartty position, Lhe display will ,.“­dicafe the compliance voltage limit of the current source> which can be measured as described in Para­graph Z-gal.
1073
OPERATION
DO NOT DEFRESS THE 1mA POS”B”TTON WHEN MTWJAL VOLTAGE IS APPLIED TO THE INPUT TERMINALS.
Z-10. OPERATIONS SUMMARY.
Condensed operating in-
structions are found on rhe botton cover of the Model
165. They are repeated here with a little more detail. For complete details of operation. see 2-l Lbrou$h 2-9.
e. Power.
Set Lhe rear-psoel line witches 5302 and S303 to the proper line voltage ~etti”Ss. Check the fuse F301 for proper rating. Connecr the line cord CD-7 to 50 or 60 Hz power. Set the power switch S301 to ON.
b. Co*“aCfio”.9. connacr to the fro”=-pane1 “I
tied) 5401 and LO (black) J402 binding poet Fnput
Cemlinals . Connect the ground link between CND
(sreen) 5403 and LO (black) for grounded operation.
discon”ecting rbe link for floating operation.
Haximum allowed voltage becvaen CND and “I or LO is
l200” peak.
C. Function Selection. Set the outer dial to the
desired function:
DC VOLTS, AC VOLTS, DC ANPS, AC
Ams, or OHMS.
The digital LED display automatically
indicates decimal point, polarity, and-e”$ineering
U”5LS. Lack of polericy on the display on YOLTS or AMPS functions Fndicatas ac readLngs.
d. Range Selection.
2. Automatic. Set the inner dial to the fully­clockwise position (AUTO). In this position. the 165 automatically “prangea at 2000 digits and _ dawnranges at 179 digirs.
e. lmA current source. If the front-panel In.4
wabbutto” is depressed. arwroximatelv +ImA is in­jected into the i,I input t&minal at ;p to appror-
imarely 4 volts compliance. Set the RANGE switch co DC VOLTS. For semiconductor tests. forward
voltage at ImA is read direcrly. For continuity or
resisLance measurements, resistance is read in ohms
using millivolt dc ranges in kilohmn using volts dc
ranges (limited to compliance voltage level). With an open-circuited input actual compliance and current can be meaaurad on DC VOLTS and DC AMPS respectively.
NOTE
DO NOT DEPRESS THE 1mA P"SHB"TTON WHEN MTERNAl VOLTAGE IS APPLLm TO THE INPUT TERMINALS.
f. Zero. The DC ZERO potentiometer R431 on the
rear panel may be adjusted for a +O display with the
Fnput shorted on the 10 millivolt dc range or with
B” open input on cbe 1 microamp dc range.
9
T \
3-1.
GENERAL.
The block diagram of the Model 165 is shown in Scbemaric 25395D. The eiS"*l applied to the input rerminals first goes rhrough en input switchinS network and then ie applied to'* dc or ac preamplifier. A ""ipolar amplifier co""er‘c8 the signal to a positive dc signal which ie the" applied to *" a-d converter. The s-d control and display logic ie contained in the LSI cirx"iZ. snd on the display printed circuit boards. The numerical information corresponding to the input signal is displayed a" LED digits. The logic properly positions the decimal point and indicates engineering ""its.
The inpur swircbitq network is cootrolled from the logic in the AUTO range mode or from the front panel manual range switch.
3-2. AC-VOLTS PWLIFIKR..
(see Schprmaric 2539%).
The signal applied *c ebe Fnput tenninela is coupled
through cepaci~or C401 CO a" *c-compensated ae~enuator consisting of RN403 and C402 through C405. TN* ie shunted by en input resietence consisting of R401 and
R437, and switchi"* is accomollshed bv meene of PUNC­TION awitch S4Ol.A Deck No. 2: Table i-1 show* the attenuation end gain factors ee well *a relay aate*
for each *c-volt* range.
TABLE 3-1.
AC Volts:
Gains and Relay St*ce*
RN403
AMP.
;F.ANGE ATTENUATION K401 K402 K403 GAIN Q406 9407 Q40R
lO@lV I:1 ON
OFF OFF xl00 OFF OFF ON
1Oh" 1:1 ON
OFF
OFF
x 10 OFF ON
OFF
1” 1:1 ON
OFF OFF x 1 ON OFF OFF
10
V 100 : 1 OFF ON OFF x 10
OFF
ON OFF
100
" 1000 : 1 OFF OFF
ON x 10 OFF
ow OFF
500
" 1000 : 1 OFF OFF ON x 1ON
OFF OFF
CIRCUIT DESCRIPTIdN
MODEL
SECTION 3.
CIRCUIT DESCRIPTION
a. On the 1 Volt Range.
On the 1 volt range, K401
16 closed, K402 and K403 *re open, end the siSn*l is applied through resistors R405 end K406 to the input of s Xl amplifier QA403. The input to this amplifier is limited to the power supply level* by D419 end
D420.
Overload voltages applied *c
the input are
dissipated in R40S and R406. SwitchinS ie accomplished throuSh S4OLA Deck No. 6. On the 1 volt range Q406 is on, 9407 and Q4OS *re off. The output is coupled fo the unipolar amplifier through c422 end swirching ie accomplished through S401.4 Deck Nos. 7 and 8.
b. On the 100 Millivolt R*n*e. On the 100 milli-
"olL ran8e. the ouLp"t of QA403 is applied co a *LO
amplifier Q.4404. Q407 as on, Q406 and 9408 are off. therefore the input siS"a1 ie amplified by * facror of 10 before being applied to the unipolar amplifier aSsin through C422.
C. 0" the 10 Millivolt Range. 0" the 10 mini­volt ran@, a second x 10 amplifier 9.4405 further amplifies the signal and it 16 applied tbrouSh 4408
co the unipolar amplifier.
d. 0" the 10 Volt Se"*e. On rhe 10 vole **"Se, K401 *"d K403.are off, K402 is on. Thus, RN403 attenuates the siSn*l by a factor of 100. The eigr ie then applied to the emplifier chain QA403 and QA404, "ith Q407 on, selectinS the xlO,S*i" for cb, chain.
Thus, the signal ia attenuered by 100 and
amplified by 10
for
e "et atreauatio" of a factor
of 10 bafore going to the unipolar smplifier.
e. 0" the 100 Volt Range. 0" the 100 volt **age K403 is on, K402 and K401 *re off, end the input signal is attetuated by a factor of 1000 before being applied to the x10 amplifier chain. Q407 remains on and the *et *cte"u*cio" ie a factor of
100.
f. 0" the 500 Volt P.ewSe. On the 500 Volt range: K403 remains on, and 9406 is on selectinn the xl gain for the amplifier chain. Thus, the-net ecte"­uafio" LB a factor of 1000. C402 and C403 *re ad­justed to *c-compensate the *ttenu*tor KN403.
3-3. DC-"OLTS PREAMPLLFISR. (see SCbemaLiC 25392E) The inpur signal is applied to the sttenuetor RN403 e8ein t,,rooSh ewiccb S4Ol.A Deck No. 2. The outp"t c the attenustor, e.8 selected by K401 through K403, ie
applied tbroqh S4OlA Deck No. 4 and limiting resie-
tars R420 and R421 to the input of * dc amplifier *L S401A Deck No. 5, “‘DC INPUT”.
a. DC Amolifier. The dc amplifier consists of a FET modulator Q4OLA end QLIOlB, protected by D410 through 0413, e" ac empltiier QA403 through QA405 whose bW.n is controlled as in Paregraphs 3-2, e demodulator 9409, and a final dc ampIFfier coosis­ring of QA406.
The output of this mep1if1er "DC PREAMP OUTPUT” is fed back to the input by resistanct elements in RN403, selected by K404 and K405. These relays select Paine of 1, 10, or 100. Table 3-2 shows the attenuario" gain fsctors ** well a* relay states for each dc-volts **"Se.
TABLE 3-2
DC volts:
Gains and Relay Stetee
RN403
AMP.
UNGE ATTENIIATION K401 K402 K403 GAIN K404 K40
1hnV
1:1 ON OFF OFF
x100 OFF OFF
1oomv
1:1 ON
OFP OFF
Y 10 ON OFF
1"
1:l ON OFF
OFF
x 1 OFF ON
10 v 100 : 1 OFF
ON OFF
1 10 ON OFP
100 ” 1000 : 1 OFF
OFF
ON
xl0
ON OFF
1000 v 1000 : 1 OFF
OFF ON x 1 OFF ON
b. Modulator and Demodulator. The modulator and demodulator are operated at e frequency of 220 Kz. This is developed at the "t44" output of the LSI chip *"d appears in the middle of Schematic 25392E "ear the bottom.
S4OU Deck No. 1 disable8 the sig-
nal on ec functions. On dc functions, fwo phase8
10
MODEL 165
are developed by QA601, 9402, and Q4lO. They sre coupled to the modulator gates by c417 and C418, and to the demodulator by c409. 0421 an* 0422 clamp the
gate *rives co a reference level equal to the feed-
back "olrsge. developed by QA409, a Xl amplifier
whose input is connected to the feedback point.
c.
Input Zeroing. Input seroing is accomplished
by R431 which determines rhe current throunh R428 and
R429. The voltage ,vzneraced by this c”rr&t across R428 is added to the feedback “olLaSe developed across the lo-kilohm element ,,f RN403 between pins 6 and 7. “se a pure copper wire end a dual banana plug for a shorting plug.
CIRCUIT DESCRIPTION
The reference resistance consists of F.409. and R414 rbrouSh R419. .The specific value of the resistance is determined by the state of relays K409 through K415. The rota1 resisfsnce is equal to the full­ran8e resistance. Note that this circuit applies a ne$sti”e reference currant through the unknown resi*Lance.
3-5.
le. CURRENT SO”RCE.
bee Schemetic 25392E). The lmA current is developed by 9404, R411 through R413 and D405.
It is applied LO the HI renninal by mean8 of rile fronr pane1 BWitCh S402. R410 ad D406 protect 9404 if S402 is eccidantally depressed while the voltage is applied to the HI terminal.
d. Input Offset Current. Input offset current is comwnsated for b” ad,usrinp. R424 “hich develow a “o&e referenceh to-the f;edback point at the o”t­put of QA409. This voltage generates a compensafing current through R423 which is applied to the common node of the FET modulators, Q4OU and Q4OlB.
e. Offset “olra*es.
Offset “oltaSes within the dc amplifier loop are compensated for by R434 which ap­plies a volrage to the positi”e input terminal of QA406, the final dc amplifier. The controlling time constant within the loop is determined by C413 and R427 in the negative feedback loop of Q.4406.
3-4. OHMS CIRC"ITRY. (sea Schematic 25392E). on a11 ahms ranges, K404 and 9407 are on, firing the dc “alt­age preamplifier at 100 millivolts full range. D416 near QA406 limits the output of this amplifier such that no more than 1 volt appears at the ioput under open-circuit conditions. The ohms circuit in the lower left corner of Schematic 25392E generates a reference current at the input terminals. This ref­erence c”rre”f is generated by a “oleage at “0 OUT”
G4OU Deck No. 3) divided by a reference resistance
selected by K409 through K415.
8. Reference Voltage.
The reference voltage is the sunnnacion of 0.1 times the “DC PRW OUTPUT”, and a fixed lOO-millivolt reference. QA402 performs this summafion. R462 and R463 provide an output of
0.08 times “DC PW OUTPUT” BL their iunction. This voltage is applied to rhe positive-input terminal of QA402 which has a non-in”errinS gain of 1.25 de­termined by R407 and R461. 9405 is on in normal OperaLion. The lOO-milli”alt reference is developed from an aftenuaeor scros~ the g-volt reference diode
D408 consisrin~ of R458. R402, and R465. The “olt-
age at R465 is about -1.6 volts. This is amplified by -0.25 using QA401, and by another -0.25 with QA402.
b. Overload Conditions. Under negati”e overloads, D418 blocks current flow to 9405 or QA402 output, and 0415 limits the input “oILage at the naSafi”e terminal of QA402 to the supply “olfaSe. Under positive o”er­loads, D414 limits the neSari”a input of QA402 to the positive voltage.
This drives the output of QA402 negative until it is limited by D426. AC that level, the c”rrenf flow in the emitter of Q405 is determined by voltage across D426, rhe base-emitter drop in 4405, R454. and R408. These elements limit the collector current in 9405 LO abo”f 1.2 milliamps. This current is essentially independent of the voltage appaariwj at the collector of Q405, which ie determined by the po~itive voltage at the HI terminal and the voltage
drop of the 1.2 milllamps in the reference resistance.
1073
3-6.
DC-AMPS PREAMPLIFIER. (see Schematic 25392E). The Fnput c”rre”t passes rbro”Sh S4OlA Deck No. 2 to a reference resistance selected by K406 throush K411. The voltage across chin reference resistance
is sensed by the dc amplifier in B 4-terminal method between terminal 1 of RN401 (at circuit LO) and junc­Cio” of K411 end R415, which is applied to the inpur of the amplifier through S401A Deck No. 4, R420, and R421. 0” the I-microamp through 1OO-milliamp ranges. the dc preamplifier is set to a gain of 100, COP
respondinS co a full-range voltage of 10 millivolts. On these radges, K406 through K411 select the refer­ence resistance which covers s span from 0.1 ohm
(in RN401) through 9 kilohms u(415). On rha IOOO-
mflliamp range, K406 selects the 0.1 ohm resistance
in RN401, and the gain of the dc preamplifier is changed to 10. correspondinS LO 100 millivolts full ran$a, as indicated in ParaSraphs 3-3. D401 rhrouSh D404 protects rhe relays and the sensing resistances from overcurrent.
3-7. AC-Am3 PRWLHPLIFIRR. (see Schematic 25392E). As in the case of dc amps. the BC input current is passed tbraugh S4OU Deck No. 2 to a sensing resis­tance selected by relays. In this cE.se, only re1#ys K406 thrc.“Sh K409 are used. The output voltage is ,
sensed at S4Ol.A Deck No. 3 and coupled through C401, S4OU Deck No. 2, and R455 to the AC Preamplifier, chain. The ac preamplifier is set to a gain of 100 corresponding to IO millivolts full range on the 100 microamp rhrouSh 100 milliamp ranges. a Sain of 10
corresponding to 100 milli”olLs full range on rhe 1000 rsilliamp ac amps range, selected as in Paragraphs 3-2.
As in the case of dc amps, D401 throuSh D404 protect
the relays and sensing resista”ce from a”erc”rreoL.
Note that since the capacitor-couplin8 through C401
OCC”rs I.” the circuit folloving the sensing resis­tances, dc or ac ~“ercurrents .3 A may hsve danaSing
affects on either DC AEIPS or AC AMPS functions. 3-8. “NIPOLAR AMPLIFIER. bee Schematic 25393D).
This circuit, consistinS of QUO2 and QA203. is shown
in the left-half of Schematic 253930. The preampli-
fier output is applied to 3201. an analog outp”t at the rear panel, and fo X213. R213 and R404 (on Sehemstie 25392E. near S401A Deck No. 8) attenuate dc signals to the 0.91-volt level corresponding Co 1 “Ok full range. Note chat the positive terminals of QA202 and QA203 are essentially at LO. thus the feedback loops around each op-amp rend LO constrain
the neSsri”e inputs also to the LO level. Since
terminals 3 and 16 of RN.01 are connected to these ne&ati”e inputs, we may consider the IO-kilobm ele­ments connected co terminal 2 88 a siwle 5-kilOInn
element to LO. The 5 kilohm element from Le”r.i~Ul
11
l .
CE+.XIT DESCRIPTION
1 to 2 of RN201 and this 5 kilohm equivalent element farm a divider such that rhe volta*e at terminal 2 of RN201 is half the voltage af. ceminal 1. For positive si&nals, the o"fpu~ of QA202 will *o negative. DZOl will be on, Q201 will be off. So if we define
"2.~2 Z the outpur of QA202. "2
E rhe "olcage SC terminal 2 Of RmOl,
"203 E the ourpur of QAZO,,
"1
z rhe volra*e af terminal 1 of RN201 and
also the preamplifier ourput;
v203 = -2 W202) -2v2
where V202 = -2V2, therefore
"203 - +4v2 -2Y2 - +2v2 - "1
For negative si&nals, the outwt of 98202 will *o positive. 1,201 will be off. Q201 will be on. In this case, the voltage at the o"tp"t of QA203 is
-2 times the volCa&e at terminal 2 of RN201. Thus,
From this. the ""ipolar OUtpUt at J202 pravides a positive signal equal in m*nitude to the value of the preamplifier output 5201. regardless of sign. For SC si&nals, Q&.202 acts as a full-wave rectifier, and QA203 as a filter "sin* C203. The avera*e value of the ac waveform appears at 5202 as 8 positi"e dc signal.
Nate that Q201 is off for eosirive signals, on for negative signals. Thus the "polarity" line is HI for negative sipnals, LO for positive signals.
This information is passed throu*h ewe tramisfms of QA201 and R207, and presenred to the logic on the Fl line on the right side of Schemaric 25393D.
3-9. A-D CONVERTER. (see Schematic 25393D). The unipo1ar output J202 creates a non-negative current
in the 1-kilohm resistors between terminals 1 and 8
of RN202.
This current is always applied to the ne*­aLive input terminal of i"Le*raLor Q.4204. If the diode between terminals 1 and 3 of QUO1 is off. this si*nal currenf. is Lhe only current applied to the integrator.
If this diode is an, there is also a reference current at the Lnput node of the integrator. This reference c"rrent is determined from the -9 volt reference, the emitter-follower between terminals 6 and 7 of QA201, the 9-kilohm resistance between fer­minds 5 and 3 of RN202. and the setting of R205. The stare of the diode between terminals 1 to 3 of QA201 1s de~emined by the state of rhe CS-line corni"& from the LSI logic. If CS is high, terminal 3 of QA201 will be high, and the diode from terminals 1 to 3 will be off. Figure 7 shows ehe pertinent logic Fnternal to the LSI chip along with the cir­cufrry shown on Schemaric 253930 for the a-d converter. Note that LS will change state an rhe next clock pulse
after TH has changed state.
The state of TH is deter-
mined by a zero-crossin* detector QA205 which follows
the intekrator Q&204. For small inputs, the signal current makes rhe InLegraCor slowly ramp negative, un­til the integrator oucpuc CIOSS~S zero (see Figure 8). During this time, the reference current is off (CS 1s HI) .3"d 'TH is 81. When the integrator OUrpUt cr0**e* zero, 'IH Bees LO, and on the next clock p1use CS Will alSo go LO. This vi11 turn on the negative reference current Which Will cause the integrator LO ramp posi­tin? SC a much ‘aster rate (see Figure 9).
12
,
v, - inregrstor output voltage.
VA
- threshold level of threshold detecror.
FIGURE 8. Integrator Characteristics for Small
Input Signals.
If the input si*nal is very small. TH will *o HI im­mediaLely after the reference current is turned on, and at the next clock pluse, the reference current
will he turned off. For large signals approaching
end scale (2000 counts), when the reference current is off, the si*nal current will cause the inte*raror to ramp SC a faster rate in the negative direction
bee Figure 10). when the reference c"IrenZ t"r"S on after sero crossing and a clock pluse, the dif­ference between the positive signal current and neg­arive reference current will be very emall since the
MODEL 165
v, - i"cegracor 0"Cp"C voltage. v, -
threshold level of threshold detector.
PICURE 9. lncesrecor Characteristics for
Full-Ran&a lnpuc s*gna1*.
“0
“*.D”
_---- __--
P
2.000CO”NTS
-1
“0
- ince*racor c."CP"C "olca*e.
"d
- Chreshold level of threshold detector.
FIGURE 10. lnCe&raCor Characrerisrics for End-
Scale (2000 Co"ncs) Input Signals.
reference cu==enC is set to be ,ust greater Ghan 2000 co""Cs. Thus. the inCe*=aCo= will slowly r‘amp in the posiCive direction.
In Chin case, the reference CUT­rent is on most of Che Cime; TH and CS are LO most of the Cime. Near full range, Che reference current is on for 1 clock pluse and off for 1 clock pluse.
3-10.
CLOCK. (see SchemaCic 255080). The clack con­sists of QA503, QA602, RSOZ Cbmugh X,505, and C503, at Che left edge of Schematic 255080. This *ene=aCes a low-duty-cycle 9.680 Hz clock for Che tSI lo*ic QA501.
3-11. LOGIC. (see Schemaric 25508D). QA501 contains all logic for the a-d conve=Ce= and auCoran*in* ci=-
cuitry. Ran&e lines Rl, RZ, and R4 a=e conrralled
eiChe= by the a"Ca=an*in* circuitry on QA5Ol o= by the range swirch S401B Deck No. 10. On manual ran&es, the MR line is connected CO LO which inhibifs the out-
puts to Rl, R2, and R4 in the LSI cup, The *uncricm
is selected by S4OI.A Deck No. 1. Table 3-3 indicaes the complete Crurh table for all functions and ran&es of the Model 165. Q&502 decodes Chis logic into con­trol lines far various relays and analog switches shown on Schmsti~ 255110. Also see SchemaCic 25392E.
1073
3-12. DISPLAY.
(see Schematic 25394E). Q&501
&e”erates
four m"lCiplexin* lines, T-O CO T-3, and
each is hi&h for an 800 microsecond CLme interval.
Durink T-O the, the funcrion is indicsred by DSlOl
Chrou*h.OS107, and the polarity and most si*nificanC
1 are displayed by LED DN103. During T-l, T-2, and T-3, DN104, DN105, and DN106 =especCively display the numericaL digifs with decimal p"inCs.
3-13. POWER SUPPLY. (sea Schemaric 2539X). 5302 end 5303 select the appropriate primary combinations for the line volCa*es indicated. The outpur of ~301 and C301 is a + 10 volt unre&uleced su,qaly used fo= the display md for the +6 volt supply QA410 (see
Schematic 25392E). Q&301 &e."erac~s a regulated +5 volt supply.
This powers TTL. LSI, end some analog
circuitry.
9.002 re&ulatos Che ""Cp,,C of D301 and
D302 CO -12 volts.
5301 provides a mes"8 of dis-
connecCin& Che power supplies so ChaC Chey may be
tested independently from the logic and analog ci=­cuicry.
TABLE 3-3.
F"ncLi""lRan.elRela" Decoder Truth Table
Co"tr"l Li"es/Co"crolled Devices
Function Lines
Range Lines %'I/ SW21 SW/ FCC/ SW41 SW5/ SW61 SW71 SW81 SW9/ SWlOl SWlll SW13/ SW14/ SW151
'unctian F4 F2
Fl U"W R4 K2 Kl
K401 K402 K403 Q408 K404 K405 K406 K407 K408 K409 K410 K411 K413
K414 K415
­+ocv 0 0 0 lots" 0 0 0 1 0 0 1 0 0 __ _- -- -- -- -- -- -_ --
-DC" 0 0 1 107s" 0 0 1 1 0 0 0 1 0 __ _- -- -_ _- __ -- __ -_ AC" 0 1 0 lam" 0 1 0 1 0 0 0 1 0 __ -_ _- -_ -- -_ -- __ --
loom" 0 1 I 1 0 8-J 0 1 0 __ __ _- __ __ -_ __ __ -_
1" 10 0 1 0 0 0 0 1 __ __ _- -- - -- -- __ -_
10" 1 0 1 0 1 0 0 1 0 -- _- _- -- - _- -- - --
100 Y 1 1 0 0 0 1 0 1 0 __ __ __ -_ __ -_ _- __ _-
lKv111 0 0 1 0 0 1 -_ -_ __ _- __ -- _- -_ __
ACA 0 1 1 1OOUA 0 0 0 - 0 0 0 10 0 0 0 1 0 0 0 0 0
lOO"A 0 0 1 -- 0 0 1 0 0 o,o 0 1 0 0 0 0 0 100"A 0 1 0 -- 0 0 10 0 0 0 0 1 0 0 0 0 0 1OOllA 0 1 1 -- 0 0 1 0 0 0 0 0 1 0 0 0 0 0
ImA 1 0 0 -- 0 0 10 0 0 0 1 0 0 0 0 0 0
lOmA 1 0 1 -- 0 0 10 0 0 1 0 0 0 0 0 0 0
look4 1 1 0 -- 0 0 10 0 1 0 0 0 0 0 0 0 0
1.4 1 1 1 -- 0 0 0 1 0 1 0 0 0 0 0 0 0 0
+DCA 1 0 0 1LlA 0 0 0 -- 0
0 0
10 0 0 0 0
0
1 0
0
0
-DCA 1 0 1 lll.4 0 0 1 -- 0
0 0
10 0 0 0 0
0 1
0
0
0
lOUA 0 10 -- 0 0 1 0 0 0 0 0 0 1 0 0 0 0
1OO"A 0 1 1 -- 0 0 1 0 0 0 0 0 1 0 0 0 0 0
1mA 10 0 - 0 0 10 0 0 0 1 0 0 0 0 0 0
1omA 1 0 1 -- 0 0 10 0 0 1 0 0 0 0 0 0 0
lOOm.4 1 1 0 -- 0 01 0 0 1 0 0 0 0 0 0 0 0
1A 11 1 - 0 0 0 10 1 0 0 0 0 0 0 0 0
omfs 1 1 0100n000 - 0
0 10
0 0
o-o 10 0
0
0
0
1m 0 0 1 -- 0 0 0 1 0 0 0 0 0 1 0 0 0 0
1oK.n 0 1 0 -- 0 0 0 1 0 0 0 0 0 0 1 0 0 0
1OOKn 0 1 1 - 0 0 0 1 0 0 0
0
0
0
0 1 0 0
M 1 0 0 -- 0 0 0 1 0 0
0 0
0
0
0 0
1
0
1Om I. 0 1 -- 0 0 0 10 0 0 0 0 0 0 0 0 1
lOoK 1 1 0 -- 0 0 0 1 0 0 0
0
0
0
0 0 0 0
1oOm 1 1 1 -- 0 0 0
10
0
0 0
0 0 0
0
0 0
SECTION 4. ACCESSORIES
4-l.
GENERAL. The following Keithley accessories can be used with the Model 165 co provide additional convenience and Versatility.
4-3.
MODEL 1651 SO-AMPERE SHUNT. The Model 1651 pic­tured in *igure 11 is an opLiona1 acceesory chat ex­pands the ac and dc current measuring capability of the 165 from 2 amps to 50 amps. The 1651 is a 4-ter-
minal 0.001 ohm flX shunt that is connected externally
to the 165 input terminals. The 165 is operated in the ac or dc volts mode manually on the 10 m,.Ui"olc
and 100 millivolt ranges or in the AUTO mode for the convenience
of
automaric ranging. The voltage drop
y:"'" the 165 inpuf, "sing the 1651 shunt is very
- only 10 mLllivolce at 10 amps. The Model
1651 18 approximately 6 inches long, l-114 inches deep, and l-3/8 inches high. and may be m&nred t., a hard surface using the 15/64-inch diameter mounting hole an,either end of rhe shunt. A cable is provided to ~omect the input terminals of the Model 165 to the inner voltage-sensing terminals of the shunt. TNa cable is ap,mximaCely 58 inches long. The outer current-sensing terminals of the shunt should be used to connect to the c"rrenf source.
FIGURE 11. Model 1651 SO-Ampere Shunt.
4-4.
MODEL 1653 RACK NOUNTINS KIT. The Model 1653 picfured in Figure 12 is a single rack mounting kit which converts the Model 165 from bench maunt.ing to
standard 3-112 inch x 19 inch reck mounting, with 15 inches (300 mm) depzh behind the front panel.
a. Parts List. see Table 4-1.
TABLE 4-1.
Model 1653 Parts List
1
ItaCk Mo"nfi.ng Panel 2
2532gB
2
Bottom cover Bracket
1 25543B
3
Side Bracket 2
25330B
4 #6-32 x l/4 LG PHIL
PAN km SCREW 2
__
5 1110-32 x 3/g LG PHIL
HD SCFlEW
4
__
/
b. Insrallarion. Rack Mounting Panels and Side Brackers used in the 1653 are inrerchangeable. Using the four 1110-32 screws provided, mount one Rack Mount­ing Panel to each Side Bracket as shown in Figure 12.
"sing the two 116-32 screws provided. mount the Boffom
Cover Bracker berween the LWO Side Brackets. Place the Node1 165 inside the assembled rack kit, spreading the Side Brackers.co fit around the instrument. The curved and cusNoned back end of each Side Bracket fits around and into the rear-panel edges of the 165. The
1073
inside edges of the Rack Mounting Panels fit around the front-panel ednea of the 165. Now mo"llL the entire sss&bly of-the 1653 and 165 in a 19-inch.
tidth rack.
I
FIGURE 12.
Model 1653 Single Rack Mounting iat.
15
SECTION 5.
5-1.
GENERAL. This section contains information necsssary CO maintain the instrument. Included are procedures for performance verification, calibration, end troubleshooting.
5-2. REcomENnED TEST Eq"IPmNT. Recommerded test equipment for verifyin* performance end calibrating the Model 165 is given in Tables 5-l and 5-8 reepec­tlvely. Teat equipant other than that recommended
may be substituted if the specification,, in the equip-
ment tables are equalled or exceeded. These spscifi­cations are the minimum requireme"ts.
5-3.
PERFORMANCE VERIFICATION. The purpose of this procedure is CO verify that the instrument is witbin specifications at the time end environmental condi­tiorls under which tile procedure is executed. If veri­fication is performed at a temperature other than the calibration temperature of 20 to 30°C, the specified temperature coefficient (correction factor) multiplied
by the tem9erature difference must be added to the
reading tolerance 88 indicated in Tables 5-2 through 5-7. Relative humidity should be less than 60%. If it is desired to insure that the Hadel 165 will stay
within specifications for a period of six months, it
is reconmended that the calibration procedure of Para­graphs 5-4 be used.
a. Readinn Tolerance end Interpolation.
(see Tables 5-2 through 5-7). A soecified reading tolerance with a" intege; number of digits allows a display reading
with a steady indication or a" occasional + and - one digit.
For example, a K? digit tolerance on a display
reading of 1.000 allows a steady reading of 1.002 (or
0.998) z a 1.002 with 8" occasional display of 1.001
and 1.003 (or 0.998 with a" occasional display of 0.997 and 0.999). A specified reading tolerance with half digits allows a d-play reading with flashing between t"o ad,acent digits. For example, a Q.5 digit to1­erance on a display reading of 1.000 sllows a display
chat is flashing between 1.002 a"d 1.003 (or 0.997 and
0.998). b. Preliminarv Setup.
1. Set the rear panel line switches for the pro­per yawer line (mains) volta*e that is available. Connect the power cord (CO-7) to the line.
2. Check the fuse on the rear ,,anel for proper rating:
9D-110,105-125 "AC: 1/4A, SLC-*LO, 3AG, Keithley W-38
195-235.210-250 "AC: l/g& SLC-BLO, 3AG, Keithley N-20
3. Connect the shorting link an the front panel berween the LO and GM) terminals. For maximum apera­tar safety, make certain that the front end rear panels and internal chassis shield are connected to
'.
earth *round by way of the third-conductor on the
.:
power cord or by way of a separate clip lead from the GND terminal'to earth ground.
MAINTENANCE
4. get the front-panel power switch to ON and allow the Modal 165 to stabilize at ambient tern­perature for at least two hours.
C. Zero Verification. Table 5-2 shows the allow
ccl tolerance of zero oo- all ranges. Manually select function arid range on the 165 as indicated in the
table.
d. DC Volts Vsrificstion.
(see Table 5-3). The ­DC "oltege Source CA) is used directly for the 1 volt CO 1000 Volt ranges.
For the 1oOmv and 1Omv ranges,
1 volt
from
the DC Voltage Source (A) is divided by B ratio of lo:]. and 1OO:l respectively using the Volt. age Divider (*), For cm"eaieace, it is tecommendad that the tasts of Table 5-3 be done in the eutorsng­in* mode. They may also be done in tba manual range mode. Verification should be made far both 90siti"e and negative iuputs. Table 5-3 indicates the allowed rending tolerance. equivalent settings, B"d tempera­ture coefficient.
8. AC Volts Verification.
(sea Table 5-4). In
I
this procedure, the AC "olta*e Source (C) is used for: the 10 millivolt through 500 volts ranges of the 165.# Required so"rce accuracy is given in Table 5-4.
ZOHS! "erificatioa is indicated only far the 1 volt range. This may be done on other ran*es if desired, but it
\
is "ot necessary in that the same circuit components :
are used on all ranges.
Use the autaraa*in* mode (
for convenience or use the manual range mode.
i
f. DC Am!as Verification.
(see Table 5-S): The DC
Current Source (D) is used for the 100 microamp
through 100 milliamp ranges. The 1000 milliamp range may be verified at the 100 millismp level, since both the 100 and 1000 milliamp ranges use the same sensing resistance. For the 1 and 10 microamp ranges, DC Volta*e Source (A) and DC Current kesietors (E) are used to develop the appropriate test currents. Set­tings for the DC Voltage Source (A) and the resistsnc box called DC Current Resistors (E) are. give0 in Tab15 5-5. Bath positive and negative currents should be verified.
A"toran*in* is sug*ested for convenienca, except an the 1000 milliamp range where it is neces­ssr‘y to use the manual range mode. The manual mode my be used on all range tests if desired.
.
g. AC Amps Verificstion.
(sea Table 5-6). It is
not necessary co verify all ac amps ranges at a11
i
frequenciee, since the same sensing resistors are also, used on dc amps, and the frequency response has been i already verified in Paragraph S-38. It is suggested , that AC Current Resistots
(F)
be 0.1%tolerance metal-: film resistors. used with AC Voltage Source (C) to develop the required ac currents. Tba resistors
1
should be located right e,t the front-panel input
t
terminals to the Model 165 so that cable capacity
i
does not contribute to ac current errore. Ideally, i the lo-kilobm and 1OPkilohm resistance values should also be shielded. Depending upon the en"ironmant in
which the test is made, this may not be necessary.
16
MODEL 165
The cambinatio" of current ranges and frequencies given in Table 5-6 is suggested in order to verify et least one point a" every range, and t" mi"it,ize extraneoue error8 in the source current due to the effects mentioned above.
A"torangi"* is *"*geeted
on all except the 1000 milliamp end 100 mill,.amp
rangea. where the msnual range mode must be used. The manual mode may be used on all range tests if desired.
h. ohms Verification.
(see Table 5-7). The Resis-
tance Source (0) is used for all ,,hms ranges of the 165 through the lo-megohm range. A discrete 100-m*­ohm resistor, Resistance Source (H) is used for the loo-megabm r*n*e. On this range, the sensitivity of
the 165 is 1 pA per digit. Ideally, the lOO-megchm
resistor
should be shielded to avoid electrostatic
pickup.
However. it is possible to verify this range
without grounded metal shielding araund the resistor.
if care is used not t" rove anything around in the
vicinity of the 10~me*obm tesistance, creating small
electrostatic c"rre"ts. Again, *"t"r*"gi"g is sug­gested for convenience, although manual ranging may be used throughout.
i. 1mA Verification. The lmA eurrem source fea­Cure of the Model 165 my be vertiied "sing the fol­1aving procedure:
1. open-circuit the input teminals on the front
panel;
I
MAmTENANCE
2. set the functia" switch co DC AWS;
3. Set the range switch
to
AUTO;
4. depress the ImA pushbutton; the display read-
in* should be between +D.9 and +l.l millimp;
5. eet the function switch t" DC VOLTS;
6. depress
the
ImA pushbutton; the display read-
in* should be bet"ee" +3.80 and +5.00 volts.
j. Voltage Burden Verification es a" Ammeter.
The "olta*e burden for both SC and dc amps may be
verified by using the follotig procedure on DC AMeg
function:
1. connect the DC Current Source (0) to the
input
terminals
of the 165;
2. set the f""ct*o"
switch
co DC AMPS;
3. eet the range switch to AUTO;
4.
CD""ect the
DC Digital Voltmeter (I) to the
Model 165,i"put temi"als in parallel with DC Cur-
rent
source CD);
5. Apply *lo0 millimp dc from the DC Current
source CD).
The DC Digital Voltmeter (I) should
read less than 30 milli"olts.
TABLE 5-l.
Perf"rma"ce VeriflC*tiO" Test Equipment
Ifem Description SpeCific*tiO"
Mfr.
MOdel
A
Voltage Source, DC +0.005x
Fluke
33308
B
Voltage Divider to. 005% ES1
SRlOlO
,~
C
Voltage Source, AC
(AC Cslibrator/Amplifier) see Table 5-4
Hewlett-Packard 745AI746A
D
Current Source. DC to.osX Fluke 3330B
E
current Resistors, DC fO.OlZ General kadio 1433Y
F current Re*i.tors. AC
lk", t O.lZ, 1/4w
lOk0, * O.lZ, 1lSW
look*. t 0.1%. 1/m
__-
mete1 film
0 Resistance source
?O.OlZ
General Padi"
1433Y
H Resista"ce source
1oowi. * l%, 2w
--- ---
I Digital Voltmeter, DC loom" f.S. *t
f(0.U rd* + 0.1x mg)
Keithley
160, 163. or 165
1073
17
t x
MAINTENANCE
TABLE 5-2.
zero "erifxcation
MODEL 161
Input state FunctLon
165
Rang
Display Readin*
Reading Temperature Tolerance
Coefficient
shorted DC Volts
10 In"
100 rn"
1"
10 "
100 "
1 k"
0.00
i2 digits
00.0
fl
,000
+1
0.00
fl
00.0 fl 000 21
to.25 di*it/'C AO.1 HI.1 *0.1 *o. 1 *0.1
shorted
AC Volts
10 mv 0.00
4 duits kO.1
digit/T
100 rn"
00.0
2.5 *0.1
1" . 000
2 *0.1
10 " 0.00
2 fO.l
100 "
00.0
2 fO.1
500 "
000
2 *0.1
open DC Amps
1 VA
* 000 *3 digits
to.2 digitl'c
10 VA 0.00
t-3 *0.2
100 PA
00.0
f3 i0.2
1mA . 000
33 *0.2
10 mA 0.00
i3 to.2
100 *
00.0
f3 io.2
1 A 000
*3 to.2
w-
AC Amps 100 pA
00.0
4 di*its to.2
digiC/~C
lm.4 . 000
4 20.2
10 mA 0.00
4 20.2
100 DlA
00.0
4 ?0.2
1A 000
4 *o.i
shorted
OhSIS
100 n
00.0
2.5 digits *0.1
dkgiC/'C
lkn . 000
1.5 *0.1
10 M 0.00
1.5 to.1
100 kR
00.0
1.5 to.1
1MR . 000
1.5 *0.1
10 nn 0.00
2 *0.1
100 Ma
00.0
2
to.1
TABLE 5-3.
DC-Volts "er*ficatio"
DC Valta*e "oltage 165
DiSPlSY Rending
source (A)
Divider (8)
Temperature
R8"ge
Reading Tolerance Coefficient
1" 1" 1"
10 "
100 "
1000 "
100:1
10:1
-_
__ __
--
10 rn" 10.00
100 rn"
100.0
1" 1.000
10
" 10.00
100 " 100.0
1000 " 1000
to.35
t3 di*its
di*itj°C
+2
*0.2
12
*0.2 12 to.2 t2
M.2 +3
*c.2
18
1073
T
- ,‘
MODEL 165
Mb.I*ENANCE
TABLE 5-4.
AC-Volts Verification
AC Voltage Source CC) 165 Display
ReQding Teverature
Outwt Frequency Accuracy Fame Readinp Tolerance
Coefficient
10 mv 1kHZ *0.142% 10 !a" 10.00 t7.5 digits i0.2 digit/Y
100 m" 1kHs kO.052 100 mv 100.0 26.5 *0.2
1" 1kHZ to.052 1" 1.000 t6.5
io.2
10 Y lkH7. kO.052 10 Y 10.00 i6.5 io.2 100 v 1kHz *0.052 100 P 100.0 t6.5 to.2 500 " lklil f0.032 500 " 500 *4 io.15
10 rn" 2okHz *0.052X 10 mv 10.00 +7.5 ***it* *o.z di$1L/~C
-18.5
100 In"
2OkHS
?FJ.D52 loo la" 100.0
+6.5 *0.2
-19.5
1 Y
201d(z to.052 1" 1.000 +6.5
f0.2
-19.5
10 Y *Ok& to.052 10 v 10.00 +6.5 *0.2
-19.5
100 " ZOkHZ *o. 052 100 " 100.0 +6.5 to.2
-19.5
500 Y 2okHz f0.032 500 Y 500 +4 to.15
-14.5
1 Y 20 Hz ztO.15% 1" 1.000 +5.5
digit8
fO.2 di@t/'C
-18.5
DCV Source (A) DC Current 165 DisplPy Reading Temperature DCA Source (p) ReSiStOr. (E) Range ReadiD*
Tolerance Coefficient
10 MO
1 or*
*1.000 *6 digits *0.4 digit/v
1 MO 10 "A tlO.DD *b Lt0.L +100 II* -- 100 &4 *loo. ,O 16 f0.4 *1 mA
---
1mA t1.000 '6 f0.4
*lo IL4 -- 10 mA flO.OO
f6
20.4 *loo * -- 100 * *100.0 t6 *0.4 so0 m.A
--
1A *100
i3.5
*0.12
TABLE 5-6.
*c-Amps "erific*tio"
AC Voltage Source (12)
0"tP"t Prequency
AC Current
Resistors (F)
tinge
Display Reading
Reading
Tolerance
Temperscure Coefficient
10.01" 20 Hz 100 k"
100 "A 100.0 *13 digits
to.4 digit/-C
-29
10.01 1kHZ 10
kG ImA
1.000 *13 to.4
10.01 2okHz 1
lm 10 *
10.00 +13
io.4
-29
10.01
1kHZ 1M 100 r&A 10.0 k4.5 io.22
10.01
1kHZ 1kR 1A 10 *4 fO.2
TABLE 5-7.
ohms
verification
source 165
Display Reading Temperature
Resistances (G&H) Range RWding Tolerance
Coefficient
1073
I
a
5-4. CALIBRIITION.
Recommended test equipment for calibrating the Model 165 is given in Table 5-8. Test equipment other than thaL recommended mey be substitu­ted if the specifications io the equipment table are equalled or exceeded. These specifications are the
minimum requirements.
Calibrared using the following procedure, the Model 165 Will stay hachin Bpecifica­tions for a period of 6 months for relative humidities up to 70% at 35’C (see specifications). I” Order to
allow for aging B”d humidicy effects, the reading to1-
ermce given in Tables 5-9 through 5-14 are the same or less ill** the tolerances given in Secfio” 5-3 Per­farmance Verification.
If in verifying a” inetrument
per section 5-3, it is found that all readings are
WiLbi” the reading tolerances given in Tables 5-9
through 5-14, it is unnecessary to calibrate the in­strument. Calibration should be performed at come temperature from 20 co 3O’C at a relative humidity of less cha” 60%.
a. Reading Tolerance and I”tecrx.latio”. (see Tables 5-9 through S-14). A specified reading tolerance with an infeger number of &its allows a display reading
with a steady indication or an occasional + and - one
digit. For example. a +2 digit r,olerance on a display readin% of 1.000 allows a steady reading of 1.002 (or
0.998) 0~ a 1.002 with an occasional display of 1.001 and 1.003 (or 0.998 with an occasional display of 0.997 and 0.999). A specified reading rolerance with half
digits allows a display reading with flashing beewee”
two adlacenr digits.
For example, a f2.5 digit tol­erance on a display reading of 1.000 allows a display that 1s flashing between 1.002 and 1,003 (or 0.99) and
0.998). b. Preliminary Setup. Calibration should be per-
formed at some temperature from 20 to 3O’C at relative
humidity of less than 60%.
2. Check Ch@ fuse on the rear pane1 for proper
rating:
90-110, 105-125 “AC: Lf4A. SLO-BLO, 3.G. Ketthley
Fu-36
195-235, 210-250 “AC: l/8& SLO-BLO, xc, KeiChley
FO-20
3. Connect the shorting link on the front panel between the LO B”d GNC rerminals. For maximum operator safety, make certain chat rhe front and rear panels and internal chaesis shield are con­nected to earth ground by way of the third-conductor a” the power card or by way of a separate clip lead from the GND rerminal to earrh ground.
4. Set the front-panel power ewttch to ON and
allow the Model 165 LO stabllire at ambient tem-
perature for at least two hours.
20
(C) to the HI and LO input terminals of the 165.
Adjust Resistance Source (C) for 10 kilohms and y.
set the 165 LO OHMS function in the AUTO range
mode.
t
b). Record the 165 display reading from step i
a).
Cl.
Change the secti”& of Resistance Source :
(Cl to 10 megohms.
,
d) .
Adjust ealibrario” potentiometer R424 (see: rear panel) so that the 165 display reading is “ithi” one digit of the reading from step b).
;
4.
Set the 165 to the DC “OLTS function and
manually select the I-voLt range. Remove Ftesis-
tsnce Source (C) and connect Shorting Plug (J) to the HI and LO input terminals.
f).
Adjust calibration potenriometer R434 (*et
rear panel) BO that the display reading is 0 and the polarity sign flashes between + and -.
z3).
Hanually select the 10 millivolt range of
the 165.
h).
Ad,ust calibrario” potentiometer R431 (sea rear panel) so that the display reading is 0 and
the polarity sign flashes between + and -,
1).
Repeat steps 8). through h). until all
display readings are within the required tol­erances .
2. ““ipolar Amplifier and A-D Calloration. a).
Connect the DC “ol~ege Source (A) to rhe input of the 165. set the DC “oltege source (A) output to -0.001 volr, wirh the 165 manually.~set to the 1 volt range. Adjust c*libraCio” Pot@“­ticmeter RZll (see rear panel) 8” that the 165
display reading is -0.001 volt without flashiw
digits or with flaebtng equally becween -0.000
and -0.002.
b).
AdJust the DC “drag@ source (A) fO suppl:
* -0.011 volt OutpUt.
Record this 165 display reading. Reverse the O”ql”f polarity of rile DC Voltage Source (A) and adjust calibration poten-
tiometer R204 (see rear panel) such that the positive and “e&ati”e inputs provide the same display reading on the 165,
c). AdjusL the DC “oltage Source (A) to -1.911 Volt* output. AdJust calibration pote”tLome+Ar RZ05 (se. rear panel) 80 chat the 165 display reading is within 0.5 digit of rhe input.
d. Zero Calibration Verification. Table 5-9 shows the allowed tolerance of zer” on all ranges. Manuall: select function and range 0” the 165 as indica‘ed in the table.
If zero cannot be verified, repeat Para-
grsphs 5-4Cl.
If zero still cannot be verified,
1073
in the aueoranging mode.
Thy may also be done in the manual range mode. Verification should be made for both positi"@ and negati"e inputs. Table 5-10 indica-
tes the allowed readine tolerance, equivalent settiwzs, and temperature caeffiEient. If dc &alrs cannot be ­verified, repeat Paragraphs 5-4~. If dc volts still cannot be verified, consult Troubleshooting Section 5-5.
f. DC Amps Calibration Verification. (see Table
5-11).
The DC Current Source (0) is used for the 100 micraamp through 100 millimp ranges. The 1000 millimp range may be verified at the 100 millimp level. since both the 100 and 1000 milliamp ranges use the same sensing resistance. For the 1 and 10 micraamp ranges, DC Voltage Source (A) and DC Current Resistors (E) are used LO develop the appropriate
test currents.
Settings for the DC Voltage Source (A) and the resistance box called DC Current Resie­fors (E) are given in Table 5-11. Both wsitive and
negative current8 should be verified. Autoranging is
suggested for convenience, except on the 1000 milli­amp range where it is necessary to use the manual range mode. The manual mode may be used on all range teets if desired. If dc amps cannot be verified, consult Troubleshooting Section 5-5.
of the 165 through the lo-megahm range. A discreet IOO-megohm resistor, Resistance Source 0%) is used for the 100~megohm range. On this range, the sensitivity
of the 165 Is 1 p.4 per digit. Ideally, the 10'Smegohm
resistor should be shielded to avoid electrostatic pick-
. However, if is possible to verify this range with­E:t grounded metal shielding around the resistor, if care 18 used not to move anything around in the "ifin­ity of the 100~megohm resistance, creating small elec­trost*tic currents. Again, autoranging is suggested for convenience, although manual ranging may be used throughour.
If ohms cannot be verified, repeat Para-
graphs 5-4c.
If ohms still cannot be verified, consult
Troubleshooting Section 5-5.
h. AC Calibration.
2. Set the AC Voltage Source CC) to 100 volts
output at ZOkHs.
Adjust calibration "ariable­capacitor C402 (sse Figure 13 and the bottom co"er of the 165) so that the 165 displays the same digits as recorded in step 1. Tolerance on this adjustment is to.5 digit.
3. Set the AC Voltage Source CC) to 10 volts ou~pur at ZOkHr and adjust calibration "ariable­capaciror C403 (ewe Figure 13 and the bottom cover
1073
!LU)ITESXKE
ranges at all frequencies, since the same sensing re8ist.x. *re also used on dc amps. and the fre­quency response has bee" already verified. IL is suggested chat AC Current Resistors (F) be 0.1::
tolerance metal film resistors, used with AC Volt­age Source CC) to develop the required ac currents. The resistors should be located right at the front­panel input terminala to the Model 165 so chat cable capacity does not contribute LD ac current error*.
Ideally, rbe IO-kilohm and IOO-kiiohm resistance values should also be shielded. Depending upon the environment in which the test is nade, cbir
may not be necessary.
The combination Of current rangee and frequencies given in Table 5-14 is sug­gested in order to verify at least one point on every range, and to minimize extraneous error-5 in the source current due LO the effecrs nenrisned above.
Autoranging is suggested on all except the
1000 millimp and 100 millLamp ranges. where the
manual range made must be used. The manuai oode may be used 0” all range tests if desired.
21
J .
c403
C402
FIGLiKE 13.
CaUb=ation Adjustments through Bottom cover.
22
c
NODEL 165 MAINTENANCE
TABLE 5-8.
Calibration Test Eouiooent
Item Description
Specification Mfr.
"ode1
A Voltage Source. DC io.0052
Fluke
3330B
8
Voltage Divider *o. 005% ES1 SRlOlO
c Voltage Source, AC
(AC Calibrator/Amplifier) 8ee Table 5-4 Hewlett-Packard 745.4/746#.
D Current Source. DC ~0.05Y Fluke
33308
E current Resistors, DC +0.01x
General Radio
1433Y
F Current Resistors, AC lkn. * 0.12, 1/4w
lOkn, i 0.1x. mw
lOOk& f 0.1%. l/BW
--
mata film
G Resistance Source
~0.01%
General Radio
143x
H Resiacance source lOohio. t 1%. 2w
- -
I Digital Voltmarer, DC
1oOmv f.8. at t(O.lX rdg + 0.1% mg)
Keithley
160, 163, or 165
.I Shorting Plug use pure copper
solid wire and dual
ban*** plug Keithley K-7
(without copper ehort)
1073
23
c
.:*
MAINTENANCE
MODEL 165
Funccio”
165
Range
Reading Tolerance*
Mill.
Max.
shorted
AC Volts
open DC Amps
open AC Amps
shorred ohms
10 mv
100 mv
1 v
10 Y
100 ”
1 k”
10 Ill”
100 m"
1 Y
10 Y 100 " 500 v
1 Il.4
10 II.4 100 "A
1m.A
10 mA 100 m‘4
1 A
100 II*
ImA
10 mA 100 tn.4
1 A
100 n
lkli
10 !G 100 kc
1MR
10 MO 100 Mrl
0.00 -.00/l
00.0
-.0/l
. 000
-.000/l
0.00
-.00/l
00.0
-.0/l
000
-000/l
0.00
---
00.0
-
,000
--
0.00
-
00.0
--
000
-
. 000
-.001/z
0.00
-.01/z
00.0
-.1/z
.ooo
-.001/2
0.00
-.01/2
00.0
-.1/2
000
-l/2
00.0
--
. 000
-
0.00
--
00.0
--
000
--
00.0
-
. 000
-
0.00
--
00.0
--
.ooo
-
0.00
-
00.0
-
+.00/1 +.0/1 +.000/1 C.OOll +.0/1 +000/l
+.03/4 +.1/2 +.001/2 +.0112 +.1/2 *1/2
+.001/z +.01/z +.1/z +.001/2 +.01/z +.1/z +1/z
+.3/4
+.003/4 +.03/4 +.3/4 +3/4
+.1/z +. 001 +.01 +.1 +.om +.01/2
+.1/2
TABLE S-10.
DC-Volts Calibration "erifl.caria"
DC Voltage "Ohage 165
Display Reading Tolerance*
Source (A)
Divider (El) Range
Readfnp. Min.
Max.
1”
100:1 10 mv
10.00 -9.99
*10.01
1V
10:1
100 rn" 100.0
-94.8/9
+100.1/2
I"
-_
1v 1.000
10 "
-_
10" 1"
loo "
-_
I"" "
-“” .
1000 ”
_-
1000 "
-.999
+1.001
--.oo
-9.98/9
+10.01/z
100.0
-99.819
+100.1/z
1000 -998
+1002
*Reading tolerance can be minimum z maximum allowed. not both simultaneously. For example. a reading tolerance of -0.00/L HFn. fo +0.00/l Max. indicates that the reading tolerance allowed is -0.00 occasionally flashing -0.01
OT +o.oo occasionally flashing +0.01.
24
tlO.O1 "
10 NJ7
1
!JA t1.000
-.996 +1.004
'10.01 "
1MR
10 UA *10.00
-9.96
+10.04
SO0 "A
____
100 ii.4
e100.0 -99.6
+100.4
il mA
____
ImA
t1.000
-.996 Cl.004
f10 I@.
____
10 In.4 flO.OO
-9.96
+10.04
ilO0 IUA
____
100 lx.4
t100.0 -99.6
c100.4
r100 mA
____
1A *loo
-9819 l lOU2
TABLE 5-12.
ohms Calibration Verification
SO”rCe 165 DiSphy
Reading Tolerance*
Resistances (G&H)
Range
Reading Min.
Max.
100 n
100 n 100.0 99.617 100.314
1 k0
I!.3 1.000 ,997 1.003
10 k*
10 kn 10.00 9.97 10.03
100 !a
100 kn 100.0 99.7 100.3
1 MO
1Mn 1.000 .997 1.003
I
100
10 m EN?
100 10 Mn Mll 10.00 100.0 83.011 9.9213 10.07/8 116.9l117.0
TABLE 5-13.
AC-Volts Calibratinn "ertiicatinn
10 nl" 1lrHz
+0.142x 10 rn" 10.00 9.94 10.06
100 rn" lktk
to.052 100 rn" 100.0 99.415 100.5/6
1Y l!dz
*0.052 1" 1.000 .994/5 1.00516
10 " l!dZ
*0.052 10 " 10.00 9.9415 10.0516
100 v lkH7.
io.052 100 " 100.0 99.415 100.5/6
500 v 1kHZ
s.032 500 Y 500 49617 50314
10 mv ZOkHZ
?0.052% 10 mv 10.00 9.82 10.07
100 mv ZO!dh
io.052 100 mv 100.0 98.1 100.516
1v 2OkHZ
*0.052 1" 1.000 ,981 1.005/6
10 Y ZOlcHl
*0.052 10 " 10.00 9.81 10.05/6
100 " 20kHZ
to.052 100 " 100.0 98.1 100.516
500 " ZOkHZ
to.032 500 " 500 486 50314
1" 20 Hz
+o. 15% 1" 1.000 ,982 1.005
*Reading tolerance can be minimum z maximum allowed. tmt bath simultaneously.
For example. a readhg tolerance
of -0.0011 Min. to +0.00/l Max. indicates that the reading tolerance allowed is -0.00 occasionally flashing -0.01
x +o.oo occasionally flashing +0.01.
1073
25
f %
TABLE TABLE 5-14. 5-14.
AC-.4ws Calibration Varificsfion AC-&ups Calibration Varificsfion
AC Voltage Eourca (C) AC
VdtE@
8O”Xa (c) AC currem AC currem
PiWLY PiWLY &&in8 T!dW.%W* &&in8 T!dW.%W*
O"tD"C O"tD"C Pi-.X"e*CY Pi-.X"e*CY R.?IiBLOT‘B (P) R.?IiBLOT‘B (P)
R.¶ttw R.¶ttw
Raading Raading Ian. Ian.
Max. Max.
10.01" 10.01" 20 Hz 20 Hz
100 k" 100 k" 100 II* 100 PA
100.0 100.0 97.7/E 97.7/E
100.7 100.7
10.01 10.01 lkH2 lkH2
10 kn 10 kn ,I&. ImA
1.000 1.000 .986/7 .986/7
1.01314 I.01314
10.01 10.01 zo!az zo!az
I!6 I!6 10 WA 10 WA
10.00 10.00 9.7617 9.7617
10.07/s 10.07/s
10.01 10.01 1kKS 1kKS
lkc lkc 100 mA 100 mA
10.0 10.0 9.6 9.6
10.4 10.4
10.01 10.01 1kHZ udiz
1kIl 1kIl
1A 1A 10 10 6 6
14 14
*Reading eolerance can be minimum x marimm allowed, not b0t.b atiltaneously. FOT ernmpla, a read *Reading eolerance can be minimum x marimm allowed, not b0t.b atiltaneously. FOT ernmpla, a readtng of -0.00/l xi,,. to +O.OO,l "ax. indicates that the reading eoLarance allowed Ls -0.00 occasioaally of -0.00/l Min. to +O.OO,l "ax. indicates that the reading .ZoLarance allowed Ls -0.00 oc~asioaally E +o.oo occasionally flashing $01. E +o.oo occasionally flashing $01.
26
MAINTENANCE
MODEL 165
h -I-. I--I I
-T----L--
28
FIGURE 16.
Component Layout, Readour Board, PC-319.
0375
1 . .
LEAD DESIG. TO- 3
I
LEAD DESIG. TO-66 LEAD DESIG. TO-66
I
30
NO. TG-41
KEITHLEY PART NO. IC- 22
KEITHLEY PART NO. IC-2,2~
1073
Q .,
FIGURE 17. PC Board A88embly.
0375
31
T
(9) on lo-1ooov ac
ranges only. 2olrH2 spec is O”L of t&a-­ancei 20 Hz spec is
OK.
(h) only one digit is lit
and at high brightness.
wires near S4OLA Deck NOS. 2-5 have moved and/or RN403 is de­feccive.
(1) C402. C403 out of
ad,ustment .
(2) wires near s4olA
Deck NOS. 2-5 have moved and/or RN403 is defective.
(i) All digits ha”62 iden- Defective aegmenr
tica segments eirher logic.
weakly UC or blank.
U) one digit only has a
Defective display.
weakly lit or blank
segment.
(1) -12v and -6” supplies (1) Shore in -12”
are inoperative; +10.
SUPPlY. +5. +6” supplies are OK.
(2) Defective 9.4302.
Cm) +lO, +5. C6V supplies Short in +LO" supply.
are inoperative; -12” and -6V supplies are OK.
(3) Replace or clean Deck NO. 2 of s4oL4 or replace dama-
ged relay(s).
See Table 5-16 (c).
Calibrate per section 5-4. R204 and RZll are controlling
adjustments.
(1) Recalibrate per section 5-4. (2) Paeieian wiree per Figure 14.
(1) Check for 5X duty cycle 9680 k300 Hz waveform at pin
12, 13 of QA602.
If "OC, replace Q.4503 or QA602.
(2) 800 mi.crosec. 252 duty cycle pulses should appear on
T-0 through T-3 multiplexin* lines. Replace q*501, QAlO4, and/or 9.4103.
Check segment line (A through 0) for TTL level change at PLOZ, QA106 and QA107, PlOl. Replace apropriace component.
Replace ON103, DN104, DN105, or DUO6 as appropriate.
Check for Shorts in supplies; replace line fuse.
(1) Look for mechanical short and remove. Wick, p,wer turnec off and 5301 disconnected, check for 3 to 5 kilohms at Pin D of P301. "se lOOmY f.a. ohmmerer Canocher Model 165) wick, circuit ‘0 connected to i.n~ue LO of defective 165.
(2) Replace qA302.
Look for mechanical ahmt and remove. With ps.,er turned off and 5301 disconnected, check for 100 to 200 kilohm ae Pi" E of P301. "se 1OOm" f.8. ohmmeter (another Model 165) witI3 circuit LO connected to input LO of defective 165.
32
1073
9 .
i
(‘1) DC ““LX
I (
:b, AC YOLTS
:c) DC AMPS and
AC As5
GrelltCr than 12oov dc or oeak ac.
(1) Greater than
12OOV dc.
(2) treater than
1200" ac.
Greater rha" 3 amps
rms TIC.
(1) Greater than
2oov rm.¶ ac, A”T0 range mode.
(2) creacer than
250" rms or trigh volta.+/ high frequency on lower rang­es; manual range mode.
(la) Q401.
(lb) R420, R421.
(la) c401. (lb) 0419. 0420
R405. R406.
(la) PC Board tapes
near 0401 through 0404.
(lb) RN401.
(lc) s4olA. oeck
NO. 2.
(la, Q405. (lb) QA402. (lc) 0414, 0415.
(la) Check waveform ac a node of 0421 and 0422;
it should not be il squarewave. check for
0ifficulty (a) in Table 5-15.
(lb) Check R420 and R421 for darkening (heat
damage) and/or cracking.
If either is
o?en, there will be no response to an input
signal and high offset on the bottom ranges
(la) Shorred or open. (lb) Check for response to input. (1~) Check for claq.Fn~ and leakage.
(2a) Check R409, R414 through R417 for b.1::
tolerance. (2b) Check operation of K409 through k414. (2~) Cheek Q405, QA402, 0414. and 0415.
1073
33
P %
REPMCF.ABLE PARTS
MODEL 165
SECTION 6.
REPLACEABLE PARTS
TABLE 6-1.
Abbreviations and Svmbols
Glass enclosed Carbon
Llert7. (cps)
IdlO (103)
milli (m-3) Mefallized Polyester micro (lo-fJ) Metallized Mylar
M~S
(106)
Manufacturer
34
I I
6-5.
c,bxss1s PARTS LIST. (Reference Figure 18).
Table 6-3 Chassis Parts List conrains d comprehensive
switches, and details of rhe fronr and rear panels).
lisriq of every part of the basic mechanical chassis
See Paragraph 6-7 !lechanical parra LISL ior Parts
"ot listed here.
ILam
Part DeScriptFon
QU*lltity
kitthy
Required
Parr NO.
1 TOP COVER 2 ASSEMBLY (with screen shield)
1 255348
spacers, Plastic
5
3
25355h
Spacers, Rubber
5
4
ST-115
5
BOTTON COVER ASSEMBLY (with screen shield)
1
258808
Tilf Bail
1
6
255208
Feet, Plaseic, Black
4
7 Ball, Rubber
243228
4
8
FE-6
Screw, Slotted, Flat "d., 6-32 x 2"
5
__
9 FRONT PANEL (less
overlay)
1
10
253618
REAR PANEL
1
11
253898
Knob.
Range
1
12
Knob, Function
25503~
1
13
25504h
Bushing. Lnsu1aror
1
25399A
TO raw"* PC-318 from Bottom ccwer:
14
Screw, Phillips.
Pan Rd., 6-32 x 5,16" 2
-
TO rsmO"e PC-318 from rear panel:
15
Screw, Phillips, Pan "d., 6-32 x 5/16"
1 __
16
Kc+ Nut, 6-32
1 -
6-6. ELECTRICAL PARTS LIST. Table 6-4 Circuit Designation Series cancains a list of the basic three-digit numbers of a series identifying la­cation of electrical (and mechanical) parts to a ~areicular printed-circuit assembly or assemblies. Reference is made to the manual pages (re&weable
p*rc* liSC1 that contain all parts of a partfcular
**k-i**.
Followin Table 6-4 is a complete elec­trical parts list for the Model 165. Reference Table 6-2 to identify the sche,naric(s) pertain­Lng to a particular ~ri,,ced-~Lr~uit assembly num­her.
1073
TABLE 6-4.
circuit Designation series
series
100 200
300 400 500 600
O~SCriptiOtl
Assembly No.
Lo@ Board
PC-313
Readout Board
PC-319 "othm Board PC-318 Mother Board PC-318 Mother Board
PC-318 Mother Board PC-318 Mother Board PC-318
1
35
-i .
REPLACEABLE PARTS
x
I
----
36
.
FIG"RE 18.
Chassis Assembly - Exploded Yiew.
MODEL 165
RF.mACEABLE PARTS
REAOO"T & WCIC CIRC"ITRY
"100" SERIES
MISCELlANEO"S
Circuit Mfr. Mfr.
Kelthley
LIesip,. Description
Code
0e*ig. mrt NO.
Of?.
JlOl conwccor, 12 pins
02660
6-380949-Z
cs-263
i
JlO2 connector, 10 pins
02660
6-380949-O
cs-264
2
5103 connector, 10 pins . .
02660
6-380949-O
cs-264
2
PlOl Connector Pin, PC Board.
80164
--____
2424%
29
PI02 Cmnector Pin.
02660
1-380953-O cs-265
20
PI03 Con"ector Pi".
02660
1-380953-O cs-265
20
CAPACITOR
Circuit Mfr. nrr. Keirhley
oesia.
oescription Code Oeri~
Part so.
qry.
Cl01
100 &IF, ,10x, 15v, ETT 06751
TSD515107A c205-lOO'(
I
DIODES
C‘rcu‘t Mfr. nrr. Keichley DSSi$. oescr‘ptio"
Code Denis. Part NC3 c i'
DlOl
Rectifier. . . . . . . . . . . . . . .
01295 1N645 RF-14 17
0102
Fwctifis-. . . . . . . . . . . . .
0,295
1N645
RF-,4 17
0103
Rectifier. . . . . . . . . . . . . . . . . . . .
01295 IN645 RF-14 17
0104
Rectifier. . . . . . . . . . . . . . . .
01295 lN645 RF-14 17
0105
RecLifi.er. . . . . . . . . . . . . .
01295 IN645 RF-14 17
0106
Rectifier. . . . . . . . . . . . . . . . . . . . .
01295
IN645
RF-14 . 17
0107
Rectifier. . . . . . . . . + . . . . . . .
01295 IN645 w-14
17
DIODE NETVORK
Cir‘C”it
Mfr. Mfr. Keithley
DSSiS:.
O~SCriptiOll
Code
Oesig.
Part NO.
qiy.
ON101
Diode Network, 14-pin DIP. . . . .
0726-S
FSA2620M
m-1
2
DNlOZ
Diode Network, 14-pin DIP. . , . . .
07263
FSA2620"
ON-l
2
ON103
Digital Display, PolarltylOverrsnge, 14-pin DIP.
H-P
HP5082-7732
DD-11*
1
DN104
Digital Display. 14-pin DIP, 7-segment . . . . . H-P HP5082-7730
DD-v* 3
ON105 Digital Display, 14.pin DIP, 7-segment . . . . . H-P
HP5082-7730 Do-v*
3
oNlO
Digital Display, 14-pin DIP, 7-segmenC . . .
H-P
"~5082-7730 DD-v*
3
*Selected for Light Intensity, Codes “C”, “I,“, or “E”.
H-P = Hewlett-Packard
0375
37
s
READOUT & LOGIC CIRC”ITRY
“100” SERIES (cont’d)
circuit
Mfr.
Mfr.
Keithlay
rlssizq.
Description
Code
Desig.
Part NO.
qty.
OS101 Pilot Lamp, 6.3V, T-1-3,4. . 05464
7381~AS25
PI.-59 7
OS102 Pilot Lamp, 6.3", T-1-3,4. . 05464
7381~AS25
m-59
7
OS103 Pilot Lamp, 6.3V, T-1-3,4. . 05464
7381-AS25
x-59
7
DSLO4 Pilot Lamp, 6.3V, T-1-3,4. . . 05464
7381~AS25 a-59
7
OS 105 Pilot Lamp, 6.3". T-1-3,4. , . 05464
73814525
x-59
7
DS106
Pilot ‘amp, 6.3", T-1-314. . 05464
7381-AS25
m-59
7
DSlO7 Pilot ‘amp, 6.3", T-1-3,4. . 05464
73814525
m-59
7
INTEGRATED CIRCUITS
CirC”it
Mfr. Mfr.
Keiehley
msig.
DeSCfipttOn
Code Dais. Part NO.
qty.
9ALOL Transistor Array, 14-pin DIP . . . . . . . . . .
07263 FPQ3724
IC-63
I
$4102 Transistor Array, 14-pin DIP . . . I . .
07263 PPQ3461
IC-57
2
QA103
Transistor Arr*y, 14-p‘" DIP . . 07263
FPq3467
IC-57
2
QA104 Hex Inverter, 14-pin DIP . . . . . . .
01295 SN7406
IC-62
3
QA105 Hex Inverrer. *4-pin DIP . . . . .
01295
SN7406 K-62 3
QA106 Quad NAND. 14-pin DIP. . . .
04713
"C858P
K-22 1
QA107
Hex 1nverter, 14-pin DIP . . . . . 01295
SN7406
K-62
3
CiK”iC
Mfr. Mfr.
Keithley Keithley
oesig:.
oescriptio" Code
DSSi&.
Part NO. Part NO.
.9rv. .9rv.
RlOl
18 n.x.3w.w .................
44655
4400-1m
30-1m
RVZ-18 RVZ-18 i i
RIO2
Not Used ............
: :
............................
_-
RL03
680!?, LO%., L/f&l, Camp. ................
01121
CB-331-10% R76-680 7
RL04
6803, LO%, 1/4W, Camp. ................
0,121 CB-331s10% R76-680 7
RI05 6800, Lo%, 1/4w, camp. ................
01121
m-331-10% R76-680
7
RlO6
6800, 10%. 1/4W, Camp. . . . . . . .
0,121
CB-33L-10% R76-680
R107
6800, lO%, 1/4w, camp.
01121
CB-331-10% R76-680
:
RL08
man, 10%. 1/4w. Camp. . 01121
CB-331-10% R76-680
7
RLOV
68011, LO%, 1/4W, Camp.
Oll2l CB-331-10%
R76-680
7
RllO
lk0, 10%. 1/4w. COW . . . . 01121 CB-561-10% R76-Ik
1
RESISTOR NETUIORXS
Circuit
Mfr. Mfr. Keithlay
DesiR.
Description
Code Oesig.
Part NO.
qtv.
RNlOl
Thick Film Resistor Network. . , . . . . . . . . . . . 80164
-_----
m-11
1
RN102
NotUsed.............. . . . . .
----- _-__._
- -_-- _-. ...,
RN103
Thick Film Resistor Network. . . . . . . . . . . 80164
--__-_
m-9
1
38
0375
i
T .f
73138 89P- 1KO
RP89-lK
1
01121 CB-124-10%
R76-L2OK
2
01121 CB-124-10%
R76-12OK
2
73138 89P-5000
RP89-500
1
73138 89P-2KO RP89-2K
1
OllZl
CB-154s10%
R76-150K
1
01121
CB-103-10% R76-10K
6
Oll2l
CB-103-10% 876-1OK
6
R209
nm, Lo%, L/4W, camp. ................. 01121 G&105-10% R76-1M
R210
Not Used.
.......................................................
..'.
Fall
lOK0,
0.75w,
carmet ..................
73138
89P-10KR RP89-LOK
4
R212
2.8Kfl, l%, l/&r, MLF.
.................
07716
CEA-TO-Z.mn
R88-2.8K
1
R213
6.04KR, 0.1%. l/&I, MtF
................
91637 MFF-l/8-6.04K
R176-6.04K
1
POWER SUPPLY CIRCUITRY
“300” SERIES
circuit Desig.
P301 P302 P303
3301
5301 S302 5303
F301
. . . .
QA301 Qh302
?,ISCEL~WEO”S
Elf*. Mr.
oescripeion
Code oesip,.
connector Pill, PC Board .
80164
war Used. .
connector Pin, PC kJa*d
80164
Jumper connector ASSemblY . . .
80164
Switch, Power Toggle. 95146 "ST205N Switch, Slide, D.P.D.T.
.
79727
GG35OPCDPDT
S.,liLCh, Slide, D.P.O.T.
79727
GC350PCDPDT Transformer . . 80164 Fuse. Sh-*lo 1/4A. 117". . . 75915 313.250s
Fuse, Slo-610 l/&4. 234". . . . . . 71400 MDL
IntegraLed circuit, Voltage Regulator,
w,
case m-3.
12040 LM309K
Integrated circuit, Voltage Regulator, 12”, case TO-220 0,263
UC”7812393
CAPACITORS
CilZC”iC
Mfr.
Mfr.
^. _.
n-34 K-60
c301
2000~F, 15", FAL. . . .
C302
200 !JF, 35", EAL.
c303
100 pF,
15”,
EM..
c304
100 g,
15”,
FAL. .
c305
0.33uF,
50”,
CerF . . .
C306
0.1 pF. 16”. cero .
c307
0.1 @, 16”, cero
C308
0.33”F, 50", cerr .
.........
29309
JCN2000158P
.........
90201 mwOON35PDN
.........
29309
JC6100158P
.........
29309
iC6100158P
............
72982 8131050651-344M
............
71590 "K16-104
............
71590 "K16-104
............
72982
8131050651-334H
DIODES
circuie
Mfr. nfr.
Des‘R.
OescriDLion
Cc& oesig.
0301
Rectifier . . . . . . . . . . . . 01295
IN645
0302
ReCLifier . . . . . 01295
IN645
0303
Recrifier, Four-diode bridge. . . . . . . 83701
PO-10
1073
29 29
1 1
2
1
I
1 1
1
Ljry.
c210-100x
2
c*37-,339
6
C238-.L'!
2
C238-.LY
2
C237-.33X
6
C401 C402 C403
80164
...... 25537A
1
80164
......
2553%
1
80164
......
25538‘4
1
80164
...... SW-354 1
80164
......
SW-223 1
CAPACITORS
I
I
Mfr. Mfr. Keithley
Code Jlesig. Part No.
qty.
-
O.O68uF, 1200"
............
......
.8-8.5pF, 750", class.
........
......
l.O-3OpF. 750", class.
........
......
6800PF, 1%. 100". Mica
........
......
97419
MZWX-.068M
72982
562-013 72982 568-013 14655
CD19FA68*F03
14655 97419
14752 14752
015FC641P03
MZWR-.0022M
625BlC-153 625BlC-222
CMI-.06&l C232-.8-8.5P C232-1.0-3OP C248-68OOP
C249-6OP C181-.OLM C221-.015" C221-.0022M
56289
loss-510 C22-.OLM 6
17554
TSD210 cml-12OM 1
71590
m-330-10x C64-33P 2
29309 JC650158N C241-50M 1 72982 8131050651334M C237-.33M
71590
TCZ-3R3 c77-3.3P
71590
TCZ-3R3
C77-3.3P
72982 *0100ck5F0102K C64-.OOlM
56289
loss-S2O
56289
loss-s20
17554
TSD120125
72982 8131050651105M
CISZ-.O22M C152-,022f.f
1
c179-1.2M c237-In
56289 loss-$10 C22-.olM 17554
To4015336-10 CZZB-33M
72982 81210506X-104M
C237-1M
72982 8131050651-105M C237-.1M
72982 71590 56289 56289
80164
813105065133411 DD331-10% loss-910 lOSS-?I10
_-
C237-.33M
C64-33OP C25G.M C258-.LM C73-.0047M
C404 C405
C406 C407 C408
60PF, 300", Mica
...................
0.01llF. 1200".
....................
O.O15PF, 200", MPCb.
.................
O.O022"F, 2OOY, MPCh
.................
C409 C410 C411 C412
C413 C414 C415 C416
O.OlYF, 1000”. cero.
.........
120°F. lo", ETT.
...........
33PF, 1000", cero.
..........
50°F. 15", FAL
.............
0.33"F, 50'1, CerF.
..........
3.3pF, 600". CerT.
..........
3.3pF, 600". CerT.
..........
.OOluF, 1000". CerD.
.........
C417
C418
C419
C420
0.022UF. 1ooov. cerrl . . .
O.O22PF, 1000". cero . .
l.ZUF, 20", WC. . . .
l.O"F, 50". CerF .
C421
O.OllJF, lOOOY, cero. . .
C422
33°F. 15". Epoxy . . . .
C423
l.O,,F, 50". CerF . . . ,
C424
O.l"F. 50". CerF . . . .
C425 C426 C427 C42R c429
0.33!JF, 50", ces. . . 330PF, 1000". ceto . . O.lvF, lOOO", CWD . . . O.liF, lOOO", cero . .
0.0047 F, 4OO", 20%. Mylar
.......
.......
.......
.......
......
......
......
......
. . . . . . .
. . . .
. .
. . . . .
. .
. . .
. .
. . . . .
. .
. . . . .
1073
'i .-I
42
D401
Rectifier 3A, 200". . . .
0402 Reciifier 3.4, 200". . . .
0403 Rectifier 3A, 200". . . D404
Rectifier ,A, 200". . . .
D405 D406 D407 D408
Rectifier, 75 mA, 75v
Zener, 6". 4OOmW. . . . .
NOf Used. . . . . . .
zener, 9" . . . . . .
D409 0410 D411 0412
D413 0414 D415 D416
D417 0418 0419 D420
0421 D422 D423 0424
D425 0426
. . . . . .
. . . . . .
. . . . . . . . .
. . . . . . . .
. . .
. . . . . . .
. . .
. . . . . . . .
. . . . . .
.......
.......
.......
.......
. . . . . .
. . . . . . .
. . . , . . .
. . . * . . .
. * . . . . .
. . . . . . .
. . . . . . .
.......
.......
.......
.......
.......
..... : .
.......
.......
. . . 9 . . .
. . . . . . .
. . . . . . .
* . . * . . .
.......
. . . . .
. . . . . .
. .
.......
06751 lN703A DZ-42
04713
"R1032B 04713 MK1032B 04713
E(R1032B
04713
km10328
RF-40 RF-40 RF-40 w-40
01295 IN914 12954
DZ701104A
. . . . . . . . . . .
06751
18937
RF-28 DZ-47
. . . . . . .
DZ-41
. . . . .
. . . . . .
12954
lN715 12954 lN715 01295
1133595
. . . . . .
DZ-22 m-22 RF-43
01295
lN3595 RF-43 01295
lN914 RF-28 01295 IN914 RF-28 12954 DZ701104A DZ-47
. . . . . . . . . . . . . . . .
04713
lN4006 RF-38
07263
lN3595
w-43
07263
lN3595
RF-43
01295
IN914 01295
lN914 01295
IN914
..*.. . . . . . .
RF-28 RF-28 RF-28 .
. . . .
4 4 4 4
* 2
. . . .
1
. . . .
2 2
4 4
8 8 2
. . 1 4 4
8 8 8
. . . .
. . 2
Ci*C”it Mfr.
Nf*.
Des<8
Description Code
DSie..
Part NO.
otv.
K401
Single-Pole, N.O.
.................. 70309
RI.-41
1
K402
Single-Pole, N.O.
.................. 70309 a-39
4
K403
Single-Pole, N.0
.................... 70309 RI.-39
4
K404
Single-Pole, N.O.
..................
95073 375-670
FL-40
K405 Single-Pale, N.O.
..................
95073 375-670 u-40
K406
Single-Pole, N.O. . . . . ....... 70309 m-39
K407 Single-Pole, N.O. . . . ....... 70390 m-39
K408 Single-Pole, N.O. . . .......
95073 375-670
m-40
K409 Single-Pole, N.O. . . . . ....... 95073
375-670
RI.-40
K410
Single-Pole, N.O. . . ....... 95073
375-670
RL-40
K411
Single-Pale, N.O. . . K412 NOf Used. . K413
Single-Pole, N.O. .
K414 Single-Pole, N.O. . . . .
K415 Single-Pole. N.O. . .
. . . .
.
.......
95073 375-670
RL-40
9
...........................
.......
95073
375-670
RL-40
9
.......
95073
375-670
XL-40
9
....... 95073
375-670
Pa-40
9
0177 43
+ .
REPLACEABLE PARTS
HODEL 165
SWITCHING 6 AC/DC PREAMP CIRCUITRY
"400" SERIES (cont'd)
TRANSISTORS
Q401 P-Channel MOSFET (Dual) . . . . . . . . . . . . . .
72699 955-004 TG-94 1
Q402
PNP, Case TO-106. . . . . . . . . . . . . . . .
07263 285910 TG-13.1
2
Q403
Not Used. . . . . . . . . . . . . . . . . . . . * . . . . . . . . . . . .
. . . . . . .
. . . .
Q404 PNP, Case TO-106. . . . . . . . . . . . . . . . 07263 285139
X-66
1
Q405
NPN, Case
2N3439
K-93 1
Q‘06
P-Channel FET, Case TO-72 . . . . . . . . . . . . . .
72699 575-011 x-95 4
Q407 P-Channel FET. Case TO-72 . . . . . . . . . . . .
72699 575-011 TC-95 4
Q408 P-Channel FET, Case TO-72 . . . . . . . . . . . .
72699 575-011 TG-95
4
9409 P-Channel FET, Case TO-72 . . . . . . . . . . . .
72699
575-011 TG-95
4
9410
PNP, Case TO-106. . . . . . . . . . . . . . . . . . .
07263 2N5910 TG-111
2
QA401
Operational Amplifier, 8-pin DIP. .......... 12040
LM307N X-61
QA402 OFerarianal Amplifier. B-pin DIP. ..........
07263
Special X-76
t
QA403 Operational Amplifier, [i-pin, Case TO-99.
......
12040
LM31OH K-18
2
QA404 Amplifier, B-pin DIP. ................
12040 IJ4301AN X-24
QA405 Amplifier, 8-p1n DIP. ................
12040 LM3OLW
x-7.4
:
QA606 operational hlplifier, B-pin DIP. ..........
07263 Special
XC-76
6
9.4‘07
Not Used.
..........................................
Q.4408
NOL Used.
..........................................
QA409 Operational Amplifier. a-pin, case TO-99.
......
12040 u431011
X-18 2
QA410
Voltage regulator, 6". Cast 'TO-220. .........
07263 UGH7806393 K-64
i
RESISTORS
R601
56OKR. 5X, 1/2W, Camp
R402
SKJl, 0.75W, cermet. . .
R403
IMn, l%, 1/2w, DCb. . .
R404
6410, 0.1%. l/W. . . .
R405
12.5Kn. 51, 3W, VW. . .
R406 R407 R408 fl409* R410
R411 Ml2
R413 R414 R415
44
12.5w1, 5X, 3W. Ww. . .
30.1m, 0.1x, 3W, WW. . lrn, 1x, l/&J, MCF. . .
99.5n. 0.14, 1/8W . . .
1.2Krl, 10%. 2w. Camp.
lli?, 1%. 1/8W, MS. . lrn, 1%. mw. NtP.
3.OlKn, 1%. 1/8W, MTF
9002, 0.1%. 1/8W. . . .
9Kn. O.l%, 1/2W, MU. ,
*Nominal value
. . . . * . . . . . . . . . .
. . .
. . .
. . . . . . .
. . . . . . . . . . .
. . . .
. . . .
. * * . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . . . .
. .
. . . .
. . . .
. . . .
. .
. . .
I * .
. . .
. . .
. .
. . .
. . .
. . .
. .
. . . . . . . . . . . . . . .
01121 EB-56OKfi
R19-560K
73138 89P-5m RP89-5K
91637 DCF-l/2-lMn
RlZ-1M 91637 MMF-1/8-441n R176-441 15909 DAS3-12.5KR R208-12.5x
15909 DAS3-12.5KR R208-12.5K 15909 DAS3-30.1KR R207-30.X 07716 CEA-TO-1K.G
R&9-1K 91637 Mm-l/8-98.7ri R176-99.5 01121 HB-1.2m
P+l.ZK
07716 CEA-TO-1w R88-1K
07716 CEA-TO-1KR
R88-1K
07716 CEA-TO-U5
Pm-3.0x
91637
NMF-ll8-9oon
R176-900
91637 KFF-l/2-9KS
R205-9K
2 1
2 1
0375
f b
iI
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
4&18OK?i E&330!% CBTYZ-108 89P-1OKn CM-TO-825
CB-471-m): CBTYZ-108 CB-101-10% cw-1ooy*1 CB-39s10%
89P-1OKn CB-106-10): CEA-l.oKI1 89%1OKG CB-47*-10%
m-47*-10%
EB-560KZ CEA-6.8us CB-225-102 CB-22s10%
CB-*72-iox CB-103-10% CL%-ll.0 CB-102-10): MIT-1,8-9W
circuit
Mfr.
Mfr.
Keithley
Des&.
Description Code Desi,e,.
Part NO. qty.
R461 120.4m, 0.1%, l,SW. ................ 91637
me-l/8-120.4Kn R176-120.4K 1
R462 3oo.*m, 0.1%. 1/8W. ................ 91637 w-1/8-3oo.zcG R176-300.2K
1
R463 Zb.lKL?, 0.1%. l/W ................. 91637 MMF-l/8-26.1W RI,&26.1K
1
R464 3O.M?, 1x, 1/8W, MC. ............... 91637 MFF-l/8-3O.lW1 RZ06-30.N
1
R465 l.bZK.0, 1%. 1/8W. MU. ............... 91637 MFF-l/8-1.62KQ R206-1.6X
1
R466
lOw2. 10%. 1/4w, camp. ............... 01121 CL+103-101: R76-10K
6
R467 4.7Ki2, 10%. l/4!?, camp ............... OllZl CB-472-10X R76-4.7R
6
R468 b.wHr!, 1x, l/&l, Mm. ............... 07716
CEA-6.98m R88-6.98K
2
R469 4.99wi, I%, lftw, HtF. ............... 07716 cF.A-4.99KQ Km-4.99K
1
R470
lrn, 1x, l/N, MLF ................. 07716 CEA-1KR R88-1K
5
R471
R472
R473 R474 R475 R476
07716 CEA-lp-,, I@*-1K 07716 CEA-1w It**-llK 01121 CB-105-10X
R76-1M
01121 CB-10s10%
R76-10K
07716
CEA-4.ozm *88-4.0*X
07716 CEA-*KD X88-2K
RESISTOR NETWORKS
CirC”it Mfr.
Mfr. Keirhley
Desig.
DesCriDtio” Code
llesig. *art NO. QLY.
RN401 Thick Film Resietors . . . . . . . .
80164 . . . . . . . . . . .
R202
1
RN402 Notused...................... . . . . . . . ...‘..... . . . . . . .
RN403 Thick Fall Resistors . . . . . . . . .
80164 ..,........ TF-II 1
46
1073
T
.
CSOl
Not USed
...............................................
c502
NOC USed
...............................................
C503
O.OluF, 22, ZOO", >,ylar.
...............
14752 *1oBlc103-*%
c*47-.01?!
1
c504 O.OluF, lOOO", CerD.
................. 56289 loss-SlO c**-.01.Y
b
c505
Not USed
...............................................
C506
0.33-F, lOOO", cem.
.................
56289 lOSS-510 c*37-. 1%
6
C507
0.3,uF. 1000", tea.
.................
56289
loss-s10
c23:-.33!,
6
C508
470 pF, lOOO", cerrl.
.................
71590
m-471 C64-4iOP
1
circuit Mfr. ?(fr. Kefthley &sip. Description Code tIesif.. Part !:'I. it".
@A501
Large Scale IC . . . . .
80164 LSI-2 LSI-2
1
QA502
Large Scale IC . . . . . . . . . .
80164 LSi-3 LSI-3
1
QA503
Timing Logic. &pill DIP. . . .
12954
1N709 IC-71
1
RESISTORS
circuit Mfr. Mr. Lksig.
Description
Code Desig.
8501
2.2KO. 10%, 1,4 w, camp.
............... 01121 CB-***-10%
8502
12.7~1, 1%. l/8 W, MtF
................ 07716 CL-12.7KO
R503 lKrl,
1%. l/.3 w, MCF
.................
07716
CEA-1K
R504
4.7Kr2. 10%. l/4 w, camp.
............... OllZl CB-472-10%
R505
4.7Kr2, 104, l/4 w, camp.
............... OllZl CB-472-10):
R506
1K n, 10%. l/4 w, camp
................ 01121 CB-lo*-10%
FL507
Not Used ...................................
R508
47K.Q. 10%. l/4 W, camp
................ 01121 CB-473-102
Keithley Parc so. . Qt”.
Rib-Z.?K
1
R88-12.7K
1
R88-lK
1
R76-4.7K
6
R76-4.7K
6
R76-1K
5
R76-47K
1
0177
.
47
7 .
ChPACITORS
clrcuic
Mfr. \Ifr.
Keirhley
Lksig. Description Code Desig.
Parr NO.
QC”.
C601 470 PF, 1000 v, CerD . 71590 m-471
C66-47OP
3
C602 470 PF, 1000 ", CerD . . . . . . . 71590 m-471
C64-47"P
3
'2603 O.OluF, moo 'I, cer* . 56289
mss-SIO
c**-.01‘1 6
C604 O.Ol>F, 1000 v, cem . .
56289
loss-810
c**-.01x
6
C605 O.OluF, moo v, cerl3 . . . . 56289
loss-s10 c**-.om
6
DIODES
Circuit mr. er.
Keirhley
Desb?. Description CO& oesig.
Part No. ijtv.
0601 Rectifier. . I . . , 01295 1N645 RF- 14
17
0602 Rectifier. . . . . , 01295 lN645
RF-14
17
0603
Rectifier. . . . . . . . . 01295 IN645
RF-14
17
0604 Rectifier. . . . . . . 01295 lN645 RF-14
17
0605 Rectifier. . . . . . . . . . 01295
lN645
RF-14
17
0606
Rectifier. . . . . . . 01295 lN645 RF-14
17
0607
Rectifier. . . . . . . . . . . . . . 01295 IN645 RF-14
17
Db08
Rectifier. . . . . . . . . . . .
01295
IN645 RF-14
17
DIODE NETWORK
Circuit HfT. Mfr.
Keithley
ksir;.
D~SC~iptiO" Code Desig. Part NO.
Qty.
DN6Ol
7-diodes, 14-pin DIP . . . . . . . . . . . ‘ 0726, FSA2620M
DN-l
1
I
Transistors
CilT"iC
Mfr. Mfr. Keithley
Desis. oescrip~io*
CO& Part NO.
I
oesin.
OC".
9601
PNP, Case K-92. . . . . . . . . . . 0471, *mm37 W-61 3
4602
PNP, Case TO-42. . . . . . . I . . 04713 ZN5087 TG-61
3
INTEGRATED CIRC"ITS
Circuit
Mfr.
Mfr.
Keithl‘Zy
Desig.
ikscripcion CO&?
Desiq. Part- NO. my.
QA601
Hex inverter, 14-pin DIP.. . . . . . . . . .
01295
SW406
K-62
3
9A602
Hex inverter. 14-pin DIP . .
01295 SN7406 IC-62
,
WO,
Hex invercer. 14-pin DIP . . , . . . . .
01295
SW406 IC-62
3
RESISTORS
R601
Not USed
...........................................
~602
22w, IO%, 1/4w. camp.
................ 01121 CB-223-10%
R7b-**K
R60,
47on,
lO%, 1/4w, camp. ................. 01121 CB-471-N% R76-470
~604
22x1, 10%. 1
/4!J. camp. ................
01121
CB-223-10x
R76-??K
R605
li)K!!, 10%. 1/4w, camp. ................
01121
CB-18510%
R76-18K
R606
ma, 10%. 1,4w. camp. ................
01121 C&183-10% R76-18K
48
_.
I
107,
Quantity
DescriFcion
Keithkay
Rw!uFred
Part NO.
Bracket, near Panel. holds PC-318
1
m-18
screw. Phulipa. Pan ad., 4-40 x S/16”
1
-
Kep N”f, 4-40
1
-
Lug. solder
1
I,"-2
connector, Male, Line w.*"s)
1
m-254
Screw, Phillips, Pan Hd., 4-40 x 5/16"
2
__-
Fuse Holder, for F301
1
FN-11
Hardware for w-313, Logic Board:
Screw, Phillipa, Pan Hd., Self Tap. 2-56 x l/4"
2
_-_
Hardware for K-319, Readout Board:
screw, Phillips, Pan Hd., 4-40 x 518"
1
__-
"eat Sink, for QA-301 hIregrated CirC"it
1
"S-11
Hole Plugs. Plastic, for Bottom-Cover Ewce8s holes to c402
and c403
2
UP-18
Jumper. hmny Resiscar. for PC-318
1
J-3
Line (Mains) Power Cord SBL
1
co-7
Mounfing Kit. for Q405 *ranaiator
1
IX-6
Mounting NW., for s402
1
PA-59
Plate, Cover. Calibrarion Access
1
2534BA
screw, Slotted. Round Hd., 2-56 x l/4"
2
_-
*12se. cover @o"-acceas)
1
25388A
Screw, Phillips, 4-40 x l/4"
2
---
Kep Nut, 4-40 2
--_
Readour Block, Film overlay
1
25544A
Readout Block. Function (leas overlay)
1
25,388
Readout Display, Window. Prom Panel
1
25527.4
sbxcing Link, Input
1
BP-6
Socket, for DNl03, DN104, DN105, DN106 LED readout ~ispal,.s
4
so-70
Socket, 'B-Pin. for QA501. QA502 Integrated Circuits 2
So-69
spacer, Front Panel an* PC-Board
1
25358A
Washer, Brass. for 5403
1
WA-S8
Washer. far D401. 0402. D403. D404 Rectifiers
4
WA-2
Washer, for S402
1 WA-65
1073
R
I
n
L.
L .
­. ._-
--I
-I-
-
II
I!
ri
i
-
I /
I
L
L
-
, .:<
. .
i C’,
, ri, : :i-
i/j
.I
*
I I
/
..__.. ___-..
-
----
I
I
L
I
I
I I ‘III
Loading...