Intel Core i7-900 Extreme Edition, Core i7-900 Datasheet

Intel® Core™ i7-900 Desktop Processor Extreme Edition Series
®
and Intel
Core™ i7-900 Desktop
Processor Series
Datasheet, Volume 1
Document # 320834-004
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELA TING T O FITNES S FOR A PARTICULAR PURPOSE, MERCHANT ABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel
reserves these for future definition and shall have no responsibility whatsoev er for con f licts or incompatibi lities aris ing from future changes to them.
The Intel Core™ i7-900 desktop processor Extreme Edition series and Intel Core™ i7-900 desktop processor series may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/processor_number for details.
Hyper-Threading Technology requires a computer system with a processor supporting HT Technology and an HT Technology­enabled chipset, BIOS and operat ing syste m. Performance will vary de pending on the specific hardware and software you use. For more information including details on which processors support HT Technology, see
http://www.intel.com/products/ht/hyperthreading_more.htm
®
64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled
Intel
®
for Intel depending on your hardware and software configur ations. See www .intel.com/info/em64t for more information including details on which processors support Intel
± Intel for some uses, certain platform software, enabled for it. Functionality, performance or other benefit will vary depending on hardware and software configurations. Intel Virtualization Technology-enabled VMM applications are currently in development.
64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary
®
®
Virtualization T echnology requires a computer syste m with a processor, chipset, BIOS, virtual machine monitor (VMM) and
64 or consult with your system vendor for more information.
Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers E xecute Disable Bit functionality.
Enhanced Intel® SpeedStep Technology. See the Processor Spec Finder Intel® Turbo Boost Technology requires a PC with a processor with Intel Turbo Boost Technology capability. Intel Turbo Boost
Technology performance varies depending on hardware, software and overall system configuration. Check with your PC manufacturer on whether your system delivers Intel Turbo Boost Technology. For more information, see www.intel.com
or contact your Intel representative for more information.
. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Intel, Intel SpeedStep, Intel Core, and the Intel logo are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2008–2010 Intel Corporation.
2 Datasheet

Contents

1Introduction..............................................................................................................9
1.1 Terminology .....................................................................................................10
1.2 References.......................................................................................................11
2 Electrical Specifications...........................................................................................13
2.1 Intel
2.2 Power and Ground Lands....................................................................................13
2.3 Decoupling Guidelines........................................................................................13
2.4 Processor Clocking (BCLK_DP, BCLK_DN).............................................................14
2.5 Voltage Identification (VID) . ...............................................................................14
2.6 Reserved or Unused Signals................................................................................17
2.7 Signal Groups....................... ...................................................................... .. .. ..18
2.8 Test Access Port (TAP) Connection.......................................................................19
2.9 Platform Environmental Control Interface (PECI) DC Specifications....................... .. ..20
2.10 Absolute Maximum and Minimum Ratings......................................................... .. ..21
2.11 Processor DC Specifications................................................................................22
3 Package Mechanical Specifications ..........................................................................31
3.1 Package Mechanical Drawing.................... .. .........................................................31
3.2 Processor Component Keep-Out Zones....................................................... .. .. .. .. ..34
3.3 Package Loading Specifications ....................................... ... .. .. ........................... ..34
3.4 Package Handling Guidelines............................... .. ........................... .. ... .. ............34
3.5 Package Insertion Specifications................................................... .. .....................34
3.6 Processor Mass Specification...............................................................................35
3.7 Processor Materials............................................................................................35
3.8 Processor Markings............................................................................................35
3.9 Processor Land Coordinates................................................................................36
4Land Listing.............................................................................................................37
5 Signal Descriptions..................................................................................................67
6 Thermal Specifications ............................................................................................71
6.1 Package Thermal Specifications.................................................... .. .. .. ... ..............71
6.2 Processor Thermal Features................................................................................76
6.3 Platform Environment Control Interface (PECI)......................................................79
6.4 Storage Conditions Specifications .......... ..............................................................82
®
QPI Differential Signaling..........................................................................13
2.3.1 VCC, VTTA, VTTD, VDDQ Decoupling.........................................................14
2.4.1 PLL Power Supply...................................................................................14
2.9.1 DC Characteristics..................................................................................20
2.9.2 Input Device Hysteresis ..........................................................................21
2.11.1 DC Voltage and Current Specification........................................................23
2.11.2 VCC Overshoot Specification....................................................................29
2.11.3 Die Voltage Validation..................................... .. ............................ .. .. .. ....30
6.1.1 Thermal Specifications............................................................................71
6.1.2 Thermal Metrology .................................................................................75
6.2.1 Processor Temperature ...........................................................................76
6.2.2 Adaptive Thermal Monitor........................................................................76
6.2.3 THERMTRIP# Signal ...............................................................................79
6.3.1 Introduction ..........................................................................................79
6.3.2 PECI Specifications.................................................................................81
Datasheet 3
7Features..................................................................................................................83
7.1 Power-On Configuration (POC).............................................................................83
7.2 Clock Control and Low Power States...................................................... ... .. .. .. ......83
7.2.1 Thread and Core Power State Descriptions.................................................84
7.2.2 Package Power State Descriptions.............................................................85
7.3 Sleep States .....................................................................................................86
7.4 ACPI P-States (Intel
7.5 Enhanced Intel® SpeedStep® Technology .............................................................87
8 Boxed Processor Specifications................................................................................89
8.1 Introduction......................................................................................................89
8.2 Mechanical Specifications....................................................................................90
8.2.1 Boxed Processor Cooling Solution Dimensions.............................................90
8.2.2 Boxed Processor Fan Heatsink Weight .......................................................92
8.2.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly .....92
8.3 Electrical Requirements .................................................. .. ... .. ........................... ..92
8.3.1 Fan Heatsink Power Supply.................................. ............................ .. .. .. ..92
8.4 Thermal Specifications...................................................... ... .. .. ...........................93
8.4.1 Boxed Processor Cooling Requirements......................................................93
8.4.2 Variable Speed Fan............................................... ... .. ....................... .. .. ..95
®
Turbo Boost Technology) .....................................................86

Figures

1-1 High-Level View of Processor Interfaces................................................................. 9
2-1 Active ODT for a Differential Link Example ............................................................13
2-2 Input Device Hysteresis.......................................... .. ........................... ... .. .. ........21
2-3 VCC Static and Transient Tolerance Load Lines ......................................................25
2-4 VTT Static and Transient Tolerance Load Line ........................................................27
2-5 VCC Overshoot Example Waveform......................................................................30
3-1 Processor Package Assembly Sketch.....................................................................31
3-2 Processor Package Drawing (Sheet 1 of 2) ............................................................32
3-3 Processor Package Drawing (Sheet 2 of 2) ............................................................33
3-4 Processor Top-side Markings ...............................................................................35
3-5 Processor Land Coordinates and Quadrants (Bottom View).................................... ..36
6-1 Processor Thermal Profile....................................................................................73
6-2 Thermal Test Vehicle (TTV) Case Temperature (TCASE) Measurement Location..........75
6-3 Frequency and Voltage Ordering........................ .. ........................... .. .. .. ...............77
7-1 Power States....................................................... .. .. ....................... .. .. ...............84
8-1 Mechanical Representation of the Boxed Processor .................................................89
8-2 Space Requirements for the Boxed Processor (side view) ........................................90
8-3 Space Requirements for the Boxed Processor (top view) .........................................91
8-4 Space Requirements for the Boxed Processor (overall view) ....................................91
8-5 Boxed Processor Fan Heatsink Power Cable Connector Description............................92
8-6 Baseboard Power Header Placement Relative to Processor Socket.............................93
8-7 Boxed Processor Fan Heatsink Airspace Keepout Requirements (top view).................94
8-8 Boxed Processor Fan Heatsink Airspace Keepout Requirements (side view)................94
8-9 Boxed Processor Fan Heatsink Set Points..............................................................95
4 Datasheet

Tables

1-1 References.......................................................................................................11
2-1 Voltage Identification Definition...........................................................................15
2-2 Market Segment Selection Truth Table for MS_ID[2:0]...........................................17
2-3 Signal Groups............................................ ... .. ....................... .. .. .......................18
2-4 Signals with ODT...............................................................................................19
2-5 PECI DC Electrical Limits ....................................................................................20
2-6 Processor Absolute Minimum and Maximum Ratings ...............................................22
2-7 Voltage and Current Specifications.......................................................................23
2-8 VCC Static and Transient Tolerance .....................................................................24
2-9 VTT Voltage Identification (VID) Definition............................................................25
2-10 VTT Static and Transient Tolerance......................................................................26
2-11 DDR3 Signal Group DC Specifications...................................................................27
2-12 RESET# Signal DC Specifications.........................................................................28
2-13 TAP Signal Group DC Specifications .....................................................................28
2-14 PWRGOOD Signal Group DC Specifications............................................................28
2-15 Control Sideband Signal Group DC Specifications...................................................29
2-16 VCC Overshoot Specifications..............................................................................29
3-1 Processor Loading Specifications .........................................................................34
3-2 Package Handling Guidelines........................................................ .. .. .. ... ..............34
3-3 Processor Materials............................................................................................35
4-1 Land Listing by Land Name.................................................................................37
4-2 Land Listing by Land Number..............................................................................52
5-1 Signal Definitions .................................................... .. ............................ .. .. .. ......67
6-1 Processor Thermal Specifications.........................................................................72
6-2 Processor Thermal Profile ...................................................................................73
6-3 Thermal Solution Performance above TCONTROL...................................................74
6-4 Supported PECI Command Functions and Codes....................................................81
6-5 GetTemp0() Error Codes ....................................................................................81
6-6 Storage Conditions............................................................................................82
7-1 Power On Configuration Signal Options.................................................................83
7-2 Coordination of Thread Power States at the Core Level...........................................84
7-3 Processor S-States ............................................................................................86
8-1 Fan Heatsink Power and Signal Specifications........................................................93
8-2 Fan Heatsink Power and Signal Specifications........................................................95
Datasheet 5
6 Datasheet
Intel® Core™ i7-900 Desktop Processor Extreme Edition
®
Series and Intel
Core™ i7-900 Desktop Processor Series
Features
• Available at 3.20 GHz, 3.06 GHz, 2.93 GHz,
2.80 GHz, and 2.66 GHz (Intel Core™ i7-900 desktop desktop processor series)
• Available at 3.33 GHz and 3.20 GHz (Intel Core™ i7-900 desktop processor Extreme Edition series)
®
• Enhanced Intel Speedstep
®
•Supports Intel
•Supports Intel
®
•Intel
• Supports Execute Disable Bit capability
• Binary compatible with applications running
•Intel
• Very deep out-of-order execution
• Enhanced branch prediction
• Optimized for 32-bit applications running on
•Intel
• 8 MB Level 3 cache
•Intel
• Enhanced floating point and multimedia unit
• New accelerators for improved string and
• Power Management capabilities
Tu rbo Boost Technology
on previous members of the Intel microprocessor line
®
Wide Dynamic Execution
advanced 32-bit operating systems
®
Smart Cache
®
Advanced Digital Media Boost
for enhanced video, audio, encryption, and 3D performance
text processing operations
64 Architecture
®
Virtualization Technology
Technology
• System Management mode
• Multiple low-power states
• 8-way cache associativity provides improved cache hit rate on load/store operations
• System Memory Interfa ce
— Memory controller integrated in
processor package — 3 channels — 2 DIMMs/channel supported (6 total) — 24 GB maximum memory supported — Support unbuffered DIMMs only — Single Rank and Dual Rank DIMMs
supported — DDR3 speeds of 800/1066 MHz
supported — 512Mb, 1Gb, 2Gb,
Technologies/Densities supported
®
•Intel
• 1366-land Package
QuickPath Interconnect (QPI) — Fast/narrow unidirectional links — Concurrent bi-directional traffic
— Error detection using CRC — Error correction using Link level retry — Packet based protocol — Point to point cache coherent
interconnect
—Intel® Interconnect Built In Self Test
(Intel
®
IBIST) toolbox built-in
Datasheet 7

Revision History

Revision
Number
-001 • Initial release November 2008
-002
-003 • Added Intel Core™ i7-900 desktop processor i7-960 October 2009
-004 • Added Intel Core™ i7-900 desktop processor i7-930 February 2010
•Added Intel Core™ i7 processor i7-950
• Added Intel Core™ i7 processor Extreme Edition i7-975
Description Date
June 2009
§
8 Datasheet
Introduction
Processor
Intel® QuickPath Interconnect (Intel
®
QPI)
CH 0 CH 1 CH 2
System
Memory
(DDR3)

1 Introduction

The Intel® Core™ i7-900 desktop processor Extreme Edition series and Intel® Core™ i7-900 desktop processor series are intended for high performance high-end desktop, Uni-processor (UP) server, and workstation systems. Several architectural and microarchitectural enhancements have been added to this processor including four processor cores in the processor package and increased shared cache.
®
The Intel i7-900 desktop processor series are the first desktop multi-core processor to implement key new technologies:
• Integrated memory controller
• Point-to-point link interface based on Intel QPI
Figure 1-1 shows the interfaces used with these new technologies.
Figure 1-1. High-Level View of Processor Interfaces
Core™ i7-900 desktop processor Extreme Edition series and Intel® Core™
Note: In this document the Intel® Core™ i7-900 desktop processor Extreme Edition series
and Intel
®
Core™ i7-900 desktop processor series will be referred to as “the processor.”
Note: The Intel Core™ i7-900 desktop processor series refers to the Intel Core™ i7-900
desktop processors i7-960, i7-950, i7-940, i7-930, and i7-920.
Note: The Intel Core™ i7-900 desktop processor Extreme Edition series refers to the Intel
Core™ i7-900 desktop processor Extreme Edition i7-975 and i7-965. The processor is optimized for performance with the power efficiencies of a low-power
microarchitecture. This document provides DC electrical specifications, differential signaling specifications,
pinout and signal definitions, package mechanical specifications and thermal requirements, and additional features pertinent to the implementation and operation of the processor. For information on register descriptions, refer to the Intel
Datasheet 9
900 Desktop Processor Extreme Edition Series and Intel Processor Series Datasheet, Volume 2.
®
Core™ i7-900 Desktop
®
Core™ i7-
The processor is a multi-core processor built on the 45 nm process technology, that uses up to 130 W thermal design power (TDP). The processor features an Intel QPI point-to-point link capable of up to 6.4 GT/s, 8 MB Level 3 cache, and an integrated memory controller.
The processor supports all the existing Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3) and Streaming SIMD Extensions 4 (SSE4). The processor supports several Advanced Technologies: Intel Enhanced Intel SpeedStep Intel® Turbo Boost Technology, and Intel® Hyper-Threading Technology.

1.1 Terminology

A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when VTTPWRGOOD is high, the V stable.
‘_N’ and ‘_P’ after a signal name refers to a differential pair. Commonly used terms are explained here for clarification:
Intel® Core™ i7-900 Desktop Processor Extreme Edition Series and Intel® Core™ i7-900 Desktop Processor Series — The entire product, including processor substrate and integrated heat spreader (IHS).
1366-land LGA package — The Intel Core™ i7-900 desktop processor Extreme Edition series and Intel Core™ i7-900 desktop processor series are available in a Flip-Chip Land Grid Array (FC-LGA) package, consisting of the processor mounted on a land grid array substrate with an integrated heat spreader (IHS).
LGA1366 Socket — The processor (in the LGA 1366 package) mates with the system board through this surface mount, 1366-contact socket.
DDR3 — Double Data Rate 3 Synchronous Dynamic Random Access Memory (SDRAM) is the name of the new DDR memory standard that is being developed as the successor to DDR2 SRDRAM.
®
Intel point-to-point link based electrical interconnect specification for Intel processors and chipsets.
Integrated Memory Controller — A memory controller that is integrated into the processor die.
Integrated Heat Spreader (IHS) — A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.
Functional Operation — Refers to the normal operating conditions in which all processor specifications, including DC, AC, signal quality, mechanical, and thermal, are satisfied.
Enhanced Intel SpeedStep Technology allows the operating system to reduce power consumption when performance is not needed.
Execute Disable Bit — Execute Disable allows memory to be marked as executable or non-executable , when combined w ith a supporting oper ating system. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms that exploit buffer overrun vulnerabilities and can thus help improve the overall
QuickPath Interconnect (Intel QPI)— Intel QPI is a cache-coherent,
Introduction
®
®
Technology, Intel® Virtualization Technology (Intel® VT),
®
Technology — Enhanced Intel SpeedStep
64 Technology (Intel® 64),
power rail is
TT
10 Datasheet
Introduction
security of the system. See the Intel® Architecture Software Developer's Manual for more detailed information. Refer to http://developer.intel.com/ for future reference on up to date nomenclatures.
Intel® 64 Architecture — An enhancement to Intel's IA-32 architecture, allowing the processor to execute operating systems and applications written to take advantage of Intel
®
64. Further details on Intel® 64 architecture and programming
model can be found at http://developer.intel.com/technology/intel64/.
Intel® Virtualization Technology (Intel® VT) — A set of hardware enhancements to Intel server and client platforms that can improve virtualization solutions. Intel
®
VT provides a foundation for widely-deployed virtualization solutions and enables a more robust hardware assisted virtualization solution. More information can be found at: http://www.intel.com/technology/virtualization/
Unit Interval (UI) — Signaling convention that is binary and unidirectional. In this binary signaling, one bit is sent for every edge of the forwarded clock, whether it is a rising edge or a falling edge. If a number of edges are collected at instances
, t2, tn,...., tk then the UI at instance “n” is defined as:
t
1
Jitter — Any timing variation of a transition edge or edges from the defined Unit Interval.
Storage Conditions — Refers to a non-operational state. The processor may be installed in a platform, in a tray , or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased, or receive any clocks.
OEM — Original Equipment Manufacturer.

1.2 References

Material and concepts available in the following documents may be beneficial when reading this document.
Table 1-1. References
®
Intel
Core™ i7-900 Desktop Processor Extreme Edition Series and Intel®
Core™ i7-900 Desktop Processor Series Specification Update
®
Core™ i7-900 Desktop Processor Extreme Edition and Intel®
Intel Core™ i7-900 Desktop Processor Series Datasheet Volume 2
®
Core™ i7-900 Desktop Processor Extreme Edition Series and Intel®
Intel Core™ i7-900 Desktop Processor Series and LGA1366 Socket Thermal and Mechanical Design Guide
Intel X58 Express Chipset Datasheet http://www.intel.com/Assets/PDF/
AP-485, Intel
IA-32 Intel
• Volume 1: Basic Architecture
• Volume 2A: Instruction Set Reference, A-M
• Volume 2B: Instruction Set Reference, N-Z
• Volume 3A: System Programming Guide, Part 1
• Volume 3B: Systems Programming Guide, Part 2
®
Processor Identification and the CPUID Instruction http://www.intel.com/design/proc
®
Architecture Software Developer's Manual
UI n = t n – t
Document Location
n – 1
http://download.intel.com/design/
processor/specupdt/320836.pdf
http://download.intel.com/design/
processor/datashts/320835.pdf
http://download.intel.com/design/
processor/designex/320837.pdf
datasheet/320838.pdf
essor/applnots/241618.htm
http://www.intel.com/products/pr
ocessor/manuals/
Datasheet 11
Introduction
§
12 Datasheet
Electrical Specifications
T
X
R
X
R
TT
R
TT
R
TT
R
TT
Signal Signal

2 Electrical Specifications

2.1 Intel® QPI Differential Signaling

The processor provides an Intel QPI port for high speed serial transfer between other Intel QPI-enabled components. The Intel QPI port consists of two unidirectional links (for transmit and receive). Intel QPI uses a differential signalling scheme where pairs of opposite-polarity (D_P, D_N) signals are used.
On-die termination (ODT) is provided on the processor silicon and termination is to V Intel chipsets also provide ODT; thus, eliminating the need to terminate the Intel QPI links on the system board.
Intel strongly recommends performing analog simulations of the Intel
Figure 2-1 illustrates the active ODT. Signal listings are included in Table 2-3 and Table 2-4. See Chapter 5 for the pin signal definitions. All Intel QPI signals are in the
differential signal group.
Figure 2-1. Active ODT for a Differential Link Example

2.2 Power and Ground Lands

For clean on-chip processor core power distribution, the processor has 210 VCC pads and 119 VSS pads associated with V
; 28 VTTD pads and 17 VSS pads associated with V
V
TTA
pads associated with V
; and 3 VCCPLL pads. All VCCP, VTTA, VTTD, VDDQ and
DDQ
VCCPLL lands must be connected to their respective processor power planes, while all VSS lands must be connected to the system ground plane. The processor VCC lands must be supplied with the voltage determined by the processor Voltage IDentification (VID) signals. Table 2-1 specifies the voltage level for the various VIDs.
; 8 VTTA pads and 5 VSS pads associated with
CC
®
QPI interface.
, 28 VDDQ pads and 17 VSS
TTD
SS
.

2.3 Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings between low and full power states. This may cause voltages on power planes to sag below their minimum values if bulk decoupling is not adequate. Larger bulk storage (C current during longer lasting changes in current demand; such as, coming out of an idle condition. Similarly, capacitors act as a storage well for current when entering an idle condition from a running condition. Care must be taken in the baseboard design to
Datasheet 13
), such as electrolytic capacitors, supply
BULK
Electrical Specifications
ensure that the voltage provided to the processor remains within the specifications listed in Table 2-7. Failure to do so can result in timing violations or reduced lifetime of the processor.
2.3.1 VCC, V
Voltage regulator solutions need to provide bulk capacitance and the baseb o ard designer must assure a low interconnect resistance from the regulator to the LGA1366 socket. Bulk decoupling must be provided on the baseboard to handle large current swings. The power delivery solution must insure the voltage and current specifications are met (as defined in Table 2-7).
TTA
, V
TTD
, V
Decoupling
DDQ

2.4 Processor Clocking (BCLK_DP, BCLK_DN)

The processor core, Intel QPI, and integrated memory controller frequencies are generated from BCLK_DP and BCLK_DN. Unlike previous processors based on front side bus architecture, there is no direct link between core frequency and Intel QPI link frequency (such as, no core frequency to Intel QPI multiplier). The processor maximum core frequency, Intel QPI link frequency and integrated memory controller frequency, are set during manufacturing. It is possible to override the processor core frequency setting using software. This permits operation at lower core frequencies than the factory set maximum core frequency.
The processor’s maximum non-turbo core frequency is configured during power-on reset by using values stored internally during manufacturing. The stored value sets the highest core multiplier at which the particular processor can operate. If lower max non­turbo speeds are desired, the appropriate ratio can be configured using the CLOCK_FLEX_MAX MSR.
The processor uses differential clocks (B CLK_DP, BCLK_DN). Clock multiplying within the processor is provided by the internal phase locked loop (PLL), which requires a constant frequency BCLK_DP, BCLK_DN input, with exceptions for spread spectrum clocking. The processor core frequency is determined by multiplying the ratio by 133 MHz.

2.4.1 PLL Power Supply

An on-die PLL filter solution is implemented on the processor. Refer to Table 2-7 for DC specifications.

2.5 Voltage Identification (VID)

The voltage set by the VID signals is the reference voltage regulator output voltage to be delivered to the processor VCC pins. VID signals are CMOS push/pull drivers. Refer to Table 2-15 for the DC specifications for these signals. The VID codes will change due to temperature and/or current load changes in order to minimize the power of the part. A voltage range is provided in Table 2-7. The specifications have been set such that one voltage regulator can operate with all supported frequencies.
Individual processor VID values may be set during manufacturing such that two devices at the same core frequency may have different default VID settings. This is reflected by the VID range values provided in Table 2-1.
14 Datasheet
Electrical Specifications
The processor uses eight voltage identification signals, VID[7:0], to support automatic selection of voltages. Table 2-1 specifies the voltage level corresponding to the state of VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to a low voltage level. If the processor socket is empty (VID[7:0] = 11111111), or the voltage regulation circuit cannot supply the voltage that is requested, the voltage regulator must disable itself.
The processor its associated processor core voltage (V
provides the ability to operate while transitioning to an adjacent VID and
). This will represent a DC shift in the
CC
loadline. It should be noted that a low-to-high or high-to-low voltage state change will result in as many VID transitions as necessary to reach the target core voltage. T ransitions abo ve the maximum specified VID are not permitted. Table 2-8 includes VID step sizes and DC shift ranges. Minimum and maximum voltages must be maintained as shown in Ta ble 2-8.
The VR used must be capable of regulating its output to the value defined by the new VID. DC specifications for dynamic VID transitions are included in Table 2-7 and
Table 2-8
Table 2-1. Voltage Identification Definition (Sheet 1 of 3)
VID7VID6VID5VID4VID3VID2VID1VID
0 0 0 0 0 0 0 0 OFF 0 1 0 1 1 0 1 1 1.04375 0 0 0 0 0 0 0 1 OFF 0 1 0 1 1 1 0 0 1.03750 0 0 0 0 0 0 1 0 1.60000 0 1 0 1 1 1 0 1 1.03125 0 0 0 0 0 0 1 1 1.59375 0 1 0 1 1 1 1 0 1.02500 0 0 0 0 0 1 0 0 1.58750 0 1 0 1 1 1 1 1 1.01875 0 0 0 0 0 1 0 1 1.58125 0 1 1 0 0 0 0 0 1.01250 0 0 0 0 0 1 1 0 1.57500 0 1 1 0 0 0 0 1 1.00625 000001 000010 0 0 0 0 1 0 0 1 1.55625 0 1 1 0 0 1 0 0 0.98750 0 0 0 0 1 0 1 0 1.55000 0 1 1 0 0 1 0 1 0.98125 0 0 0 0 1 0 1 1 1.54375 0 1 1 0 0 1 1 0 0.97500 0 0 0 0 1 1 0 0 1.53750 0 1 1 0 0 1 1 1 0.96875 0 0 0 0 1 1 0 1 1.53125 0 1 1 0 1 0 0 0 0.96250 0 0 0 0 1 1 1 0 1.52500 0 1 1 0 1 0 0 1 0.95626 0 0 0 0 1 1 1 1 1.51875 0 1 1 0 1 0 1 0 0.95000 0 0 0 1 0 0 0 0 1.51250 0 1 1 0 1 0 1 1 0.94375 0 0 0 1 0 0 0 1 1.50625 0 1 1 0 1 1 0 0 0.93750 0 0 0 1 0 0 1 0 1.50000 0 1 1 0 1 1 0 1 0.93125 0 0 0 1 0 0 1 1 1.49375 0 1 1 0 1 1 1 0 0.92500 0 0 0 1 0 1 0 0 1.48750 0 1 1 0 1 1 1 1 0.91875 0 0 0 1 0 1 0 1 1.48125 0 1 1 1 0 0 0 0 0.91250 0 0 0 1 0 1 1 0 1.47500 0 1 1 1 0 0 0 1 0.90625 0 0 0 1 0 1 1 1 1.46875 0 1 1 1 0 0 1 0 0.90000 0 0 0 1 1 0 0 0 1.46250 0 1 1 1 0 0 1 1 0.89375 0 0 0 1 1 0 0 1 1.45625 0 1 1 1 0 1 0 0 0.88750 0 0 0 1 1 0 1 0 1.45000 0 1 1 1 0 1 0 1 0.88125 0 0 0 1 1 0 1 1 1.44375 0 1 1 1 0 1 1 0 0.87500 0 0 0 1 1 1 0 0 1.43750 0 1 1 1 0 1 1 1 0.86875 0 0 0 1 1 1 0 1 1.43125 0 1 1 1 1 0 0 0 0.86250 0 0 0 1 1 1 1 0 1.42500 0 1 1 1 1 0 0 1 0.85625
1 1 1.56875 0 1 1 0 0 0 1 0 1.00000 0 0 1.56250 0 1 1 0 0 0 1 1 0.99375
V
CC_MAX
0
VID7VID6VID5VID4VID3VID2VID1VID
0
V
CC_MAX
Datasheet 15
Electrical Specifications
Table 2-1. Voltage Identification Definition (Sheet 2 of 3)
VID7VID6VID5VID4VID3VID2VID1VID
V
CC_MAX
0
0 0 0 1 1 1 1 1 1.41875 0 1 1 1 1 0 1 0 0.85000 0 0 1 0 0 0 0 0 1.41250 0 1 1 1 1 0 1 1 0.84374 0 0 1 0 0 0 0 1 1.40625 0 1 1 1 1 1 0 0 0.83750 0 0 1 0 0 0 1 0 1.40000 0 1 1 1 1 1 0 1 0.83125 0 0 1 0 0 0 1 1 1.39375 0 1 1 1 1 1 1 0 0.82500 0 0 1 0 0 1 0 0 1.38750 0 1 1 1 1 1 1 1 0.81875 0 0 1 0 0 1 0 1 1.38125 1 0 0 0 0 0 0 0 0.81250 0 0 1 0 0 1 1 0 1.37500 1 0 0 0 0 0 0 1 0.80625 0 0 1 0 0 1 1 1 1.36875 1 0 0 0 0 0 1 0 0.80000 0 0 1 0 1 0 0 0 1.36250 1 0 0 0 0 0 1 1 0.79375 0 0 1 0 1 0 0 1 1.35625 1 0 0 0 0 1 0 0 0.78750 0 0 1 0 1 0 1 0 1.35000 1 0 0 0 0 1 0 1 0.78125 0 0 1 0 1 0 1 1 1.34375 1 0 0 0 0 1 1 0 0.77500 0 0 1 0 1 1 0 0 1.33750 1 0 0 0 0 1 1 1 0.76875 0 0 1 0 1 1 0 1 1.33125 1 0 0 0 1 0 0 0 0.76250 0 0 1 0 1 1 1 0 1.32500 1 0 0 0 1 0 0 1 0.75625 0 0 1 0 1 1 1 1 1.31875 1 0 0 0 1 0 1 0 0.75000 0 0 1 1 0 0 0 0 1.31250 1 0 0 0 1 0 1 1 0.74375 0 0 1 1 0 0 0 1 1.30625 1 0 0 0 1 1 0 0 0.73750 0 0 1 1 0 0 1 0 1.30000 1 0 0 0 1 1 0 1 0.73125 0 0 1 1 0 0 1 1 1.29375 1 0 0 0 1 1 1 0 0.72500 0 0 1 1 0 1 0 0 1.28750 1 0 0 0 1 1 1 1 0.71875 0 0 1 1 0 1 0 1 1.28125 1 0 0 1 0 0 0 0 0.71250 0 0 1 1 0 1 1 0 1.27500 1 0 0 1 0 0 0 1 0.70625 0 0 1 1 0 1 1 1 1.26875 1 0 0 1 0 0 1 0 0.70000 0 0 1 1 1 0 0 0 1.26250 1 0 0 1 0 0 1 1 0.69375 0 0 1 1 1 0 0 1 1.25625 1 0 0 1 0 1 0 0 0.68750 0 0 1 1 1 0 1 0 1.25000 1 0 0 1 0 1 0 1 0.68125 0 0 1 1 1 0 1 1 1.24375 1 0 0 1 0 1 1 0 0.67500 0 0 1 1 1 1 0 0 1.23750 1 0 0 1 0 1 1 1 0.66875 0 0 1 1 1 1 0 1 1.23125 1 0 0 1 1 0 0 0 0.66250 0 0 1 1 1 1 1 0 1.22500 1 0 0 1 1 0 0 1 0.65625 0 0 1 1 1 1 1 1 1.21875 1 0 0 1 1 0 1 0 0.65000 0 1 0 0 0 0 0 0 1.21250 1 0 0 1 1 0 1 1 0.64375 0 1 0 0 0 0 0 1 1.20625 1 0 0 1 1 1 0 0 0.63750 0 1 0 0 0 0 1 0 1.20000 1 0 0 1 1 1 0 1 0.63125 0 1 0 0 0 0 1 1 1.19375 1 0 0 1 1 1 1 0 0.62500 0 1 0 0 0 1 0 0 1.18750 1 0 0 1 1 1 1 1 0.61875 0 1 0 0 0 1 0 1 1.18125 1 0 1 0 0 0 0 0 0.61250 0 1 0 0 0 1 1 0 1.17500 1 0 1 0 0 0 0 1 0.60625 0 1 0 0 0 1 1 1 1.16875 1 0 1 0 0 0 1 0 0.60000 0 1 0 0 1 0 0 0 1.16250 1 0 1 0 0 0 1 1 0.59375 0 1 0 0 1 0 0 1 1.15625 1 0 1 0 0 1 0 0 0.58750 0 1 0 0 1 0 1 0 1.15000 1 0 1 0 0 1 0 1 0.58125 0 1 0 0 1 0 1 1 1.14375 1 0 1 0 0 1 1 0 0.57500 0 1 0 0 1 1 0 0 1.13750 1 0 1 0 0 1 1 1 0.56875 0 1 0 0 1 1 0 1 1.13125 1 0 1 0 1 0 0 0 0.56250 0 1 0 0 1 1 1 0 1.12500 1 0 1 0 1 0 0 1 0.55625
VID7VID6VID5VID4VID3VID2VID1VID
0
V
CC_MAX
16 Datasheet
Electrical Specifications
Notes:
Table 2-1. Voltage Identification Definition (Sheet 3 of 3)
VID7VID6VID5VID4VID3VID2VID1VID
0 1 0 0 1 1 1 1 1.11875 1 0 1 0 1 0 1 0 0.55000 0 1 0 1 0 0 0 0 1.11250 1 0 1 0 1 0 1 1 0.54375 0 1 0 1 0 0 0 1 1.10625 1 0 1 0 1 1 0 0 0.53750 0 1 0 1 0 0 1 0 1.10000 1 0 1 0 1 1 0 1 0.53125 0 1 0 1 0 0 1 1 1.09375 1 0 1 0 1 1 1 0 0.52500 0 1 0 1 0 1 0 0 1.08750 1 0 1 0 1 1 1 1 0.51875 0 1 0 1 0 1 0 1 1.08125 1 0 1 1 0 0 0 0 0.51250 0 1 0 1 0 1 1 0 1.07500 1 0 1 1 0 0 0 1 0.50625 0 1 0 1 0 1 1 1 1.06875 1 0 1 1 0 0 1 0 0.50000
010110001.06250 11111110OFF
010110011.05625 11111111OFF 0 1 0 1 1 0 1 0 1.05000
V
CC_MAX
0
VID7VID6VID5VID4VID3VID2VID1VID
0
V
CC_MAX
Table 2-2. Market Segment Selection Truth Table for MS_ID[2:0]
MSID2 MSID1 MSID0 Description
0 0 0 Reserved 0 0 1 Reserved 0 1 0 Reserved 0 1 1 Reserved 1 0 0 Reserved 1 0 1 Reserved 1 1 0 Intel Core™ i7-900 desktop processor Extreme Edition series and
1 1 1 Reserved
Intel Core™ i7-900 desktop processor series
1
1. The MSID[2:0] signals are provided to indicate the Market Segment for the processor and may be used for future processor compatibility or for keying.

2.6 Reserved or Unused Signals

All Reserved (RSVD) signals must remain unconnected. Connection of these signals to
, V
, V
, V
V
CC
TTA
TTD
DDQ
, V result in component malfunction or incompatibility with future processors. See
Chapter 4 for a land listing of the processor and the location of all Reserved signals.
For reliable operation, always connect unused inputs or bi-directional signals to an appropriate signal level, except for unused integrated memory controller inputs, outputs, and bi-directional pins which may be left floating. Unused active high inputs should be connected through a resistor to ground (V unconnected; however, this may interfere with some Test Access Port (TAP) functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bi-directional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability.
Datasheet 17
, VSS, or to any other signal (including each other) can
CCPLL
). Unused outputs maybe left
SS

2.7 Signal Groups

Signals are grouped by buffer type and similar characteristics as listed in T able 2-3. The buffer type indicates which signaling technology and specifications apply to the signals. All the differential signals, and selected DDR3 and Control Sideband signals have On­Die Termination (ODT) resistors. There are some signals that do not have ODT and need to be terminated on the board. The signals that have ODT are listed in Table 2-4.
Table 2-3. Signal Groups (Sheet 1 of 2)
Signal Group Type Signals
System Reference Clock
Differential Clock Input BCLK_DP, BCLK_DN
®
QPI Signal Groups
Intel
Differential Intel QPI Input QPI_DRX_D[N/P][19:0], QPI_CLKRX_DP,
Differential Intel QPI Output QPI_DTX_D[N/P][19:0], QPI_CLKTX_DP,
DDR3 Reference Clocks
Differential
DDR3 Output DDR{0/1/2}_CLK[D/P][3:0]
Electrical Specifications
1,2
QPI_CLKRX_DN
QPI_CLKTX_DN
DDR3 Command Signals
Single ended CMOS Output DDR{0/1/2}_RAS#, DDR{0/1/2}_CAS#,
Single ended Asynchronous Output DDR{0/1/2}_RESET#
DDR3 Control Signals
Single ended CMOS Output DDR{0/1/2}_CS#[5:4], DDR{0/1/2}_CS#[1:0],
DDR3 Data Signals
Single ended CMOS Bi-directional DDR{0/1/2}_DQ[63:0] Differential CMOS Bi-directional DDR{0/1/2}_DQS_[N/P][7:0]
TAP
Single ended TAP Input TCK, TDI, TMS, TRST# Single ended GTL Output TDO
Control Sideband
Single ended Asynchronous GTL Output PRDY# Single ended Asynchronous GTL Input PREQ# Single ended GTL Bi-directional CAT_ERR#, BPM#[7:0] Single Ended Asynchronous Bi-directional PECI Single Ended Analog Input COMP0, QPI_CMP[0], DDR_COMP[2:0] Single ended Asynchronous GTL Bi-
directional Single ended Asynchronous GTL Output THERMTRIP# Single ended CMOS Input/Output VID[7:6]
DDR{0/1/2}_WE#, DDR{0/1/2}_MA[15:0], DDR{0/1/2}_BA[2:0]
DDR{0/1/2}_ODT[3:0], DDR{0/1/2}_CKE[3:0]
PROCHOT#
VID[5:3]/CSC[2:0] VID[2:0]/MSID[2:0] VTT_VID[4:2]
18 Datasheet
Electrical Specifications
Notes:
Table 2-3. Signal Groups (Sheet 2 of 2)
Signal Group Type Signals
Single ended CMOS Output VTT_VID[4:2] Single ended Analog Input ISENSE
Reset Signal
Single ended Reset Input RESET#
PWRGOOD Signals
Single ended Asynchronous Input VCCPWRGOOD, VTTPWRGOOD, VDDPWRGOOD
Power/Other
Power VCC, VTTA, VTTD, VCCPLL, VDDQ Asynchronous CMOS Output PSI# Sense Points VCC_SENSE, VSS_SENSE Other SKTOCC#, DBR#
1. Refer to Chapter 5 for signal descriptions.
2. DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel 1, and DDR3 Channel 2.
1,2
Table 2-4. Signals with ODT
• QPI_DRX_DP[19:0], QPI_DRX_DN[19:0], QPI_DTX_DP[19:0], QPI_DTX_DN[19:0], QPI_CLKRX_D[N/P], QPI_CLKTX_D[N/P]
• DDR{0/1/2}_DQ[63:0], DDR{0/1/2}_DQS_[N/P][7:0], DDR{0/1/2}_PAR_ERR#[0:2], VDDPWRGOOD
• B CLK_ITP_D[N/P]
•PECI
• BPM#[7:0], PREQ#, TRST#, VCCPWRGOOD, VTTPWRGOOD
Notes:
1. Unless otherwise specified, signals have ODT in the package with 50 pulldown to V
2. PREQ#, BPM[7:0], TDI, TMS and BCLK_ITP_D[N/P] have ODT in package with 35 pullup to V
3. VCCPWRGOOD, VDDPWRGOOD, and VTTPWRGOOD have ODT in package with a 10 k to 20 k pulldown
4. TRST# has ODT in package with a 1 k to 5 k pullup to V
5. All DDR signals are terminated to VDDQ/2
6. DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel 1, and DDR3 Channel 2.
7. While TMS and TDI do not have On-Die Termination, these signals are weakly pulled up using a 1–5 k
8. While TCK does not have On-Die Termination, this signal is weakly pulled down using a 1–5 kresistor to
.
to V
SS
resistor to V
.
V
SS
.
TT
TT
All Control Sideband Asynchronous signals are required to be asserted/de-asserted for at least eight BCLKs for the processor to recognize the proper signal state. See
Section 2.11 for the DC specifications. See Chapter 6 for additional timing
requirements for entering and leaving the low power states.

2.8 Test Access Port (TAP) Connection

Due to the voltage levels supported by other components in the Test Access Port (TAP) logic, it is recommended that the processor be first in the TAP chain and followed by any other components within the system. A translation buffer should be used to connect to the rest of the chain unless one of the other components is capable of accepting an input of the appropriate voltage. Two copies of each signal may be required with each driving a different voltage level.
.
SS
.
TT
Datasheet 19
Electrical Specifications

2.9 Platform Environmental Control Interface (PECI) DC Specifications

PECI is an Intel proprietary interface that provides a communication channel between Intel processors and chipset components to external thermal monitoring devices. The processor contains a Digital Thermal Sensor (DTS) that reports a relative die temperature as an offset from Thermal Control Circuit (TCC) activation temperature. Temperature sensors located throughout the die are implemented as analog-to-digital converters calibrated at the factory. PECI provides an interface for external devices to read the DTS temperature for thermal management and fan speed control. More detailed information may be found in the Platform Environment Control Interface
(PECI) Specification.

2.9.1 DC Characteristics

The PECI interface operates at a nominal voltage set by V specifications shown in Table 2-5 is used with devices normally operating from a V interface supply. V
nominal levels will vary between processor families. All PECI
TTD
devices will operate at the V system. For specific nominal V
Table 2-5. PECI DC Electrical Limits
Symbol Definition and Conditions Min Max Units Notes
V
V
hysteresis
V V
I
source
I
sink
I
leak+
I
leak-
C
V
noise
Notes:
1. V
2. The leakage specification applies to powered devices on the PECI bus.
Input Voltage Range -0.150 V
in
Hysteresis 0.1 * V Negative-edge threshold voltage 0 .275 * V
n
Positive-edge threshold voltage 0.550 * V
p
High level output source
= 0.75 * V
(V
OH
Low level output sink
= 0.25 * V
(V
OL
High impedance state leakage to V
= VOL)
(V
leak
High impedance leakage to GND
= VOH)
(V
leak
Bus capacitance per node N/A 10 pF
bus
Signal noise immunity above 300 MHz 0.1 * V
supplies the PECI interface. PECI behavior does not affect V
TTD
TTD
TTD
. The set of DC electrical
TTD
level determined by the processor installed in the
TTD
levels, refer to Table 2-7.
TTD
V
TTD
TTD
TTD
TTD
)
)
TTD
-6.0 N/A mA
0.5 1.0 mA
N/A 100 µA 2
N/A 100 µA 2
TTD
min/max specifications.
TTD
N/A V
0.500 * V
0.725 * V
N/A V
TTD
TTD
V V
p-p
TTD
1
20 Datasheet
Electrical Specifications
Minimum V
P
Maximum V
P
Minimum V
N
Maximum V
N
PECI High Range
PECI Low Range
Valid Input Signal Range
Minimum Hysteresis
V
TTD
PECI Ground

2.9.2 Input Device Hysteresis

The input buffers in both client and host models must use a Schmitt-triggered input design for improved noise immunity. Use Figure 2-2 as a guide for input buffer design.
Figure 2-2. Input Device Hysteresis

2.10 Absolute Maximum and Minimum Ratings

Table 2-6 specifies absolute maximum and minimum ratings, which lie outside the
functional limits of the processor. Only within specified operation limits can functionality and long-term reliability be expected.
At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.
At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function or its reliability will be severely degraded.
Although the processor contains protective circuitry to resist damage from Electro­Static Discharge (ESD), precautions should always be taken to avoid high static voltages or electric fields.
Datasheet 21
.
Table 2-6. Processor Absolute Minimum and Maximum Ratings
Symbol Parameter Min Max Unit Notes
V
V
V
V
DDQ
V
CCPLL
T
CASE
T
STORAGE
Notes:
1. For functional operation, all processor el ectrical, sign al quality, mechanical and thermal specifications must
be satisfied.
2. Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.
3. V
Processor Core voltage with respect to V
CC
Voltage for the analog portion of the integrated memory controller, QPI link and Shared Cache
TTA
with respect to V Voltage for the digital portion of the integrated
memory controller, QPI link and Shared Cache
TTD
with respect to V Processor I/O supply voltage for DDR3 with
respect to V Processor PLL voltage with respect to V Processor case temperature See
Storage temperature See
TTA
and V
should be derived from the same VR.
TTD
SS
SS
SS
SS
SS
-0.3 1.55 V —1.35V3
—1.35V3
1.875 V
1.65 1.89 V
Chapter 6
Chapter 6
Electrical Specifications
See
Chapter 6
See
Chapter 6
C
C
1, 2

2.11 Processor DC Specifications

The processor DC specifications in this section are defined at the processor pads, unless noted otherwise. See Chapter 4 for the processor land listings and
Chapter 5 for signal definitions. Voltage and current specifications are detailed in Table 2-7. For platform planning, refer to Table 2-8, which provides V
transient tolerances. This same information is presented graphically in Figure 2-3. The DC specifications for the DDR3 signals are listed in Table 2-11. Control Sideband
and Test Access Port (TAP) are listed in Table 2-12 through Table 2-15.
Table 2-7 through Table 2-15 list the DC specifications for the processor and are valid
only while meeting specifications for case temperature (T
“Thermal Specifications”), clock frequency , and input voltages. Care should be tak en to
read all notes associated with each parameter.
static and
CC
as specified in Chapter 6,
CASE
22 Datasheet
Electrical Specifications
Notes:

2.11.1 DC Voltage and Current Specification

Table 2-7. Voltage and Current Specifications
Symbol Parameter Min Typ Max Unit Notes
VID VID range 0.8 1.375 V
V
CC
V
TTA
V
TTD
V
DDQ
V
CCPLL
I
CC
I
TTA
I
TTD
I
DDQ
S3
I
DDQ
I
CC_VCCPLL
Processor Number
i7-975 i7-965 i7-960 i7-950 i7-940 i7-930 i7-920
Voltage for the analog portion of the integrated memory controller, QPI link and Shared Cache
Voltage for the digital portion of the integrated memory controller, QPI link and Shared Cache
Processor I/O supply voltage for DDR3 1.425 1.5 1.575 V PLL supply voltage (DC + AC
specification) Processor
Number
i7-975 i7-965 i7-960 i7-950 i7-940 i7-930 i7-920
Current for the analog portion of the integrated memory controller, QPI link and Shared Cache
Current for the digital portion of the integrated memory controller, QPI link and Shared Cache
Processor I/O supply current for DDR3 6 A Processor I/O supply current for DDR3
while in S3 PLL supply current (DC + AC specification) 1.1 A
for processor core
V
CC
3.33 GHz
3.20 GHz
3.20 GHz
3.06 GHz
2.93 GHz
2.80 GHz
2.66 GHz
for processor
I
CC
3.33 GHz
3.20 GHz
3.20 GHz
3.06 GHz
2.93 GHz
2.80 GHz
2.66 GHz
See Table 2-8 and Figure 2-3 V
See Table 2-10 and Figure 2-4 V
See Table 2-9 and Figure 2-4 V5
1.71 1.8 1.89
——
——5A
——23A
——1A
145 145 145 145 145 145 145
1
2
3,4
5
V
A
6
7
1. Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications wil l be updated w ith char acterized data fr om sili con measurements at a later date
2. Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Please note this differs from the VID employed by the processor during a power management event (Adaptive Thermal Monitor, Enhanced Intel SpeedStep
3. The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE la nds at the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 M minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.
4. Refer to Table 2-8
The processor should not be subjected to any VCC and ICC combination wherein VCC exceeds V a given current.
5. See Table 2-9 for details on VTT Voltage Identification and Table 2-9 and Figure 2-4 for details on the VTT Loadline.
6. I
7. This specification is based on a processor temperature, as reported by the DTS, of less than or equal to
specification is based on the V
CC_MAX
CONTROL
–25.
T
and Figure 2-3 for the minimum, typical, and maximum VCC allowed for a given current.
®
Technology, or Low Power States).
loadline. Refer to Figure 2-3 for details.
CC_MAX
CC_MAX
for
Datasheet 23
Table 2-8. VCC Static and Transient Tolerance
Electrical Specifications
ICC (A) V
(V) V
CC_Max
(V) V
CC_Typ
(V) Notes
CC_Min
0 VID - 0.000 VID - 0.019 VID - 0.038 1, 2, 3
5 VID - 0.004 VID - 0.023 VID - 0.042 1, 2, 3 10 VID - 0.008 VID - 0.027 VID - 0.046 1, 2, 3 15 VID - 0.012 VID - 0.031 VID - 0.050 1, 2, 3 20 VID - 0.016 VID - 0.035 VID - 0.054 1, 2, 3 25 VID - 0.020 VID - 0.039 VID - 0.058 1, 2, 3 30 VID - 0.024 VID - 0.043 VID - 0.062 1, 2, 3 35 VID - 0.028 VID - 0.047 VID - 0.066 1, 2, 3 40 VID - 0.032 VID - 0.051 VID - 0.070 1, 2, 3 45 VID - 0.036 VID - 0.055 VID - 0.074 1, 2, 3 50 VID - 0.040 VID - 0.059 VID - 0.078 1, 2, 3 55 VID - 0.044 VID - 0.063 VID - 0.082 1, 2, 3 60 VID - 0.048 VID - 0.067 VID - 0.086 1, 2, 3 65 VID - 0.052 VID - 0.071 VID - 0.090 1, 2, 3 70 VID - 0.056 VID - 0.075 VID - 0.094 1, 2, 3 75 VID - 0.060 VID - 0.079 VID - 0.098 1, 2, 3 78 VID - 0.062 VID - 0.081 VID - 0.100 1, 2, 3 85 VID - 0.068 VID - 0.087 VID - 0.106 1, 2, 3 90 VID - 0.072 VID - 0.091 VID - 0.110 1, 2, 3 95 VID - 0.076 VID - 0.095 VID - 0.114 1, 2, 3
100 VID - 0.080 VID - 0.099 VID - 0.118 1, 2, 3 105 VID - 0.084 VID - 0.103 VID - 0.122 1, 2, 3 110 VID - 0.088 VID - 0.107 VID - 0.126 1, 2, 3 115 VID - 0.092 VID - 0.111 VID - 0.130 1, 2, 3 120 VID - 0.096 VID - 0.115 VID - 0.134 1, 2, 3 125 VID - 0.100 VID - 0.119 VID - 0.138 1, 2, 3 130 VID - 0.104 VID - 0.123 VID - 0.142 1, 2, 3 135 VID - 0.108 VID - 0.127 VID - 0.146 1, 2, 3 140 VID - 0.112 VID - 0.131 VID - 0.150 1, 2, 3
Notes:
1. The V overshoot specifications.
2. This table is intended to aid in reading discrete points on Figure 2-3.
3. The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. V oltag e regulation feedback for voltage regulator circuits must also be taken from processor VCC_SENSE and VSS_SENSE lands.
CC_MIN
and V
loadlines represent static and transient limits. See Section 2.11.2 for VCC
CC_MAX
24 Datasheet
Electrical Specifications
VID - 0.000
VID - 0.013
VID - 0.025
VID - 0.038
VID - 0.050
VID - 0.063
VID - 0.075
VID - 0.088
VID - 0.100
VID - 0.113
VID - 0.125
VID - 0.138
VID - 0.150
VID - 0.163
VID - 0.175
0 102030405060708090100110120130140
V c c
V
Icc [ A ]
Vcc Maximum
Vcc Typica l
Vcc Mini mu m
Figure 2-3. VCC Static and Transient Tolerance Load Lines
Table 2-9. V
Voltage Identification (VID) Definition
TT
VTT VR - VID Input V
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0
01000010 1.220V 01000110 1.195V 01001010 1.170V 01001110 1.145V 01010010 1.120V 01010110 1.095V 01011010 1.070V 01011110 1.045V
Note:
1. This is a typical voltage, see Table 2-10 for VTT_Max and VTT_Min voltage.
Datasheet 25
TT_Typ
Table 2-10. VTT Static and Transient Tolerance
Notes:
ITT (A) V
0 VID + 0.0315 VID – 0.0000 VID – 0.0315 1 VID + 0.0255 VID – 0.0060 VID – 0.0375 2 VID + 0.0195 VID – 0.0120 VID – 0.0435 3 VID + 0.0135 VID – 0.0180 VID – 0.0495 4 VID + 0.0075 VID – 0.0240 VID – 0.0555 5 VID + 0.0015 VID – 0.0300 VID – 0.0615 6 VID – 0.0045 VID – 0.0360 VID – 0.0675 7 VID – 0.0105 VID – 0.0420 VID – 0.0735 8 VID – 0.0165 VID – 0.0480 VID – 0.0795
9 VID – 0.0225 VID – 0.0540 VID – 0.0855 10 VID – 0.0285 VID – 0.0600 VID – 0.0915 11 VID – 0.0345 VID – 0.0660 VID – 0.0975 12 VID – 0.0405 VID – 0.0720 VID – 0.1035 13 VID – 0.0465 VID – 0.0780 VID – 0.1095 14 VID – 0.0525 VID – 0.0840 VID – 0.1155 15 VID – 0.0585 VID – 0.0900 VID – 0.1215 16 VID – 0.0645 VID – 0.0960 VID – 0.1275 17 VID – 0.0705 VID – 0.1020 VID – 0.1335 18 VID – 0.0765 VID – 0.1080 VID – 0.1395 19 VID – 0.0825 VID – 0.1140 VID – 0.1455 20 VID – 0.0885 VID – 0.1200 VID – 0.1515 21 VID – 0.0945 VID – 0.1260 VID – 0.1575 22 VID – 0.1005 VID – 0.1320 VID – 0.1635 23 VID – 0.1065 VID – 0.1380 VID – 0.1695 24 VID – 0.1125 VID – 0.1440 VID – 0.1755 25 VID – 0.1185 VID – 0.1500 VID – 0.1815 26 VID – 0.1245 VID – 0.1560 VID – 0.1875 27 VID – 0.1305 VID – 0.1620 VID – 0.1935 28 VID – 0.1365 VID – 0.1680 VID – 0.1995
(V) V
TT_Max
(V) V
TT_Typ
Electrical Specifications
(V) Notes
TT_Min
1
1. The ITT listed in this table is a sum of I
2. The loadlines specify voltage limits at the die measured at the VTT_SENSE and VSS_SENS E_VTT lands. Voltage regulation feedback for voltage regulator circuits must also be taken from processor VTT_SENSE and
TTA
and I
TTD
.
VSS_SENSE_VTT lands.
26 Datasheet
Electrical Specifications
-0.2125
-0.2000
-0.1875
-0.1750
-0.1625
-0.1500
-0.1375
-0.1250
-0.1125
-0.1000
-0.0875
-0.0750
-0.0625
-0.0500
-0.0375
-0.0250
-0.0125
0.0000
0.0125
0.0250
0.0375
0.0500
0 5 10 15 20 25
V
t t
V
Itt [A] (sum of Itta and Ittd)
Vtt Maximum
Vtt Typical
Vtt Mini mu m
Figure 2-4. VTT Static and Transient Tolerance Load Line
Table 2-11. DDR3 Signal Group DC Specifications
Symbol Parameter Min Typ Max Units Notes
V
Input Low Voltage 0.43*V
IL
V
Input High Voltage 0.57*V
IH
Output Low Voltage
V
OL
V
R
R
Datasheet 27
R
R
R
DDR_COMP0 DDR_COMP1 DDR_COMP2
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. V
3. V
Output High Voltage
OH
DDR3 Clock Buffer On
ON
Resistance DDR3 Command Buffer
ON
On Resistance DDR3 Reset Buffer On
ON
Resistance DDR3 Control Buffer On
ON
Resistance DDR3 Data Buffer On
ON
Resistance Input Leakage Current N/A N/A ± 1 mA
I
LI
COMP Resistance 99 100 101 5 COMP Resistance 24.65 24.9 25.15 5 COMP Resistance 128.7 130 131.30 5
is defined as the maximum voltage level at a receiving agent that will be interpreted as a logical low
IL
value.
is defined as the minimum voltage level at a receiving agent that will be interpreted as a logical high
IH
value.
DDQ
(R
V
21 31
16 24
25 75
21 31
21 31
——V3
(V
/ 2)* (R
DDQ
(R
ON+RVTT_TERM
– ((V
DDQ
/(RON+R
ON
ON
/ 2)*
DDQ
VTT_TERM
/
))
))
DDQ
—V
—V4
V2,4
1
Electrical Specifications
and VOH may experience excursions above V
4. V
IH
signal quality specifications.
5. COMP resistance must be provided on the system board with 1% resistors.
Table 2-12. RESET# Signal DC Specifications
Symbol Parameter Min Typ Max Units Notes
V
Input Low Voltage 0.40 * V
IL
V
Input High Voltage 0.80 * V
IH
Input Leakage Current ± 200 A3
I
LI
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. For Vin between 0 V and V
4. V
referred to in these specifications refers to instantaneous V
TTA
and VOH may experience excursions above VTT.
IH
. Measured when the driver is tristated.
TTA
Table 2-13. TAP Signal Group DC Specifications
Symbol Parameter Min Typ Max Units Notes
V
Input Low Voltage 0.40
IL
Input High Voltage 0.75 * V
V
IH
V
V Ron Buffer on Resistance 10 18
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. For Vin between 0 V and V
4. V
Output Low Voltage
OL
Output High Voltage V
OH
Input Leakage Current ± 200 A3
I
LI
referred to in these specifications refers to instantaneous V
TTA
and VOH may experience excursions above VTT.
IH
. Measured when the driver is tristated.
TTA
——
TTA
. However, input signal drivers must comply with the
DDQ
V2
V2
V2
)
TTA
TTA
TTA
—— 2,4
.
TTA
* VTTA
—— 2,4
V
* RON /
TTA
(RON + R
sys_term
——V2,4
.
TTA
1
1
Table 2-14. PWRGOOD Signal Group DC Specifications
Symbol Parameter Min Typ Max Units Notes
Input Low Voltage for VCCPWRGOOD
V
IL
and VTTPWRGOOD Signals Input Low Voltage for VDDPWRGOOD
V
IL
Signal Input High Voltage for VCCPWRGOOD
V
IH
and VTTPWRGOOD Signals Input High Voltage for VDDPWRGOOD
V
IH
Signal
Ron Buffer on Resistance 10 18
I
Input Leakage Current ± 200 A4
LI
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. For Vin between 0 V and V
4. V
5. This specification applies to VCCPWRGOOD and VTTPWRGOOD
referred to in these specifications refers to instantaneous V
TTA
and VOH may experience excursions above VTT.
IH
. Measured when the driver is tristated.
TTA
6. This specification applies to VDDPWRGOOD
0.25 * V
0.29 V 6
0.75 * V
0.87
TTA
1
TTA
V2,5
—— V 2,5
——
.
TTA
V5
28 Datasheet
Electrical Specifications
Table 2-15. Control Sideband Signal Group DC Specifications
Symbol Parameter Min Typ Max Units Notes
V
Input Low Voltage 0.64
IL
V
Input High Voltage 0.76
IH
V
Output Low Voltage
OL
V
Output High Voltage V
OH
* VTTA
——
TTA
——V2
——V2,4
Ron Buffer on Resistance 10 18
Ron
I
Buffer on Resistance for VID[7:0]
Input Leakage Current ± 200 A3
LI
100
COMP0 COMP Resistance 49.4 49.9 50.40 5
Notes:
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.
2. The V
3. For Vin between 0 V and V
4. V
5. COMP resistance must be provided on the system board with 1% resistors.
referred to in these specifications refers to inst antaneous V
TTA
and VOH may experience excursions above VTT.
IH
. Measured when the driver is tristated.
TTA

2.11.2 VCC Overshoot Specification

V
* RON / (RON
TTA
+ R
sys_term
TTA
* VTTA
.
1
V2
)
V2,4
The processor can tolerate short transient overshoot events where VCC exceeds the VID voltage when transitioning from a high-to-low current load condition. This overshoot cannot exceed VID + V
OS_MAX
(V VID). These specifications apply to the processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.
Table 2-16. VCC Overshoot Specifications
Symbol Parameter Min Max Units Figure Notes
V
OS_MAX
T
OS_MAX
Magnitude of V Time duration of V
overshoot above VID 50 mV 2-5
CCP
overshoot above VID 25 µs 2-5
CCP
OS_MAX
is the maximum allowable overshoot above
Datasheet 29
Figure 2-5. VCC Overshoot Example Waveform
Time
Example Overshoot Waveform
Voltage (V)
VID
VID + V
OS
T
OS
V
OS
TOS: Overshoot time above VID V
OS
: Overshoot above VID
Electrical Specifications

2.11.3 Die Voltage Validation

Core voltage (VCC) overshoot events at the processor must meet the specifications in
Table 2-16 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot
events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot should be taken with a 100 MHz bandwidth limited oscilloscope.
§
30 Datasheet

Package Mechanical Specifications

IHS
Substrate
LGA1366 Socket
System Board
Capacitors
TIM
IHS
Substrate
LGA
System Board
Capacitors
Die
TIM
3 Package Mechanical
Specifications
The processor is packaged in a Flip-Chip Land Grid Array package that interfaces with the motherboard using an LGA1366 socket. The package consists of a processor mounted on a substrate land-carrier. An integrated heat spreader (IHS) is attached to the package substrate and core and serves as the mating surface for processor thermal solutions, such as a heatsink. Figure 3-1 shows a sketch of the processor package components and how they are assembled together. Refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2) for complete details on the LGA1366 socket.
The package components shown in Figure 3-1 include the following:
• Integrated Heat Spreader (IHS)
• Thermal Interface Material (TIM)
• Processor core (die)
• Package substrate
• Capacitors
Figure 3-1. Processor Package Assembly Sketch
Note:
1. Socket and motherboard are included for reference and are not part of the processor package.

3.1 Package Mechanical Drawing

The package mechanical drawings are shown in Figure 3-2 and Figure 3-3. The drawings include dimensions necessary to design a thermal solution for the processor. These dimensions include:
• Package reference with tolerances (total height, length, width, etc.)
• IHS parallelism and tilt
• Land dimensions
• Top-side and back-side component keep-out dimensions
• Reference datums
• All drawing dimensions are in mm.
• Guidelines on potential IHS flatness variation with socket load plate actuation and installation of the cooling solution is available in the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2).
Datasheet 31
Figure 3-2. Processor Package Drawing (Sheet 1 of 2)
Package Mechanical Specifications
32 Datasheet
Package Mechanical Specifications
Figure 3-3. Processor Package Drawing (Sheet 2 of 2)
Datasheet 33
Package Mechanical Specifications

3.2 Processor Component Keep-Out Zones

The processor may contain components on the substrate that define component keep­out zone requirements. A thermal and mechanical solution design must not intrude into the required keep-out zones. Decoupling capacitors are typically mounted to either the top-side or land-side of the package substrate. See Figure 3-2 and Figure 3-3 for keep­out zones. The location and quantity of package capacitors may change due to manufacturing efficiencies but will remain within the component keep-in.

3.3 Package Loading Specifications

Table 3-1 provides dynamic and static load specifications for the processor package.
These mechanical maximum load limits should not be exceeded during heatsink assembly, shipping conditions, or standard use condition. Also, any mechanical system or component testing should not exceed the maximum limits. The processor package substrate should not be used as a mechanical reference or load-bearing surface for
.
Table 3-1. Processor Loading Specifications
thermal and mechanical solution.
Parameter Maximum Notes
Static Compressive Load 934 N [210 lbf] 1, 2, 3
Dynamic Compressive Load 1834 N [410 lbf] [max static
compressive + dynamic load]
1, 3, 4
Notes:
1. These specifications apply to uniform compressive loading in a direction normal to the processor IHS.
2. This is the minimum and maximum static force that can be applied by the heatsink and retention solution to maintain the heatsink and processor interface.
3. These specifications are based on limited testing for design characterization. Loading limits are for the package only and do not include the limits of the processor socket.
4. Dynamic loading is defined as an 11 ms duration average load superimposed on the static load requirement.

3.4 Package Handling Guidelines

Table 3-2 includes a list of guidelines on package handling in terms of recommended
maximum loading on the processor IHS relative to a fixed substrate. These package handling loads may be experienced during heatsink removal.
Table 3-2. Package Handling Guidelines
Parameter Maximum Recommended Notes
Shear 70 lbs — Tensile 25 lbs — Torque 35 in.lbs

3.5 Package Insertion Specifications

The processor can be inserted into and removed from an LGA1366 socket 15 times. The socket should meet the LGA1366 requirements detailed in the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2)
34 Datasheet
Package Mechanical Specifications
S/N
INTEL ©'07 PROC# BRAND SLxxx [COO] SPEED/CACHE/INTC/FMB [FPO]
M
e4

3.6 Processor Mass Specification

The typical mass of the processor is 35g. This mass [weight] includes all the components that are included in the package.

3.7 Processor Materials

Table 3-3. Processor Materials
Table 3-3 lists some of the package components and associated materials.
Component Material
Integrated Heat Spreader (IHS) Nickel Plated Copper
Substrate Fiber Reinforced Resin
Substrate Lands Gold Plated Copper

3.8 Processor Markings

Figure 3-4 shows the top-side markings on the processor. This diagram is to aid in the
identification of the processor.
Figure 3-4. Processor Top-side Markings
Datasheet 35
Package Mechanical Specifications

3.9 Processor Land Coordinates

Figure 3-5 shows the top view of the processor land coordinates. The coordinates are
referred to throughout the document to identify processor lands.
Figure 3-5. Processor Land Coordinates and Quadrants (Bottom View)
§
36 Datasheet
Land Listing

4 Land Listing

This section provides sorted land lists in Table 4-1 and Table 4-2. Table 4-1 is a listing of all processor lands ordered alphabetically by land name. Table 4-2 is a listing of all processor lands ordered by land number.
Table 4-1. Land Listing by Land Name
(Sheet 1 of 29)
Land Name
BCLK_DN AH35 CMOS I BCLK_DP AJ35 CMOS I BCLK_ITP_DN AA4 CMOS O BCLK_ITP_DP AA5 CMOS O BPM#[0] B3 GTL I/O BPM#[1] A5 GTL I/O BPM#[2] C2 GTL I/O BPM#[3] B4 GTL I/O BPM#[4] D1 GTL I/O BPM#[5] C3 GTL I/O BPM#[6] D2 GTL I/O BPM#[7] E2 GTL I/O CAT_ERR# AC37 GTL I/O COMP0 AB41 Analog DBR# AF10 Asynch I DDR_COMP[0] AA8 Analog DDR_COMP[1] Y7 Analog DDR_COMP[2] AC1 Analog DDR_VREF L23 Analog I DDR0_BA[0] B16 CMOS O DDR0_BA[1] A16 CMOS O DDR0_BA[2] C28 CMOS O DDR0_CAS# C12 CMOS O DDR0_CKE[0] C29 CMOS O DDR0_CKE[1] A30 CMOS O DDR0_CKE[2] B30 CMOS O DDR0_CKE[3] B31 CMOS O DDR0_CLK_N[0] K19 CLOCK O DDR0_CLK_N[1] C19 CLOCK O DDR0_CLK_N[2] E18 CLOCK O DDR0_CLK_N[3] E19 CLOCK O DDR0_CLK_P[0] J19 CLOCK O DDR0_CLK_P[1] D19 CLOCK O DDR0_CLK_P[2] F18 CLOCK O DDR0_CLK_P[3] E20 CLOCK O DDR0_CS#[0] G15 CMOS O DDR0_CS#[1] B10 CMOS O DDR0_CS#[4] B15 CMOS O
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 2 of 29)
Land Name
DDR0_CS#[5] A7 CMOS O DDR0_DQ[0] W41 CMOS I/O DDR0_DQ[1] V41 CMOS I/O DDR0_DQ[10] K42 CMOS I/O DDR0_DQ[11] K43 CMOS I/O DDR0_DQ[12] P42 CMOS I/O DDR0_DQ[13] P41 CMOS I/O DDR0_DQ[14] L43 CMOS I/O DDR0_DQ[15] L42 CMOS I/O DDR0_DQ[16] H41 CMOS I/O DDR0_DQ[17] H43 CMOS I/O DDR0_DQ[18] E42 CMOS I/O DDR0_DQ[19] E43 CMOS I/O DDR0_DQ[2] R43 CMOS I/O DDR0_DQ[20] J42 CMOS I/O DDR0_DQ[21] J41 CMOS I/O DDR0_DQ[22] F43 CMOS I/O DDR0_DQ[23] F42 CMOS I/O DDR0_DQ[24] D40 CMOS I/O DDR0_DQ[25] C41 CMOS I/O DDR0_DQ[26] A38 CMOS I/O DDR0_DQ[27] D37 CMOS I/O DDR0_DQ[28] D41 CMOS I/O DDR0_DQ[29] D42 CMOS I/O DDR0_DQ[3] R42 CMOS I/O DDR0_DQ[30] C38 CMOS I/O DDR0_DQ[31] B38 CMOS I/O DDR0_DQ[32] B5 CMOS I/O DDR0_DQ[33] C4 CMOS I/O DDR0_DQ[34] F1 CMOS I/O DDR0_DQ[35] G3 CMOS I/O DDR0_DQ[36] B6 CMOS I/O DDR0_DQ[37] C6 CMOS I/O DDR0_DQ[38] F3 CMOS I/O DDR0_DQ[39] F2 CMOS I/O DDR0_DQ[4] W40 CMOS I/O DDR0_DQ[40] H2 CMOS I/O DDR0_DQ[41] H1 CMOS I/O DDR0_DQ[42] L1 CMOS I/O
Land
No.
Buffer
Type
Direction
Datasheet 37
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 3 of 29)
Land Name
DDR0_DQ[43] M1 CMOS I/O DDR0_DQ[44] G1 CMOS I/O DDR0_DQ[45] H3 CMOS I/O DDR0_DQ[46] L3 CMOS I/O DDR0_DQ[47] L2 CMOS I/O DDR0_DQ[48] N1 CMOS I/O DDR0_DQ[49] N2 CMOS I/O DDR0_DQ[5] W42 CMOS I/O DDR0_DQ[50] T1 CMOS I/O DDR0_DQ[51] T2 CMOS I/O DDR0_DQ[52] M3 CMOS I/O DDR0_DQ[53] N3 CMOS I/O DDR0_DQ[54] R4 CMOS I/O DDR0_DQ[55] T3 CMOS I/O DDR0_DQ[56] U4 CMOS I/O DDR0_DQ[57] V1 CMOS I/O DDR0_DQ[58] Y2 CMOS I/O DDR0_DQ[59] Y3 CMOS I/O DDR0_DQ[6] U41 CMOS I/O DDR0_DQ[60] U1 CMOS I/O DDR0_DQ[61] U3 CMOS I/O DDR0_DQ[62] V4 CMOS I/O DDR0_DQ[63] W4 CMOS I/O DDR0_DQ[7] T42 CMOS I/O DDR0_DQ[8] N41 CMOS I/O DDR0_DQ[9] N43 CMOS I/O DDR0_DQS_N[0] U43 CMOS I/O DDR0_DQS_N[1] M41 CMOS I/O DDR0_DQS_N[2] G41 CMOS I/O DDR0_DQS_N[3] B40 CMOS I/O DDR0_DQS_N[4] E4 CMOS I/O DDR0_DQS_N[5] K3 CMOS I/O DDR0_DQS_N[6] R3 CMOS I/O DDR0_DQS_N[7] W1 CMOS I/O DDR0_DQS_P[0] T43 CMOS I/O DDR0_DQS_P[1] L41 CMOS I/O DDR0_DQS_P[2] F41 CMOS I/O DDR0_DQS_P[3] B39 CMOS I/O DDR0_DQS_P[4] E3 CMOS I/O DDR0_DQS_P[5] K2 CMOS I/O DDR0_DQS_P[6] R2 CMOS I/O DDR0_DQS_P[7] W2 CMOS I/O DDR0_MA[0] A20 CMOS O DDR0_MA[1] B21 CMOS O DDR0_MA[10] B19 CMOS O DDR0_MA[11] A26 CMOS O DDR0_MA[12] B26 CMOS O DDR0_MA[13] A10 CMOS O
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 4 of 29)
Land Name
DDR0_MA[14] A28 CMOS O DDR0_MA[15] B29 CMOS O DDR0_MA[2] C23 CMOS O DDR0_MA[3] D24 CMOS O DDR0_MA[4] B23 CMOS O DDR0_MA[5] B24 CMOS O DDR0_MA[6] C24 CMOS O DDR0_MA[7] A25 CMOS O DDR0_MA[8] B25 CMOS O DDR0_MA[9] C26 CMOS O DDR0_ODT[0] F12 CMOS O DDR0_ODT[1] C9 CMOS O DDR0_ODT[2] B11 CMOS O DDR0_ODT[3] C7 CMOS O DDR0_RAS# A15 CMOS O DDR0_RESET# D32 CMOS O DDR0_WE# B13 CMOS O DDR1_BA[0] C18 CMOS O DDR1_BA[1] K13 CMOS O DDR1_BA[2] H27 CMOS O DDR1_CAS# E14 CMOS O DDR1_CKE[0] H28 CMOS O DDR1_CKE[1] E27 CMOS O DDR1_CKE[2] D27 CMOS O DDR1_CKE[3] C27 CMOS O DDR1_CLK_N[0] D21 CLOCK O DDR1_CLK_N[1] G20 CLOCK O DDR1_CLK_N[2] L18 CLOCK O DDR1_CLK_N[3] H19 CLOCK O DDR1_CLK_P[0] C21 CLOCK O DDR1_CLK_P[1] G19 CLOCK O DDR1_CLK_P[2] K18 CLOCK O DDR1_CLK_P[3] H18 CLOCK O DDR1_CS#[0] D12 CMOS O DDR1_CS#[1] A8 CMOS O DDR1_CS#[4] C17 CMOS O DDR1_CS#[5] E10 CMOS O DDR1_DQ[0] AA37 CMOS I/O DDR1_DQ[1] AA36 CMOS I/O DDR1_DQ[10] P39 CMOS I/O DDR1_DQ[11] N39 CMOS I/O DDR1_DQ[12] R34 CMOS I/O DDR1_DQ[13] R35 CMOS I/O DDR1_DQ[14] N37 CMOS I/O DDR1_DQ[15] N38 CMOS I/O DDR1_DQ[16] M35 CMOS I/O DDR1_DQ[17] M34 CMOS I/O DDR1_DQ[18] K35 CMOS I/O
Land
No.
Buffer
Type
Direction
38 Datasheet
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 5 of 29)
Land Name
DDR1_DQ[19] J35 CMOS I/O DDR1_DQ[2] Y35 CMOS I/O DDR1_DQ[20] N34 CMOS I/O DDR1_DQ[21] M36 CMOS I/O DDR1_DQ[22] J36 CMOS I/O DDR1_DQ[23] H36 CMOS I/O DDR1_DQ[24] H33 CMOS I/O DDR1_DQ[25] L33 CMOS I/O DDR1_DQ[26] K32 CMOS I/O DDR1_DQ[27] J32 CMOS I/O DDR1_DQ[28] J34 CMOS I/O DDR1_DQ[29] H34 CMOS I/O DDR1_DQ[3] Y34 CMOS I/O DDR1_DQ[30] L32 CMOS I/O DDR1_DQ[31] K30 CMOS I/O DDR1_DQ[32] E9 CMOS I/O DDR1_DQ[33] E8 CMOS I/O DDR1_DQ[34] E5 CMOS I/O DDR1_DQ[35] F5 CMOS I/O DDR1_DQ[36] F10 CMOS I/O DDR1_DQ[37] G8 CMOS I/O DDR1_DQ[38] D6 CMOS I/O DDR1_DQ[39] F6 CMOS I/O DDR1_DQ[4] AA35 CMOS I/O DDR1_DQ[40] H8 CMOS I/O DDR1_DQ[41] J6 CMOS I/O DDR1_DQ[42] G4 CMOS I/O DDR1_DQ[43] H4 CMOS I/O DDR1_DQ[44] G9 CMOS I/O DDR1_DQ[45] H9 CMOS I/O DDR1_DQ[46] G5 CMOS I/O DDR1_DQ[47] J5 CMOS I/O DDR1_DQ[48] K4 CMOS I/O DDR1_DQ[49] K5 CMOS I/O DDR1_DQ[5] AB36 CMOS I/O DDR1_DQ[50] R5 CMOS I/O DDR1_DQ[51] T5 CMOS I/O DDR1_DQ[52] J4 CMOS I/O DDR1_DQ[53] M6 CMOS I/O DDR1_DQ[54] R8 CMOS I/O DDR1_DQ[55] R7 CMOS I/O DDR1_DQ[56] W6 CMOS I/O DDR1_DQ[57] W7 CMOS I/O DDR1_DQ[58] Y10 CMOS I/O DDR1_DQ[59] W10 CMOS I/O DDR1_DQ[6] Y40 CMOS I/O DDR1_DQ[60] V9 CMOS I/O DDR1_DQ[61] W5 CMOS I/O
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 6 of 29)
Land Name
DDR1_DQ[62] AA7 CMOS I/O DDR1_DQ[63] W9 CMOS I/O DDR1_DQ[7] Y39 CMOS I/O DDR1_DQ[8] P34 CMOS I/O DDR1_DQ[9] P35 CMOS I/O DDR1_DQS_N[0] Y37 CMOS I/O DDR1_DQS_N[1] R37 CMOS I/O DDR1_DQS_N[2] L36 CMOS I/O DDR1_DQS_N[3] L31 CMOS I/O DDR1_DQS_N[4] D7 CMOS I/O DDR1_DQS_N[5] G6 CMOS I/O DDR1_DQS_N[6] L5 CMOS I/O DDR1_DQS_N[7] Y9 CMOS I/O DDR1_DQS_P[0] Y38 CMOS I/O DDR1_DQS_P[1] R38 CMOS I/O DDR1_DQS_P[2] L35 CMOS I/O DDR1_DQS_P[3] L30 CMOS I/O DDR1_DQS_P[4] E7 CMOS I/O DDR1_DQS_P[5] H6 CMOS I/O DDR1_DQS_P[6] L6 CMOS I/O DDR1_DQS_P[7] Y8 CMOS I/O DDR1_MA[0] J14 CMOS O DDR1_MA[1] J16 CMOS O DDR1_MA[10] H14 CMOS O DDR1_MA[11] E23 CMOS O DDR1_MA[12] E24 CMOS O DDR1_MA[13] B14 CMOS O DDR1_MA[14] H26 CMOS O DDR1_MA[15] F26 CMOS O DDR1_MA[2] J17 CMOS O DDR1_MA[3] L28 CMOS O DDR1_MA[4] K28 CMOS O DDR1_MA[5] F22 CMOS O DDR1_MA[6] J27 CMOS O DDR1_MA[7] D22 CMOS O DDR1_MA[8] E22 CMOS O DDR1_MA[9] G24 CMOS O DDR1_ODT[0] D11 CMOS O DDR1_ODT[1] C8 CMOS O DDR1_ODT[2] D14 CMOS O DDR1_ODT[3] F11 CMOS O DDR1_RAS# G14 CMOS O DDR1_RESET# D29 CMOS O DDR1_WE# G13 CMOS O DDR2_BA[0] A17 CMOS O DDR2_BA[1] F17 CMOS O DDR2_BA[2] L26 CMOS O DDR2_CAS# F16 CMOS O
Land
No.
Buffer
Type
Direction
Datasheet 39
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 7 of 29)
Land Name
DDR2_CKE[0] J26 CMOS O DDR2_CKE[1] G26 CMOS O DDR2_CKE[2] D26 CMOS O DDR2_CKE[3] L27 CMOS O DDR2_CLK_N[0] J21 CLOCK O DDR2_CLK_N[1] K20 CLOCK O DDR2_CLK_N[2] G21 CLOCK O DDR2_CLK_N[3] L21 CLOCK O DDR2_CLK_P[0] J22 CLOCK O DDR2_CLK_P[1] L20 CLOCK O DDR2_CLK_P[2] H21 CLOCK O DDR2_CLK_P[3] L22 CLOCK O DDR2_CS#[0] G16 CMOS O DDR2_CS#[1] K14 CMOS O DDR2_CS#[4] E17 CMOS O DDR2_CS#[5] D9 CMOS O DDR2_DQ[0] W34 CMOS I/O DDR2_DQ[1] W35 CMOS I/O DDR2_DQ[10] R39 CMOS I/O DDR2_DQ[11] T36 CMOS I/O DDR2_DQ[12] W39 CMOS I/O DDR2_DQ[13] V39 CMOS I/O DDR2_DQ[14] T41 CMOS I/O DDR2_DQ[15] R40 CMOS I/O DDR2_DQ[16] M39 CMOS I/O DDR2_DQ[17] M40 CMOS I/O DDR2_DQ[18] J40 CMOS I/O DDR2_DQ[19] J39 CMOS I/O DDR2_DQ[2] V36 CMOS I/O DDR2_DQ[20] P40 CMOS I/O DDR2_DQ[21] N36 CMOS I/O DDR2_DQ[22] L40 CMOS I/O DDR2_DQ[23] K38 CMOS I/O DDR2_DQ[24] G40 CMOS I/O DDR2_DQ[25] F40 CMOS I/O DDR2_DQ[26] J37 CMOS I/O DDR2_DQ[27] H37 CMOS I/O DDR2_DQ[28] H39 CMOS I/O DDR2_DQ[29] G39 CMOS I/O DDR2_DQ[3] U36 CMOS I/O DDR2_DQ[30] F38 CMOS I/O DDR2_DQ[31] E38 CMOS I/O DDR2_DQ[32] K12 CMOS I/O DDR2_DQ[33] J12 CMOS I/O DDR2_DQ[34] H13 CMOS I/O DDR2_DQ[35] L13 CMOS I/O DDR2_DQ[36] G11 CMOS I/O DDR2_DQ[37] G10 CMOS I/O
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 8 of 29)
Land Name
DDR2_DQ[38] H12 CMOS I/O DDR2_DQ[39] L12 CM OS I/O DDR2_DQ[4] U34 CM OS I/O DDR2_DQ[40] L10 CM OS I/O DDR2_DQ[41] K10 CMOS I/O DDR2_DQ[42] M9 CMOS I/O DDR2_DQ[43] N9 CMOS I/O DDR2_DQ[44] L11 CM OS I/O DDR2_DQ[45] M10 CMOS I/O DDR2_DQ[46] L8 CMOS I/O DDR2_DQ[47] M8 CMOS I/O DDR2_DQ[48] P7 CMOS I/O DDR2_DQ[49] N6 CMOS I/O DDR2_DQ[5] V34 CMOS I/O DDR2_DQ[50] P9 CMOS I/O DDR2_DQ[51] P10 CMOS I/O DDR2_DQ[52] N8 CMOS I/O DDR2_DQ[53] N7 CMOS I/O DDR2_DQ[54] R10 CMOS I/O DDR2_DQ[55] R9 CMOS I/O DDR2_DQ[56] U5 CMOS I/O DDR2_DQ[57] U6 CMOS I/O DDR2_DQ[58] T10 CMOS I/O DDR2_DQ[59] U10 CMOS I/O DDR2_DQ[6] V37 CMOS I/O DDR2_DQ[60] T6 CMOS I/O DDR2_DQ[61] T7 CMOS I/O DDR2_DQ[62] V8 CMOS I/O DDR2_DQ[63] U9 CMOS I/O DDR2_DQ[7] V38 CMOS I/O DDR2_DQ[8] U38 CM OS I/O DDR2_DQ[9] U39 CM OS I/O DDR2_DQS_N[0] W36 CMOS I/O DDR2_DQS_N[1] T38 CMOS I/O DDR2_DQS_N[2] K39 CMOS I/O DDR2_DQS_N[3] E40 CMOS I/O DDR2_DQS_N[4] J9 CMOS I/O DDR2_DQS_N[5] K7 CMOS I/O DDR2_DQS_N[6] P5 CMOS I/O DDR2_DQS_N[7] T8 CMOS I/O DDR2_DQS_P[0] W37 CMOS I/O DDR2_DQS_P[1] T37 CMOS I/O DDR2_DQS_P[2] K40 CMOS I/O DDR2_DQS_P[3] E39 CMOS I/O DDR2_DQS_P[4] J10 CMOS I/O DDR2_DQS_P[5] L7 CMOS I/O DDR2_DQS_P[6] P6 CMOS I/O DDR2_DQS_P[7] U8 CMOS I/O
Land
No.
Buffer
Type
Direction
40 Datasheet
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 9 of 29)
Land Name
DDR2_MA[0] A18 CMOS O DDR2_MA[1] K17 CMOS O DDR2_MA[10] H17 CMOS O DDR2_MA[11] H23 CMOS O DDR2_MA[12] G23 CMOS O DDR2_MA[13] F15 CMOS O DDR2_MA[14] H24 CMOS O DDR2_MA[15] G25 CMOS O DDR2_MA[2] G18 CMOS O DDR2_MA[3] J20 CMOS O DDR2_MA[4] F20 CMOS O DDR2_MA[5] K23 CMOS O DDR2_MA[6] K22 CMOS O DDR2_MA[7] J24 CMOS O DDR2_MA[8] L25 CMOS O DDR2_MA[9] H22 CMOS O DDR2_ODT[0] L16 CMOS O DDR2_ODT[1] F13 CMOS O DDR2_ODT[2] D15 CMOS O DDR2_ODT[3] D10 CMOS O DDR2_RAS# D17 CMOS O DDR2_RESET# E32 CMOS O DDR2_WE# C16 CMOS O FC_AH5 AH5 ISENSE AK8 Analog I PECI AH36 Asynch I/O PRDY# B41 GTL O PREQ# C42 GTL I PROCHOT# AG35 GTL I/O PSI# AP7 CMOS O QPI_CLKRX_DN AR42 QPI I QPI_CLKRX_DP AR41 QPI I QPI_CLKTX_DN AF42 QPI O QPI_CLKTX_DP AG42 QPI O QPI_CMP[0] AL43 Analog QPI_DRX_DN[0] AU37 QPI I QPI_DRX_DN[1] AV38 QPI I QPI_DRX_DN[10] AT42 QPI I QPI_DRX_DN[11] AR43 QPI I QPI_DRX_DN[12] AR40 QPI I QPI_DRX_DN[13] AN42 QPI I QPI_DRX_DN[14] AM43 QPI I QPI_DRX_DN[15] AM40 QPI I QPI_DRX_DN[16] AM41 QPI I QPI_DRX_DN[17] AP40 QPI I QPI_DRX_DN[18] AP39 QPI I QPI_DRX_DN[19] AR38 QPI I QPI_DRX_DN[2] AV37 QPI I
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 10 of 29)
Land Name
QPI_DRX_DN[3] AY36 QPI I QPI_DRX_DN[4] BA37 QPI I QPI_DRX_DN[5] AW38 QPI I QPI_DRX_DN[6] AY38 QPI I QPI_DRX_DN[7] AT39 QPI I QPI_DRX_DN[8] AV40 QPI I QPI_DRX_DN[9] AU41 QPI I QPI_DRX_DP[0] AT37 QPI I QPI_DRX_DP[1] AU38 QPI I QPI_DRX_DP[10] AU42 QPI I QPI_DRX_DP[11] AT43 QPI I QPI_DRX_DP[12] AT40 QPI I QPI_DRX_DP[13] AP42 QPI I QPI_DRX_DP[14] AN43 QPI I QPI_DRX_DP[15] AN40 QPI I QPI_DRX_DP[16] AM42 QPI I QPI_DRX_DP[17] AP41 QPI I QPI_DRX_DP[18] AN39 QPI I QPI_DRX_DP[19] AP38 QPI I QPI_DRX_DP[2] AV36 QPI I QPI_DRX_DP[3] AW36 QPI I QPI_DRX_DP[4] BA36 QPI I QPI_DRX_DP[5] AW37 QPI I QPI_DRX_DP[6] BA38 QPI I QPI_DRX_DP[7] AU39 QPI I QPI_DRX_DP[8] AW40 QPI I QPI_DRX_DP[9] AU40 QPI I QPI_DTX_DN[0] AH38 QPI O QPI_DTX_DN[1] AG39 QPI O QPI_DTX_DN[10] AE43 QPI O QPI_DTX_DN[11] AE41 QPI O QPI_DTX_DN[12] AC42 QP I O QPI_DTX_DN[13] AB43 QPI O QPI_DTX_DN[14] AD39 QPI O QPI_DTX_DN[15] AC40 QP I O QPI_DTX_DN[16] AC38 QP I O QPI_DTX_DN[17] AB38 QPI O QPI_DTX_DN[18] AE38 QPI O QPI_DTX_DN[19] AF40 QPI O QPI_DTX_DN[2] AK38 QPI O QPI_DTX_DN[3] AJ39 QPI O QPI_DTX_DN[4] AJ40 QPI O QPI_DTX_DN[5] AK41 QPI O QPI_DTX_DN[6] AH42 QPI O QPI_DTX_DN[7] AJ42 QPI O QPI_DTX_DN[8] AH43 QPI O QPI_DTX_DN[9] AG41 QPI O QPI_DTX_DP[0] AG38 QPI O
Land
No.
Buffer
Type
Direction
Datasheet 41
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 11 of 29)
Land Name
QPI_DTX_DP[1] AF39 QPI O QPI_DTX_DP[10] AF43 QPI O QPI_DTX_DP[11] AE42 QPI O QPI_DTX_DP[12] AD42 QPI O QPI_DTX_DP[13] AC43 QPI O QPI_DTX_DP[14] AD40 QPI O QPI_DTX_DP[15] AC41 QPI O QPI_DTX_DP[16] AC39 QPI O QPI_DTX_DP[17] AB39 QPI O QPI_DTX_DP[18] AD38 QPI O QPI_DTX_DP[19] AE40 QPI O QPI_DTX_DP[2] AK37 QPI O QPI_DTX_DP[3] AJ38 QPI O QPI_DTX_DP[4] AH40 QPI O QPI_DTX_DP[5] AK40 QPI O QPI_DTX_DP[6] AH41 QPI O QPI_DTX_DP[7] AK42 QPI O QPI_DTX_DP[8] AJ43 QPI O QPI_DTX_DP[9] AG40 QPI O RESET# AL39 Asynch I RSVD D35 RSVD D34 RSVD C36 RSVD A36 RSVD F32 RSVD C33 RSVD C37 RSVD A37 RSVD B34 RSVD C34 RSVD G34 RSVD G33 RSVD D36 RSVD F36 RSVD E33 RSVD G36 RSVD E37 RSVD F37 RSVD E34 RSVD G35 RSVD G30 RSVD G29 RSVD H32 RSVD F33 RSVD E29 RSVD E30 RSVD J31 RSVD J30
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 12 of 29)
Land Name
RSVD F31 RSVD F30 RSVD AB5 RSVD C13 RSVD B9 RSVD C11 RSVD B8 RSVD M43 RSVD G43 RSVD C39 RSVD D4 RSVD J1 RSVD P1 RSVD V3 RSVD B35 RSVD V42 RSVD N42 RSVD H42 RSVD D39 RSVD D5 RSVD J2 RSVD P2 RSVD V2 RSVD B36 RSVD V43 RSVD B20 RSVD D25 RSVD B28 RSVD A27 RSVD E15 RSVD E13 RSVD C14 RSVD E12 RSVD P37 RSVD E35 RSVD K37 RSVD K33 RSVD F7 RSVD J7 RSVD M4 RSVD Y5 RSVD AA41 RSVD P36 RSVD L37 RSVD K34 RSVD F8 RSVD H7 RSVD M5
Land
No.
Buffer
Type
Direction
42 Datasheet
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 13 of 29)
Land Name
RSVD Y4 RSVD F35 RSVD AA40 RSVD D20 RSVD C22 RSVD E25 RSVD F25 RSVD D16 RSVD H16 RSVD L17 RSVD J15 RSVD T40 RSVD L38 RSVD G38 RSVD J11 RSVD K8 RSVD P4 RSVD V7 RSVD G31 RSVD T35 RSVD U40 RSVD M38 RSVD H38 RSVD H11 RSVD K9 RSVD N4 RSVD V6 RSVD H31 RSVD U35 RSVD B18 RSVD F21 RSVD J25 RSVD F23 RSVD A31 RSVD A40 RSVD AB3 RSVD AB6 RSVD AC3 RSVD AC4 RSVD AC6 RSVD AC8 RSVD AD1 RSVD AD2 RSVD AD3 RSVD AD4 RSVD AD5 RSVD AD6 RSVD AD7
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 14 of 29)
Land Name
RSVD AD8 RSVD AE1 RSVD AE3 RSVD AE4 RSVD AE5 RSVD AE6 RSVD AF1 RSVD AF2 RSVD AF3 RSVD AF4 RSVD AF6 RSVD AG1 RSVD AG2 RSVD AG4 RSVD AG5 RSVD AG6 RSVD AG7 RSVD AG8 RSVD AH2 RSVD AH3 RSVD AH4 RSVD AH6 RSVD AH8 RSVD AJ1 RSVD AJ2 RSVD AJ3 RSVD AJ37 RSVD AJ4 RSVD AJ6 RSVD AJ7 RSVD AJ8 RSVD AK1 RSVD AK2 RSVD AK35 RSVD AK36 RSVD AK4 RSVD AK5 RSVD AK6 RSVD AL3 RSVD AL38 RSVD AL4 RSVD AL40 RSVD AL41 RSVD AL5 RSVD AL6 RSVD AL8 RSVD AM1 RSVD AM2
Land
No.
Buffer
Type
Direction
Datasheet 43
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 15 of 29)
Land Name
RSVD AM3 RSVD AM36 RSVD AM38 RSVD AM4 RSVD AM6 RSVD AM7 RSVD AM8 RSVD AN1 RSVD AN2 RSVD AN36 RSVD AN38 RSVD AN4 RSVD AN5 RSVD AN6 RSVD AP2 RSVD AP3 RSVD AP4 RSVD AR1 RSVD AR36 RSVD AR37 RSVD AR4 RSVD AR5 RSVD AR6 RSVD AT1 RSVD AT2 RSVD AT3 RSVD AT36 RSVD AT4 RSVD AT5 RSVD AT6 RSVD AU2 RSVD AU3 RSVD AU4 RSVD AU6 RSVD AU7 RSVD AU8 RSVD AV1 RSVD AV2 RSVD AV35 RSVD AV42 RSVD AV43 RSVD AV5 RSVD AV7 RSVD AV8 RSVD AW2 RSVD AW3 RSVD AW39 RSVD AW4
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 16 of 29)
Land Name
RSVD AW41 RSVD AW42 RSVD AW5 RSVD AW7 RSVD AY3 RSVD AY35 RSVD AY39 RSVD AY4 RSVD AY40 RSVD AY41 RSVD AY5 RSVD AY6 RSVD AY8 RSVD B33 RSVD BA4 RSVD BA40 RSVD BA6 RSVD BA7 RSVD BA8 RSVD C31 RSVD C32 RSVD D30 RSVD D31 RSVD E28 RSVD F27 RSVD F28 RSVD G28 RSVD H29 RSVD J29 RSVD K15 RSVD K24 RSVD K25 RSVD K27 RSVD K29 RSVD L15 RSVD U11 RSVD V11 RSVD AK7 SKTOCC# AG36 GTL O TCK AH10 TAP I TDI AJ9 TAP I TDO AJ10 TAP O THERMTRIP# AG37 GTL O TMS AG10 TAP I TRST# AH9 TAP I VCC AH11 PWR VCC AH33 PWR VCC AJ11 PWR
Land
No.
Buffer
Type
Direction
44 Datasheet
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 17 of 29)
Land Name
VCC AJ33 PWR VCC AK11 PWR VCC AK12 PWR VCC AK13 PWR VCC AK15 PWR VCC AK16 PWR VCC AK18 PWR VCC AK19 PWR VCC AK21 PWR VCC AK24 PWR VCC AK25 PWR VCC AK27 PWR VCC AK28 PWR VCC AK30 PWR VCC AK31 PWR VCC AK33 PWR VCC AL12 PWR VCC AL13 PWR VCC AL15 PWR VCC AL16 PWR VCC AL18 PWR VCC AL19 PWR VCC AL21 PWR VCC AL24 PWR VCC AL25 PWR VCC AL27 PWR VCC AL28 PWR VCC AL30 PWR VCC AL31 PWR VCC AL33 PWR VCC AL34 PWR VCC AM12 PWR VCC AM13 PWR VCC AM15 PWR VCC AM16 PWR VCC AM18 PWR VCC AM19 PWR VCC AM21 PWR VCC AM24 PWR VCC AM25 PWR VCC AM27 PWR VCC AM28 PWR VCC AM30 PWR VCC AM31 PWR VCC AM33 PWR VCC AM34 PWR VCC AN12 PWR VCC AN13 PWR
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 18 of 29)
Land Name
VCC AN15 PWR VCC AN16 PWR VCC AN18 PWR VCC AN19 PWR VCC AN21 PWR VCC AN24 PWR VCC AN25 PWR VCC AN27 PWR VCC AN28 PWR VCC AN30 PWR VCC AN31 PWR VCC AN33 PWR VCC AN34 PWR VCC AP12 PWR VCC AP13 PWR VCC AP15 PWR VCC AP16 PWR VCC AP18 PWR VCC AP19 PWR VCC AP21 PWR VCC AP24 PWR VCC AP25 PWR VCC AP27 PWR VCC AP28 PWR VCC AP30 PWR VCC AP31 PWR VCC AP33 PWR VCC AP34 PWR VCC AR10 PWR VCC AR12 PWR VCC AR13 PWR VCC AR15 PWR VCC AR16 PWR VCC AR18 PWR VCC AR19 PWR VCC AR21 PWR VCC AR24 PWR VCC AR25 PWR VCC AR27 PWR VCC AR28 PWR VCC AR30 PWR VCC AR31 PWR VCC AR33 PWR VCC AR34 PWR VCC AT10 PWR VCC AT12 PWR VCC AT13 PWR VCC AT15 PWR
Land
No.
Buffer
Type
Direction
Datasheet 45
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 19 of 29)
Land Name
VCC AT16 PWR VCC AT18 PWR VCC AT19 PWR VCC AT21 PWR VCC AT24 PWR VCC AT25 PWR VCC AT27 PWR VCC AT28 PWR VCC AT30 PWR VCC AT31 PWR VCC AT33 PWR VCC AT34 PWR VCC AT9 PWR VCC AU10 PWR VCC AU12 PWR VCC AU13 PWR VCC AU15 PWR VCC AU16 PWR VCC AU18 PWR VCC AU19 PWR VCC AU21 PWR VCC AU24 PWR VCC AU25 PWR VCC AU27 PWR VCC AU28 PWR VCC AU30 PWR VCC AU31 PWR VCC AU33 PWR VCC AU34 PWR VCC AU9 PWR VCC AV10 PWR VCC AV12 PWR VCC AV13 PWR VCC AV15 PWR VCC AV16 PWR VCC AV18 PWR VCC AV19 PWR VCC AV21 PWR VCC AV24 PWR VCC AV25 PWR VCC AV27 PWR VCC AV28 PWR VCC AV30 PWR VCC AV31 PWR VCC AV33 PWR VCC AV34 PWR VCC AV9 PWR VCC AW10 PWR
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 20 of 29)
Land Name
VCC AW12 PWR VCC AW13 PWR VCC AW15 PWR VCC AW16 PWR VCC AW18 PWR VCC AW19 PWR VCC AW21 PWR VCC AW24 PWR VCC AW25 PWR VCC AW27 PWR VCC AW28 PWR VCC AW30 PWR VCC AW31 PWR VCC AW33 PWR VCC AW34 PWR VCC AW9 PWR VCC AY10 PWR VCC AY12 PWR VCC AY13 PWR VCC AY15 PWR VCC AY16 PWR VCC AY18 PWR VCC AY19 PWR VCC AY21 PWR VCC AY24 PWR VCC AY25 PWR VCC AY27 PWR VCC AY28 PWR VCC AY30 PWR VCC AY31 PWR VCC AY33 PWR VCC AY34 PWR VCC AY9 PWR VCC BA10 PWR VCC BA12 PWR VCC BA13 PWR VCC BA15 PWR VCC BA16 PWR VCC BA18 PWR VCC BA19 PWR VCC BA24 PWR VCC BA25 PWR VCC BA27 PWR VCC BA28 PWR VCC BA30 PWR VCC BA9 PWR VCC M11 PWR VCC M13 PWR
Land
No.
Buffer
Type
Direction
46 Datasheet
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 21 of 29)
Land Name
VCC M15 PWR VCC M19 PWR VCC M21 PWR VCC M23 PWR VCC M25 PWR VCC M29 PWR VCC M31 PWR VCC M33 PWR VCC N11 PWR VCC N33 PWR VCC R11 PWR VCC R33 PWR VCC T11 PWR VCC T33 PWR VCC W11 PWR VCC_SENSE AR9 Analog VCCPLL U33 PWR VCCPLL V33 PWR VCCPLL W33 PWR VCCPWRGOOD AR7 Asynch I VDDPWRGOOD AA6 Asynch I VDDQ A14 PWR VDDQ A19 PWR VDDQ A24 PWR VDDQ A29 PWR VDDQ A9 PWR VDDQ B12 PWR VDDQ B17 PWR VDDQ B22 PWR VDDQ B27 PWR VDDQ B32 PWR VDDQ B7 PWR VDDQ C10 PWR VDDQ C15 PWR VDDQ C20 PWR VDDQ C25 PWR VDDQ C30 PWR VDDQ D13 PWR VDDQ D18 PWR VDDQ D23 PWR VDDQ D28 PWR VDDQ E11 PWR VDDQ E16 PWR VDDQ E21 PWR VDDQ E26 PWR VDDQ E31 PWR VDDQ F14 PWR VDDQ F19 PWR
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 22 of 29)
Land Name
VDDQ F24 PWR VDDQ G17 PWR VDDQ G22 PWR VDDQ G27 PWR VDDQ H15 PWR VDDQ H20 PWR VDDQ H25 PWR VDDQ J18 PWR VDDQ J23 PWR VDDQ J28 PWR VDDQ K16 PWR VDDQ K21 PWR VDDQ K26 PWR VDDQ L14 PWR VDDQ L19 PWR VDDQ L24 PWR VDDQ M17 PWR VDDQ M27 PWR VID[0]/MSID[0] AL10 CMOS I/O VID[1]/MSID[1] AL9 CMOS I/O VID[2]/MSID[2] AN9 CMOS I/O VID[3]/CSC[0] AM 10 CMOS I/O VID[4]/CSC[1] AN10 CMOS I/O VID[5]/CSC[2] AP9 CMOS I/O VID[6] AP8 CMOS O VID[7] AN8 CMOS O VSS A35 GND VSS A39 GND VSS A4 GND VSS A41 GND VSS A6 GND VSS AA3 GND VSS AA34 GND VSS AA38 GND VSS AA39 GND VSS AA9 GND VSS AB37 GND VSS AB4 GND VSS AB40 GND VSS AB42 GND VSS AB7 GND VSS AC2 GND VSS AC36 GND VSS AC5 GND VSS AC7 GND VSS AC9 GND VSS AD11 GND VSS AD33 GND
Land
No.
Buffer
Type
Direction
Datasheet 47
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 23 of 29)
Land Name
VSS A D37 GND VSS A D41 GND VSS A D43 GND VSS AE2 GND VSS A E39 GND VSS AE7 GND VSS AF35 GND VSS AF38 GND VSS AF41 GND VSS A F5 GND VSS A G11 GND VSS AG3 GND VSS A G33 GND VSS A G43 GND VSS AG9 GND VSS AH1 GND VSS A H34 GND VSS A H37 GND VSS A H39 GND VSS AH7 GND VSS AJ34 GND VSS AJ36 GND VSS AJ41 GND VSS A J5 GND VSS A K10 GND VSS A K14 GND VSS A K17 GND VSS A K20 GND VSS A K22 GND VSS A K23 GND VSS A K26 GND VSS A K29 GND VSS AK3 GND VSS A K32 GND VSS A K34 GND VSS A K39 GND VSS A K43 GND VSS AK9 GND VSS AL1 GND VSS A L11 GND VSS A L14 GND VSS A L17 GND VSS AL2 GND VSS A L20 GND VSS A L22 GND VSS A L23 GND VSS A L26 GND VSS A L29 GND
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 24 of 29)
Land Name
VSS AL32 GND VSS AL35 GND VSS AL36 GND VSS AL37 GND VSS AL42 GND VSS AL7 GND VSS AM11 GND VSS AM14 GND VSS AM17 GND VSS AM20 GND VSS AM22 GND VSS AM23 GND VSS AM26 GND VSS AM29 GND VSS AM32 GND VSS AM35 GND VSS AM37 GND VSS AM39 GND VSS AM5 GND VSS AM9 GND VSS AN11 GND VSS AN14 GND VSS AN17 GND VSS AN20 GND VSS AN22 GND VSS AN23 GND VSS AN26 GND VSS AN29 GND VSS AN3 GND VSS AN32 GND VSS AN35 GND VSS AN37 GND VSS AN41 GND VSS AN7 GND VSS AP1 GND VSS AP10 GND VSS AP11 GND VSS AP14 GND VSS AP17 GND VSS AP20 GND VSS AP22 GND VSS AP23 GND VSS AP26 GND VSS AP29 GND VSS AP32 GND VSS AP35 GND VSS AP36 GND VSS AP37 GND
Land
No.
Buffer
Type
Direction
48 Datasheet
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 25 of 29)
Land Name
VSS AP43 GND VSS AP5 GND VSS AP6 GND VSS AR11 GND VSS AR14 GND VSS AR17 GND VSS AR2 GND VSS AR20 GND VSS AR22 GND VSS AR23 GND VSS AR26 GND VSS AR29 GND VSS AR3 GND VSS AR32 GND VSS AR35 GND VSS AR39 GND VSS AT11 GND VSS AT14 GND VSS AT17 GND VSS AT20 GND VSS AT22 GND VSS AT23 GND VSS AT26 GND VSS AT29 GND VSS AT32 GND VSS AT35 GND VSS AT38 GND VSS AT41 GND VSS AT7 GND VSS AT8 GND VSS AU1 GND VSS AU11 GND VSS AU14 GND VSS AU17 GND VSS AU20 GND VSS AU22 GND VSS AU23 GND VSS AU26 GND VSS AU29 GND VSS AU32 GND VSS AU35 GND VSS AU36 GND VSS AU43 GND VSS AU5 GND VSS AV11 GND VSS AV14 GND VSS AV17 GND VSS AV20 GND
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 26 of 29)
Land Name
VSS AV22 GND VSS AV23 GND VSS AV26 GND VSS AV29 GND VSS AV32 GND VSS AV39 GND VSS AV4 GND VSS AV41 GND VSS AW1 GND VSS AW11 GND VSS AW14 GND VSS AW17 GND VSS AW20 GND VSS AW22 GND VSS AW23 GND VSS AW26 GND VSS AW29 GND VSS AW32 GND VSS AW35 GND VSS AW6 GND VSS AW8 GND VSS AY11 GND VSS AY14 GND VSS AY17 GND VSS AY2 GND VSS AY20 GND VSS AY22 GND VSS AY23 GND VSS AY26 GND VSS AY29 GND VSS AY32 GND VSS AY37 GND VSS AY42 GND VSS AY7 GND VSS B2 GND VSS B37 GND VSS B42 GND VSS BA11 GND VSS BA14 GND VSS BA17 GND VSS BA20 GND VSS BA26 GND VSS BA29 GND VSS BA3 GND VSS BA35 GND VSS BA39 GND VSS BA5 GND VSS C35 GND
Land
No.
Buffer
Type
Direction
Datasheet 49
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 27 of 29)
Land Name
VSS C40 GND VSS C43 GND VSS C5 GND VSS D 3 GND VSS D 33 GND VSS D 38 GND VSS D 43 GND VSS D 8 GND VSS E1 GND VSS E36 GND VSS E41 GND VSS E6 GND VSS F29 GND VSS F34 GND VSS F39 GND VSS F4 GND VSS F9 GND VSS G12 GND VSS G2 GND VSS G32 GND VSS G37 GND VSS G42 GND VSS G7 GND VSS H10 GND VSS H30 GND VSS H35 GND VSS H40 GND VSS H5 GND VSS J13 GND VSS J3 GND VSS J33 GND VSS J38 GND VSS J43 GND VSS J8 GND VSS K 1 GND VSS K 11 GND VSS K 31 GND VSS K 36 GND VSS K 41 GND VSS K 6 GND VSS L29 GND VSS L34 GND VSS L39 GND VSS L4 GND VSS L9 GND VSS M12 GND VSS M14 GND VSS M16 GND
Land
No.
Buffer
Type
Direction
Table 4-1. Land Listing by Land Name
(Sheet 28 of 29)
Land Name
VSS M18 GND VSS M2 GND VSS M20 GND VSS M22 GND VSS M24 GND VSS M26 GND VSS M28 GND VSS M30 GND VSS M32 GND VSS M37 GND VSS M42 GND VSS M7 GND VSS N10 GND VSS N35 GND VSS N40 GND VSS N5 GND VSS P11 GND VSS P3 GND VSS P33 GND VSS P38 GND VSS P43 GND VSS P8 GND VSS R1 GND VSS R36 GND VSS R41 GND VSS R6 GND VSS T34 GND VSS T39 GND VSS T4 GND VSS T9 GND VSS U2 GND VSS U37 GND VSS U42 GND VSS U7 GND VSS V10 GND VSS V35 GND VSS V40 GND VSS V5 GND VSS W3 GND VSS W38 GND VSS W43 GND VSS W8 GND VSS Y1 GND VSS Y11 GND VSS Y33 GND VSS Y36 GND VSS Y41 GND VSS Y6 GND
Land
No.
Buffer
Type
Direction
50 Datasheet
Land Listing
Table 4-1. Land Listing by Land Name
(Sheet 29 of 29)
Land Name
VSS_SENSE AR8 Analog VSS_SENSE_VTT AE37 Analog VTT_SENSE AE36 Analog VTT_VID2 AV3 CMOS O VTT_VID3 AF7 CMOS O VTT_VID4 AV6 CMOS O VTTA AD10 PWR VTTA AE10 PWR VTTA AE11 PWR VTTA AE33 PWR VTTA AF11 PWR VTTA AF33 PWR VTTA AF34 PWR VTTA AG34 PWR VTTD AA10 PWR VTTD AA11 PWR VTTD AA33 PWR VTTD AB10 PWR VTTD AB11 PWR VTTD AB33 PWR VTTD AB34 PWR VTTD AB8 PWR VTTD AB9 PWR VTTD AC10 PWR VTTD AC11 PWR VTTD AC33 PWR VTTD AC34 PWR VTTD AC35 PWR VTTD AD34 PWR VTTD AD35 PWR VTTD AD36 PWR VTTD AD9 PWR VTTD AE34 PWR VTTD AE35 PWR VTTD AE8 PWR VTTD AE9 PWR VTTD AF36 PWR VTTD AF37 PWR VTTD AF8 PWR VTTD AF9 PWR VTTPWRGOOD AB35 Asynch I
Land
No.
Buffer
Type
Direction
Datasheet 51
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 1 of 29)
Land
No.
A10 DDR0_MA[13] CMOS O A14 VDDQ PWR A15 DDR0_RAS# CMOS O A16 DDR0_BA[1] CMOS O A17 DDR2_BA[0] CMOS O A18 DDR2_MA[0] CMOS O A19 VDDQ PWR A20 DDR0_MA[0] CMOS O A24 VDDQ PWR A25 DDR0_MA[7] CMOS O A26 DDR0_MA[11] CMOS O A27 RSVD A28 DDR0_MA[14] CMOS O A29 VDDQ PWR A30 DDR0_CKE[1] CMOS O A31 RSVD A35 VSS GND A36 RSVD A37 RSVD A38 DDR0_DQ[26] CMOS I/O A39 VSS GND A4 VSS GND A40 RSVD A41 VSS GND A5 BPM#[1] GTL I/O A6 VSS GND A7 DDR0_CS#[5] CMOS O A8 DDR1_CS#[1] CMOS O A9 VDDQ PWR AA10 VTTD PWR AA11 VTTD PWR AA3 VSS GND AA33 VTTD PWR AA34 VSS GND AA35 DDR1_DQ[4] CMOS I/O AA36 DDR1_DQ[1] CMOS I/O AA37 DDR1_DQ[0] CMOS I/O AA38 VSS GND AA39 VSS GND AA4 BCLK_ITP_DN CMOS O AA40 RSVD AA41 RSVD AA5 BCLK_ITP_DP CMOS O AA6 VDDPWRGOOD Asynch I AA7 DDR1_DQ[62] CMOS I/O AA8 DDR_COMP[0] Analog AA9 VSS GND AB10 VTTD PWR
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 2 of 29)
Land
No.
AB11 VTTD PWR AB3 RSVD AB33 VTTD PWR AB34 VTTD PWR AB35 VTTPWRGOOD Asynch I AB36 DDR1_DQ[5] CMOS I/O AB37 VSS GND AB38 QPI_DTX_DN[17] QPI O AB39 QPI_DTX_DP[17] QPI O AB4 VSS GND AB40 VSS GND AB41 COMP0 Analog AB42 VSS GND AB43 QPI_DTX_DN[13] QPI O AB5 RSVD AB6 RSVD AB7 VSS GND AB8 VTTD PWR AB9 VTTD PWR AC1 DDR_COMP[2] Analog AC10 VTTD PWR AC11 VTTD PWR AC2 VSS GND AC3 RSVD AC33 VTTD PWR AC34 VTTD PWR AC35 VTTD PWR AC36 VSS GND AC37 CAT_ERR# GTL I/O AC38 QPI_DTX_DN[16] QPI O AC39 QPI_DTX_DP[16] QPI O AC4 RSVD AC40 QPI_DTX_DN[15] QPI O AC41 QPI_DTX_DP[15] QPI O AC42 QPI_DTX_DN[12] QPI O AC43 QPI_DTX_DP[13] QPI O AC5 VSS GND AC6 RSVD AC7 VSS GND AC8 RSVD AC9 VSS GND AD1 RSVD AD10 VTTA PWR AD11 VSS GND AD2 RSVD AD3 RSVD AD33 VSS GND AD34 VTTD PWR
Pin Name
Buffer
Type
Direction
52 Datasheet
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 3 of 29)
Land
No.
AD35 VTTD PWR AD36 VTTD PWR AD37 VSS GND AD38 QPI_DTX_DP[18] QPI O AD39 QPI_DTX_DN[14] QPI O AD4 RSVD AD40 QPI_DTX_DP[14] QPI O AD41 VSS GND AD42 QPI_DTX_DP[12] QPI O AD43 VSS GND AD5 RSVD AD6 RSVD AD7 RSVD AD8 RSVD AD9 VTTD PWR AE1 RSVD AE10 VTTA PWR AE11 VTTA PWR AE2 VSS GND AE3 RSVD AE33 VTTA PWR AE34 VTTD PWR AE35 VTTD PWR AE36 VTT_SENSE Analog AE37 VSS_SENSE_VTT Analog AE38 QPI_DTX_DN[18] QPI O AE39 VSS GND AE4 RSVD AE40 QPI_DTX_DP[19] QPI O AE41 QPI_DTX_DN[11] QPI O AE42 QPI_DTX_DP[11] QPI O AE43 QPI_DTX_DN[10] QPI O AE5 RSVD AE6 RSVD AE7 VSS GND AE8 VTTD PWR AE9 VTTD PWR AF1 RSVD AF10 DBR# Asynch I AF11 VTTA PWR AF2 RSVD AF3 RSVD AF33 VTTA PWR AF34 VTTA PWR AF35 VSS GND AF36 VTTD PWR AF37 VTTD PWR AF38 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 4 of 29)
Land
No.
AF39 QPI_DTX_DP[1] QPI O AF4 RSVD AF40 QPI_DTX_DN[19] QPI O AF41 VSS GND AF42 QPI_CLKTX_DN QPI O AF43 QPI_DTX_DP[10] QPI O AF5 VSS GND AF6 RSVD AF7 VTT_VID3 CMOS O AF8 VTTD PWR AF9 VTTD PWR AG1 RSVD AG10 TMS TAP I AG11 VSS GND AG2 RSVD AG3 VSS GND AG33 VSS GND AG34 VTTA PWR AG35 PROCHOT# GTL I/O AG36 SKTOCC# GTL O AG37 THERMTRIP# GTL O AG38 QPI_DTX_DP[0] QPI O AG39 QPI_DTX_DN[1] QPI O AG4 RSVD AG40 QPI_DTX_DP[9] QPI O AG41 QPI_DTX_DN[9] QPI O AG42 QPI_CLKTX_DP QPI O AG43 VSS GND AG5 RSVD AG6 RSVD AG7 RSVD AG8 RSVD AG9 VSS GND AH1 VSS GND AH10 TCK TAP I AH11 VCC PWR AH2 RSVD AH3 RSVD AH33 VCC PWR AH34 VSS GND AH35 BCLK_DN CMOS I AH36 PECI Asynch I/O AH37 VSS GND AH38 QPI_DTX_DN[0] QPI O AH39 VSS GND AH4 RSVD AH40 QPI_DTX_DP[4] QPI O AH41 QPI_DTX_DP[6] QPI O
Pin Name
Buffer
Type
Direction
Datasheet 53
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 5 of 29)
Land
No.
AH42 QPI_DTX_DN[6] QPI O AH43 QPI_DTX_DN[8] QPI O AH5 FC_AH5 AH6 RSVD AH7 VSS GND AH8 RSVD AH9 TRST# TAP I AJ1 RSVD AJ10 TDO TAP O AJ11 VCC PWR AJ2 RSVD AJ3 RSVD AJ33 VCC PWR AJ34 VSS GND AJ35 BCLK_DP CMOS I AJ36 VSS GND AJ37 RSVD AJ38 QPI_DTX_DP[3] QPI O AJ39 QPI_DTX_DN[3] QPI O AJ4 RSVD AJ40 QPI_DTX_DN[4] QPI O AJ41 VSS GND AJ42 QPI_DTX_DN[7] QPI O AJ43 QPI_DTX_DP[8] QPI O AJ5 VSS GND AJ6 RSVD AJ7 RSVD AJ8 RSVD AJ9 TDI TAP I AK1 RSVD AK10 VSS GND AK11 VCC PWR AK12 VCC PWR AK13 VCC PWR AK14 VSS GND AK15 VCC PWR AK16 VCC PWR AK17 VSS GND AK18 VCC PWR AK19 VCC PWR AK2 RSVD AK20 VSS GND AK21 VCC PWR AK22 VSS GND AK23 VSS GND AK24 VCC PWR AK25 VCC PWR AK26 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 6 of 29)
Land
No.
AK27 VCC PWR AK28 VCC PWR AK29 VSS GND AK3 VSS GND AK30 VCC PWR AK31 VCC PWR AK32 VSS GND AK33 VCC PWR AK34 VSS GND AK35 RSVD AK36 RSVD AK37 QPI_DTX_DP[2] QPI O AK38 QPI_DTX_DN[2] QPI O AK39 VSS GND AK4 RSVD AK40 QPI_DTX_DP[5] QPI O AK41 QPI_DTX_DN[5] QPI O AK42 QPI_DTX_DP[7] QPI O AK43 VSS GND AK5 RSVD AK6 RSVD AK7 RSVD AK8 ISENSE Analog I AK9 VSS GND AL1 VSS GND AL10 VID[0]/MSID[0] CMOS I/O AL11 VSS GND AL12 VCC PWR AL13 VCC PWR AL14 VSS GND AL15 VCC PWR AL16 VCC PWR AL17 VSS GND AL18 VCC PWR AL19 VCC PWR AL2 VSS GND AL20 VSS GND AL21 VCC PWR AL22 VSS GND AL23 VSS GND AL24 VCC PWR AL25 VCC PWR AL26 VSS GND AL27 VCC PWR AL28 VCC PWR AL29 VSS GND AL3 RSVD AL30 VCC PWR
Pin Name
Buffer
Type
Direction
54 Datasheet
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 7 of 29)
Land
No.
AL31 VCC PWR AL32 VSS GND AL33 VCC PWR AL34 VCC PWR AL35 VSS GND AL36 VSS GND AL37 VSS GND AL38 RSVD AL39 RESET# Asynch I AL4 RSVD AL40 RSVD AL41 RSVD AL42 VSS GND AL43 QPI_CMP[0] Analog AL5 RSVD AL6 RSVD AL7 VSS GND AL8 RSVD AL9 VID[1]/MSID[1] CMOS I/O AM1 RSVD AM10 VID[3]/CSC[0] CMOS I/O AM11 VSS GND AM12 VCC PWR AM13 VCC PWR AM14 VSS GND AM15 VCC PWR AM16 VCC PWR AM17 VSS GND AM18 VCC PWR AM19 VCC PWR AM2 RSVD AM20 VSS GND AM21 VCC PWR AM22 VSS GND AM23 VSS GND AM24 VCC PWR AM25 VCC PWR AM26 VSS GND AM27 VCC PWR AM28 VCC PWR AM29 VSS GND AM3 RSVD AM30 VCC PWR AM31 VCC PWR AM32 VSS GND AM33 VCC PWR AM34 VCC PWR AM35 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 8 of 29)
Land
No.
AM36 RSVD AM37 VSS GND AM38 RSVD AM39 VSS GND AM4 RSVD AM40 QPI_DRX_DN[15] QPI I AM41 QPI_DRX_DN[16] QPI I AM42 QPI_DRX_DP[16] QPI I AM43 QPI_DRX_DN[14] QPI I AM5 VSS GND AM6 RSVD AM7 RSVD AM8 RSVD AM9 VSS GND AN1 RSVD AN10 VID[4]/CSC[1] CMOS I/O AN11 VSS GND AN12 VCC PWR AN13 VCC PWR AN14 VSS GND AN15 VCC PWR AN16 VCC PWR AN17 VSS GND AN18 VCC PWR AN19 VCC PWR AN2 RSVD AN20 VSS GND AN21 VCC PWR AN22 VSS GND AN23 VSS GND AN24 VCC PWR AN25 VCC PWR AN26 VSS GND AN27 VCC PWR AN28 VCC PWR AN29 VSS GND AN3 VSS GND AN30 VCC PWR AN31 VCC PWR AN32 VSS GND AN33 VCC PWR AN34 VCC PWR AN35 VSS GND AN36 RSVD AN37 VSS GND AN38 RSVD AN39 QPI_DRX_DP[18] QPI I AN4 RSVD
Pin Name
Buffer
Type
Direction
Datasheet 55
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 9 of 29)
Land
No.
AN40 QPI_DRX_DP[15] QPI I AN41 VSS GND AN42 QPI_DRX_DN[13] QPI I AN43 QPI_DRX_DP[14] QPI I AN5 RSVD AN6 RSVD AN7 VSS GND AN8 VID[7] CMOS O AN9 VID[2]/MSID[2] CMOS I/O AP1 VSS GND AP10 VSS GND AP11 VSS GND AP12 VCC PWR AP13 VCC PWR AP14 VSS GND AP15 VCC PWR AP16 VCC PWR AP17 VSS GND AP18 VCC PWR AP19 VCC PWR AP2 RSVD AP20 VSS GND AP21 VCC PWR AP22 VSS GND AP23 VSS GND AP24 VCC PWR AP25 VCC PWR AP26 VSS GND AP27 VCC PWR AP28 VCC PWR AP29 VSS GND AP3 RSVD AP30 VCC PWR AP31 VCC PWR AP32 VSS GND AP33 VCC PWR AP34 VCC PWR AP35 VSS GND AP36 VSS GND AP37 VSS GND AP38 QPI_DRX_DP[19] QPI I AP39 QPI_DRX_DN[18] QPI I AP4 RSVD AP40 QPI_DRX_DN[17] QPI I AP41 QPI_DRX_DP[17] QPI I AP42 QPI_DRX_DP[13] QPI I AP43 VSS GND AP5 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 10 of 29)
Land
No.
AP6 VSS GND AP7 PSI# CMOS O AP8 VID[6] CMOS O AP9 VID[5]/CSC[2] CMOS I/O AR1 RSVD AR10 VCC PWR AR11 VSS GND AR12 VCC PWR AR13 VCC PWR AR14 VSS GND AR15 VCC PWR AR16 VCC PWR AR17 VSS GND AR18 VCC PWR AR19 VCC PWR AR2 VSS GND AR20 VSS GND AR21 VCC PWR AR22 VSS GND AR23 VSS GND AR24 VCC PWR AR25 VCC PWR AR26 VSS GND AR27 VCC PWR AR28 VCC PWR AR29 VSS GND AR3 VSS GND AR30 VCC PWR AR31 VCC PWR AR32 VSS GND AR33 VCC PWR AR34 VCC PWR AR35 VSS GND AR36 RSVD AR37 RSVD AR38 QPI_DRX_DN[19] QPI I AR39 VSS GND AR4 RSVD AR40 QPI_DRX_DN[12] QPI I AR41 QPI_CLKRX_DP QPI I AR42 QPI_CLKRX_DN QPI I AR43 QPI_DRX_DN[11] QPI I AR5 RSVD AR6 RSVD AR7 VCCPWRGOOD Asynch I AR8 VSS_SENSE Analog AR9 VCC_SENSE Analog AT1 RSVD
Pin Name
Buffer
Type
Direction
56 Datasheet
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 11 of 29)
Land
No.
AT10 VCC PWR AT11 VSS GND AT12 VCC PWR AT13 VCC PWR AT14 VSS GND AT15 VCC PWR AT16 VCC PWR AT17 VSS GND AT18 VCC PWR AT19 VCC PWR AT2 RSVD AT20 VSS GND AT21 VCC PWR AT22 VSS GND AT23 VSS GND AT24 VCC PWR AT25 VCC PWR AT26 VSS GND AT27 VCC PWR AT28 VCC PWR AT29 VSS GND AT3 RSVD AT30 VCC PWR AT31 VCC PWR AT32 VSS GND AT33 VCC PWR AT34 VCC PWR AT35 VSS GND AT36 RSVD AT37 QPI_DRX_DP[0] QPI I AT38 VSS GND AT39 QPI_DRX_DN[7] QPI I AT4 RSVD AT40 QPI_DRX_DP[12] QPI I AT41 VSS GND AT42 QPI_DRX_DN[10] QPI I AT43 QPI_DRX_DP[11] QPI I AT5 RSVD AT6 RSVD AT7 VSS GND AT8 VSS GND AT9 VCC PWR AU1 VSS GND AU10 VCC PWR AU11 VSS GND AU12 VCC PWR AU13 VCC PWR AU14 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 12 of 29)
Land
No.
AU15 VCC PWR AU16 VCC PWR AU17 VSS GND AU18 VCC PWR AU19 VCC PWR AU2 RSVD AU20 VSS GND AU21 VCC PWR AU22 VSS GND AU23 VSS GND AU24 VCC PWR AU25 VCC PWR AU26 VSS GND AU27 VCC PWR AU28 VCC PWR AU29 VSS GND AU3 RSVD AU30 VCC PWR AU31 VCC PWR AU32 VSS GND AU33 VCC PWR AU34 VCC PWR AU35 VSS GND AU36 VSS GND AU37 QPI_DRX_DN[0] QPI I AU38 QPI_DRX_DP[1] QPI I AU39 QPI_DRX_DP[7] QPI I AU4 RSVD AU40 QPI_DRX_DP[9] QPI I AU41 QPI_DRX_DN[9] QPI I AU42 QPI_DRX_DP[10] QPI I AU43 VSS GND AU5 VSS GND AU6 RSVD AU7 RSVD AU8 RSVD AU9 VCC PWR AV1 RSVD AV10 VCC PWR AV11 VSS GND AV12 VCC PWR AV13 VCC PWR AV14 VSS GND AV15 VCC PWR AV16 VCC PWR AV17 VSS GND AV18 VCC PWR AV19 VCC PWR
Pin Name
Buffer
Type
Direction
Datasheet 57
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 13 of 29)
Land
No.
AV2 RSVD AV20 VSS GND AV21 VCC PWR AV22 VSS GND AV23 VSS GND AV24 VCC PWR AV25 VCC PWR AV26 VSS GND AV27 VCC PWR AV28 VCC PWR AV29 VSS GND AV3 VTT_VID2 CMOS O AV30 VCC PWR AV31 VCC PWR AV32 VSS GND AV33 VCC PWR AV34 VCC PWR AV35 RSVD AV36 QPI_DRX_DP[2] QPI I AV37 QPI_DRX_DN[2] QPI I AV38 QPI_DRX_DN[1] QPI I AV39 VSS GND AV4 VSS GND AV40 QPI_DRX_DN[8] QPI I AV41 VSS GND AV42 RSVD AV43 RSVD AV5 RSVD AV6 VTT_VID4 CMOS O AV7 RSVD AV8 RSVD AV9 VCC PWR AW1 VSS GND AW10 VCC PWR AW11 VSS GND AW12 VCC PWR AW13 VCC PWR AW14 VSS GND AW15 VCC PWR AW16 VCC PWR AW17 VSS GND AW18 VCC PWR AW19 VCC PWR AW2 RSVD AW20 VSS GND AW21 VCC PWR AW22 VSS GND AW23 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 14 of 29)
Land
No.
AW24 VCC PWR AW25 VCC PWR AW26 VSS GND AW27 VCC PWR AW28 VCC PWR AW29 VSS GND AW3 RSVD AW30 VCC PWR AW31 VCC PWR AW32 VSS GND AW33 VCC PWR AW34 VCC PWR AW35 VSS GND AW36 QPI_DRX_DP[3] QPI I AW37 QPI_DRX_DP[5] QPI I AW38 QPI_DRX_DN[5] QPI I AW39 RSVD AW4 RSVD AW40 QPI_DRX_DP[8] QPI I AW41 RSVD AW42 RSVD AW5 RSVD AW6 VSS GND AW7 RSVD AW8 VSS GND AW9 VCC PWR AY10 VCC PWR AY11 VSS GND AY12 VCC PWR AY13 VCC PWR AY14 VSS GND AY15 VCC PWR AY16 VCC PWR AY17 VSS GND AY18 VCC PWR AY19 VCC PWR AY2 VSS GND AY20 VSS GND AY21 VCC PWR AY22 VSS GND AY23 VSS GND AY24 VCC PWR AY25 VCC PWR AY26 VSS GND AY27 VCC PWR AY28 VCC PWR AY29 VSS GND AY3 RSVD
Pin Name
Buffer
Type
Direction
58 Datasheet
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 15 of 29)
Land
No.
AY30 VCC PWR AY31 VCC PWR AY32 VSS GND AY33 VCC PWR AY34 VCC PWR AY35 RSVD AY36 QPI_DRX_DN[3] QPI I AY37 VSS GND AY38 QPI_DRX_DN[6] QPI I AY39 RSVD AY4 RSVD AY40 RSVD AY41 RSVD AY42 VSS GND AY5 RSVD AY6 RSVD AY7 VSS GND AY8 RSVD AY9 VCC PWR B10 DDR0_CS#[1] CMOS O B11 DDR0_ODT[2] CMOS O B12 VDDQ PWR B13 DDR0_WE# CMOS O B14 DDR1_MA[13] CMOS O B15 DDR0_CS#[4] CMOS O B16 DDR0_BA[0] CMOS O B17 VDDQ PWR B18 RSVD B19 DDR0_MA[10] CMOS O B2 VSS GND B20 RSVD B21 DDR0_MA[1] CMOS O B22 VDDQ PWR B23 DDR0_MA[4] CMOS O B24 DDR0_MA[5] CMOS O B25 DDR0_MA[8] CMOS O B26 DDR0_MA[12] CMOS O B27 VDDQ PWR B28 RSVD B29 DDR0_MA[15] CMOS O B3 BPM#[0] GTL I/O B30 DDR0_CKE[2] CMOS O B31 DDR0_CKE[3] CMOS O B32 VDDQ PWR B33 RSVD B34 RSVD B35 RSVD B36 RSVD
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 16 of 29)
Land
No.
B37 VSS GND B38 DDR0_DQ[31] CMOS I/O B39 DDR0_DQS_P[3] CMOS I/O B4 BPM#[3] GTL I/O B40 DDR0_DQS_N[3] CMOS I/O B41 PRDY# GTL O B42 VSS GND B5 DDR0_DQ[32] CMOS I/O B6 DDR0_DQ[36] CMOS I/O B7 VDDQ PWR B8 RSVD B9 RSVD BA10 VCC PWR BA11 VSS GND BA12 VCC PWR BA13 VCC PWR BA14 VSS GND BA15 VCC PWR BA16 VCC PWR BA17 VSS GND BA18 VCC PWR BA19 VCC PWR BA20 VSS GND BA24 VCC PWR BA25 VCC PWR BA26 VSS GND BA27 VCC PWR BA28 VCC PWR BA29 VSS GND BA3 VSS GND BA30 VCC PWR BA35 VSS GND BA36 QPI_DRX_DP[4] QPI I BA37 QPI_DRX_DN[4] QPI I BA38 QPI_DRX_DP[6] QPI I BA39 VSS GND BA4 RSVD BA40 RSVD BA5 VSS GND BA6 RSVD BA7 RSVD BA8 RSVD BA9 VCC PWR C10 VDDQ PWR C11 RSVD C12 DDR0_CAS# CMOS O C13 RSVD C14 RSVD
Pin Name
Buffer
Type
Direction
Datasheet 59
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 17 of 29)
Land
No.
C15 VDDQ PWR C16 DDR2_WE# CMOS O C17 DDR1_CS#[4] CMOS O C18 DDR1_BA[0] CMOS O C19 DDR0_CLK_N[1] CLOCK O C2 BPM#[2] GTL I/O C20 VDDQ PWR C21 DDR1_CLK_P[0] CLOCK O C22 RSVD C23 DDR0_MA[2] CMOS O C24 DDR0_MA[6] CMOS O C25 VDDQ PWR C26 DDR0_MA[9] CMOS O C27 DDR1_CKE[3] CMOS O C28 DDR0_BA[2] CMOS O C29 DDR0_CKE[0] CMOS O C3 BPM#[5] GTL I/O C30 VDDQ PWR C31 RSVD C32 RSVD C33 RSVD C34 RSVD C35 VSS GND C36 RSVD C37 RSVD C38 DDR0_DQ[30] CMOS I/O C39 RSVD C4 DDR0_DQ[33] CMOS I/O C40 VSS GND C41 DDR0_DQ[25] CMOS I/O C42 PREQ# GTL I C43 VSS GND C5 VSS GND C6 DDR0_DQ[37] CMOS I/O C7 DDR0_ODT[3] CMOS O C8 DDR1_ODT[1] CMOS O C9 DDR0_ODT[1] CMOS O D1 BPM#[4] GTL I/O D10 DDR2_ODT[3] CM OS O D11 DDR1_ODT[0] CM OS O D12 DDR1_CS#[0] CMOS O D13 VDDQ PWR D14 DDR1_ODT[2] CM OS O D15 DDR2_ODT[2] CM OS O D16 RSVD D17 DDR2_RAS# CMOS O D18 VDDQ PWR D19 DDR0_CLK_P[1] CLOCK O
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 18 of 29)
Land
No.
D2 BPM#[6] GTL I/O D20 RSVD D21 DDR1_CLK_N[0] CLOCK O D22 DDR1_MA[7] CMOS O D23 VDDQ PWR D24 DDR0_MA[3] CMOS O D25 RSVD D26 DDR2_CKE[2] CMOS O D27 DDR1_CKE[2] CMOS O D28 VDDQ PWR D29 DDR1_RESET# CMOS O D3 VSS GND D30 RSVD D31 RSVD D32 DDR0_RESET# CMOS O D33 VSS GND D34 RSVD D35 RSVD D36 RSVD D37 DDR0_DQ[27] CMOS I/O D38 VSS GND D39 RSVD D4 RSVD D40 DDR0_DQ[24] CMOS I/O D41 DDR0_DQ[28] CMOS I/O D42 DDR0_DQ[29] CMOS I/O D43 VSS GND D5 RSVD D6 DDR1_DQ[38] CMOS I/O D7 DDR1_DQS_N[4] CMOS I/O D8 VSS GND D9 DDR2_CS#[5] CMOS O E1 VSS GND E10 DDR1_CS#[5] CMOS O E11 VDDQ PWR E12 RSVD E13 RSVD E14 DDR1_CAS# CMOS O E15 RSVD E16 VDDQ PWR E17 DDR2_CS#[4] CMOS O E18 DDR0_CLK_N[2] CLOCK O E19 DDR0_CLK_N[3] CLOCK O E2 BPM#[7] GTL I/O E20 DDR0_CLK_P[3] CLOCK O E21 VDDQ PWR E22 DDR1_MA[8] CMOS O E23 DDR1_MA[11] C MOS O
Pin Name
Buffer
Type
Direction
60 Datasheet
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 19 of 29)
Land
No.
E24 DDR1_MA[12] CMOS O E25 RSVD E26 VDDQ PWR E27 DDR1_CKE[1] CMOS O E28 RSVD E29 RSVD E3 DDR0_DQS_P[4] CMOS I/O E30 RSVD E31 VDDQ PWR E32 DDR2_RESET# CMOS O E33 RSVD E34 RSVD E35 RSVD E36 VSS GND E37 RSVD E38 DDR2_DQ[31] CMOS I/O E39 DDR2_DQS_P[3] CMOS I/O E4 DDR0_DQS_N[4] CMOS I/O E40 DDR2_DQS_N[3] CMOS I/O E41 VSS GND E42 DDR0_DQ[18] CMOS I/O E43 DDR0_DQ[19] CMOS I/O E5 DDR1_DQ[34] CMOS I/O E6 VSS GND E7 DDR1_DQS_P[4] CMOS I/O E8 DDR1_DQ[33] CMOS I/O E9 DDR1_DQ[32] CMOS I/O F1 DDR0_DQ[34] CMOS I/O F10 DDR1_DQ[36] CMOS I/O F11 DDR1_ODT[3] CMOS O F12 DDR0_ODT[0] CMOS O F13 DDR2_ODT[1] CMOS O F14 VDDQ PWR F15 DDR2_MA[13] CMOS O F16 DDR2_CAS# CMOS O F17 DDR2_BA[1] CMOS O F18 DDR0_CLK_P[2] CLOCK O F19 VDDQ PWR F2 DDR0_DQ[39] CMOS I/O F20 DDR2_MA[4] CMOS O F21 RSVD F22 DDR1_MA[5] CMOS O F23 RSVD F24 VDDQ PWR F25 RSVD F26 DDR1_MA[15] CMOS O F27 RSVD F28 RSVD
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 20 of 29)
Land
No.
F29 VSS GND F3 DDR0_DQ[38] CMOS I/O F30 RSVD F31 RSVD F32 RSVD F33 RSVD F34 VSS GND F35 RSVD F36 RSVD F37 RSVD F38 DDR2_DQ[30] CMOS I/O F39 VSS GND F4 VSS GND F40 DDR2_DQ[25] CMOS I/O F41 DDR0_DQS_P[2] CMOS I/O F42 DDR0_DQ[23] CMOS I/O F43 DDR0_DQ[22] CMOS I/O F5 DDR1_DQ[35] CMOS I/O F6 DDR1_DQ[39] CMOS I/O F7 RSVD F8 RSVD F9 VSS GND G1 DDR0_DQ[44] CMOS I/O G10 DDR2_DQ[37] CMOS I/O G11 DDR2_DQ[36] CMOS I/O G12 VSS GND G13 DDR1_WE# CMOS O G14 DDR1_RAS# CMOS O G15 DDR0_CS#[0] CMOS O G16 DDR2_CS#[0] CMOS O G17 VDDQ PWR G18 DDR2_MA[2] CMOS O G19 DDR1_CLK_P[1] CLOCK O G2 VSS GND G20 DDR1_CLK_N[1] CLOCK O G21 DDR2_CLK_N[2] CLOCK O G22 VDDQ PWR G23 DDR2_MA[12] CMOS O G24 DDR1_MA[9] CMOS O G25 DDR2_MA[15] CMOS O G26 DDR2_CKE[1] CMOS O G27 VDDQ PWR G28 RSVD G29 RSVD G3 DDR0_DQ[35] CMOS I/O G30 RSVD G31 RSVD G32 VSS GND
Pin Name
Buffer
Type
Direction
Datasheet 61
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 21 of 29)
Land
No.
G33 RSVD G34 RSVD G35 RSVD G36 RSVD G37 VSS GND G38 RSVD G39 DDR2_DQ[29] CMOS I/O G4 DDR1_DQ[42] C MOS I/O G40 DDR2_DQ[24] CMOS I/O G41 DDR0_DQS_N[2] CMOS I/O G42 VSS GND G43 RSVD G5 DDR1_DQ[46] C MOS I/O G6 DDR1_DQS_N[5] CMOS I/O G7 VSS GND G8 DDR1_DQ[37] C MOS I/O G9 DDR1_DQ[44] C MOS I/O H1 DDR0_DQ[41] CMOS I/O H10 VSS GND H11 RSVD H12 DDR2_DQ[38] CMOS I/O H13 DDR2_DQ[34] CMOS I/O H14 DDR1_MA[10] CMOS O H15 VDDQ PWR H16 RSVD H17 DDR2_MA[10] CMOS O H18 DDR1_CLK_P[3] CLOCK O H19 DDR1_CLK_N[3] CLOCK O H2 DDR0_DQ[40] CMOS I/O H20 VDDQ PWR H21 DDR2_CLK_P[2] CLOCK O H22 DDR2_MA[9] CMOS O H23 DDR2_MA[11] CMOS O H24 DDR2_MA[14] CMOS O H25 VDDQ PWR H26 DDR1_MA[14] CMOS O H27 DDR1_BA[2] CMOS O H28 DDR1_CKE[0] CMOS O H29 RSVD H3 DDR0_DQ[45] CMOS I/O H30 VSS GND H31 RSVD H32 RSVD H33 DDR1_DQ[24] CMOS I/O H34 DDR1_DQ[29] CMOS I/O H35 VSS GND H36 DDR1_DQ[23] CMOS I/O H37 DDR2_DQ[27] CMOS I/O
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 22 of 29)
Land
No.
H38 RSVD H39 DDR2_DQ[28] CMOS I/O H4 DDR1_DQ[43] CMOS I/O H40 VSS GND H41 DDR0_DQ[16] CMOS I/O H42 RSVD H43 DDR0_DQ[17] CMOS I/O H5 VSS GND H6 DDR1_DQS_P[5] CMOS I/O H7 RSVD H8 DDR1_DQ[40] CMOS I/O H9 DDR1_DQ[45] CMOS I/O J1 RSVD J10 DDR2_DQS_P[4] CMOS I/O J11 RSVD J12 DDR2_DQ[33] CMOS I/O J13 VSS GND J14 DDR1_MA[0] CMOS O J15 RSVD J16 DDR1_MA[1] CMOS O J17 DDR1_MA[2] CMOS O J18 VDDQ PWR J19 DDR0_CLK_P[0] CLOCK O J2 RSVD J20 DDR2_MA[3] CMOS O J21 DDR2_CLK_N[0] CLOCK O J22 DDR2_CLK_P[0] CLOCK O J23 VDDQ PWR J24 DDR2_MA[7] CMOS O J25 RSVD J26 DDR2_CKE[0] CMOS O J27 DDR1_MA[6] CMOS O J28 VDDQ PWR J29 RSVD J3 VSS GND J30 RSVD J31 RSVD J32 DDR1_DQ[27] CMOS I/O J33 VSS GND J34 DDR1_DQ[28] CMOS I/O J35 DDR1_DQ[19] CMOS I/O J36 DDR1_DQ[22] CMOS I/O J37 DDR2_DQ[26] CMOS I/O J38 VSS GND J39 DDR2_DQ[19] CMOS I/O J4 DDR1_DQ[52] CMOS I/O J40 DDR2_DQ[18] CMOS I/O J41 DDR0_DQ[21] CMOS I/O
Pin Name
Buffer
Type
Direction
62 Datasheet
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 23 of 29)
Land
No.
J42 DDR0_DQ[20] CMOS I/O J43 VSS GND J5 DDR1_DQ[47] CMOS I/O J6 DDR1_DQ[41] CMOS I/O J7 RSVD J8 VSS GND J9 DDR2_DQS_N[4] CMOS I/O K1 VSS GND K10 DDR2_DQ[41] CMOS I/O K11 VSS GND K12 DDR2_DQ[32] CMOS I/O K13 DDR1_BA[1] CMOS O K14 DDR2_CS#[1] CMOS O K15 RSVD K16 VDDQ PWR K17 DDR2_MA[1] CMOS O K18 DDR1_CLK_P[2] CLOCK O K19 DDR0_CLK_N[0] CLOCK O K2 DDR0_DQS_P[5] CMOS I/O K20 DDR2_CLK_N[1] CLOCK O K21 VDDQ PWR K22 DDR2_MA[6] CMOS O K23 DDR2_MA[5] CMOS O K24 RSVD K25 RSVD K26 VDDQ PWR K27 RSVD K28 DDR1_MA[4] CMOS O K29 RSVD K3 DDR0_DQS_N[5] CMOS I/O K30 DDR1_DQ[31] CMOS I/O K31 VSS GND K32 DDR1_DQ[26] CMOS I/O K33 RSVD K34 RSVD K35 DDR1_DQ[18] CMOS I/O K36 VSS GND K37 RSVD K38 DDR2_DQ[23] CMOS I/O K39 DDR2_DQS_N[2] CMOS I/O K4 DDR1_DQ[48] CMOS I/O K40 DDR2_DQS_P[2] CMOS I/O K41 VSS GND K42 DDR0_DQ[10] CMOS I/O K43 DDR0_DQ[11] CMOS I/O K5 DDR1_DQ[49] CMOS I/O K6 VSS GND K7 DDR2_DQS_N[5] CMOS I/O
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 24 of 29)
Land
No.
K8 RSVD K9 RSVD L1 DDR0_DQ[42] CMOS I/O L10 DDR2_DQ[40] CMOS I/O L11 DDR2_DQ[44] CMOS I/O L12 DDR2_DQ[39] CMOS I/O L13 DDR2_DQ[35] CMOS I/O L14 VDDQ PWR L15 RSVD L16 DDR2_ODT[0] CMOS O L17 RSVD L18 DDR1_CLK_N[2] CLOCK O L19 VDDQ PWR L2 DDR0_DQ[47] CMOS I/O L20 DDR2_CLK_P[1] CLOCK O L21 DDR2_CLK_N[3] CLOCK O L22 DDR2_CLK_P[3] CLOCK O L23 DDR_VREF Analog I L24 VDDQ PWR L25 DDR2_MA[8] CMOS O L26 DDR2_BA[2] CMOS O L27 DDR2_CKE[3] CMOS O L28 DDR1_MA[3] CMOS O L29 VSS GND L3 DDR0_DQ[46] CMOS I/O L30 DDR1_DQS_P[3] CMOS I/O L31 DDR1_DQS_N[3] CMOS I/O L32 DDR1_DQ[30] CMOS I/O L33 DDR1_DQ[25] CMOS I/O L34 VSS GND L35 DDR1_DQS_P[2] CMOS I/O L36 DDR1_DQS_N[2] CMOS I/O L37 RSVD L38 RSVD L39 VSS GND L4 VSS GND L40 DDR2_DQ[22] CMOS I/O L41 DDR0_DQS_P[1] CMOS I/O L42 DDR0_DQ[15] CMOS I/O L43 DDR0_DQ[14] CMOS I/O L5 DDR1_DQS_N[6] CMOS I/O L6 DDR1_DQS_P[6] CMOS I/O L7 DDR2_DQS_P[5] CMOS I/O L8 DDR2_DQ[46] CMOS I/O L9 VSS GND M1 DDR0_DQ[43] CMOS I/O M10 DDR2_DQ[45] CMOS I/O M11 VCC PWR
Pin Name
Buffer
Type
Direction
Datasheet 63
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 25 of 29)
Land
No.
M12 VSS GND M13 VCC PWR M14 VSS GND M15 VCC PWR M16 VSS GND M17 VDDQ PWR M18 VSS GND M19 VCC PWR M2 VSS GND M20 VSS GND M21 VCC PWR M22 VSS GND M23 VCC PWR M24 VSS GND M25 VCC PWR M26 VSS GND M27 VDDQ PWR M28 VSS GND M29 VCC PWR M3 DDR0_DQ[52] CMOS I/O M30 VSS GND M31 VCC PWR M32 VSS GND M33 VCC PWR M34 DDR1_DQ[17] CMOS I/O M35 DDR1_DQ[16] CMOS I/O M36 DDR1_DQ[21] CMOS I/O M37 VSS GND M38 RSVD M39 DDR2_DQ[16] CMOS I/O M4 RSVD M40 DDR2_DQ[17] CMOS I/O M41 DDR0_DQS_N[1] CMOS I/O M42 VSS GND M43 RSVD M5 RSVD M6 DDR1_DQ[53] CMOS I/O M7 VSS GND M8 DDR2_DQ[47] CMOS I/O M9 DDR2_DQ[42] CMOS I/O N1 DDR0_DQ[48] CMOS I/O N10 VSS GND N11 VCC PWR N2 DDR0_DQ[49] CMOS I/O N3 DDR0_DQ[53] CMOS I/O N33 VCC PWR N34 DDR1_DQ[20] CMOS I/O N35 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 26 of 29)
Land
No.
N36 DDR2_DQ[21] CMOS I/O N37 DDR1_DQ[14] CMOS I/O N38 DDR1_DQ[15] CMOS I/O N39 DDR1_DQ[11] CMOS I/O N4 RSVD N40 VSS GND N41 DDR0_DQ[8] CMOS I/O N42 RSVD N43 DDR0_DQ[9] CMOS I/O N5 VSS GND N6 DDR2_DQ[49] CMOS I/O N7 DDR2_DQ[53] CMOS I/O N8 DDR2_DQ[52] CMOS I/O N9 DDR2_DQ[43] CMOS I/O P1 RSVD P10 DDR2_DQ[51] CMOS I/O P11 VSS GND P2 RSVD P3 VSS GND P33 VSS GND P34 DDR1_DQ[8] CMOS I/O P35 DDR1_DQ[9] CMOS I/O P36 RSVD P37 RSVD P38 VSS GND P39 DDR1_DQ[10] CMOS I/O P4 RSVD P40 DDR2_DQ[20] CMOS I/O P41 DDR0_DQ[13] CMOS I/O P42 DDR0_DQ[12] CMOS I/O P43 VSS GND P5 DDR2_DQS_N[6] CMOS I/O P6 DDR2_DQS_P[6] CMOS I/O P7 DDR2_DQ[48] CMOS I/O P8 VSS GND P9 DDR2_DQ[50] CMOS I/O R1 VSS GND R10 DDR2_DQ[54] CMOS I/O R11 VCC PWR R2 DDR0_DQS_P[6] CMOS I/O R3 DDR0_DQS_N[6] CMOS I/O R33 VCC PWR R34 DDR1_DQ[12] CMOS I/O R35 DDR1_DQ[13] CMOS I/O R36 VSS GND R37 DDR1_DQS_N[1] CMOS I/O R38 DDR1_DQS_P[1] CMOS I/O R39 DDR2_DQ[10] CMOS I/O
Pin Name
Buffer
Type
Direction
64 Datasheet
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 27 of 29)
Land
No.
R4 DDR0_DQ[54] CMOS I/O R40 DDR2_DQ[15] CMOS I/O R41 VSS GND R42 DDR0_DQ[3] CMOS I/O R43 DDR0_DQ[2] CMOS I/O R5 DDR1_DQ[50] CMOS I/O R6 VSS GND R7 DDR1_DQ[55] CMOS I/O R8 DDR1_DQ[54] CMOS I/O R9 DDR2_DQ[55] CMOS I/O T1 DDR0_DQ[50] CMOS I/O T10 DDR2_DQ[58] CMOS I/O T11 VCC PWR T2 DDR0_DQ[51] CMOS I/O T3 DDR0_DQ[55] CMOS I/O T33 VCC PWR T34 VSS GND T35 RSVD T36 DDR2_DQ[11] CMOS I/O T37 DDR2_DQS_P[1] CMOS I/O T38 DDR2_DQS_N [1] CMOS I/O T39 VSS GND T4 VSS GND T40 RSVD T41 DDR2_DQ[14] CMOS I/O T42 DDR0_DQ[7] CMOS I/O T43 DDR0_DQS_P[0] CMOS I/O T5 DDR1_DQ[51] CMOS I/O T6 DDR2_DQ[60] CMOS I/O T7 DDR2_DQ[61] CMOS I/O T8 DDR2_DQS_N[7] CMOS I/O T9 VSS GND U1 DDR0_DQ[60] CMOS I/O U10 DDR2_DQ[59] CMOS I/O U11 RSVD U2 VSS GND U3 DDR0_DQ[61] CMOS I/O U33 VCCPLL PWR U34 DDR2_DQ[4] CMOS I/O U35 RSVD U36 DDR2_DQ[3] CMOS I/O U37 VSS GND U38 DDR2_DQ[8] CMOS I/O U39 DDR2_DQ[9] CMOS I/O U4 DDR0_DQ[56] CMOS I/O U40 RSVD U41 DDR0_DQ[6] CMOS I/O U42 VSS GND
Pin Name
Buffer
Type
Direction
Table 4-2. Land Listing by Land Number
(Sheet 28 of 29)
Land
No.
U43 DDR0_DQS_N[0] CMOS I/O U5 DDR2_DQ[56] CMOS I/O U6 DDR2_DQ[57] CMOS I/O U7 VSS GND U8 DDR2_DQS_P[7] CMOS I/O U9 DDR2_DQ[63] CMOS I/O V1 DDR0_DQ[57] CMOS I/O V10 VSS GND V11 RSVD V2 RSVD V3 RSVD V33 VCCPLL PWR V34 DDR2_DQ[5] CMOS I/O V35 VSS GND V36 DDR2_DQ[2] CMOS I/O V37 DDR2_DQ[6] CMOS I/O V38 DDR2_DQ[7] CMOS I/O V39 DDR2_DQ[13] CMOS I/O V4 DDR0_DQ[62] CMOS I/O V40 VSS GND V41 DDR0_DQ[1] CMOS I/O V42 RSVD V43 RSVD V5 VSS GND V6 RSVD V7 RSVD V8 DDR2_DQ[62] CMOS I/O V9 DDR1_DQ[60] CMOS I/O W1 DDR0_DQS_N[7] CMOS I/O W10 DDR1_DQ[59] CMOS I/O W11 VCC PWR W2 DDR0_DQS_P[7] CMOS I/O W3 VSS GND W33 VCCPLL PWR W34 DDR2_DQ[0] CMOS I/O W35 DDR2_DQ[1] CMOS I/O W36 DDR2_DQS_N[0] CMOS I/O W37 DDR2_DQS_P[0] CMOS I/O W38 VSS GND W39 DDR2_DQ[12] CMOS I/O W4 DDR0_DQ[63] CMOS I/O W40 DDR0_DQ[4] CMOS I/O W41 DDR0_DQ[0] CMOS I/O W42 DDR0_DQ[5] CMOS I/O W43 VSS GND W5 DDR1_DQ[61] CMOS I/O W6 DDR1_DQ[56] CMOS I/O W7 DDR1_DQ[57] CMOS I/O
Pin Name
Buffer
Type
Direction
Datasheet 65
Land Listing
Table 4-2. Land Listing by Land Number
(Sheet 29 of 29)
Land
No.
W8 VSS GND W9 DDR1_DQ[63] CMOS I/O Y1 VSS GND Y10 DDR1_DQ[58] CMOS I/O Y11 VSS GND Y2 DDR0_DQ[58] CMOS I/O Y3 DDR0_DQ[59] CMOS I/O Y33 VSS GND Y34 DDR1_DQ[3] CMOS I/O Y35 DDR1_DQ[2] CMOS I/O Y36 VSS GND Y37 DDR1_DQS_N[0] CMOS I/O Y38 DDR1_DQS_P[0] CMOS I/O Y39 DDR1_DQ[7] CMOS I/O Y4 RSVD Y40 DDR1_DQ[6] CMOS I/O Y41 VSS GND Y5 RSVD Y6 VSS GND Y7 DDR_COMP[1] Analog Y8 DDR1_DQS_P[7] CMOS I/O Y9 DDR1_DQS_N[7] CMOS I/O
Pin Name
Buffer
Type
Direction
§
66 Datasheet
Signal Descriptions

5 Signal Descriptions

This chapter provides a description of each processor signal.
Table 5-1. Signal Definitions (Sheet 1 of 4)
Name Type Description Notes
BCLK_DN BCLK_DP
BCLK_ITP_DN BCLK_ITP_DP
BPM#[7:0] I/O
CAT_ERR# I/O
COMP0 I
QPI_CLKRX_DN QPI_CLKRX_DP
QPI_CLKTX_DN QPI_CLKTX_DP
QPI_CMP[0] I Must be terminated on the system board using a precision resistor. QPI_DRX_DN[19:0]
QPI_DRX_DP[19:0]
QPI_DTX_DN[19:0] QPI_DTX_DP[19:0]
DBR# I
DDR_COMP[2:0] I Must be terminated on the system board using precision resistors. DDR_VREF I Voltage reference for DDR3
DDR{0/1/2}_BA[2:0] O
DDR{0/1/2}_CAS# O Column Address Strobe. DDR{0/1/2}_CKE[3:0] O Clock Enable. DDR{0/1/2}_CLK_N[2:0]
DDR{0/1/2}_CLK_P[2:0] DDR{0/1/2}_CS[1:0]#
DDR{0/1/2}_CS[5:4]# DDR{0/1/2}_DQ[63:0] I/O DDR3 Data bits.
DDR{0/1/2}_DQS_N[7:0] DDR{0/1/2}_DQS_P[7:0]
I Differential bus clock input to the processor.
O Buffered differential bus clock pair to ITP.
BPM#[7:0] are breakpoint and performance monitor signals. They are outputs from the processor that indicate the status of breakpoints and programmable counters used for monitoring processor performance. BPM#[7:0] should be connected in a wired OR topology between all packages on a platfor m. The e nd points for the wired OR connections must be terminated.
CAT_ERR# indicates that the system has experienced a catastrophic error and cannot continue to operate. The processor will set this for non-recoverable machine check errors and other internal unrecoverable error. Since this is an I/ O pin, external agents are allowed to assert this pin which will cause the processor to take a machine check exception.
Impedance compensation must be terminated on the system board using a precision resistor.
I
Intel QPI received clock is the input clock that corresp onds to the receiv ed d ata.
I
O
Intel QPI forwarded clock sent with the outbound data.
O
QPI_DRX_DN[19:0] and QPI_DRX_DP[19:0] comprise the differential receive
I
data for the QPI port. The inbound 20 lanes are connected to another
I
component’s outbound direction. QPI_DTX_DN[19:0] and QPIQPI_DTX_DP[19:0] comprise the differential
O
transmit data for the QPI port. The outbound 20 lanes are connected to another
O
component’s inbound direction. DBR# is used only in systems where no debug port is implemented on the
system board. DBR# is used by a debug port interposer so that an in-target probe can drive system reset. If a debug port is implemented in the system, DBR# is a no connect in the system. DBR# is not a processor signal.
Defines the bank which is the destination for the current Activate, Read, Write, or Precharge command.
Differential clocks to the DIMM. All command and control signals are valid on
O
the rising edge of clock.
O Each signal selects one rank as the target of the command and address.
Differential pair, Data Strobe x8. Differential strobes latch data for each DRAM. Different numbers of strobes are used depending on whether the connected
I/O
DRAMs are x4 or x8. Driven with edges in center of data, receive edges are aligned with data edges.
1
Datasheet 67
Signal Descriptions
Table 5-1. Signal Definitions (Sheet 2 of 4)
Name Ty pe Description Notes
DDR{0/1/2}_MA[15:0] O
DDR{0/1/2}_ODT[3:0] O
DDR{0/1/2}_RAS# O Row Address Strobe.
DDR{0/1/2}_RESET# O
DDR{0/1/2}_WE# O Write Enable. ISENSE I Current sense from VRD11.1.
PECI I/O
PRDY# O
PREQ# I/O PREQ# is used by debug tools to request debug operation of the processor.
PROCHOT# I/O
PSI# O
RESET# I
SKTOCC# O
TCK I
TDI I
TDO O
TESTLOW I
Selects the Row address for Reads and writes, and the column address for activates. Also used to set values for DRAM configuration registers.
Enables various combinations of termination resistance in the target and non­target DIMMs when data is read or written
Resets DRAMs. Held low on power up, held high during self refresh, otherwise controlled by configuration register.
PECI (Platform Environment Control Interface) is the serial sideband interface to the processor and is used primarily for ther mal, power and error management. Details regarding the PECI electrical specifications, protocols and functions can be found in the Platform Environment Control Interface Specification.
PRDY# is a processor output used by debug tools to dete rmine processor de bug readiness.
PROCHOT# will go active when the processor temperature monitoring sensor detects that the processor has reached its ma ximum safe operating temperature. This indicates that the processor Thermal Control Circuit has been activated, if enabled. This signal can also be driven to the processor to activate the Thermal Control Circuit. This signal does not have on-die termination and must be terminated on the system board.
Processor Power Status Indicator signal. This signal is asserted when maximum possible processor core current consumption is less than 20A. Assertion of this signal is an indication that the VR controller does not currently need to be able to provide ICC above 20A, and the VR controller can use this information to move to more efficient operation point. This signal will de-assert at least 3.3 us before the current consumption will exceed 20A. The minimum PSI# assertion and de-assertion time is 1 BCLK.
Asserting the RESET# signal resets the processor to a known state and invalidates its internal caches without writing back any of their contents. Note some PLL, QPI and error states are not effected by reset and only VCCPWRGOOD forces them to a known state. For a power-on Reset, RESET# must stay active for at least one millisecond after VCC and BCLK have reached their proper specifications. RESET# must not be kept asserted for more than 10 ms while VCCPWRGOOD is asserted. RESET# must be held de-asserted for at least 1 ms before it is asserted again. RESET# must be held asserted before VCCPWRGOOD is asserted. This signal does not have on-die termination and must be terminated on the system board. RESET# is a common clock signal.
SKTOCC# (Socket Occupied) will be pulled to ground on the processor package. There is no connection to the processor silicon for this signal. System board designers may use this signal to determine if the processor is present.
TCK (T est Clock) provides the clock input for the processor Test Bus (also known as the Test Access Port).
TDI (T est D ata In) tr ansfers serial test data into the processor. TDI provides the serial input needed for JTAG specification support.
TDO (Test Data Out) transfers serial test data out of the processor. TDO provides the serial output needed for JTAG specification support.
TESTLOW must be connected to ground thro ugh a resistor for proper processor operation.
68 Datasheet
Signal Descriptions
Table 5-1. Signal Definitions (Sheet 3 of 4)
Name Type Description Notes
Assertion of THERMTRIP# (Thermal Trip) indicates the processor junction temperature has reached a level beyond which permanent silicon damage may occur. Measurement of the temperature is accomplished through an internal thermal sensor. Upon assertion of THERMTRIP#, the processor will shut off its
THERMTRIP# O
TMS I
TRST# I
VCC I Power for processor core. VCC_SENSE
VSS_SENSE VCCPLL I Power for on-die PLL filter.
VCCPWRGOOD I
VDDPWRGOOD I
VID[7:6] VID[5:3]/CSC[2:0] VID[2:0]/MSID[2:0]
VTTA I
VTTD I
internal clocks (thus halting program execution) in an attempt to reduce the processor junction temperature. To further protect the processor, its core voltage (V THERMTRIP#. Once activated, THERMTRIP# remains latched until RESET# is asserted. While the assertion of the RESET# signal may de-assert THERMTRIP#, if the processor junction temperature remains at or above the
), V
CC
TTA VTTD
trip level, THERMTRIP# will again be asserted after RESET# is de-asserted. TMS (Test Mode Select) is a JTAG specification support signal used by debug
tools. TRST# (Test Reset) resets the Test Access Port (TAP) logic. TRST# must be
driven low during power on Reset.
VCC_SENSE and VSS_SENSE provide an isolated, low impedance connection to
O
the processor core power and gro un d. They can be used to sense or measure
O
voltage near the silicon.
VCCPWRGOOD (Power Good) is a processor input. The processor requires this signal to be a clean indication that BCLK, V are stable and within their specifications. 'Clean' implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. VCCPWRGO OD can be driven inactive at any time, but BCLK and power must again be stable before a subsequent rising edge of VCCPWRGOOD. In addition at the time VCCPWRGOOD is asserted RESET# must be active. The PWRGOOD signal must be supplied to the processor. It should be driven high throughout boundary scan operation.
VDDPWRGOOD is an input that indicates the V processor requires this signal to be a clean indication that the V supply is stable and within specifications. "Clean" implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the Vddq supply is turned on until it comes within specification. The signals must then transition monotonically to a high state.
The PwrGood signal must be supplied to the processor. VID[7:0] (Voltage ID) are used to support automatic selection of power supply
voltages (V can supply V until the voltage supply for the VID signals become valid. The VR must supply the voltage that is requested by the signals, or disable itself.
VID7 and VID6 should be tied separately to V reset (This value is latched on the rising edge of VTTPWRGOOD)
I/O
MSID[2:0] — MSID[2:0] is used to indicate to the processor whether the platform supports a particular TDP. A processor will only boot if the MSID[2:0] pins are strapped to the appropriate setting on the platform (see Table 2-2 for MSID encodings). In addition, MSID protects the platform by preventing a higher power processor from booting in a platform designed for lower power processors.
CSC[2:0] — Current Sense Configuration bits, for ISENSE gain setting. This value is latched on the rising edge of VTTPWRGOOD.
Power for the analog portion of the integrated memory controller, QPI and Shared Cache.
). The voltage supply for these signals mus t be valid before the VR
CC
to the processor. Conversely, the VR output must be disabled
CC
Power for the digital portion of the integrated memory controller, QPI and Shared Cache.
, and V
must be removed following the assertion of
DDQ
, V
, V
CC
CCPLL
power supply is good. The
DDQ
using a 1 kresistor during
SS
TTA
and V
TTD
DDQ
supplies
power
Datasheet 69
Notes:
Table 5-1. Signal Definitions (Sheet 4 of 4)
Name Ty pe Description Notes
VTT_VID[4:2] O
VTT_SENSE VSS_SENSE_VTT
VTTPWRGOOD I
1. DDR{0/1/2} refers to DDR3 Channel 0, DDR3 Channel 1, and DDR3 Channel 2.
VTT_VID[2:4] (VTTVoltage ID) are used to support automatic sel ection of power supply voltages (V
VTT_SENSE and VSS_SENSE_VTT provide an isolated, low impedance
O
connection to the processor V
O
or measure voltage near the silicon. The processor requires this input signal to be a clean indication that the V
power supply is stable and within specifications. 'Clean' implies that the signal will remain low (capable of sinking leakage current), without glitches, from the time that the power supplies are turned on until they come within specification. The signal must then transition monotonically to a high state. Not e that it is not valid for VTTPWRGOOD to be de-asserted while VCCPWRGOOD is asserted.
).
TT
voltage and ground. They can be used to sense
TT
§
Signal Descriptions
TT
70 Datasheet
Thermal Specifications

6 Thermal Specifications

6.1 Package Thermal Specifications

The processor requires a thermal solution to maintain temperatures within its operating limits. Any attempt to operate the processor outside these operating limits may result in permanent damage to the processor and potentially other components within the system. Maintaining the proper thermal environment is key to reliable, long-term system operation.
A complete solution includes both component and system level thermal management features. Component level thermal solutions can include active or passive heatsinks attached to the processor integrated heat spreader (IHS).
This chapter provides data necessary for developing a complete thermal solution. For more information on designing a component level thermal solution, refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2).

6.1.1 Thermal Specifications

The processor thermal specification uses the on-die Digital Thermal Sensor (DTS) value reported using the PECI interface for all processor temperature measurements. The DTS is a factory calibrated, analog to digital thermal sensor. As a result, it will no longer be necessary to measure the processors case temperature. Consequently , there will be no need for a Thermal Profile specification defining the relationship between the processors T
Note: Unless otherwise specified, the term “DTS” refers to the DTS value returned by the
PECI interface gettemp command.
Note: A thermal solution that was verified compliant to the processor case temperature
thermal profile at the customer defined boundary conditions is expected to be compliant with this update. No redesign of the thermal solution should be necessary. A fan speed control algorithms that was compliant to the previous thermal requirements is also expected to be compliant with this specification. The fan speed control algorithm can be updated to use the additional information to optimize acoustics.
To allow the optimal operation and long-term reliability of Intel processor-based systems, the processor thermal solution must deliver the specified thermal solution performance in response to the DTS sensor value. The thermal solution performance will be measured using a Thermal Test Vehicle (TTV). See Table 6-1 and Figure 6-1 for the TTV thermal profile and Table 6-3 for the required thermal solution performance table when DTS values are greater than T provide this level of thermal capability may affect the long-term reliability of the processor and system. When the DTS value is less than T performance is not defined and the fans may be slowed down. This is unchanged from the prior specification. For more details on thermal solution design, refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2).
and power dissipation.
CASE
CONTROL
. Thermal solutions not designed to
CONTROL
, the thermal solution
The processors implement a methodology for managing processor temperatures, which is intended to support acoustic noise reduction through fan speed control and to assure processor reliability. Selection of the appropriate fan speed is based on the relative temperature data reported by the processor’s Digital Temperature Sensor (DTS). The DTS can be read using the Platform Environment Control Interface (PECI) as described
Datasheet 71
Thermal Specifications
in Section 6.3. The temperature reported over PECI is always a negative value and represents a delta below the onset of thermal control circuit (TCC) activation, as indicated by PROCHOT# (see Section 6.2, Processor Thermal Features). Systems that implement fan speed control must be designed to use this data. Systems that do not alter the fan speed only need to ensure the thermal solution provides the
CA
that
meets the TTV thermal profile specifications. A single integer change in the PECI value corresponds to approximately 1 °C change in
processor temperature. Although each processors DTS is factory calibrated, the accuracy of the DTS will vary from part to part and may also vary slightly with temperature and voltage. In general, each integer change in PECI should equal a temperature change between 0.9 °C and 1.1 °C.
Analysis indicates that real applications are unlikely to cause the processor to consume maximum power dissipation for sustained time periods. Intel recommends that complete thermal solution designs target the Thermal Design Power (TDP), instead of the maximum processor power consumption. The Adaptive Thermal Monitor feature is intended to help protect the processor in the event that an application exceeds the TDP recommendation for a sustained time period. For more details on this feature, refer to
Section 6.2. Refer to the appropriate processor Thermal and Mechanical Design Guide
(see Section 1.2) for details on system thermal solution design, thermal profiles and environmental considerations.
Table 6-1. Processor Thermal Specifications
Processor
i7-975 i7-965 i7-960 i7-950 i7-940 i7-930 i7-920
Core
Frequency
3.33 GHz
3.20 GHz
3.20 GHz
3.06 GHz
2.93 GHz
2.80 GHz
2.66 GHz
Notes:
1. These values are specified at V the processor is not to be subjected to any static V specified I
2. Thermal Design Power (TDP) should be used for processor thermal solution design targets. TDP is not the maximum power that the processor can dissipate. TDP is measured at the TCC activation temperature.
3. These specifications are based on initial silicon characterization. These specifications may be further updated as more characterization data becomes available.
4. Power specifications are defined at all VIDs found in Table 2-1. The processor may be shipped under multiple VIDs for each frequency.
5. Target -ca Using the processor TTV (°C/W) is based on a T
6. Processor idle power is specified under the lowest possible idle state: processor package C6 state. Achieving processor package C6 state is not supported by all chipsets. See the Intel X58 Express Chipset Datasheet for more details.
Thermal
Design Power
(W)
130 130 130 130 130 130 130
. Refer to the loadline specifications in Chapter 2.
CC
Idle
Power
6
(W)
12 12 12 12 12 12 15
for all processor frequencies. Systems must be designed to ensure
CC_MAX
Minimum
TTV T
CASE
(°C)
5 5 5 5 5 5 5
CC
Maximum TTV
T
CASE
(°C)
See Figure 6-1;
Table 6-2
and ICC combination wherein VCC exceeds V
of 39 °C.
AMBIENT
Target Psi-ca
Using
Processor TTV
(°C/W)
5
0.222
0.222
0.222
0.222
0.222
0.222
0.222
Notes
1, 2, 3, 4,
5
CC_MAX
at
72 Datasheet
Thermal Specifications
40.0
45.0
50.0
55.0
60.0
65.0
70.0
0 102030405060708090100110120130
TTV Power (W)
TTV Tcase i n C
y = 43. 2 + 0. 19 * P
Figure 6-1. Processor Thermal Profile
Notes:
1. Refer to Table 6-2 for discrete points that constitute the thermal profile.
2. Refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2) for system and environmental implementation details.
3. The thermal profile is based on data from the Thermal Test Vehicle (TTV).
Table 6-2. Processor Thermal Profile
Power
(W)
10 45.1 44 51.6 78 58.0 110 64.1 12 45.5 46 51.9 80 58.4 112 64.5 14 45.9 48 52.3 82 58.8 114 64.9 16 46.2 50 52.7 84 59.2 116 65.2 18 46.6 52 53.1 86 59.5 118 65.6 20 47.0 54 53.5 88 59.9 120 66.0 22 47.4 56 53.8 90 60.3 122 66.4 24 47.8 58 54.2 92 60.7 124 66.8 26 48.1 60 54.6 94 61.1 126 67.1 28 48.5 62 55.0 96 61.4 128 67.5 30 48.9 64 55.4 98 61.8 130 67.9 32 49.3 66 55.7
T
CASE_MAX
(C)
Power
(W)
0 43.2 34 49.7 68 56.1 100 62.2 2 43.6 36 50.0 70 56.5 102 62.6 4 44.0 38 50.4 72 56.9 104 63.0 6 44.3 40 50.8 74 57.3 106 63.3 8 44.7 42 51.2 76 57.6 108 63.7
T
CASE_MAX
(C)
Power
(W)
T
CASE_MAX
(C)
Power
(W)
T
CASE_MAX
(C)
Datasheet 73
Thermal Specifications
6.1.1.1 Specification for Operation Where Digital Thermal Sensor Exceeds T
CONTROL
When the DTS value is less than T
CONTROL
the speed of the thermal solution fan. This remains the same as with the previous guidance for fan speed control.
, the fan speed control algorithm can reduce
During operation where the DTS value is greater than T algorithm must drive the fan speed to meet or exceed the target thermal solution performance ( (T
AMBIENT
) is required to fully implement the specification as the target
) shown in Table 6-3. The ability to monitor the inlet temperature
CA
defined for various ambient temperature conditions. See the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2) for details on characterizing the fan speed to
and ambient temperature measurement.
CA
Table 6-3. Thermal Solution Performance above T
T
1
AMBIENT
43.2 0.190 0.190
42.0 0.206 0.199
41.0 0.219 0.207
40.0 0.232 0.215
39.0 0.245 0.222
38.0 0.258 0.230
37.0 0.271 0.238
36.0 0.284 0.245
35.0 0.297 0.253
34.0 0.310 0.261
33.0 0.323 0.268
32.0 0.336 0.276
31.0 0.349 0.284
30.0 0.362 0.292
29.0 0.375 0.299
28.0 0.388 0.307
27.0 0.401 0.315
26.0 0.414 0.322
25.0 0.427 0.330
24.0 0.440 0.338
23.0 0.453 0.345
22.0 0.466 0.353
21.0 0.479 0.361
20.0 0.492 0.368
19.0 0.505 0.376
18.0 0.519 0.384
at DTS = T
CA
CONTROL
2
CONTROL
CONTROL
at DTS = -1
CA
, the fan speed control
is explicitly
CA
3
Notes:
1. The ambient temperature is measured at the inlet to the processor thermal solution.
2. This column can be expressed as a function of T
3. This column can be expressed as a function of T
74 Datasheet
= 0.19 + (43.2 – T
Y
CA
= 0.19 + (43.2 – T
Y
CA
AMBIENT
AMBIENT
) * 0.013 ) * 0.0077
by the following equation:
AMBIENT
by the following equation:
AMBIENT
Thermal Specifications

6.1.2 Thermal Metrology

The minimum and maximum TTV case temperatures (T and Table 6-2 and are measured at the geometric top center of the thermal test vehicle integrated heat spreader (IHS). Figure 6-2 illustrates the location where T temperature measurements should be made. For detailed guidelines on temperature measurement methodology and attaching the thermocouple, refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2).
Figure 6-2. Thermal Test Vehicle (TTV) Case Temperature (T
) are specified in Table 6-1,
CASE
CASE
) Measurement Location
CASE
Notes:
1. Figure is not to scale and is for reference only.
2. B1: Max = 45.07 mm, Min = 44.93 mm.
3. B2: Max = 42.57 mm, Min = 42.43 mm.
4. C1: Max = 39.1 mm, Min = 38.9 mm.
5. C2: Max = 36.6 mm, Min = 36.4 mm.
6. C3: Max = 2.3 mm, Min = 2.2 mm
7. C4: Max = 2.3 mm, Min = 2.2 mm.
8. Refer to the appropriate Thermal and Mechanical Design Guide (see Section 1.2) for instructions on thermocouple installation on the processor TTV package.
Datasheet 75
Thermal Specifications

6.2 Processor Thermal Features

6.2.1 Processor Temperature

A new feature in the Intel Core™ i7-900 desktop processor Extreme Edition series and Intel Core™ i7-900 desktop processor series is a software readable field in the IA32_TEMPERATURE_TARGET register that contains the minimum temperature at which the TCC will be activated and PROCHOT# will be asserted. The TCC activation temperature is calibrated on a part-by-part basis and normal factory variation may result in the actual TCC activation temperature being higher than the value listed in the register. TCC activation temperatures may change based on processor stepping, frequency or manufacturing efficiencies.
Note: There is no specified correlation between DTS temperatures and processor case
temperatures; therefore it is not possible to use this feature to ensure the processor case temperature meets the Thermal Profile specifications.

6.2.2 Adaptive Thermal Monitor

The Adaptive Thermal Monitor feature provides an enhanced method for controlling the processor temperature when the processor silicon exceeds the Thermal Control Circuit (TCC) activation temperature. Adaptive Th erm al Monitor uses T CC activation to reduce processor power using a combination of methods. The first method (Frequency/VID control, similar to Thermal Monitor 2 (TM2) in previous generation processors) involves the processor reducing its operating frequency (using the core ratio multiplier) and input voltage (using the VID signals). This combination of lower frequency and VID results in a reduction of the processor power consumption. The second method (clock modulation, known as Thermal Monitor 1 (TM1) in previous generation processors) reduces power consumption by modulating (starting and stopping) the internal processor core clocks. The processor intelligently selects the appropriate TCC method to use on a dynamic basis. BIOS is not required to select a specific method (as with previous-generation processors supporting TM1 or TM2). The temperature at which Adaptive Thermal Monitor activates the Thermal Control Circuit is factory calibrated and is not user configurable. Snooping and interrupt processing are performed in the normal manner while the TCC is active.
When the TCC activation temperature is reached, the processor will initiate TM2 in attempt to reduce its temperature. If TM2 is unable to reduce the processor temperature then TM1 will be also be activated. TM1 and TM2 will work together (clocks will be modulated at the lowest frequency ratio) to reduce power dissipation and temperature.
With a properly designed and characterized thermal solution, it is anticipated that the TCC would only be activated for very short periods of time when running the most power intensive applications. The processor performance impact due to these brief periods of TCC activation is expected to be so minor that it would be immeasurable. An under-designed thermal solution that is not able to prevent excessive activation of the TCC in the anticipated ambient environment may cause a noticeable performance loss, and in some cases may result in a T temperature and may affect the long-term reliability of the processor. In addition, a thermal solution that is significantly under-designed may not be capable of cooling the processor even when the TCC is active continuously . Refer to the appropriate processor Thermal and Mechanical Design Guide (see Section 1.2) for information on designing a compliant thermal solution.
The Thermal Monitor does not require any additional hardware, software drivers, or interrupt handling routines. The following sections provide more details on the different TCC mechanisms used by the Intel Core™ i7-900 desktop processor Extreme Edition series and Intel Core™ i7-900 desktop processor series.
76 Datasheet
that exceeds the specified maximum
CASE
Thermal Specifications
Temperature
f
MAX
f
1
f
2
VIDf
MAX
VID
Frequency
VIDf
2
VIDf
1
PROCHOT#
Temperature
f
MAX
f
1
f
2
VIDf
MAX
VID
Frequency
VIDf
2
VIDf
1
PROCHOT#
6.2.2.1 Frequency/VID Control
When the Digital Temperature Sensor (DTS) reaches a value of 0 (DTS temperatures reported using PECI may not equal zero when PROCHOT# is activated, see Section 6.3 for further details), the TCC will be activated and the PROCHOT# signal will be asserted. This indicates the processor temperature has met or exceeded the factory calibrated trip temperature and it will take action to reduce the temperature.
Upon activation of the TCC, the processor will stop the core clocks, reduce the core ratio multiplier by 1 ratio and restart the clocks. All processor activity stops during this frequency transition, which occurs within 2 us. Once the clocks have been restarted at the new lower frequency , processor activity resumes while the voltage requested by the VID lines is stepped down to the minimum possible for the particular frequency. Running the processor at the lower frequency and voltage will reduce power consumption and should allow the processor to cool off. If after 1 ms the processor is still too hot (the temperature has not dropped below the TCC activation point, DTS still = 0 and PROCHOT is still active), then a second frequency and voltage transition will take place. This sequence of temperature checking and Frequency/VID reduction will continue until either the minimum frequency has been reached or the processor temperature has dropped below the TCC activation point.
If the processor temperature remains above the TCC activation point even after the minimum frequency has been reached, then clock modulation (described below) at that minimum frequency will be initiated.
There is no end user software or hardware mechanism to initiate this automated TCC activation behavior.
A small amount of hysteresis has been included to prevent rapid active/inactive transitions of the TCC when the processor temperature is near the TCC activation temperature. Once the temperature has dropped below the trip temperature, and the hysteresis timer has expired, the operating frequency and voltage transition back to the normal system operating point using the intermediate VID/frequency points. T r ansition of the VID code will occur first, to insure proper oper ation as the frequency is increased. Refer to Table 6-3 for an illustration of this ordering.
Figure 6-3. Frequency and Voltage Ordering
Datasheet 77
6.2.2.2 Clock Modulation
Clock modulation is a second method of thermal control available to the processor. Clock modulation is performed by rapidly turning the clocks off and on at a duty cycle that should reduce power dissipation by about 50% (typically a 30–50% duty cycle). Clocks often will not be off for more than 32 µs when the TCC is active. Cycle times are independent of processor frequency. The duty cycle for the TCC, when activated by the Thermal Monitor, is factory configured and cannot be modified.
It is possible for software to initiate clock modulation with configurable duty cycles. A small amount of hysteresis has been included to prevent rapid active/inactive
transitions of the TCC when the processor temperature is near its maximum operating temperature. Once the temperature has dropped below the maximum operating temperature, and the hysteresis timer has expired, the TCC goes inactive and clock modulation ceases.
6.2.2.3 Immediate Transiton to combined TM1 and TM2
As mentioned above, when the TCC is activated, the processor will sequentially step down the ratio multipliers and VIDs in an attempt to reduce the silicon temperature. If the temperature continues to increase and exceeds the TCC activation temperature by approximately 5 °C before the lowest ratio/VID combination has been reached, then the processor will immediately transition to the combined TM1/TM2 condition. The processor will remain in this state until the temperature has dropped below the TCC activation point. Once below the TCC activation temperature, TM1 will be discontinued and TM2 will be exited by stepping up to the appropriate ratio/VID state.
Thermal Specifications
6.2.2.4 Critical Temperature Fla g
If TM2 is unable to reduce the processor temperature, then TM1 will be also be activated. TM1 and TM2 will then work together to reduce power dissipation and temperature. It is expected that only a catastrophic thermal solution failure would create a situation where both TM1 and TM2 are active.
If TM1 and TM2 have both been active for greater than 20 ms and the processor temperature has not dropped below the TCC activation point, then the Critical Temperature Flag in the IA32_THERM_STATUS MSR will be set. This flag is an indicator of a catastrophic thermal solution failure and that the processor cannot reduce its temperature. Unless immediate action is taken to resolve the failure, the processor will probably reach the Thermtrip temperature (see Section 6.2.3 Thermtrip Signal) within a short time. To prevent possible permanent silicon damage, Intel recommends removing power from the processor within ½ second of the Critical Te mperature Flag being set.
6.2.2.5 PROCHOT# Signal
An external signal, PROCHOT# (processor hot), is asserted when the processor core temperature has exceeded its specification. If Adaptive Thermal Monitor is enabled (note it must be enabled for the processor to be operating within specification), the TCC will be active when PROCHOT# is asserted.
The processor can be configured to generate an interrupt upon the assertion or de­assertion of PROCHOT#.
Although the PROCHOT# signal is an output by default, it may be configured as bi­directional. When configured in bi-directional mode, it is either an output indicating the processor has exceeded its TCC activation temperature or it can be driven from an
78 Datasheet
Thermal Specifications
external source (e.g., a voltage regulator) to activate the TCC. The ability to activate the TCC using PROCHOT# can provide a means for thermal protection of system components.
As an output, PROCHOT# (Processor Hot) will go active when the processor temperature monitoring sensor detects that one or more cores has reached its maximum safe operating temperature. This indicates that the processor Thermal Control Circuit (TCC) has been activated, if enabled. As an input, assertion of PROCHOT# by the system will activate the TCC for all cores. TCC activation when PROCHOT# is asserted by the system will result in the processor immediately transitioning to the minimum frequency and corresponding voltage (using Freq/VID control). Clock modulation is not activated in this case. The TCC will remain active until the system de-asserts PROCHOT#.
Use of PROCHOT# in bi-directional mode can allow VR thermal designs to target maximum sustained current instead of maximum current. Systems should still provide proper cooling for the VR, and rely on PROCHOT# only as a backup in case of system cooling failure. The system thermal design should allow the power delivery circuitry to operate within its temperature specification even while the processor is operating at its Thermal Design Power.

6.2.3 THERMTRIP# Signal

Regardless of whether or not Adaptive Thermal Monitor is enabled, in the event of a catastrophic cooling failure, the processor will automatically shut down when the silicon has reached an elevated temperature (refer to the THERMTRIP# definition in
Table 5-1). THERMTRIP# activation is independent of processor activity. The
temperature at which THERMTRIP# asserts is not user configurable an d is not softw are visible.

6.3 Platform Environment Control Interface (PECI)

6.3.1 Introduction

The Platform Environment Control Interface (PECI) is a one-wire interface that provides a communication channel between the Intel processor and chipset components to external monitoring devices. The processor implements a PECI interface to allow communication of processor thermal and other information to other devices on the platform. The processor provides a digital thermal sensor (DTS) for fan speed control. The DTS is calibrated at the factory to provide a digital representation of relative processor temperature. Instantaneous temperature readings from the DTS are available using the IA32_THERM_STATUS MSR; averaged DTS values are read using the PECI interface.
The PECI physical layer is a self-clocked one-wire bus that begins each bit with a driven, rising edge from an idle level near zero volts. The duration of the signal driven high depends on whether the bit value is a logic '0' or logic '1'. PECI also includes variable data transfer rate established with every message. The single wire interface provides low board routing overhead for the multiple load connections in the congested routing area near the processor and chipset components. Bus speed, error checking, and low protocol overhead provides adequate link bandwidth and reliability to transfer critical device operating conditions and configuration information.
Datasheet 79
6.3.1.1 Fan Speed Control with Digital Thermal Sensor
Thermal Specifications
Fan speed control solutions use a value stored in the static v ariable, T temperature data, which is delivered over PECI (in response to a GetTemp0() command), is compared to this T as a relative value versus an absolute value. The temperature reported over PECI is
CONTROL
reference. The DTS temperature is reported
CONTROL
. The DTS
always a negative value and represents a delta below the onset of thermal control circuit (TCC) activation, as indicated by PROCHOT#. Therefore, as the temperature approaches TCC activation, the value approaches zero degrees.
6.3.1.2 Processor Thermal Data Sample Rate and Filtering
The processor digital thermal sensor (DTS) provides an improved capability to monitor device hot spots, which inherently leads to more varying temperature readings over short time intervals. To reduce the sample rate requirements on PECI and improve thermal data stability versus. time the processor DTS implements an averaging algorithm that filters the incoming data. This filter is expressed mathematically as:
PECI(t) = PECI(t–1)+1/(2^^X)*[Temp – PECI(t–1)]
Where: PECI(t) is the new averaged temperature; PECI(t-1) is the previous averaged temperature; Temp is the raw temperature data from the DTS; X is the Thermal Averaging Constant (TAC)
Note: Only values read using the PECI interface are averaged. Temperature values read using
the IA32_THERM_STATUS MSR are not averaged. The Thermal Averaging Constant is a BIOS configurable value that determines the time
in milliseconds over which the DTS temperature values are averaged. Short averaging times will make the averaged temperature values respond more quickly to DTS changes. Long averaging times will result in better overall thermal smoothing but also incur a larger time lag between fast DST temperature changes and the value read using PECI. Refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2) for further details on the Data Filter and the Thermal Averaging Constant.
Within the processor, the DTS converts an analog signal into a digital value representing the temperature relative to TCC activation. The conversions are in integers with each single number change corresponding to approximately 1 °C. DTS values reported using the internal processor MSR will be in whole integers.
As a result of the averaging function described above, DTS values reported over PECI will include a 6-bit fractional value. Under typical operating conditions, where the temperature is close to T the temperature approaches zero, the fractional values can be used to detect the
CONTROL
, the fractional values may not be of interest. But when
activation of the TCC. An averaged temperature value between 0 and 1 can only occur if the TCC has been activated during the averaging window. As TCC activation time increases, the fractional value will approach zero. Fan control circuits can detect this situation and take appropriate action as determined by the system designers. Of course, fan control chips can also monitor the PROCHOT# pin to detect TCC activation using a dedicated input pin on the package. Further details on how the Thermal Averaging Constant influences the fractional temperature values are available in the Thermal Design Guide.
80 Datasheet
Thermal Specifications

6.3.2 PECI Specifications

6.3.2.1 PECI Device Address
The PECI register resides at address 30h.
6.3.2.2 PECI Command Support
The processor supports the PECI commands listed in Table 6-4.
Table 6-4. Supported PECI Command Functions and Codes
Command
Function
Ping() N/A This command targets a valid PECI device address followed by zero Write
GetTemp0() 01h Write Length: 1
Code Comments
Length and zero Read Length.
Read Length: 2 Returns the temperature of the processor in Domain 0
6.3.2.3 PECI Fault Handling Requirements
PECI is largely a fault tolerant interface, including noise immunity and error checking improvements over other comparable industry standard interfaces. The PECI client is as reliable as the device that it is embedded in, and thus given operating conditions that fall under the specification. The PECI will always respond to requests and the protocol itself can be relied upon to detect any transmission failures. There are, however, certain scenarios where the PECI is know to be unresponsive. Prior to a power on RESET# and during RESET# assertion, PECI is not ensured to provide reliable thermal data. System designs should implement a default power-on condition that ensures proper processor operation during the time frame when reliable data is not available using PECI.
To protect platforms from potential operational or safety issues due to an abnormal condition on PECI, the Host controller should take action to protect the system from possible damaging states. If the Host controller cannot complete a valid PECI transactions of GetTemp0() with a given PECI device over 3 consecutive failed transactions or a one second maximum specified interval, then it should take appropriate actions to protect the corresponding device and/or other system components from overheating. The host controller may also implement an alert to software in the event of a critical or continuous fault condition.
6.3.2.4 PECI GetTemp0() Error Code Support
The error codes supported for the processor GetTemp() command are listed in
Table 6-5.
Table 6-5. GetTemp0() Error Codes
Error Code Description
8000h General sensor error
Datasheet 81

6.4 Storage Conditions Specifications

Environmental storage condition limits define the temperature and relative humidity limits to which the device is exposed to while being stored. The specified storage conditions are for component level prior to board attach (see following notes on post board attach limits).
Table 6-6 specifies absolute maximum and minimum storage temperature limits which
represent the maximum or minimum device condition beyond which damage, latent or otherwise, may occur. The table also specifies sustained storage temperature, relative humidity, and time-duration limits. At conditions outside sustained limits, but within absolute maximum and minimum ratings, quality and reliability may be affected. These conditions should not be exceeded in storage or transportation.
Table 6-6. Storage Conditions
Symbol Parameter Min Max Notes
T
ABSOLUTE STORAGE
T
SUSTAINED STORAGE
RH
SUSTAINED STORAG E
Time
SUSTAINED STORAG E
The non-operating device storage temperature. Damage (latent or otherwise) may occur when subjected to for any length of time.
The ambient storage temperature limit (in shipping media) for a sustained period of time
The maximum device storage relative humidity for a sustained period of time
A prolonged or extended period of time; typically associated with customer shelf life.
Thermal Specifications
-55 °C 125 °C 1, 2, 3
-5 °C 40 °C 4, 5
60% @ 24°C 5, 6
0 months 6 months 6
Notes:
1. Refers to a component device that is not assembled in a board or socket that is not to be electrically connected to a voltage reference or I/O signals.
2. Specified temperatures are based on data collected. Exceptions for surface mount reflow are specified in by applicable JEDEC standard and MAS document. Non-adherence may affect processor reliability.
3. T
ABSOLUTE STORAGE
moisture barrier bags, or desiccant.
4. Intel branded board products are certified to meet the following temperature and humidity limits that are given as an example only (Non-Operating Temperature limit: -40° C to 70° C and Humidity: 50% to 90% non-condensing with a maximum wet bulb of 28° C) Post board attach storage temperature limits are not specified for non-Intel branded boards.
5. The JEDEC, J-JSTD-020 moisture level rating and associated handling practices apply to all moisture sensitive devices removed from the moisture barrier bag.
6. Nominal temperature and humidity conditions and durations are given and tested within the constraints imposed by T
applies to unassembled component only and does not apply to the shipping media,
SUSTAINED
and customer shelf live in appl9icable Intel box and bags.
§
82 Datasheet
Features

7 Features

7.1 Power-On Configuration (POC)

Several configuration options can be configured by hardware. For electrical specifications on these options, refer to Chapter 2. Note that request to execute BIST is not selected by hardware but is passed across the Intel QPI link during initialization.
The sampled information configures the processor for subsequent operation. These configuration options cannot be changed except by another reset. All resets reconfigure the processor; for reset purposes, the processor does not distinguish between a "warm" reset and a “power-on” reset.
Table 7-1. Power On Configuration Signal Options
Configuration Option Signal
MSID VID[2:0]/MSID[2:0] CSC VID[5:3]/CSC[2:0]
Notes:
1. Latched when VTTPWRGOOD is asserted and all internal power good conditions are met.
2. See the signal definitions in Table 6-1 for the description of MSID and CSC.
1, 2
1, 2

7.2 Clock Control and Low Power States

The processor supports low power states at the individual thread, core, and package level for optimal power management. The processor implements software interfaces for requesting low power states: MWAIT instruction extensions with sub-state hints, the HLT instruction (for C1 and C1E) and P_LVLx reads to the ACPI P_BLK register block mapped in the processor’s I/O address space. The P_LVLx I/O reads are converted to equivalent MWAIT C-state requests inside the processor and do not directly result in I/O reads to the system. The P_LVLx I/O Monitor address does not need to be set up before using the P_LVLx I/O read interface.
Software may make C-state requests by using a legacy method involving I/O reads from the ACPI-defined processor clock control registers, referred to as P_LVLx. This feature is designed to provide legacy support for operating systems that initiate C-state transitions using access to pre-defined ICH registers. The base P_LVLx register is P_LVL2, corresponding to a C3 request; P_LVL3 is C6.
P_LVLx is limited to a subset of C-states. F or Example, P_LVL8 is not supported and will not cause an I/O redirection to a C8 request. Instead, it will fall through like a normal I/O instruction. The range of I/O addresses that may be converted into C-state requests is also defined in the PMG_IO_CAPTURE MSR, in the ‘C-state Range’ field. This field maybe written by BIOS to restrict the range of I/O addresses that are trapped an d redirected to MWAIT instructions. Note that when I/O instructions are used, no MWAIT substates can be defined, as therefore the request defaults to have a sub-state or zero, but always assumes the ‘break on IF==0’ control that can be selected using ECX with an MWAIT instruction.
Datasheet 83
Figure 7-1. Power States
C0
1. No transition to C0 is needed to service a snoop when in C1 or C1E.
,
.
2. Transitions back to C0 occur on an interrupt or on access to monitored address (if state was entered via MWAIT). .
2
2
C1
1
1
CE
1
C3
C6
2
2
MWAIT C1,
HLT
MWAIT C1,
HLT (C1E
enabled)
MWAIT C6,
I/O C6
MWAIT C3,
I/O C3
Features

7.2.1 Thread and Core Power State Descriptions

Individual threads may request low power states. Core power states are automatically resolved by the processor as shown in Table 7-2.
Table 7-2. Coordination of Thread Power States at the Core Level
Core State
Thread0
State
Notes:
1. If enabled, state will be C1E.
7.2.1.1 C0 State
This is the normal operating state in the processor.
7.2.1.2 C1/C1E State
C1/C1E is a low power state entered when all threads within a core execute a HLT or MWAIT(C1E) instruction. The processor thread will transition to the C0 state upon occurrence of an interrupt or an access to the monitored address if the state was entered using the MWAIT instruction. RESET# will cause the processor to initialize itself.
A System Management Interrupt (SMI) handler will return execution to either Normal state or the C1 state. See the Intel Manuals, Volume III: System Programmer's Guide for more information.
C0
C1
C3 C6
C0 C1
C0 C0 C0 C0
1
C0 C1 C0 C1 C0 C1
Thread1 State
1
1
1
1
®
64 and IA-32 Architecture Software Developer 's
C1
C3 C6
1
C3 C3 C3 C6
C1
1
84 Datasheet
Features
While in C1/C1E state, the processor will process bus snoops and snoops from the other threads.
7.2.1.3 C3 State
Individual threads of the processor can enter the C3 state by initiating a P_LVL2 I/O read to the P_BLK or an MWAIT(C3) instruction. Before entering core C3, the processor flushes the contents of its caches. Except for the caches, the processor core maintains all its architectural state while in the C3 state. All of the clocks in the processor core are stopped in the C3 state.
Because the core’s caches are flushed, the processor keeps the core in the C3 state when the processor detects a snoop on the Intel QPI Link or when another logical processor in the same package accesses cacheable memory. The processor core will transition to the C0 state upon occurrence of an interrupt. RESET# will cause the processor core to initialize itself.
7.2.1.4 C6 State
Individual threads of the processor can enter the C6 state by initiating a P_LVL3 read to the P_BLK or an MWAIT(C6) instruction. Before entering Core C6, the processor saves core state data (such as, registers) to the last level cache. This data is retired after exiting core C6. The processor achieves additional power savings in the core C6 state.

7.2.2 Package Power State Descriptions

The package supports C0, C3, and C6 power states. Note that there is no package C1 state. The package power state is automatically resolved by the processor depending on the core power states and permission from the rest of the system as described in the following sections.
7.2.2.1 Package C0 State
This is the normal operating state for the processor. The processor remains in the Normal state when at least one of its cores is in the C0 or C1 state or when another component in the system has not granted permission to the processor to go into a low power state. Individual components of the processor may be in low power states while the package is in C0.
7.2.2.2 Package C1/C1E State
The package will enter the C1/C1E low power state when at least one core is in the C1/C1E state and the rest of the cores are in the C1/C1E or lower power state. The processor will also enter the C1/C1E state when all cores are in a power state lower than C1/C1E but the package low power state is limited to C1/C1E using the PMG_CST_CONFIG_CONTROL MSR. In the C1E state, the processor will automatically transition to the lowest power operating point (lowest supported voltage an d associated frequency). When entering the C1E state, the processor will first switch to the lowest bus ratio and then transition to the lower VID. No notification to the system occurs upon entry to C1/C1E.
7.2.2.3 Package C3 State
The package will enter the C3 low power state when all cores are in the C3 or lower power state and the processor has been granted permission by the other component(s) in the system to enter the C3 state. The package will also enter the C3 state when all cores are in an idle state lower than C3 but other component(s) in the system have only granted permission to enter C3.
Datasheet 85
If Intel QPI L1 has been granted, the processor will disable some clocks and PLLs and for processors with an integrated memory controller, the DRAM will be put into self­refresh.
7.2.2.4 Package C6 State
The package will enter the C6 low power state when all cores are in the C6 or lower power state and the processor has been granted permission by the other component(s) in the system to enter the C6 state. The package will also enter the C6 state when all cores are in an idle state lower than C6 but the other component(s) have only granted permission to enter C6.
If Intel QPI L1 has been granted, the processor will disable some clocks and PLLs and the shared cache will enter a deep sleep state. Additionally, for processors with an integrated memory controller, the DRAM will be put into self-refresh.

7.3 Sleep States

The processor supports the ACPI sleep states S0, S1, S3, and S4/S5 as shown in
Table 7-3. For information on ACPI S-states and related terminology, refer to ACPI
Specification. The S-state transitions are coordinated by the processor in response PM Request (PMReq) messages from the chipset. The processor itself will never request a particular S-state.
Features
Table 7-3. Processor S-States
S-State Power Reduction Allowed Transitions
S0 Normal Code Execution S1 (using PMReq) S1 Cores in C1E like state, processor responds with
CmpD(S1) message.
S3 Memory put into self-refresh, processor responds with
CmpD(S3) message.
S4/S5 Processor responds with CmpD(S4/S5) message. S0 (using reset)
Notes:
1. If the chipset requests an S-state transition, which is not allowed, a machine check error will be generated by the processor.
S0 (using reset or PMReq) S3, S4 (using PMReq)
S0 (using reset)

7.4 ACPI P-States (Intel® Turbo Boost Technology)

The processor supports ACPI P-States. A new feature is that the P0 ACPI state will be a request for Intel Turbo Boost Technology. This technology opportunistically and automatically allows the processor to run faster than its marked frequency if the processor is operating below power, thermal, and current specifications. Maximum turbo frequency is dependant on the processor component and number of active cores. No special hardware support is necessary for Intel Turbo Boost Technology. BIOS and the operating system can enable or disable Intel Turbo Boost Technology.
86 Datasheet
Features

7.5 Enhanced Intel® SpeedStep® Technology

The processor features Enhanced Intel SpeedStep Technology. Following are the key features of Enhanced Intel SpeedStep Technology:
• Multiple voltage and frequency operating points pro vide optimal performance at the lowest power.
• Voltage and frequency selection is software controlled by writing to processor MSRs:
— If the target frequency is higher than the current frequency, VCC is ramped up
in steps by placing new values on the VID pins and the PLL then locks to the new frequency.
— If the target frequency is lower than the current frequency , the PLL locks to the
new frequency and the VCC is changed through the VID pin mechanism.
— Software transitions are accepted at any time. If a previous transition is in
progress, the new transition is deferred until the previous transition completes.
• The processor controls voltage ramp rates internally to ensure smooth transitions.
• Low transition latency and large number of transitions possible per second:
— Processor core (including shared cache) is unavailable for less than 5 µs during
the frequency transition.
§
Datasheet 87
Features
88 Datasheet
Boxed Processor Specifications

8 Boxed Processor Specifications

8.1 Introduction

The processor will also be offered as an Intel boxed processor. Intel boxed processors are intended for system integrators who build systems from baseboards and standard components. The boxed processor will be supplied with a cooling solution. This chapter documents baseboard and system requirements for the cooling solution that will be supplied with the boxed processor. This chapter is particularly important for OEMs that manufacture baseboards for system integrators.
Note: Unless otherwise noted, all figures in this chapter are dimensioned in millimeters and
inches [in brackets]. Figure 8-1 shows a mechanical representation of a boxed processor.
Note: Drawings in this section reflect only the specifications on the Intel boxed processor
product. These dimensions should not be used as a generic keep-out zone for all cooling solutions. It is the system designers’ responsibility to consider their proprietary cooling solution when designing to the required keep-out zone on their system platforms and chassis. Refer to the appropriate processor Thermal and Mechanical Design Guidelines (see Section 1.2) for further guidance. Contact your local Intel Sales
Figure 8-1. Mechanical Representation of the Boxed Processor
Representative for this document.
NOTE: The airflow of the fan heatsink is into the center and out of the sides of the fan heatsink.
Datasheet 89
Boxed Processor Specifications

8.2 Mechanical Specifications

8.2.1 Boxed Processor Cooling Solution Dimensions

This section documents the mechanical specifications of the boxed processor. The boxed processor will be shipped with an unattached fan heatsink. Figure 8-1 shows a mechanical representation of the boxed processor.
Clearance is required around the fan heatsi nk to ensure unimpeded airflow for proper cooling. The physical space requirements and dimensions for the boxed processor with assembled fan heatsink are shown in Figure 8-2 (Side View), and Figure 8-3 (Top View). The airspace requirements for the boxed processor fan heatsink must also be incorporated into new baseboard and system designs. Airspace requirements are shown in Figure 8-7 and Figure 8-8. Note that some figures have centerlines shown (marked with alphabetic designations) to clarify relative dimensioning.
Figure 8-2. Space Requirements for the Boxed Processor (side view)
90 Datasheet
Boxed Processor Specifications
Figure 8-3. Space Requirements for the Boxed Processor (top view)
NOTES:
1. Diagram does not show the attached hardware for the clip design and is provided only as a mechanical representation.
Figure 8-4. Space Requirements for the Boxed Processor (overall view)
Datasheet 91
Boxed Processor Specifications
Pin
Signal
12
34
1
2 3 4
GND
+12 V
SENSE CONTROL
Straight square pin, 4- pin terminal housing with polarizing ri bs and f r i c t ion locking ram p.
0.100" pitch, 0.025" square pin width. Match with straight pin, friction loc k header on
mainboard.

8.2.2 Boxed Processor Fan Heatsink Weight

The boxed processor fan heatsink will not weigh more than 550 grams. See Chapter 6 and the appropriate processor Thermal and Mechanical Design Guidelines (see
Section 1.2). for details on the processor weight and heatsink requirements.

8.2.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly

The boxed processor thermal solution requires a heatsink attach clip assembly, to secure the processor and fan heatsink in the baseboard socket. The boxed processor will ship with the heatsink attach clip assembly.

8.3 Electrical Requirements

8.3.1 Fan Heatsink Power Supply

The boxed processor fan heatsink requires a +12 V power supply. A fan power cable will be shipped with the boxed processor to draw power from a power header on the baseboard. The power cable connector and pinout are shown in Figure 8-5. Baseboards must provide a matched power header to support the boxed processor. Table 8-1 contains specifications for the input and output signals at the fan heatsink connector.
The fan heatsink outputs a SENSE signal, which is an open- collector output that pulses at a rate of 2 pulses per fan revolution. A baseboard pull-up resistor provides V match the system board-mounted fan speed monitor requirements, if applicable. Use of the SENSE signal is optional. If the SENSE signal is not used, pin 3 of the connector should be tied to GND.
The fan heatsink receives a PWM signal from the motherboard from the 4th pin of the connector labeled as CONTROL.
The boxed processor's fanheat sink requires a constant +12 V supplied to pin 2 and does not support variable voltage control or 3-pin PWM control.
The power header on the baseboard must be positioned to allow the fan heatsink power cable to reach it. The power header identification and location should be documented in the platform documentation, or on the system board itself. Figure 8-6 shows the location of the fan power connector relative to the processor socket. The baseboard power header should be positioned within 110 mm [4.33 inches] from the center of the processor socket.
Figure 8-5. Boxed Processor Fan Heatsink Power Cable Connector Description
OH
to
92 Datasheet
Boxed Processor Specifications
Notes:
B
C
R110
[4.33]
Table 8-1. Fan Heatsink Power and Signal Specifications
Description Min Typ Max Unit Notes
+12 V: 12 volt fan power supply 10.8 12 13.2 V ­IC:
- Peak steady-state fan current draw
- Average steady-state fan current draw
SENSE: SENSE frequenc y 2
CONTROL 21 25 28 kHz
1. Baseboard should pull this pin up to 5V with a resistor.
2. Open drain type, pulse width modulated.
3. Fan will have pull-up resistor for this signal to maximum of 5.25 V.
— —
— —
3.0
2.0 pulses per fan
revolution
Figure 8-6. Baseboard Power Header Placement Relative to Processor Socket
A A
-
1
2, 3

8.4 Thermal Specifications

This section describes the cooling requirements of the fan heatsink solution used by the boxed processor.

8.4.1 Boxed Processor Cooling Requirements

The boxed processor may be directly cooled with a fan heatsink. Howev er, meeting the processor's temperature specification is also a function of the thermal design of the entire system, and ultimately the responsibility of the system integrator. The processor temperature specification is found in Chapter 6 of this document. The boxed processor fan heatsink is able to keep the processor temperature within the specifications (see
Table 6-1) in chassis that provide good thermal management. For the boxed processor
fan heatsink to operate properly, it is critical that the airflow provided to the fan heatsink is unimpeded. Airflow of the fan heatsink is into the center and out of the sides of the fan heatsink. Airspace is required around the fan to ensure that the airflow through the fan heatsink is not blocked. Blocking the airflow to the fan heatsink reduces the cooling efficiency and decreases fan life. Figure 8-7 and Figure 8-8 illustrate an acceptable airspace clearance for the fan heatsink. The air temperature entering the fan should be kept below 40 ºC. Again, meeting the processor's temperature specification is the responsibility of the system integrator.
Datasheet 93
Boxed Processor Specifications
Figure 8-7. Boxed Processor Fan Heatsink Airspace Keepout Requirements (top view)
Figure 8-8. Boxed Processor Fan Heatsink Airspace Keepout Requirements (side view)
94 Datasheet
Boxed Processor Specifications
Notes:
Lowest Noise Level
Internal Chassis Temperature (Degrees C)
X
Z
Increasing Fan Speed & Noise
Higher Set Point
Highest Noise Level

8.4.2 Variable Speed Fan

If the boxed processor fan heatsink 4-pin connector is connected to a 3-pin motherboard header it will operate as follows:
The boxed processor fan will operate at different speeds over a short range of internal chassis temperatures. This allows the processor fan to operate at a lower speed and noise level, while internal chassis temperatures are low. If internal chassis temperature increases beyond a lower set point, the fan speed will rise linearly with the internal temperature until the higher set point is reached. At that point, the fan speed is at its maximum. As fan speed increases, so does fan noise levels. Systems should be designed to provide adequate air around the boxed processor fan heatsink that remains cooler then lower set point. These set points, represented in Figure 8-9 and Table 8-2, can vary by a few degrees from fan heatsink to fan heatsink. The internal chassis temperature should be kept below 40 ºC. Meeting the processor temperature specification (see Chapter 6) is the responsibility of the system integrator.
The motherboard must supply a constant +12 V to the processor's power header to ensure proper operation of the variable speed fan for the boxed processor. Refer to
Table 8-1 for the specific requirements.
Figure 8-9. Boxed Processor Fan Heatsink Set Points
Table 8-2. Fan Heatsink Power and Signal Specifications
Datasheet 95
Boxed Processor Fan
Heatsink Set Point
1. Set point variance is approximately ± 1 C from fan heatsink to fan heatsink.
°C)
(
X 30
Z 40
When the internal chassis temperature is below or equal to this set point, the fan operates at its lowest speed. Recommended maximum internal chassis temperature for nominal operating environment.
When the internal chassis temperature is above or equal to this set point, the fan operates at its highest speed. Recommended maximum internal chassis temperature for worst-case operating environment.
Boxed Processor Fan Speed Notes
1
-
Boxed Processor Specifications
If the boxed processor fan heatsink 4-pin connector is connected to a 4-pin motherboard header and the motherboard is designed with a fan speed controller with PWM output (CONTROL see Table 8-1) and remote thermal diode measurement capability the boxed processor will operate as follows:
As processor power has increased the required thermal solutions have generated increasingly more noise. Intel has added an option to the boxed processor that allows system integrators to have a quieter system in the most common usage.
The 4th wire PWM solution provides better control over chassis acoustics. This is achieved by more accurate measurement of processor die temperature through the processor's Digital Thermal Sensors (D TS) and PECI. F an RPM is modulated through the use of an ASIC located on the motherboard that sends out a PWM control signal to the 4th pin of the connector labeled as CONTROL. The fan speed is based on actual processor temperature instead of internal ambient chassis temperatures.
If the new 4-pin active fan heat sink solution is connected to an older 3-pin baseboard processor fan header it will default back to a thermistor controlled. Under thermistor controlled mode, the fan RPM is automatically varied based on the Tinlet temperature measured by a thermistor located at the fan inlet.
For more details on specific motherboard requirements for 4-wire based fan speed control, see the appropriate processor Thermal and Mechanical Design Guidelines (see
Section 1.2).
96 Datasheet
Loading...