International Rectifier IRFP4110PBF Datasheet

)
)
)
S
D
G
PD - 97311
Applications
l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits
Benefits
l Improved Gate, Avalanche and Dynamic dv/dt
V
DSS
R
DS(on
typ.
max. I
D (Silicon Limited
I
D (Package Limited
HEXFET® Power MOSFET
100V
3.7m
4.5m
180A
120A
Ruggedness
l Fully Characterized Capacitance and Avalanche
D
SOA
l Enhanced body diode dV/dt and dI/dt Capability
TO-247AC
GDS
Gate Drain Source
Absolute Maximum Ratings
Symbol Parameter Units
ID @ TC = 25°C
@ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
I
D
@ TC = 25°C Continuous Drain Current, VGS @ 10V (Wire Bond Limited)
I
D
I
DM
@TC = 25°C
P
D
V
GS
dv/dt T
J
T
STG
Continuous Drain Current, VGS @ 10V (Silicon Limited)
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
d
f
Max.
c
180
c
130
120
670
370
2.5
± 20
5.3
-55 to + 175
300
10lbxin (1.1Nxm)
: :
c
D
G
A
W
W/°C
V
V/ns
°C
S
Avalanche Characteristics
g
e
190
108
37
mJ
A
mJ
E
AS (Thermally limited)
I
AR
E
AR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
d
Thermal Resistance
Symbol Parameter Typ. Max. Units
JC
CS
JA
Junction-to-Case
Case-to-Sink, Flat Greased Surface
Junction-to-Ambient
k
j
––– 0.402
0.24 ––– °C/W
––– 40
03/03/08
R
θ
R
θ
R
θ
www.irf.com 1
IRFP4110PbF
/
Static @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
V
(BR)DSS
V
(BR)DSS
R
DS(on)
V
GS(th)
I
DSS
I
GSS
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Units
gfs Forward Transconductance 160 ––– ––– S Q
g
Q
gs
Q
gd
R
G
t
d(on)
t
r
t
d(off)
t
f
C
iss
C
oss
C
rss
C
eff. (ER)
oss
C
eff. (TR)
oss
Drain-to-Source Breakdown Voltage 100 ––– ––– V
T
Breakdown Voltage Temp. Coefficient ––– 0.108 ––– V/°C
J
Static Drain-to-Source On-Resistance ––– 3.7 4.5
Gate Threshold Voltage 2.0 ––– 4.0 V
Drain-to-Source Leakage Current ––– ––– 20 µA
––– ––– 250
Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
Total Gate Charge ––– 150 210 nC
Gate-to-Source Charge ––– 35 –––
Gate-to-Drain ("Miller") Charge ––– 43 –––
Gate Resistance
–––
1.3 ––– Turn-On Delay Time ––– 25 ––– ns
Rise Time ––– 67 –––
Turn-Off Delay Time ––– 78 –––
Fall Time ––– 88 –––
Input Capacitance ––– 9620 ––– pF
Output Capacitance ––– 670 –––
Reverse Transfer Capacitance ––– 250 –––
––– 820 –––
Effective Output Capacitance (Energy Related)
Effective Output Capacitance (Time Related)
i
––– 950 –––
h
m
VGS = 0V, ID = 250µA
Reference to 25°C, I
= 10V, ID = 75A
V
GS
V
= VGS, ID = 250µA
DS
= 100V, VGS = 0V
V
DS
V
= 100V, VGS = 0V, TJ = 125°C
DS
= 20V
V
GS
V
= -20V
GS
VDS = 50V, ID = 75A
I
= 75A
D
V
= 50V
DS
= 10V
V
GS
V
= 65V
DD
= 75A
I
D
R
= 2.6
G
VGS = 10V
V
= 0V
GS
V
= 50V
DS
ƒ = 1.0MHz
V
= 0V, VDS = 0V to 80V
GS
V
= 0V, VDS = 0V to 80V
GS
Conditions
Conditions
g
g
= 5mA
D
g
d
i
h
Diode Characteristics
Symbol Parameter Min. Typ. Max. Units
I
S
I
SM
V
SD
t
rr
Q
rr
I
RRM
t
on
Notes:
Calculated continuous current based on maximum allowable junction
temperature. Bond wire current limit is 120A. Note that current
limitations arising from heating of the device leads may occur with some lead mounting arrangements.
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by T
RG = 25, I above this value.
Continuous Source Current ––– –––
170
c
(Body Diode) Pulsed Source Current ––– ––– 670
(Body Diode)
di
Diode Forward Voltage ––– ––– 1.3 V
Reverse Recovery Time ––– 50 75 ns
––– 60 90
Reverse Recovery Charge ––– 94 140 nC
––– 140 210
Reverse Recovery Current ––– 3.5 ––– A
Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
I
75A, di/dt 630A/µs, V
SD
Pulse width 400µs; duty cycle 2%.C
eff. (TR) is a fixed capacitance that gives the same charging time
oss
, starting TJ = 25°C, L = 0.033mH
Jmax
= 108A, VGS =10V. Part not recommended for use
AS
as C
C
C
When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
R
while V
oss
eff. (ER) is a fixed capacitance that gives the same energy as
oss
while V
oss
is measured at TJ approximately 90°C.
θ
is rising from 0 to 80% V
DS
is rising from 0 to 80% V
DS
Conditions
MOSFET symbol
A
showing the integral reverse
p-n junction diode. T
= 25°C, IS = 75A, VGS = 0V
J
T
= 25°C VR = 85V,
J
T
= 125°C IF = 75A
J
T
= 25°C
J
T
= 125°C
J
T
= 25°C
J
DD
V
(BR)DSS
, TJ ≤ 175°C.
DSS
.
DSS
di/dt = 100A/µs
.
D
G
S
g
g
2 www.irf.com
IRFP4110PbF
1000
TOP 15V
) A
( t n e
r
r u
C e
c
r u o S
­o
t
­n
i a
r D
,
D
I
BOTTOM 4.5V
100
VGS
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
60µs PULSE WIDTH
Tj = 25°C
10
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1000
) A
(
100
t n e
r
r u
C e
c
r
10
u o S
­o
t
­n
i a
r D
,
D
I
TJ = 175°C
1
TJ = 25°C
V
= 25V
DS
60µs PULSE WIDTH
0.1 1 2 3 4 5 6 7
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
1000
) A
( t n e
r
r u
C e
c
r
100
u o S
­o
t
­n
i a
r D
,
D
I
TOP 15V
BOTTOM 4.5V
VGS
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
60µs PULSE WIDTH
Tj = 175°C
10
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
Fig 2. Typical Output Characteristics
3.0
e c n a
t s
i s e
R n O e
c
r u o S
­o
t
­n
i a
r D
,
) n o
( S D
R
) d e z
i
l a
m
r o
N
(
2.5
2.0
1.5
1.0
ID = 75A
V
= 10V
GS
0.5
-60 -40 -20 0 20 40 60 80 100 120140160 180
TJ , Junction Temperature (°C)
Fig 4. Normalized On-Resistance vs. Temperature
100000
) F
10000
p
( e
c n a
t
i c a p a
C
1000
, C
100
V
= 0V, f = 1 MHZ
GS
C
= C
C
C
iss
rss
oss
= C
= C
gs
gd
ds
C
iss
C
oss
C
rss
+ Cgd, C
+ C
SHORTED
ds
gd
1 10 100
VDS, Drain-to-Source Voltage (V)
12.0 ID= 75A
)
10.0
V
( e
g a
t
l
8.0
o V
e c
r u
6.0
o S
­o
t
­e
t
4.0
a G
,
S G
2.0
V
VDS= 80V
VDS= 50V
0.0 0 50 100 150 200
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source VoltageFig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com 3
Loading...
+ 5 hidden pages