International Rectifier CPV364MK Datasheet

PD - 5.037
Next Data SheetIndex
Previous Datasheet
To Order
CPV364MK
IGBT SIP MODULE
Features
Short Circuit Rated UltraFast IGBT
1
• Short Circuit Rated - 10µs @ 125°C, VGE = 15V • Fully isolated printed circuit board mount package
• Switching-loss rating includes all "tail" losses
• HEXFREDTM soft ultrafast diodes
• Optimized for high operating frequency (over 5kHz) See Fig. 1 for Current vs. Frequency curve
Q1
3
Q2
6
D1 D3 D5
Q3
9
D2 D4 D6
Q4
12
Q5
15
10 164
Q6
18
Product Summary
Output Current in a Typical 20 kHz Motor Drive
8.8 A
per phase (2.7 kW total) with TC = 90°C, TJ = 125°C, Supply Voltage 360Vdc,
RMS
Power Factor 0.8, Modulation Depth 80% (See Figure 1)
7 13 19
Description
The IGBT technology is the key to International Rectifier's advanced line of IMS (Insulated Metal Substrate) Power Modules. These modules are more efficient than comparable bipolar transistor modules, while at the same time having the simpler gate-drive requirements of the familiar power MOSFET. This superior technology has now been coupled to a state of the art materials system that maximizes power throughput with low thermal resistance. This package is highly suited to power applications and where space is at a premium.
These new short circuit rated devices are especially suited for motor control and other totem-pole applications requiring short circuit withstand capability.
IMS-2
Absolute Maximum Ratings
Parameter Max. Units
V
CES
IC @ TC = 25°C Continuous Collector Current, each IGBT 24 IC @ TC = 100°C Continuous Collector Current, each IGBT 13 I
CM
I
LM
IF @ TC = 100°C Diode Continuous Forward Current 9.3 I
FM
t
sc
V
GE
V
ISOL
PD @ TC = 25°C Maximum Power Dissipation, each IGBT 63 W PD @ TC = 100°C Maximum Power Dissipation, each IGBT 25 T
J
T
STG
Collector-to-Emitter Voltage 600 V
Pulsed Collector Current 48 A Clamped Inductive Load Current 48
Diode Maximum Forward Current 48 Short Circuit Withstand Time 10 µs Gate-to-Emitter Voltage ± 20 V Isolation Voltage, any terminal to case, 1 min. 2500 V
Operating Junction and -40 to +150 Storage Temperature Range °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting torque, 6-32 or M3 screw. 5-7 lbf•in (0.55 - 0.8 N•m)
Thermal Resistance
Parameter Typ. Max. Units
R
(IGBT) Junction-to-Case, each IGBT, one IGBT in conduction 2.0
θJC
R
(DIODE) Junction-to-Case, each diode, one diode in conduction 3.0 °C/W
R
(MODULE) Case-to-Sink, flat, greased surface 0.1
θCS
Wt Weight of module 20 (0.7) g (oz)
C-979
Revision 2
RMS
CPV364MK
Next Data SheetIndex
Previous Datasheet
To Order
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V
(BR)CES
V
(BR)CES
V
CE(on)
V
GE(th)
V
GE(th)
g
fe
I
CES
V
FM
I
GES
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
Q
g
Q
ge
Q
gc
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
t
sc
t
d(on)
t
r
t
d(off)
t
f
E
ts
C
ies
C
oes
C
res
t
rr
I
rr
Q
rr
di
(rec)M
Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 250µA
/T
Temp. Coeff. of Breakdown Voltage 0.63 V/°C VGE = 0V, IC = 1.0mA
J
Collector-to-Emitter Saturation Voltage 2.1 3.1 IC = 13A VGE = 15V
2.6 V IC = 24A See Fig. 2, 5 — 2.2 IC = 13A, TJ = 150°C
Gate Threshold Voltage 3.0 5.5 VCE = VGE, IC = 250µA
/TJTemp. Coeff. of Threshold Voltage -13 mV/°C VCE = VGE, IC = 250µA
Forward Transconductance 11 18 S VCE = 100V, IC = 20A Zero Gate Voltage Collector Current 250 µA VGE = 0V, VCE = 600V
3500 VGE = 0V, VCE = 600V, TJ = 150°C
Diode Forward Voltage Drop 1.3 1.7 V IC = 15A See Fig. 13
1.2 1.6 IC = 15A, TJ = 150°C
Gate-to-Emitter Leakage Current ±500 nA VGE = ±20V
Total Gate Charge (turn-on) 61 90 IC = 20A Gate - Emitter Charge (turn-on) 13 20 nC VCC = 400V Gate - Collector Charge (turn-on) 22 35 See Fig. 8 Turn-On Delay Time 70 TJ = 25°C Rise Time 55 ns IC = 13A, VCC = 480V Turn-Off Delay Time 130 200 VGE = 15V, RG = 10 Fall Time 47 71 Energy losses include "tail" and Turn-On Switching Loss 0.65 diode reverse recovery. Turn-Off Switching Loss 0.37 mJ See Fig. 9, 10, 11, 18 Total Switching Loss 1.0 1.5 Short Circuit Withstand Time 10 µs VCC = 360V, TJ = 125°C
VGE = 15V, RG = 10, V Turn-On Delay Time 66 TJ = 150°C, See Fig. 9, 10, 11, 18 Rise Time 48 ns IC = 13A, VCC = 480V Turn-Off Delay Time 250 VGE = 15V, RG = 10 Fall Time 140 Energy losses include "tail" and Total Switching Loss 1.6 mJ diode reverse recovery. Input Capacitance — 1500 — VGE = 0V Output Capacitance 190 pF VCC = 30V See Fig. 7 Reverse Transfer Capacitance 17 ƒ = 1.0MHz Diode Reverse Recovery Time 42 60 ns TJ = 25°C See Fig.
74 120 TJ = 125°C 14 IF = 15A
Diode Peak Reverse Recovery Current 4.0 6.0 A TJ = 25°C See Fig.
6.5 10 TJ = 125°C 15 VR = 200V
Diode Reverse Recovery Charge 80 180 nC TJ = 25°C See Fig.
220 600 TJ = 125°C 16 di/dt = 200A/µs
/dt Diode Peak Rate of Fall of Recovery 188 A/µs TJ = 25°C See Fig.
During t
b
160 TJ = 125°C 17
CPK
< 500V
Notes:
Repetitive rating; VGE=20V, pulse width limited
by max. junction temperature. ( See fig. 20)
VCC=80%(V
), VGE=20V, L=10µH,
CES
RG= 10, ( See fig. 19 )
Pulse width 80µs; duty factor 0.1%.
C-980
Pulse width 5.0µs,
single shot.
CPV364MK
A
A
To Order
Next Data SheetIndex
Previous Datasheet
15
12
9
6
Load Current (A)
T = 90°C
C
T = 125°C
3
J
Power Factor = 0.8 Modulation Depth = 0 .8 V = 60% of Rated Voltage
CC
0
0.1 1 10 100
f, Frequency (kHz)
Fig. 1 - RMS Current and Output Power, Synthesized Sine Wave
100
1000
4.7
3.7
2.8
1.9
0.9
Total Output Power (kW)
0
10
1
C
I , Collector-to-Emitter Current (A)
0.1
0.1 1 10
V , Collector-to-Emitter Voltage (V)
CE
Fig. 2 - Typical Output Characteristics
T = 150°C
J
T = 25°C
J
V = 15V
GE
20µs PULSE WIDTH
C-981
100
T = 150°C
J
10
C
I , Collector-to-Emitter Current (A)
1
5 10 15 20
T = 25°C
J
V = 100V
CC
5µs PULSE WIDTH
V , Gate-to-Emitter Voltage (V)
GE
Fig. 3 - Typical Transfer Characteristics
Loading...
+ 5 hidden pages