Intel PXA250, PXA210 User Manual

Intel® PXA250 and PXA210 Applications Processors

Design Guide
February, 2002
Order Number: 278523-001
Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to the m. The PXA250 and PXA210 applications pr ocessors m ay con tain design defect s or erro rs known as err at a whic h may ca use the product to deviate from
published specifications. Current characterized errata are available on request. MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation. This document and the software described in it are furnished under license and may only be used or copied in accordance with the terms of the
license. The i nf orm at i o n i n t h is do cum en t i s f ur n is he d f o r i nf o rm ati o na l u s e o nl y, is su b jec t t o ch a ng e wi th o ut n ot i ce , an d sh o uld not be construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in association with this document. Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the express written consent of Intel Corporation.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an ordering number and are referenced in this document, or other Intel literature may be obtained by calling
1-800-548-4725 or by visiting Intel's website at http://www.intel.com. Copyright © Intel Corporation, 2002 AlertVIEW, i960, AnyPoint, AppChoice, BoardWatch, BunnyPeople, CablePort, Celeron, Chips, Commerce Cart, CT Connect, CT Media, Dialogic,
DM3, EtherExpress, ETOX, FlashFile, GatherRound, i386, i486, iCat, iCOMP, Insight960, InstantIP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel ChatPad, Intel Create&Share, Intel Dot.Station, Intel GigaBlade, Intel InBusiness, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetStructure, Intel Play, Intel Play logo, Intel Pocket Concert, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel TeamStation, Intel WebOutfitter, Intel Xeon, Intel XScale, Itanium, JobAnalyst, LANDesk, LanRover, MCS, MMX, MMX logo, NetPort, NetportExpress, Optimizer logo, OverDrive, Paragon, PC Dads, PC Parents, Pentium, Pentium II Xeon, Pentium III Xeon, Performance at Your Command, ProShare, RemoteExpress, Screamline, Shiva, SmartDie, Solutions960, Sound Mark, StorageExpress, The Computer Inside, The Journey Inside, This Way In, TokenExpress, Trillium, Vivonic, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.
*Other names and brands may be claimed as the property of others.
ii PXA250 and PXA210 Applications Proc ess ors D esig n Guide
Contents
Contents
1 Introduction.................................................................................................................................1-1
1.1 Functional Overview ..........................................................................................................1-1
1.2 Package Information..........................................................................................................1-2
1.2.1 Package Introduction ............................................................................................1-2
1.2.2 Signal Pin Descriptions.........................................................................................1-4
2 System Memory Interface..........................................................................................................2-1
2.1 Overview............................................................................................................................2-1
2.2 SDRAM Interface...............................................................................................................2-3
2.3 SDRAM memory wiring diagram .......................................................................................2-3
2.4 SDRAM Support ................................................................................................................2-5
2.5 SDRAM Address Mapping.................................................................................................2-6
2.6 Static Memory....................................................................................................................2-7
2.6.1 Overview...............................................................................................................2-7
2.6.2 Boot Time Defaults ...............................................................................................2-8
2.6.3 SRAM / ROM / Flash / Synchronous Fast Flash Memory Options.......................2-9
2.6.4 Variable Latency I/O Interface Overview ..............................................................2-9
2.6.5 External Logic for PCMCIA Implementation .......................................................2-11
2.6.6 DMA / Companion Chip Interface.......................................................................2-14
2.7 System Memory Layout Guidelines ... ...... ....... ...... ....................................... ...... ....... ...... .2-17
2.7.1 System Memory Topologies (Min and Max Simulated Loading).........................2-17
2.7.2 System Memory Recommended Trace Lengths.................................................2-18
3 LCD Display Controller ..............................................................................................................3-1
3.1 LCD Display Overview.......... ...... .......................................................................................3-1
3.2 Passive (DSTN) Displays ........................ ....... ...................................................................3-1
3.2.1 Typical Connections for Passive Panel Displays..................................................3-2
3.2.1.1 Passive Monochrome Single Panel Displays........................................3-2
3.2.1.2 Passive Monochrome Single Panel Displays, Double-Pixel Data.........3-3
3.2.1.3 Passive Monochrome Dual Panel Displays ..........................................3-3
3.2.1.4 Passive Color Single Panel Displays....................................................3-4
3.2.1.5 Passive Color Dual Panel Displays.......................................................3-4
3.3 Active (TFT) Displays ........................................................................................................3-5
3.3.1 Typical connections for Active Panel Displays......................................................3-6
3.4 PXA250 Pinout ..................... ...... ....... ...... ....................................... ...... ....... ...... ....... ...... ...3-7
3.5 Additional Design Considerations......................................................................................3-8
3.5.1 Contrast Voltage ...................................................................................................3-8
3.5.2 Backlight Inverter..................................................................................................3-8
3.5.3 Signal Routing and Buffering................................................................................3-8
3.5.4 Panel Connector...................................................................................................3-9
4 USB Interface ..............................................................................................................................4-1
4.1 Self Powered Device .........................................................................................................4-1
4.1.1 Operation if GPIOn and GPIOx are Different Pins................................................4-1
4.1.2 Operation if GPIOn and GPIOx are the Same Pin................................................4-2
4.2 Bus Powered Device .........................................................................................................4-2
PXA250 and PXA210 Applications Processors Design Guide iii
Contents
5 MultiMediaCard (MMC)...............................................................................................................5-1
5.1 Schematics........................................................................................................................5-1
5.1.1 Signal Description.................................................................................................5-1
5.1.2 How to Wire ..........................................................................................................5-2
5.1.2.1 SDCard Socket.....................................................................................5-4
5.1.2.2 MMC Socket .........................................................................................5-4
5.1.3 Simplified Schematic ............................................................................................5-5
5.1.4 Pull-up and Pull-down...........................................................................................5-6
5.2 Utilized Features................................................................................................................5-6
6 AC97 ............................................................................................................................................6-1
6.1 Schematics........................................................................................................................6-1
6.2 Layout................................................................................................................................6-2
7I2C................................................................................................................................................7-1
7.1 Schematics........................................................................................................................7-1
7.1.1 Signal Description.................................................................................................7-1
7.1.2 Digital-to-Analog Converter (DAC) .......................................................................7-2
7.1.3 Other Uses of I2C.................................................................................................7-2
7.1.4 Pull-Ups and Pull-Downs......................................................................................7-3
7.2 Utilized Features................................................................................................................7-4
8 Power and Clocking...................................................................................................................8-1
8.1 Operating Conditions.........................................................................................................8-1
8.2 Electrical Specifications.....................................................................................................8-2
8.3 Power Consumption Specifications ...................................................................................8-2
8.4 Oscillator Electrical Specifications.....................................................................................8-4
8.4.1 32.768 kHz Oscillator Specifi ca tio ns ................ ....... ...... ....... ...... ....... ...................8-4
8.4.2 3.6864 MHz Oscillator Specifications ...................................................................8-5
8.5 Reset and Power AC Timing Specifications ......................................................................8-6
8.5.1 Power Supply Connectivity...................................................................................8-6
8.5.2 Power On Timing................................................................................................8-11
8.5.3 Hardware Reset Timing......................................................................................8-12
8.5.4 Watchdog Reset Timing .....................................................................................8-13
8.5.5 GPIO Reset Timing........... ....... ...... ....... ...... ...... ....... ....................................... ....8-13
8.5.6 Sleep Mode Timing.............................................................................................8-14
8.6 Memory Bus and PCMCIA AC Specifications .................................................................8-15
8.7 Example Form Factor Reference Design Power Delivery Example................................8-20
8.7.1 Power System.....................................................................................................8-20
8.7.1.1 Power System Configuration ..............................................................8-21
8.7.2 CORE Power ......................................................................................................8-22
8.7.3 PLL Power ..........................................................................................................8-22
8.7.4 I/O 3.3 V Power ..................................................................................................8-23
8.7.5 Peripheral 5.5 V Power.......................................................................................8-23
9 JTAG/Debug Port........................................................................................................................9-1
9.1 Description.........................................................................................................................9-1
9.2 Schematics........................................................................................................................9-1
9.3 Layout................................................................................................................................9-2
A SA-1110/Applications Processor Migration............................................................................ A-1
iv PXA250 and PXA210 Applications Processors Design Guide
Contents
A.1 SA-1110 Hardware Migration Issues................................................................................ A-2
A.1.1 Hardware Compatibility........................................................................................A-2
A.1.2 Signal Changes ................................................................................................... A-2
A.1.3 Power Delivery..................................................................................................... A-4
A.1.4 Package............................................................................................................... A-4
A.1.5 Clocks.................................................................................................................. A-4
A.1.6 UCB1300 ............................................................................................................. A-5
A.2 SA-1110 to PXA250 Software Migration Issues ............................................................... A-5
A.2.1 Software Compatibility.......... ...... ....... ...................................... ....... ...... ....... ...... .. A-6
A.2.2 Address space..................................................................................................... A-6
A.2.3 Page Table Changes ........................................................................................... A-6
A.2.4 Configuration registers.........................................................................................A-6
A.2.5 DMA..................................................................................................................... A-7
A.3 Using New PXA250 Features ........................................................................................... A-7
A.3.1 Intel® XScale™ Microarchitecture....................................................................... A-8
A.3.2 Debugging ........................................................................................................... A-8
A.3.3 Cache Attributes .................................................................................................. A-8
A.3.4 Other features...................................................................................................... A-8
A.3.5 Conclusion........................................................................................................... A-9
B Example Form Factor Reference Design Schematic Diagrams ............................................ B-1
B.1 Notes ................................................................................................................................ B-1
B.2 Schematic Diagrams.........................................................................................................B-1
C BBPXA2xx Development Baseboard Schematic Diagram .................................................... C-1
C.1 Schematic Diagram ..........................................................................................................C-1
D PXA250 Processor Card Schemat ic Diagra m .........................................................................D-1
D.1 Schematic Diagram ..........................................................................................................D-1
E PXA21 0 Processor Card Schematic Diagram ......................................................................... E-1
E.1 Schematic Diagram .......................................................................................................... E-1
PXA250 and PXA210 Applications Processors Design Guide v
Contents
Figures
1-1 Applications Processor Block Diagram......................................................................................1-2
1-2 PXA250 Applications Process or................................ ...... ...... ....... ...... ....... ...... ....... ...... ...........1-11
1-3 PXA210 Applications Process or................................ ...... ...... ....... ...... ....... ...... ....... ...... ...........1-15
2-1 General Memory Interface Configuration ..................................................................................2-2
2-2 SDRAM Memory System Example............................................................................................2-4
2-3 32-Bit Variable Latency I/O Read Timing (Burst-of-Four, One Wait Cycle Per Beat)..............2-10
2-4 Expansion Card External Logic for a Two-Socket Configuration.............................................2-12
2-5 Expansion Card External Logic for a One-Socket Configuration.............................................2-13
2-6 Alternate Bus Master Mode.....................................................................................................2-15
2-7 Variable Latency I/O................................................................................................................2-16
2-8 CS, CKE, DQM, CLK, MA minimum loading topology.............................................................2-17
2-9 CS, CKE, DQM, CLK, MA Maximum Loading Topology .........................................................2-17
2-10MD Minimum Loading Topology..............................................................................................2-17
2-11MD maximum loading topology ...............................................................................................2-18
3-1 Single Panel Monochrome Passive Display Typical Connection ..............................................3-3
3-2 Passive Monochrome Single Panel Displays, Double-Pixel Data Typical Connection..............3-3
3-3 Passive Monochrome Dual Panel Displays Typical Connection ...............................................3-4
3-4 Passive Color Single Panel Displays Typical Connection.........................................................3-4
3-5 Passive Color Dual Panel Displays Typical Connection............................................................3-5
3-6 Active Color Display Typical Connection...................................................................................3-7
4-1 Self Powered Device .................................................................................................................4-1
5-1 Applications Processor MMC and SDCard Signal Connections................................................5-3
5-2 Applications Processor MMC to SDCard Simplified Signal Connection....................................5-5
6-1 AC97 connection .......................................................................................................................6-1
7-1 Linear Technology DAC with I2C Interface ...............................................................................7-2
7-2 Using an Analog Switch to Allow a Second CF Card ................................................................7-3
2
7-3 I
C Pull-Ups and Pull-Downs.....................................................................................................7-3
8-1 Power-On Reset Timing ..........................................................................................................8-12
8-2 Hardware Reset Timing...........................................................................................................8-13
8-3 GPIO Reset Timing .................................................................................................................8-13
8-4 Sleep Mode Timing..................................................................................................................8-14
8-5 Example Form Factor Reference Design Power System Design............................................8-22
9-1 JTAG/Debug Port Wiring Diagram ............................................................................................9-1
Tables
1-1 Revision History.........................................................................................................................1-1
1-2 Related Documentation .............................................................................................................1-1
1-3 Signal Pin Descriptions..............................................................................................................1-4
1-4 PXA250 Applications Processor Pinout — Ballpad Number Order .........................................1-12
1-5 PXA210 Applications Processor Pinout — Ballpad Number Order .........................................1-16
2-1 Memory Address Map ...............................................................................................................2-3
2-2 SDRAM Memory Types Supported by the Applications Processor...........................................2-5
2-3 Normal Mode Memory Address Mapping..................................................................................2-6
2-4 Applications Processor Compatibility Mode Address Line Mapping..........................................2-7
2-5 Valid Booting Configurations Based on Package Type.............................................................2-8
2-6 BOOT_SEL Definitions..............................................................................................................2-8
vi PXA250 and PXA210 Applications Processors Design Guide
Contents
2-7 SRAM / ROM / Flash / Synchronous Fast Flash AC Specifications ..........................................2-9
2-8 Variable Latency I/O Interface AC Specifications....................................................................2-10
2-9 Card Interface (PCMCIA or Compact Flash) AC Specifications..............................................2-13
2-10Minimum and Maximum Trace Lengths for the SDRAM Signals.............................................2-18
3-1 LCD Controller Data Pin Utilization............................................................................................3-1
3-2 Passive Display Pins Required..................................................................................................3-2
3-3 Active Display Pins Required.....................................................................................................3-6
3-4 PXA250 LCD Controller Ball Positions ......................................................................................3-7
5-1 MMC Signal Description ............................................................................................ ....... .........5-1
5-2 SDCard Socket Signals.............................................................................................................5-2
5-3 MMC Controller Supported Sockets and Dev ices ..................... ....................................... ...... ...5-2
5-4 SDCard Pull-up and Pull-down Resistors..................................................................................5-6
5-5 MMC Pull-up and Pull-down Resistors ......................................................................................5-6
7-1 I2C Signal Description ...............................................................................................................7-1
8-1 Voltage, Temperature, and Frequency Electrical Specifications ...............................................8-1
8-2 Absolute Maximum Ratings.......................................................................................................8-2
8-3 Power Consumption Specifications...........................................................................................8-3
8-4 32.768 kHz Oscillator Specifications .........................................................................................8-4
8-5 3.6864 MHz Oscillator Specifi ca tio ns .............................................. ....... ...... ....... ...... ....... ...... ...8-5
8-6 PXA250 and PXA210 VCCN vs. VCCQ....................................................................................8-6
8-7 Power-On Timing Specificat ion s... ...... ....... ...................................... ....... ...... ....... ...... ....... ...... .8-12
8-8 Hardware Reset Timing Specifications....................................................................................8-13
8-9 GPIO Reset Timing Specifications ..........................................................................................8-14
8-10Sleep Mode Timing Specifications...........................................................................................8-14
8-11SRAM / ROM / Flash / Synchronous Fast Flash AC Specifications (3.3 V) ............................8-15
8-12Variable Latency I/O Interface AC Specifications (3.3 V)........................................................8-16
8-13Card Interface (PCMCIA or Compact Flash) AC Specifications (3.3 V) ..................................8-16
8-14Synchronous Memory Interface AC Specifications (3.3 V)......................................................8-17
8-15SRAM / ROM / Flash / Synchronous Fast Flash AC Specifications (2.5 V) ............................8-18
8-16Variable Latency I/O Interface AC Specifications (2.5 V)........................................................8-19
8-17Card Interface (PCMCIA or Compact Flash) AC Specifications (2.5 V) ..................................8-19
8-18Synchronous Memory Interface AC Specifications (2.5 V)......................................................8-20
PXA250 and PXA210 Applications Processors Design Guide vii
Contents
viii PXA250 and PXA210 Applications Proc ess ors D esig n Guide

Introduction 1

T a ble 1-1. Revision History
Date Revision Description
Nov 2000 0.1 Initial Release: RS-Intel Nov 2000 0.2 Second draft
Jan 2001 0.3
May 2001 0.6 Added reference to PXA210 and performed editorial clean-up.
February 2002 1.0 Public Release
Corrected name of FFRTS in Table 1-4. Reorganized Table 1-4 and Table 1-5 for readability.
This document presents design recommendations, board schematics, and debug recommendations for the Intel® PXA250 and PXA210 applications processors. The PXA250 applications processor is the 32-bit version of the device and the PXA210 applications processor is the 16-bit version. This document refers to both versions as the applications processor. When differences are discussed, the specific applications processor is called by name.
The guidelines presented in this document ensure maximum flexibility for board designers, while reducing the risk of board-related issues. Use the schematics in Appendix B, “Example Form
Factor Reference Design Schematic Diagrams” as a reference for your own design. While the
included schematics cover a specific design, the core schematics remain the same for most PXA250 and PXA210 applications processor based platforms. Consult the debug recommendations when debugging an applications processor based system. To ensure the correct implementation of the debug port (refer to Section 9 for more information), these debug recommendations should be understood before completing board design, in addition to other debug features.
®
PXA250 Platform Design Guide
T a ble 1-2. Related Documentation
Document Title Order Number
Intel® PXA250 and PXA210 Applications Processors Developer’s Manual 278522 Intel® PXA250 and PXA210 Applications Processors Electrical, Mechanical,
and Thermal Specification
278524

1.1 Functional Overview

The PXA250 and PXA210 applications process ors are the f irst integr ated-s ystem-on -a-chip des ign based on the Intel® XScale™ microarchitecture. The PXA250 and PXA210 applications processors integrate the Intel® XScale™ microarchitecture core with many peripherals to let you design products for the handheld market.
Figure 1-1 on page 1-2 is a block diagram of the applications processor.
PXA250 and PXA210 Applications Processors Design Guide 1-1
Introduction
s
Figure 1-1. Applications Processor Block Diagram
RTC
OS Timer
PWM(2)
Int.
Controller
Clocks &
Power Man.
I2S
I2C
AC97
UART1
General Purpose I/O
UART2
Slow IrDA
Fast IrDA
SSP USB
Client MMC
and Bridge
Peripheral Bus
DMA Controller
Color or
Grayscale
LCD
Controller
System Bus
Megacell
Core
3.6864 MHz
Osc
32.768 KHz Osc
Memory
Controller
Variable
Latency I/O
Control
PCMCIA
& CF
Control
Dynamic
Memory
Control
Static
Memory
Control
ASIC
XCVR
SDRAM/ SMROM
4 banks
ROM/ Flash/ SRAM
4 banks
Socket 0 Socket 1
A8651-01
The PXA250 applications processor package is: 256 pin, 17x17 mBGA – 32-b i t funct ionality . The PXA210 applications processor package is: 225 pin, 13x13 MMAP – 16-bit functionality, a subset of the PXA250 applications processor feature set.
Section 1.2.1, “Package Introduction” contains a breakdown of the features supported by the two
different packages.

1.2 Package Information

This section describes the package types, pinouts, and signal descriptions.

1.2.1 Package Introduction

Package features of the PXA250 applications processor are:
Core frequencies supported - 100 MHz - 400 MHz
1-2 PXA250 and PXA210 Applications Processors Design Guide
Introduction
System memory interface
—100MHz SDRAM — 4 MB to 256 MB of SDRAM memory — Support for 16, 64, 12 8, or 256 Mbit DRAM techno l o gies — 4 Banks of SDRAM, each supporting 64 MB of memory — Clock enable (1 CKE pin is provided to put the entire SDRAM interface into self refresh) — Supports as many as 6 static memory devices (SRAM, Flash, or VLIO)
PCMCIA/Compact Flash card control pins
LCD Controller pins
Full Function UART
Bluetooth UART
MMC Controller pins
SSP Pins
USB Client Pins
AC’97 Controller Pins
Standard UART Pins
2
I
C Controller pins
PWM pins
15 dedicated GPIOs pins
Integrated JTAG support
Package features of the PXA210 applications processor are:
Core frequencies supported 100 MHz, 133 MHz, 200 MHzSystem memory interface
— 100 MHz SDRAM, 16-bit only — 2 MB to 128 MB of SDRAM memory — Support for 16, 64, 12 8, or 256 Mbit DRAM techno l o gies — 2 Banks of SDRAM, each supporting 64 MB of memory — Supports as many as 6 static memory devices (SRAM, Flash, or VLIO)
Clock enable (1 CKE pin is provided to put the entire SDRAM interface into self refresh)
LCD Controller pins
Bluetooth UART
MMC Controller pins
SSP Pins
USB Client Pins
AC97 Con t roller Pins
Standard UART Pins
PXA250 and PXA210 Applications Processors Design Guide 1-3
Introduction
2
I
C Controller pins
PWM pins
2 dedicated GPIOs pins
Integrated JTAG support

1.2.2 Signal Pin Descriptions

Table 1-3 defines the signal descriptions for the applications processor.
Table 1-3. Signal Pin Descriptions (Sheet 1 of 7)
Name Type Description
Memory Controller Pins MA[25:0] OCZ Memory address bus. This bus signals the address requested for memory accesses. MD[15:0] ICOCZ Memory data bus. D[15:0] are used for 16-bit and 32-bit data modes.
Memory data bus. D[31:16]: These signals are the upper memory data bus address
MD[31:16] ICOCZ
nOE OCZ nWE OCZ Memory write enable. Connect this signal to the write enables of memory devices.
nSDCS[3:0] OCZ
DQM[3:0] OCZ
nSDRAS OCZ
nSDCAS OCZ
SDCKE[0] OC
SDCKE[1] OC
SDCLK[2:0] OCZ
bits. See Note [1]
Memory output enable. Connect this signal to the output enables of memory devices to control their data bus drivers.
SDRAM CS for banks 0 through 3. Connect these signals to the chip select (CS) pins for SDRAM. nSDCS0 is a three-state signal, while nSDCS1-3 are not three-state.
SDRAM DQM for data bytes 0 through 3. Connect these signals to the data output mask enables (DQM) for SDRAM.
SDRAM RAS. Connect this signal to the row address strobe (RAS) pins for all banks of SDRAM.
SDRAM CAS. Connect this signal to the column address strobe (CAS) pins for all banks of SDRAM.
SDRAM and/or Synchronous Static Memory/SDRAM-like synchronous Flash clock enable clock enable.
ConnectSDCKE[0] to the CKE pins of SMROM and SDRAM-timing Synchronous Flash.
The memory controller provides control regist er bits for deassertion of each SDCKE pin.
SDRAM device clock enable. Connect SDCKE[1] to the clock enable pins of SDRAM. It is de-asserted (held low)
during sleep. SDCKE[1] is always deasserted upon reset. The memory controller provides control regist er bits for deassertion of each SDCKE
pin. See Note [1]
Use these clocks to clock synchronous memory devices: SDCLK0 - connected to either SMROM or synchronous Flash devices SDCLK1 - connected to SDRAM banks 0/1 SDCLK2 - connected to SDRAM banks 2/3 See Note [1]
1-4 PXA250 and PXA210 Applications Processors Design Guide
Introduction
Table 1-3. Signal Pin Descriptions (Sheet 2 of 7)
Name Type Description
nCS[5]/ GPIO[33]
nCS[4]/ GPIO[80]
nCS[3]/ GPIO[79]
nCS[2]/ GPIO[78]
nCS[1]/ GPIO[15]
nCS[0] ICOCZ RD/nWR OCZ Read/Write for static interface. Intended for use as a steering signal for buffering logic
RDY/ GPIO[18]
MBGNT/GP[13] ICOCZ
MBREQ/GP[14] ICOCZ PCMCIA/CF Control Pins - PXA250 Applications Processor only
nPOE/ GPIO[48] ICOCZ
nPWE/ GPIO[49]
nPIOW/ GPIO[51]
nPIOR/ GPIO[50]
nPCE[2:1]/ GPIO[53, 52]
nIOIS16/ GPIO[57]
nPWAIT/ GPIO[56]
nPSKTSEL/ GPIO[54]
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
Static chip selects. These signals are chip selects to static memory devices such as ROM and Flash. They are individually programmable in the memory configuration registers. nCS[5:3] may be used with variable data latency variable latency I/O devices.
See Note [2]
Static chip select 0. This is the chip select for the boot memory. nCS[0] is a dedicated pin.
Variable Latency I/O Ready pin (input) See Note [2]
Memory Controller grant. (output) Notifies an external device that it has been granted the system bus.
Memory Controller alternate bus master request. (input) Allows an external device to request the system bus from the Memory Controller.
PCMCIA output enable. Output PCMCIA signal that performs reads from memory and attribute space.
See Note [2] PCMCIA write enable. Output signal that performs writes to memory and attribute
space. See Note [2]
PCMCIA I/O write. Output signal that performs write transactions to the PCMCIA I/O space.
See Note [2] PCMCIA I/O read. Output signal that performs read transactions from the PCMCIA I/O
space. See Note [2]
PCMCIA card enable. Output signals that selects a PCMCIA card. Bit one enables the high byte lane and bit zero enables the low byte lane.
See Note [2] I/O Select 16. Input signal from the PCMCIA card that indicates the current address is
a valid 16 bit wide I/O address. See Note [2]
PCMCIA wait. Input signal that is driven low by the PCMCIA card to extend the length of the transfers to/from the applications processor.
See Note [2] PCMCIA socket select. Output signal used by external steering logic to route control,
address, and data signals to one of the two PCMCIA sockets. When PSKTSEL is low, socket zero is selected. When PSKTSEL is high, socket one is selected. This signal has the same timing as address.
See Note [2]
PXA250 and PXA210 Applications Processors Design Guide 1-5
Introduction
Table 1-3. Signal Pin Descriptions (Sheet 3 of 7)
Name Type Description
nPREG/ GPIO[55]
LCD Controller Pins L_DD(15:0)/
GPIO[73:58] L_FCLK/
GPIO[74] L_LCLK/
GPIO[75] L_PCLK/
GPIO[76] L_BIAS/
GPIO[77] Full Function UART Pins FFRXD/
GPIO[34] FFTXD/
GPIO[39] FFCTS/
GPIO[35] FFDCD/
GPIO[36] FFDSR/
GPIO[37] FFRI/
GPIO[38] FFDTR/
GPIO[40] FFRTS/
GPIO[41] Bluetooth UART Pins BTRXD/
GPIO[42] BTTXD/
GPIO[43] BTCTS/
GPIO[44] BTRTS/
GPIO[45] MMC Controller Pins MMCMD ICOCZ Multimedia Card Command pin (I/O)
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
PCMCIA register select. Output signal that indicates the target address is attribute space, on a memory transaction. This signal has the same timing as address.
See Note [2]
LCD Controller display data See Note [2]
LCD Frame clock See Note [2]
LCD Line clock See Note [2]
LCD pixel clock See Note [2]
AC Bias Drive See Note [2]
Full Function UART Receive pin See Note [2]
Full Function UART Transmit pin See Note [2]
Full Function UART Clear-to-Send pin See Note [2]
Full Function UART Data-Carrier-Detect Pin See Note [2]
Full Function UART Data-Set-Ready Pin: See Note [2]
Full Function UART Ring Indicator Pin See Note [2]
Full Function UART Data-Terminal-Ready pin See Note [2]
Full Function UART Ready-to-Send pin See Note [2]
Bluetooth UART Receive pin See Note [2]
Bluetooth UART Transmit pin See Note [2]
Bluetooth UART Clear-to-Send pin See Note [2]
Bluetooth UART Data-Terminal-Ready pin See Note [2]
1-6 PXA250 and PXA210 Applications Processors Design Guide
Table 1-3. Signal Pin Descriptions (Sheet 4 of 7)
Name Type Description
MMDAT ICOCZ Multimedia Card Data Pin (I/O) MMCCLK/GP[6] ICOCZ MMC clock. (output) Clock signal for the MMC Controller. MMCCS0/GP[8] ICOCZ MMC chip select 0. (output) Chip select 0 for the MMC Controller. MMCCS1/GP[9] ICOCZ MMC chip select 1. (output) Chip select 1 for the MMC Controller. SSP Pins SSPSCLK/
GPIO[23] SSPSFRM/
GPIO[24] SSPTXD/
GPIO[25] SSPRXD/
GPIO[26] SSPEXTCLK/
GPIO[27] USB Client Pins USB_P IAOA USB Client port positive Pin of differential pair. USB_N IAOA USB Client port negative Pin of differential pair. AC97 Controller Pins BITCLK/
GPIO[28] SDATA_IN0/
GPIO[29] SDATA_IN1/
GPIO[32] SDATA_OUT/
GPIO[30] SYNC/
GPIO[31]
nACRESET OC
Standard UART and ICP Pins IRRXD/
GPIO[46]
IRTXD/ GPIO[47]
I2C Controller Pins
SCL ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
ICOCZ
Synchronous Serial Port Clock (output) See Note [2]
Synchronous serial port Frame Signal (output) See Note [2]
Synchronous serial port transmit (output) See Note [2]
Synchronous serial port receive (input) See Note [2]
Synchronous Serial port external clock (input) See Note [2]
AC97 Audio Port bit clock (output) See Note [2]
AC97 Audio Port data in (input) See Note [2]
AC97 Audio Port data in (input) See Note [2]
AC97 Audio Port data out (output) See Note [2]
AC97 Audio Port sync signal (output) See Note [2]
AC97 Audio Port reset signal (output) This pin is a dedicated output.
IrDA Receive signal (input). See Note [2]
IrDA Transmit signal (output). Transmit pin for both the SIR and FIR functions. See Note [2]
I2C clock (Bidirectional) Bidirectional signal. When it is driving, it functions as an open collector device and
requires a pull up resistor. As an input, it expects standard CMOS levels.
Introduction
PXA250 and PXA210 Applications Processors Design Guide 1-7
Introduction
Table 1-3. Signal Pin Descriptions (Sheet 5 of 7)
Name Type Description
I2C Data signal (bidirectional).
SDA ICOCZ
PWM Pins PWM[1:0]/
GPIO[17,16] Dedicated GPIO Pins
GPIO[1:0] ICOCZ
GPIO[14:2]) ICOCZ
GPIO[22:21] ICOCZ
Crystal Pins PXTAL IA Input connection for 3.6864 Mhz crystal PEXTAL OA Output connection for 3.6864 Mhz crystal TXTAL IA Input connection for 32.768 khz crystal TEXTAL OA Output connection for 32.768 khz crystal 48MHz/GP[7] ICOCZ 48 MHz clock. (output) Peripheral clock output derived from the PLL. RTCCLK/GP[10] I COC Z Real time clock. (output) HZ output derived from the 32kHz or 3.6864MHz output.
3.6MHz/GP[11] ICOCZ 3.6864 MHz clock. (output) Output from 3.6864 MHz oscillator. 32kHz/GP[12] ICOCZ 32 kHz clock. (output) Output from the 32 kHz oscillator. Miscellaneous Pins
BOOT_SEL [2:0]
PWR_EN OCZ
nBATT_FAULT IC
ICOCZ
IC
Bidirectional signal. When it is driving, it functions as an open collector device and requires a pull up resistor. As an input, it expects standard CMOS levels.
Pulse Width Modulation channels 0 and 1 (outputs) See Note [2]
General Purpose I/O: These two pins are contained in both the PXA250 applications processors. They are preconfigured at a hard reset (nRESET) as wakeup sources for both rising and falling edge detects.
These GPIOs do not have alternate functions and are intended to be used as the main external sleep wakeup stimulus.
General Purpose I/O See Note [1] See Note [2]
General Purpose I/O Additional general purpose I/O pins.
Boot programming select pins. These pins are sampled to indicate the type of boot device present per the following table;
BOOT_SEL[2:0] Description
000Asynchronous 32-bit ROM 001Asynchronous 16-bit ROM 100One 32-bit SMROM 101One 16 bit SMROM 110Two 16 bit SMROMs (32 bit bus) 111Reserved
Power Enable. Active high Output. PWR_EN enables the external power supply. Negating it signals the power supply
that the system is going into sleep mode and that the VDD power supply should be removed.
Battery Fault. Active low input. The assertion of nBATT_FAULT causes the applications processor
Mode.The applications processor is asserted. Use nBATT_F AUL T signal to flag a critical power failure, such as the main battery being removed. Minimum assertion time for nBATT_FAULT is 1ms.
will not recognize a wakeup event while this signal
and PXA210
to enter Sleep
1-8 PXA250 and PXA210 Applications Processors Design Guide
Introduction
Table 1-3. Signal Pin Descriptions (Sheet 6 of 7)
Name Type Description
VDD Fault. Active low input.
nVDD_FAULT IC
nRESET IC
nRESET_OUT OC
JTAG Pins
nTRST IC
TDI IC JTAG test interface data input. Note this pin has an internal pullup resistor.
TDO OCZ TMS IC JTAG test interface mode select. Note this pin has an internal pullup resistor.
TCK IC
TEST IC Test Mode. You should ground this pin. This pin is for manufacturing purposes only. TESTCLK I C Test Clock. Use this pin for test purposes only. An end user should ground this pin. Power and Ground Pins
VCC SUP
VSS SUP PLL_VCC SUP P ositive supply for PLLs and oscillators must be shorted to VCC.
PLL_VSS SUP Gr ound supply for the PLL. Must be connected to common ground plane on the PCB.
VCCQ SUP
VSSQ SUP
VCCN SUP
nVDD_FAULT causes the applications processor is ignored after a wakeup event until the power supply timer completes (approximately 10 ms). use the nVDD_FAUL T signal to flag a low battery . Minimum assertion time for nVDD_FAULT is 1 ms.
Hard reset. Active low input. nRESET is a level sensitive input which starts the processor from a known address. A
LOW level causes the current instruction to terminate abnormally, and all on-chip state to be reset. When nRESET is driven HIGH, the processor re-starts from address 0. nRESET must remain LOW until the power supply is stable and the internal 3.6864 MHz oscillator has come up to speed. While nRESET is LOW the processor performs idle cycles.
Reset Out. Active low output. This signal is asserted when nRESET is asserted and de-asserts after nRESET is
negated but before the first instruction fetch. nRESET_OUT is also asserted for “soft” reset events (sleep, watchdog reset, GPIO reset)
JTAG Test Interface Reset. Resets the JTAG/Debug port. If JTAG/Debug is used, drive nTRST from low to high either before or at the same time as nRESET. If JTAG is not used, nTRST must be either tied to nRESET or tied low. Intel recommends that a JTAG/Debug port be added to all systems for debug and download. See Chapter 9 for details.
JTAG test interface data output. Note this pin does NOT have an internal pullup resistor.
JTAG test interface reference Clock. TCK is the reference clock for all transfers on the JTAG test interface. NOTE: This pin needs an external pulldown resistor.
Positive supply for the internal logic. Connect this supply to the low voltage (.85 -
1.65v) supply on the PCB. Ground supply for the internal logic. Connect these pins to the common ground plane
on the PCB.
Positive supply for all CMOS I/O except memory bus and PCMCIA pins. Connect these pins to the common 3.3v supply on the PCB.
Ground supply for all CMOS I/O except memory bus and PCMCIA pins. Connect these pins to the common ground plane on the PCB.
Positive supply for memory bus and PCMCIA pins. Connect these pins to the common
3.3 V or 2.5 V supply on the PCB.
to enter Sleep Mode. nVDD_FAULT
PXA250 and PXA210 Applications Processors Design Guide 1-9
Introduction
Table 1-3. Signal Pin Descriptions (Sheet 7 of 7)
Name Type Description
VSSN SUP
BATT_VCC SUP
NOTES:
1. Not pinned out for the PXA210 applications processor.
2. GPIO Reset Operation: After any reset, these pins are configured as GPIO inputs by default. The input buffers for these pins are disabled to prevent current drain and must be enabled prior to use by clearing the Read Disable Hold (RDH) bit.
To use a GPIO pin as an alternate function, follow this sequence:
1) Program the pin to the desired direction (input or output) using the GPIO Pin Direction Registers (GPDR).
2) Enable the input buffer by clearing the RDH bit, described above.
3) If needed, select the desired alternate function by programming the proper bits in the GPIO Alternate Function Register (GAFR).
Ground supply for memory bus and PCMCIA pins. Connect these pins to the common ground plane on the PCB.
Backup battery connection. Connect this pin to the backup battery supply. If a backup battery is not required then this pin may be connected to the common 3.3v supply on the PCB.
1-10 PXA250 and PXA210 Applications Processors Design Guide
Figure 1-2. PXA250 Applications Processor
Introduction
PXA250 and PXA210 Applications Processors Design Guide 1-11
Introduction
T a ble 1-4. PXA250 Applications Processor Pinout — Ballpad Number Order (Sheet 1 of 3)
Ball # Signal Ball # Signal Ball # Signal
A1 VCCN F7 GPIO[10] L13 GPIO[2] A2 L_DD[13]/GPIO[71] F8 FFRTS/GPIO[41] L14 VSSQ A3 L_DD[12]/GPIO[70] F9 SSPSCLK/GPIO[23] L15 TEXTAL A4 L_DD[11]/GPIO[69] F10 FFDTR/GPIO[40] L16 TXTAL A5 L_DD[9]/GPIO[67] F11 VCC M1 MA[14] A6 L_DD[7]/GPIO[65] F12 GPIO[9] M2 MD[21] A7 GPIO[11] F13 BOOT_SEL[2] M3 MA[15] A8 L_BIAS/GPIO[77] F14 GPIO[8] M4 VCCN A9 SSPRXD/GPIO[26] F15 VSSQ M5 MD[1] A10 SDATA_OUT/GPIO[30] F16 VSSQ M6 MD[6] A11 SDA G1 MA[0] M7 MD[7] A12 FFDCD/GPIO[36] G2 VSSN M8 DQM[0] A13 FFRXD/GPIO[34] G3 nSDCS[2] M9 MD[8] A14 FFCTS/GPIO[35] G4 nWE M10 MD[15] A15 BTCTS/GPIO[44] G5 nOE M11 BATT_VCC A16 SDATA_IN1/GPIO[32] G6 nSDCS[1] M12 GPIO[22] B1 DQM[1] G7 VCC M13 nPREG/GPIO[55] B2 DQM[2] G8 VSSQ M14 VCCN B3 L_DD[15]/GPIO[73] G9 VCC M15 VSSN B4 GPIO[14] G10 VSSQ M16 nIOIS16/GPIO[57] B5 GPIO[13] G11 TESTCLK N1 MD[22] B6 GPIO[12] G12 TEST N2 VSSN B7 L_DD[3]/GPIO[61] G13 BOOT_SEL[1] N3 MA[16] B8 L_PCLK/GPIO[76] G14 VCCQ N4 MD[0] B9 SSPEXTCLK/GPIO[27] G15 GPIO[7] N5 VCCN B10 FFRI/GPIO[38] G16 BOOT_SEL[0] N6 MD[4] B11 FFDSR/GPIO[37] H1 MA[2] N7 VCCN B12 USB_N H2 MA[1] N8 nCS[0] B13 BTRXD/GPIO[42] H3 MD[16] N9 VCCN B14 BTRTS/GPIO[45] H4 VCCN N10 MD[13] B15 IRRXD/GPIO[46] H5 MD[17] N11 VCCN B16 MMDAT H6 MA[3] N12 DREQ[0]/GPIO[20] C1 RDY/GPIO[18] H7 VSSQ N13 VCCN C2 VSSN H8 VSS N14 DREQ[1]/GPIO[19] C3 L_DD[14]/GPIO[72] H9 VSS N15 GPIO[21] C4 VSSQ H10 VCC N16 nPWAIT/GPIO[56] C5 L_DD[8]/GPIO[66] H11 nTRST P1 MA[17]
1-12 PXA250 and PXA210 Applications Processors Design Guide
Introduction
Table 1-4. PXA250 Applications Processor Pinout — Ballpad Number Order (Sheet 2 of 3)
Ball # Signal Ball # Signal Ball # S ignal
C6 VCCQ H12 TCK P2 MA[19] C7 L_DD[2]/GPIO[60] H13 TMS P 3 VCCN C8 VSSQ H14 GPIO[6] P4 MA[25] C9 BITCLK/GPIO[28] H15 TDI P5 MA[23] C10 VCCQ H16 TDO P6 MD[24] C11 VSSQ J1 MA[7] P7 MD[26] C12 USB_P J2 VSSN P8 MD[27] C13 VCCQ J3 MA[6] P9 nCS[2]/GPIO[78] C14 V SSQ J4 MD[18] P10 MD[29] C15 IRTXD/GPIO[47] J5 MA[5] P11 MD[12] C16 V SS J6 MA[4] P12 MD[31] D1 SDCLK[2] J7 VCC P13 nPO E/ GPIO[ 48] D2 SDCLK[0] J8 VSS P 14 nPCE[1]/GPIO[52] D3 RDnWR J9 VSS P15 VSSN D4 VCCN J10 VSS Q P16 nPSKTSEL/GPIO[54] D5 L_DD[10]/GPIO[68] J11 GPIO[5] R1 MA[18] D6 L_DD[5]/GPIO[63] J12 GPIO[4] R2 VSSN D7 L_DD[1]/GPIO[59] J13 nRESET R3 MA[20] D8 L_LCLK/GPIO[75] J14 VSSQ R4 VSSN D9 SSPTXD/GPIO[25] J15 PLL_VCC R5 MA[22] D10 nA CRESET J16 PLL_VSS R6 VSSN D11 SCL K1 MA[8] R7 MD[25] D12 PWM[1]/GPIO[17] K2 MA[9] R8 VSSN D13 B TTXD/GPIO[43] K3 MD[19] R9 MD[10] D14 MMCMD K4 VCCN R10 VSSN D15 VCCQ K5 MA[10] R11 MD[30] D16 VSSQ K6 MA[11] R12 VSSN E1 nSDRAS K7 VSSQ R13 nCS[4]/GPIO[80] E2 VSSN K8 VCC R14 VSSN E3 SDCKE[1] K9 VSSQ R15 nPIOW/GPIO[51] E4 SDCKE[0] K10 VCC R16 nPCE[2]/GPIO[53] E5 L_DD[6]/GPIO[64] K11 nRESET_OUT T1 VSS E6 L_DD[4]/GPIO[62] K 12 nBATT_FAULT T2 VCCN E7 L_DD[0]/GPIO[58] K13 nVDD_FAULT T3 MD[23] E8 L_FCLK/GPIO[74] K 14 GPIO[3] T4 MA[21] E9 SSPSFRM/GPIO[24] K15 PXTAL T5 MA[24] E10 SDATA_IN0/GPIO[29] K16 PEXTAL T6 MD[3] E11 SYNC/GPIO[31] L1 MA[12] T7 M D[5]
PXA250 and PXA210 Applications Processors Design Guide 1-13
Introduction
T a ble 1-4. PXA250 Applications Processor Pinout — Ballpad Number Order (Sheet 3 of 3)
Ball # Signal Ball # Signal Ball # Signal
E12 PWM[0]/GPIO[16] L2 VSSN T8 nCS[1]/GPIO[15] E13 FFTXD/GPIO[39] L3 MA[13] T9 nCS[3]/GPIO[79] E14 VCCQ L4 MD[20] T10 MD[9] E15 VSSQ L5 MD[2] T11 MD[11] E16 VSSQ L6 VCC T12 MD[14] F1 nSDCS[0] L7 DQM[3] T13 nCS[5]/GPIO[33] F2 nSDCS[3] L8 MD[28] T14 nPWE/GPIO[49] F3 nSDCAS L9 VCC T15 nPIOR/GPIO[50] F4 VCCN L10 GPIO[0] T16 VCCN F5 SDCLK[1] L11 PWR_EN F6 VSSQ L12 GPIO[1]
1-14 PXA250 and PXA210 Applications Processors Design Guide
Figure 1-3. PXA210 Applications Processor
φ
Introduction
PXA250 and PXA210 Applications Processors Design Guide 1-15
Introduction
T a ble 1-5. PXA210 Applications Processor Pinout — Ballpad Number Order (Sheet 1 of 2)
Ball # Signal Ball # Signal Ball # Signal
A1 DQM[1] F1 VSSN L1 VSSN A2 L_DD[14]/GPIO[72] F2 nSDCS[0] L2 VCCN A3 L_DD[10]/GPIO[68] F3 nSDRAS L3 MA[12] A4 VSSQ F4 nSDCS[1] L4 MA[13] A5 L_DD[6]/GPIO[64] F5 VCC L5 MA[11] A6 L_DD[2]/GPIO[60] F6 L_DD[8]/GPIO[66] L6 VSSQ A7 L_LCLK/GPIO[75] F7 L_FCLK/GPIO[74] L7 MD[2] A8 SPPSCLK/GPIO[23] F8 SSPRXD/GPIO[26] L8 MD[6] A9 SPPEXTCLK/GPIO[27] F9 VCC L9 VSSN A10 nACRESET F10 FFTXD/GPIO[39] L10 MD[11] A11 PWM[1]/GPIO[17] F11 VCC L11 BATT_VCC A12 VSSQ F12 VSSQ L12 GPIO[54] A13 FFRXD/GPIO[34] F13 TESTCLK L13 GPIO[55] A14 BTCTS/GPIO[44] F14 BOOT_SEL[0] L14 GPIO[57] A15 IRRXD/GPIO[46] F15 TEST L15 GPIO[0] B1 RDY/GPIO[18] G1 MA[0] M1 MA[14] B2 VSSN G2 nOE M2 MA[15] B3 L_DD[13]/GPIO[71] G3 nWE M3 VCCN B4 L_DD[9]/GPIO[67] G4 VCCN M4 MA[16] B5 VSSQ G5 VSSN M5 VCCN B6 L_DD[3]/GPIO[61] G6 RDnW R M6 VSSN B7 L_PCLK/GPIO[76] G7 VSS M7 MD[3] B8 VSSQ G8 VSS M8 MD[7] B9 BITCLK/GPIO[28] G9 VSS M9 nCS[1]/GPIO[15] B10 SDA G10 BTRXD/GPIO[42] M10 MD[10] B11 VSSQ G11 nTRST M11 MD[ 13] B12 USB_N G12 TDI M12 GPIO[48] B13 BTRTS/GPIO[45] G13 TCK M13 GPIO[52] B14 IRTXD/GPIO[47] G14 TMS M14 VSSN B15 MMDAT G15 TDO M15 GPIO[56] C1 SDCKE[1] H1 VCCN N1 VSSN C2 SDCKE[0] H2 VSSN N2 MA[18] C3 VCCN H3 MA[2] N3 VSS1 C4 L_DD[12]/GPIO[70] H4 MA[1] N4 MA[22] C5 VCCQ H5 VCC N5 MA[24] C6 L_DD[4]/GPIO[62] H6 VSSQ N6 VCCN C7 L_BIAS/GPIO[77] H7 VSS N7 VCC
1-16 PXA250 and PXA210 Applications Processors Design Guide
Introduction
Table 1-5. PXA210 Applications Processor Pinout — Ballpad Number Order (Sheet 2 of 2)
Ball # Signal Ball # Signal Ball # S ignal
C8 VCCQ H8 VSS N8 VSSN C9 SDATA_IN0/GPIO[29] H9 VSS N9 DQM[0] C10 PWM[0]/GPIO[16] H10 VSSQ N10 VCCN C11 USB_P H11 VCC N11 MD[12] C12 BTTXD/GPIO[43] H12 VSSQ N12 VSSN C13 VSSQ H13 VCC N13 nCS[5]/GPIO[33] C14 V SS H14 PLL_VCC N14 GPIO[53] C15 VCCQ H15 PLL_VSS N15 VCCN D1 VCC J1 MA[5] P1 MA[17] D2 VSSQ J2 MA[6] P2 VSSN D3 SDCLK[1] J3 VSSN P3 VCCN D4 L_DD[15]/GPIO[73] J4 MA[4] P4 MA[23] D5 VCC J5 MA[3] P5 MD[0] D6 L_DD[5]/GPIO[63] J6 VSSQ P6 VSSN D7 L_DD[0]/GPIO[58] J7 VSS1 P7 MD[4] D8 SPPSFRM/GPIO[24] J8 VSS1 P8 VCCN D9 SDATA_OUT/GPIO[30] J9 VSS1 P9 nCS[2]/GPIO[78] D10 SCL J10 VSSQ P10 MD[8] D11 SDATA_IN1/GPIO[32] J11 nRESET P11 VCCn D12 B OOT_SEL[1] J12 nRESET_OUT P12 MD[15] D13 VSSQ J13 P W R_EN P13 VCCN D14 VSSQ J14 nVDD_FAULT P14 GPIO[50] D15 VSSQ J15 nBATT_FAULT P15 VSSQ E1 nSDCAS K1 MA[8] R1 MA[19] E2 VCCN K2 MA[9] R2 MA[20] E3 VSSN K3 MA[10] R3 MA[21] E4 SDCLK[0] K4 MA[7] R4 MA[25] E5 L_DD[11]/GPIO[69] K5 VCCN R5 MD[1] E6 L_DD[7]/GPIO[65] K6 VCC R6 VCCN E7 L_DD[1]/GPIO[59] K7 VSSQ R7 MD[5] E8 SSPTXD/GPIO[25] K8 VCC R8 nCS[0] E9 SYNC/GPIO[31] K9 VSSQ R9 nCS[3]/GPIO[79] E10 VCCQ K10 VCC R10 MD[9] E11 MMCMD K11 GPIO[1] R11 VSSN E12 VCCQ K12 TEX TAL R12 MD[14] E13 VSSQ K13 TXTAL R13 nCS[4]/GPIO[80] E14 VSSQ K14 PEXTAL R14 nPWE/GPIO[49] E15 BOOT_SEL[2] K15 PXTAL R15 GPIO[51]
PXA250 and PXA210 Applications Processors Design Guide 1-17
Introduction
1-18 PXA250 and PXA210 Applications Processors Design Guide

System Memory Interface 2

This section is the design guidelines for the system memory interface.

2.1 Overview

The external memory bus interface for the applications processor supports:
100 MHz SDRAM at 3.3 V
100 MHz SDRAM at 2.5 V
Synchronous and asynchronous Burst mode and Page mode Flash
Synchronous Mask ROM (SMROM)
Page Mode ROM
SRAM
SRAM-like Variable Latency I/O (VLIO)
PCMCIA expansion memory
Compact Flash
Use the memory interface configuration registers to program the memory types. Refer to
Figure 1-1, “Applicati ons Processor Block Diagra m” on page 1-2 fo r the block diagram of the
Memory Controller configuration. Refer to Figure 2-1, “Memory Address Map” on page 2-3 for the applications processor memory map. Refer to Table 2-3, “Normal Mode Memory Address
Mapping” on page 2-6 for alternate mode address mapping.
PXA250 and PXA210 Applications Processors Design Guide 2-1
System Memory Interface
Figure 2-1. General Memory Interface Configuration
PXA250
Memory
Controller
Interface
nSDCS<0>
nSDCS<1> SDCLK<1>, SDCKE<1>
nSDCS<2>
nSDCS<3> SDCLK<2>, SDCKE<1>
DQM<3:0>
nSDRAS, nSDCAS
MD<31:0>
MA<25:0>
Card Control
nCS<0>
nCS<1>
nCS<2>
SDCLK<0>,
nCS<3>
SDCKE<0>
SDRAM Partition 0
SDRAM Partition 1
SDRAM Partition 2
SDRAM Partition 3
Static Bank 0
Static Bank 1
Static Bank 2
Static Bank 3
SDRAM Memory Interface
Up to 4 partitions of SDRAM memory (16- or 32-bit wide)
Buffers and
Transceivers
Static Memory or Variable Latency I/O Interface
Up to 6 banks of ROM, Flash,
SRAM, Variable Latency I/O, (16- or 32-bit wide)
NOTE: Static Bank 0 must be populated by
“bootable” memory
Card Memory Interface
Up to 2-socket support. Requires some external buffering.
nCS<4>
nCS<5>
RDY
Static Bank 4
Static Bank 5
Synchronous Static Memory Interface
Up to 4 banks of synchronous static memory (nCS<3:0>).
(16- or 32-bit wide)
NOTE: Static Bank 0 must be populated by “bootable” memory
2-2 PXA250 and PXA210 Applications Processors Design Guide
T a ble 2-1. Memory Address Map
0x6000 0000 Reserved Address Space 0x5C00 0000 Reserved Addres s Space 0x5800 0000 Reserved Address Space 0x5400 0000 Reserved Address Space 0x5000 0000 Reserved Address Space 0x4C00 0000 Reserved Addres s Space 0x4800 0000 Memory Mapped Registers (Memory Ctl) 0x4400 0000 Memory Mapped Registers (LCD) 0x4000 0000 Memory Mapped Registers (Peripherals) 0x3000 0000 PCMCIA/CF – Slot 1 0x2000 0000 PCMCIA/CF – Slot 0 0x1C00 0000 Reserved Addres s Space 0x1800 0000 Reserved Address Space 0x1400 0000 Static Chip Select 5 0x1000 0000 Static Chip Select 4 0x0C00 0000 Static Chip Select 3 0x0800 0000 Static Chip Select 2 0x0400 0000 Static Chip Select 1 0x0000 0000 Static Chip Select 0
System Memory Interface

2.2 SDRAM Interface

The applications processor supports an SDRAM interface at a maximum frequency of 100 MHz. The SDRAM Interface supports four 16-bit or 32-bit wide partitions of SDRAM. Each partition is allocated 64 MBytes of the internal memory map. However, the actual size of each partition is dependent on the parti cular SDRAM c onfiguration used. The four partitions are divided into two partition pairs: the 0/1 pair and the 2/3 pair. Both partitions within a pair (for example, partition 0 and partition 1) must be identical in size and configuration; however, th e two pairs can be different. For example, the 0/1 pair can be 100 MHz SDRAM on a 32-bit data bus, while the 2/3 pair can be 50 MHz SDRAM on a 16-bit data bus.
Note: For proper SDRAM operation above 50 MHz, 22 ohm series resistors must be placed on the
memory address lines.

2.3 SDRAM memory wiring diagram

Figure 2-2, “SDRAM Memory System Example” on page 2-4 is a wiring diagram example that
shows a system using 1Mword x 16-bit x 4-bank SDRAM devices for a total of 48 Mbytes. Refer to Section 2.5, “SDRAM Address Mapping” on page 2-6 to determine the individual SDRAM component address.
PXA250 and PXA210 Applications Processors Design Guide 2-3
System Memory Interface
Figure 2-2. SDRAM Memory System Example
nSDCS(3:0) nSDRAS, nSDCAS, nWE, CKE(1)
SDCLK(2:1) MA(23:10)
MD(31:0) DQM(3:0)
15:0
31:16
2 3
0
1
0 1
0
1
4Mx16
SDRAM
nCS nRAS nCAS nWE CKE CLK addr(11:0) BA(1:0) DQML DQMH DQ(15:0)
4Mx16
SDRAM
nCS nRAS nCAS nWE CKE CLK addr(11:0) BA(1:0) DQML DQMH DQ(15:0)
1
1
1
1
4Mx16
SDRAM
nCS nRAS nCAS nWE CKE CLK addr(11:0) BA(1:0) DQML DQMH DQ(15:0)
4Mx16
SDRAM
nCS nRAS nCAS nWE CKE CLK addr(11:0) BA(1:0) DQML DQMH DQ(15:0)
21:10 23:22
2
2
2
2
4Mx16
SDRAM
nCS nRAS nCAS nWE CKE CLK addr(11:0) BA(1:0) DQML DQMH DQ(15:0)
4Mx16
SDRAM
nCS nRAS nCAS nWE CKE CLK addr(11:0) BA(1:0) DQML DQMH DQ(15:0)
2-4 PXA250 and PXA210 Applications Processors Design Guide
Loading...
+ 160 hidden pages