International Rectifier IRFP460P Datasheet

PD-93946A
IRFP460P
l Dynamic dv/dt Rating l Repetitive Avalanche Rated l Isolated Central Mounting Hole l Fast Switching l Ease of Paralleling
l Simple Drive Requirements l Solder Plated for Reflowing
Description
Third Generation HEXFET®s from International Rectifier
G
HEXFET® Power MOSFET
D
V
= 500V
DSS
R
DS(on)
= 0.27
ID = 20A
S
provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.
The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole. It also provides greater creepage distance between pins to meet the requirements of most safety specifications.
The solder plated version of the TO-247 allows the reflow
TO-247AC
soldering of the package heatsink to a substrate material.
Absolute Maximum Ratings
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 20 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 13 A I
DM
PD @TC = 25°C Power Dissipation 280 W
V
GS
E
AS
I
AR
E
AR
dv/dt Peak Diode Recovery dv/dt 3.5 V/ns T
J
T
STG
Maximum Reflow Temperature 230 (Time above 183 °C should not exceed 100s) °C
Pulsed Drain Current 80
Linear Derating Factor 2.2 W/°C Gate-to-Source Voltage ± 20 V Single Pulse Avalanche Energy 960 mJ Avalanche Current 20 A Repetitive Avalanche Energy 28 mJ
Operating Junction and -55 to + 150 Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting torque, 6-32 or M3 srew 10 lbfin (1.1Nm)
°C
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
R
θCS
R
θJA
Junction-to-Case ––– 0.45 Case-to-Sink, Flat, Greased Surface 0.24 ––– °C/W Junction-to-Ambient ––– 40
www.irf.com 1
01/17/01
IRFP460P
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
g
fs
I
DSS
I
GSS
Q
g
Q
gs
Q
gd
t
d(on)
t
r
t
d(off)
t
f
L
D
L
S
C
iss
C
oss
C
rss
Drain-to-Source Breakdown Voltage 500 ––– ––– VVGS = 0V, ID = 250µA
/T
Breakdown Voltage Temp. Coefficient ––– 0.63 ––– V/°C Reference to 25°C, ID = 1mA
J
Static Drain-to-Source On-Resistance ––– ––– 0.27 VGS = 10V, ID = 12A Gate Threshold Voltage 2.0 ––– 4.0 V VDS = VGS, ID = 250µA Forward Transconductance 13 ––– ––– SVDS = 50V, ID =12A
Drain-to-Source Leakage Current
––– ––– 25 ––– ––– 250 VDS = 400V, VGS = 0V, TJ = 125°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100
VDS = 500V, VGS = 0V
µA
nA
VGS =-20V Total Gate Charge ––– ––– 210 ID = 20A Gate-to-Source Charge ––– ––– 29 nC VDS = 400V Gate-to-Drain ("Miller") Charge ––– ––– 110 VGS = 10V, See Fig. 6 and 13 Turn-On Delay Time ––– 18 ––– VDD = 250V Rise Time ––– 59 ––– ID = 20A Turn-Off Delay Time ––– 110 ––– RG = 4.3
ns
Fall Time ––– 58 ––– RD = 13,See Fig. 10
5.0
Internal Drain Inductance
Internal Source Inductance ––– –––
––– –––
13
Between lead,
6mm (0.25in.)
nH
from package
and center of die contact Input Capacitance ––– 4200 ––– VGS = 0V Output Capacitance ––– 870 ––– VDS = 25V Reverse Transfer Capacitance ––– 350 ––– pF ƒ = 1.0MHz, See Fig. 5
D
G
S
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
I
S
I
SM
V
SD
t
rr
Q
rr
t
on
Continuous Source Current MOSFET symbol (Body Diode) Pulsed Source Current integral reverse (Body Diode)
––– –––
––– –––
20
80
showing the
A
p-n junction diode.
G
Diode Forward Voltage ––– ––– 1.8 V TJ = 25°C, IS = 20A, VGS = 0V Reverse Recovery Time ––– 570 860 ns TJ = 25°C, IF = 20A Reverse RecoverCharge ––– 5.7 8.6 µC di/dt = 100A/µs
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
Starting T
RG = 25, I
= 25°C, L =4.8mH
J
= 20A. (See Figure 12)
AS
I
20A, di/dt 160A/µs, V
SD
DD
V
(BR)DSS
TJ ≤ 150°C
Pulse width ≤ 300µs; duty cycle 2%.
,
2 www.irf.com
D
S
IRFP460P
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance
www.irf.com 3
Fig 2. Typical Output Characteristics
Vs. Temperature
Loading...
+ 5 hidden pages