查询IRF1704供应商
PD -94012B
Benefits
l 200°C Operaing Temperature
l Advanced Process Technology
l Ultra Low On-Resistance
l Dynamic dv/dt Rating
l Fast Switching
l Repetitive Avalanche Allowed
up to Tj Max
l Automotive Qualified (Q101)
AUTOMOTIVE MOSFET
HEXFET® Power MOSFET
D
G
S
IRF1704
V
= 40V
DSS
R
= 0.004Ω
DS(on)
ID = 170A
Description
Specifically designed for Automotive applications, this HEXFET® power
MOSFET has a 200°C max operating temperature with a Stripe Planar
design that utilizes the latest processing techniques to achieve extremely low
on-resistance per silicon area. Additional features of this HEXFET
MOSFET are fast switching speed and improved repetitive avalanche rating.
The continuing technology leadership of Internationl Rectifier provides 200°C
operating temperature in a plastic package. At high ambient temperatures, the
IRF1704 can carry up to 20% more current than similar 175 °C Tj max devices
in the same package outline. This makes this part ideal for existing and
emerging under-the-hood automotive applications such as Electric Power
Steering (EPS), Fuel / Water Pump Control and wide variety of other
applications.
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 170
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 120 A
I
DM
PD @TC = 25°C Power Dissipation 230 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt 1.9 V/ns
T
J
T
STG
T
LEAD
Pulsed Drain Current 680
Linear Derating Factor 1.3 W/°C
Gate-to-Source Voltage ± 20 V
Single Pulse Avalanche Energy 670 mJ
Avalanche Current 100 A
Repetitive Avalanche Energy 23 mJ
Operating Junction and -55 to + 200
Storage Temperature Range
Lead Temperature 175
Soldering Temperature, for 10 seconds 300 (1.6mm from case ) °C
Mounting torque, 6-32 or M3 srew 10 lbf•in (1.1N•m)
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.75
Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
Junction-to-Ambient ––– 62
www.irf.com 1
®
power
TO-220AB
°C
02/13/02
IRF1704
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
∆V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
C
oss
C
oss
C
eff. Effective Output Capacitance ––– 2320 ––– VGS = 0V, VDS = 0V to 32V
oss
Source-Drain Ratings and Characteristics
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See Fig. 11)
Starting T
RG = 25Ω, I
I
≤ 100A, di/dt ≤ 150A/µs, V
SD
TJ ≤ 200°C
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2 www.irf.com
Drain-to-Source Breakdown Voltage 40 ––– ––– VVGS = 0V, ID = 250µA
/∆T
Breakdown Voltage Temp. Coefficient ––– 0.036 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– ––– 0.004 Ω VGS = 10V, ID = 100A
Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA
Forward Transconductance 110 ––– ––– SVDS = 25V, ID = 100A
Drain-to-Source Leakage Current
––– ––– 20
––– ––– 250 VDS = 32V, VGS = 0V, TJ = 175°C
Gate-to-Source Forward Leakage ––– ––– 200 V
Gate-to-Source Reverse Leakage ––– ––– -200
VDS = 40V, VGS = 0V
µA
= 20V
GS
nA
VGS = -20V
Total Gate Charge ––– 170 260 ID = 100A
Gate-to-Source Charge ––– 42 63 nC VDS = 32V
Gate-to-Drain ("Miller") Charge ––– 39 59 VGS = 10V, See Fig. 6 and 13
Turn-On Delay Time ––– 16 ––– VDD = 20V
Rise Time ––– 120 ––– ID = 100A
Turn-Off Delay Time ––– 73 ––– RG = 2.5Ω
ns
Fall Time ––– 37 ––– VGS = 10V,See Fig. 10
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
4.5
7.5
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact
Input Capacitance ––– 6950 ––– VGS = 0V
Output Capacitance ––– 1660 ––– VDS = 25V
Reverse Transfer Capacitance ––– 200 ––– pF ƒ = 1.0MHz, See Fig. 5
Output Capacitance ––– 6250 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
Output Capacitance ––– 1470 ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz
Parameter Min. Typ. Max. Units Conditions
Continuous Source Current MOSFET symbol
(Body Diode)
Pulsed Source Current integral reverse
(Body Diode)
––– –––
––– –––
170
680
showing the
A
p-n junction diode.
Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS = 100A, VGS = 0V
Reverse Recovery Time ––– 73 110 ns TJ = 25°C, IF = 100A
Reverse RecoveryCharge ––– 200 300 nC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
C
eff. is a fixed capacitance that gives the same charging time
oss
= 25°C, L = 0.13mH, VGS = 10V
J
= 100A. (See Figure 12)
AS
≤ V
DD
(BR)DSS
as C
Calculated continuous current based on maximum allowable
junction temperature. Package limitation current is 75A
,
At the point of termination of the leads at the PCB, the temp.
oss
while V
is rising from 0 to 80% V
DS
DSS
should be limited to 175°C. The device case temperature is
allowed to be higher
G
G
D
S
D
S
IRF1704
1000
100
D
I , Drain-to-Source Current (A)
10
0.1 1 10 100
1000
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH
T = 25 C
J
V , Drain-to-Source Voltage (V)
DS
°
T = 25 C
J
T = 200 C
J
°
°
1000
100
D
I , Drain-to-Source Current (A)
10
0.1 1 10 100
VGS
TOP
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM
4.5V
4.5V
20µs PULSE WIDTH
T = 200 C
V , Drain-to-Source Voltage (V)
DS
°
J
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
2.5
2.0
170A
I =
D
1.5
100
1.0
(Normalized)
D
I , Drain-to-Source Current (A)
V = 15V
DS
10
4.0 5.0 6.0 7.0 8.0 9.0
V , Gate-to-Source Voltage (V)
GS
20µs PULSE WIDTH
Fig 3. Typical Transfer Characteristics
0.5
DS(on)
R , Drain-to-Source On Resistance
0.0
-60 -40 -20 0 20 40 60 80 100120140160180200220
T , Junction Temperature ( C)
J
Fig 4. Normalized On-Resistance
V =
10V
GS
°
Vs. Temperature
www.irf.com 3