Intel CORE 2 DUO PROCESSOR E8000, CORE 2 DUO PROCESSOR E7000 Manual

5 (1)

Intel® Core™2 Duo Processor E8000

and E7000 Series

Datasheet

June 2009

Document Number: 318732-006

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel Core™2 Duo processor E8000 and E7000 series may contain design defects or errors known as errata which may cause the product to deviate from published specifications.

Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each processor family, not across different processor families. See http://www.intel.com/products/processor_number for details. Over time processor numbers will increment based on changes in clock, speed, cache, FSB, or other features, and increments are not intended to represent proportional or quantitative increases in any particular feature. Current roadmap processor number progression is not necessarily representative of future roadmaps. See www.intel.com/products/ processor_number for details.

ΦIntel® 64 requires a computer system with a processor, chipset, BIOS, operating system, device drivers and applications enabled for Intel 64. Processor will not operate (including 32-bit operation) without an Intel 64-enabled BIOS. Performance will vary depending on your hardware and software configurations. See http://developer.intel.com/technology/intel64/ for more information including details on which processors support Intel 64 or consult with your system vendor for more information.

Enabling Execute Disable Bit functionality requires a PC with a processor with Execute Disable Bit capability and a supporting operating system. Check with your PC manufacturer on whether your system delivers Execute Disable Bit functionality.

Intel® Virtualization Technology requires a computer system with a processor, chipset, BIOS, virtual machine monitor (VMM) and for some uses, certain platform software enabled for it. Functionality, performance or other benefit will vary depending on hardware and software configurations and may require a BIOS update. Software applications may not be compatible with all operating systems. Please check with your application vendor.

See the Processor Spec Finder or contact your Intel representative for more information.

No computer system can provide absolute security under all conditions. Intel® Trusted Execution Technology (Intel® TXT) requires a computer system with Intel® Virtualization Technology, an Intel TXT-enabled processor, chipset, BIOS, Authenticated Code Modules and an Intel TXT-compatible measured launched environment (MLE). The MLE could consist of a virtual machine monitor, an OS or an application. In addition, Intel TXT requires the system to contain a TPM v1.2, as defined by the Trusted Computing Group and specific software for some uses. For more information, see here

Not all specified units of this processor support Thermal Monitor 2, Enhanced HALT State and Enhanced Intel SpeedStep® Technology. See the Processor Spec Finder at http://processorfinder.intel.com or contact your Intel representative for more information.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order. Intel, Pentium, Intel Core, Intel SpeedStep, and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. * Other names and brands may be claimed as the property of others.

Copyright © 2008–2009, Intel Corporation. All rights reserved.

2

Datasheet

Contents

1

Introduction

..............................................................................................................

9

 

1.1

Terminology .....................................................................................................

10

 

 

1.1.1 ............................................................

Processor Terminology Definitions

10

 

1.2

References .......................................................................................................

12

2

Electrical Specifications...........................................................................................

13

 

2.1

Power and ....................................................................................Ground Lands

13

 

2.2

Decoupling ........................................................................................Guidelines

13

 

 

2.2.1 .....................................................................................

VCC Decoupling

13

 

 

2.2.2 ......................................................................................

VTT Decoupling

13

 

 

2.2.3 ......................................................................................

FSB Decoupling

14

 

2.3

Voltage .........................................................................................Identification

14

 

2.4

Reserved, ................................................................Unused, and TESTHI Signals

16

 

2.5

Power Segment .........................................................................Identifier (PSID)

16

 

2.6

Voltage ........................................................................and Current Specification

17

 

 

2.6.1 ..................................................Absolute Maximum and Minimum Ratings

17

 

 

2.6.2 ........................................................DC Voltage and Current Specification

18

 

 

2.6.3 ......................................................................................

VCC Overshoot

23

 

 

2.6.4 .............................................................................

Die Voltage Validation

24

 

2.7

Signaling ......................................................................................Specifications

24

 

 

2.7.1 ..................................................................................

FSB Signal Groups

25

 

 

2.7.2 .................................................................CMOS and Open Drain Signals

26

 

 

2.7.3 .....................................................................

Processor DC Specifications

27

 

 

.....

2.7.3.1 Platform Environment Control Interface (PECI) DC Specifications

29

 

 

.............................................

2.7.3.2 GTL+ Front Side Bus Specifications

30

 

2.8

Clock Specifications ...........................................................................................

31

 

 

2.8.1 ............................Front Side Bus Clock (BCLK[1:0]) and Processor Clocking

31

 

 

2.8.2 .................................................FSB Frequency Select Signals (BSEL[2:0])

32

 

 

2.8.3 ..............................................................Phase Lock Loop (PLL) and Filter

32

 

 

2.8.4 .........................................................................

BCLK[1:0] Specifications

32

3

Package Mechanical ..........................................................................Specifications

35

 

3.1

Package ...............................................................................Mechanical Drawing

35

 

3.2

Processor .................................................................Component Keep-Out Zones

39

 

3.3

Package ...........................................................................Loading Specifications

39

 

3.4

Package ...............................................................................Handling Guidelines

39

 

3.5

Package ..........................................................................Insertion Specifications

40

 

3.6

Processor ...............................................................................Mass Specification

40

 

3.7

Processor ............................................................................................Materials

40

 

3.8

Processor ............................................................................................Markings

40

 

3.9

Processor ................................................................................Land Coordinates

41

4

Land Listing .......................................................................and Signal Descriptions

43

 

4.1

Processor ...............................................................................Land Assignments

43

 

4.2

Alphabetical ............................................................................Signals Reference

66

5

Thermal Specifications ..................................................and Design Considerations

77

 

5.1

Processor .........................................................................Thermal Specifications

77

 

 

5.1.1 ............................................................................

Thermal Specifications

77

 

 

5.1.2 .................................................................................

Thermal Metrology

81

 

5.2

Processor ................................................................................Thermal Features

81

 

 

5.2.1 .....................................................................................

Thermal Monitor

81

 

 

5.2.2 ..................................................................................

Thermal Monitor 2

82

 

 

5.2.3 ..................................................................................

On - Demand Mode

83

 

 

5.2.4 ..................................................................................

PROCHOT# Signal

84

 

 

5.2.5 ...............................................................................

THERMTRIP# Signal

84

 

5.3

Platform ......................................................Environment Control Interface (PECI)

85

 

 

5.3.1 ..........................................................................................

Introduction

85

 

 

..................

5.3.1.1 TCONTROL and TCC activation on PECI - Based Systems

85

 

 

5.3.2 .................................................................................

PECI Specifications

86

 

 

.................................................................

5.3.2.1 PECI Device Address

86

Datasheet

3

 

 

 

 

5.3.2.2

.............................................................PECI Command Support

86

 

 

 

 

5.3.2.3 PECI Fault Handling Requirements ...............................................

86

 

 

 

 

5.3.2.4 PECI GetTemp0() Error Code Support ..........................................

86

6

 

Features ..................................................................................................................

 

 

87

 

6.1

Power-On Configuration Options ..........................................................................

87

 

6.2

Clock Control and Low Power States.....................................................................

87

 

 

 

6.2.1

Normal State .........................................................................................

88

 

 

 

6.2.2 HALT and Extended HALT Powerdown States ..............................................

88

 

 

 

 

6.2.2.1

HALT Powerdown State ..............................................................

88

 

 

 

 

6.2.2.2 Extended HALT Powerdown State ................................................

89

 

 

 

6.2.3 Stop Grant and Extended Stop Grant States ...............................................

89

 

 

 

 

6.2.3.1

Stop-Grant State.......................................................................

89

 

 

 

 

6.2.3.2 Extended Stop Grant State .........................................................

90

 

 

 

6.2.4 Extended HALT Snoop State, HALT Snoop State, Extended

 

 

 

 

 

Stop Grant Snoop State, and Stop Grant Snoop State..................................

90

 

 

 

 

6.2.4.1 HALT Snoop State, Stop Grant Snoop State ..................................

90

 

 

 

 

6.2.4.2 Extended HALT Snoop State, Extended Stop Grant Snoop State.......

90

 

 

 

6.2.5

Sleep State............................................................................................

90

 

 

 

6.2.6

Deep Sleep State....................................................................................

91

 

 

 

6.2.7

Deeper Sleep State .................................................................................

91

 

 

 

6.2.8 Enhanced Intel SpeedStep® Technology ....................................................

92

 

6.3

Processor Power Status Indicator (PSI) Signal .......................................................

92

7

 

Boxed Processor Specifications................................................................................

93

 

7.1

Introduction......................................................................................................

 

93

 

7.2

Mechanical Specifications....................................................................................

94

 

 

 

7.2.1 Boxed Processor Cooling Solution Dimensions.............................................

94

 

 

 

7.2.2 Boxed Processor Fan Heatsink Weight .......................................................

95

 

 

 

7.2.3 Boxed Processor Retention Mechanism and Heatsink Attach Clip Assembly .....

95

 

7.3

Electrical Requirements ......................................................................................

95

 

 

 

7.3.1 Fan Heatsink Power Supply ......................................................................

95

 

7.4

Thermal Specifications........................................................................................

97

 

 

 

7.4.1 Boxed Processor Cooling Requirements......................................................

97

 

 

 

7.4.2

Variable Speed Fan .................................................................................

99

8

 

Debug Tools Specifications ....................................................................................

101

 

8.1

Logic Analyzer Interface (LAI) ...........................................................................

101

 

 

 

8.1.1

Mechanical Considerations .....................................................................

101

 

 

 

8.1.2

Electrical Considerations ........................................................................

101

4

Datasheet

Figures

 

 

 

1

Intel® Core™2 Duo Processor E8000 Series V

Static and Transient Tolerance................

21

2

Intel® Core™2 Duo Processor E7000 Series VCC

Static and Transient Tolerance................

23

 

 

CC

 

 

3

VCC Overshoot Example Waveform .............................................................................

 

 

24

4

Differential Clock Waveform ......................................................................................

 

 

34

5

Measurement Points for Differential Clock Waveforms ...................................................

34

6

Processor Package Assembly Sketch ...........................................................................

 

 

35

7

Processor Package Drawing Sheet 1 of 3 .....................................................................

 

 

36

8

Processor Package Drawing Sheet 2 of 3 .....................................................................

 

 

37

9

Processor Package Drawing Sheet 3 of 3 .....................................................................

 

 

38

10

Processor Top-Side Markings Example ........................................................................

 

 

40

11

Processor Land Coordinates and Quadrants, Top View...................................................

41

12

land-out Diagram (Top View – Left Side) .....................................................................

 

 

44

13

land-out Diagram (Top View – Right Side) ...................................................................

 

 

45

14

Intel® Core™2 Duo Processor E8000 Series Thermal Profile ...........................................

79

15

Intel® Core™2 Duo Processor E7000 Series Thermal Profile ...........................................

80

16

Case Temperature (TC) Measurement Location ............................................................

 

81

17

Thermal Monitor 2 Frequency and Voltage Ordering ......................................................

83

18

Conceptual Fan Control Diagram on PECI-Based Platforms.............................................

85

19

Processor Low Power State Machine ...........................................................................

 

 

88

20

Mechanical Representation of the Boxed Processor .......................................................

93

21

Space Requirements for the Boxed Processor (Side View)..............................................

94

22

Space Requirements for the Boxed Processor (Top View)...............................................

94

23

Overall View Space Requirements for the Boxed Processor.............................................

95

24

Boxed Processor Fan Heatsink Power Cable Connector Description ..................................

96

25

Baseboard Power Header Placement Relative to Processor Socket...................................

97

26

Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 1 view) ...................

98

27

Boxed Processor Fan Heatsink Airspace Keepout Requirements (side 2 view) ...................

98

28

Boxed Processor Fan Heatsink Set Points.....................................................................

 

 

99

Datasheet

5

Tables

 

 

 

1

References ..............................................................................................................

 

 

12

2

Voltage Identification Definition..................................................................................

 

 

15

3

Absolute Maximum and Minimum Ratings ....................................................................

 

 

17

4

Voltage and Current Specifications..............................................................................

 

 

18

5

Intel® Core™2 Duo Processor E8000 Series V

Static and Transient Tolerance

................20

6

Intel® Core™2 Duo Processor E7000 Series VCC

Static and Transient Tolerance ................

22

 

 

CC

 

 

7

VCC Overshoot Specifications......................................................................................

 

 

23

8

FSB Signal Groups ....................................................................................................

 

 

25

9

Signal Characteristics................................................................................................

 

 

26

10

Signal Reference Voltages .........................................................................................

 

 

26

11

GTL+ Signal Group DC Specifications ..........................................................................

 

 

27

12

Open Drain and TAP Output Signal Group DC Specifications ...........................................

27

13

CMOS Signal Group DC Specifications..........................................................................

 

 

28

14

PECI DC Electrical Limits ...........................................................................................

 

 

29

15

GTL+ Bus Voltage Definitions .....................................................................................

 

 

30

16

Core Frequency to FSB Multiplier Configuration.............................................................

 

31

17

BSEL[2:0] Frequency Table for BCLK[1:0] ...................................................................

 

 

32

18

Front Side Bus Differential BCLK Specifications .............................................................

 

32

19

FSB Differential Clock Specifications (1333 MHz FSB) ....................................................

33

20

FSB Differential Clock Specifications (1066 MHz FSB) ....................................................

33

21

Processor Loading Specifications.................................................................................

 

 

39

22

Package Handling Guidelines......................................................................................

 

 

39

23

Processor Materials...................................................................................................

 

 

40

24

Alphabetical Land Assignments...................................................................................

 

 

46

25

Numerical Land Assignment .......................................................................................

 

 

56

26

Signal Description.....................................................................................................

 

 

66

27

Processor Thermal Specifications ................................................................................

 

 

78

28

Intel® Core™2 Duo Processor E8000 Series Thermal Profile ...........................................

79

29

Intel® Core™2 Duo Processor E7000 Series Thermal Profile ...........................................

80

30

GetTemp0() Error Codes ...........................................................................................

 

 

86

31

Power-On Configuration Option Signals .......................................................................

 

 

87

32

Fan Heatsink Power and Signal Specifications...............................................................

 

 

96

33

Fan Heatsink Power and Signal Specifications.............................................................

 

 

100

6

Datasheet

Intel® Core™2 Duo Processor E8000

and E7000 Series Features

Available at 3.33 GHz, 3.16 GHz, 3.00 GHz,

2.83GHz, and 2.66 GHz for the Intel Core™2 Duo processor E8000 series

Available at 3.06 GHz, 2.93 GHz, 2.80 GHz,

2.66GHz, and 2.53 GHz for the Intel Core™2 Duo processor E7000 series

Enhanced Intel Speedstep® Technology

Supports Intel® 64Φ architecture

Supports Intel® Virtualization Technology (Intel® VT) (Intel Core™2 Duo processors E8600, E8500, E8400, E8300, E8200 and E7600 only)

Supports Intel® Trusted Execution Technology (Intel® TXT) (Intel Core™2 Duo processors E8600, E8500, E8400, E8300, and E8200 only)

Supports Execute Disable Bit capability

FSB frequency at 1333 MHz

FSB frequency at 1066 MHz (Intel Core™2 Duo processor E7000 series only)

Binary compatible with applications running on previous members of the Intel microprocessor line

Advance Dynamic Execution

Very deep out-of-order execution

Enhanced branch prediction

Optimized for 32-bit applications running on advanced 32-bit operating systems

Intel® Advanced Smart Cache

6 MB Level 2 cache (Intel Core™2 Duo processor E8000 series only)

3 MB Level 2 cache (Intel Core™2 Duo processor E7000 series only)

Intel® Advanced Digital Media Boost

Enhanced floating point and multimedia unit for enhanced video, audio, encryption, and 3D performance

Power Management capabilities

System Management mode

Multiple low-power states

8-way cache associativity provides improved cache hit rate on load/store operations

775-land Package

The Intel® Core™2 Duo processor E8000 and E7000 series are based on the Enhanced Intel® Core™ microarchitecture. The Enhanced Intel® Core™ microarchitecture combines the performance across applications and usages where end-users can truly appreciate and experience the performance. These applications include Internet audio and streaming video, image processing, video content creation, speech, 3D, CAD, games, multimedia, and multitasking user environments.

Intel® 64Φ architecture enables the processor to execute operating systems and applications written to take advantage of the Intel 64 architecture. The processor, supporting Enhanced Intel Speedstep® technology, allows tradeoffs to be made between performance and power consumption.

The Intel Core™2 Duo processor E8000 and E7000 series also includes the Execute Disable Bit capability. This feature, combined with a supported operating system, allows memory to be marked as executable or non-executable.

Virtualization Technology provides silicon-based functionality that works together with compatible Virtual Machine Monitor (VMM) software to improve on software-only solutions.

The Intel® Trusted Execution Technology (Intel TXT) is a key element in Intel's safer computing initiative that defines a set of hardware enhancements that interoperate with an Intel TXT enabled operating system to help protect against software-based attacks. It creates a hardware foundation that builds on Intel's Virtualization Technology to help protect the confidentiality and integrity of data stored/created on the client PC.

Datasheet

7

Revision History

Revision

Description

Revision Date

Number

 

 

 

 

 

-001

• Initial release

January 2008

 

 

 

 

• Added Intel® Core™2 Duo processor E8300 and E7200

 

-002

• Updated VID information. Updated Table 2-1.

April 2008

 

• Added the PSI# signal

 

 

 

 

-003

• Added Intel® Core™2 Duo processor E8600 and E7300

August 2008

• Updated FSB termination voltage in Table 2-3.

 

 

 

 

 

-004

• Added Intel® Core™2 Duo processor E7400

October 2008

-005

• Added Intel® Core™2 Duo processor E7500

January 2009

-006

• Added Intel® Core™2 Duo processor E7600

June 2009

§ §

8

Datasheet

Introduction

1 Introduction

The Intel® Core™2 Duo processor E8000 and E7000 series is based on the Enhanced Intel® Coremicroarchitecture. The Intel Enhanced Coremicroarchitecture combines the performance of previous generation Desktop products with the power efficiencies of a low-power microarchitecture to enable smaller, quieter systems. The Intel® Core™2 Duo processor E8000 and E7000 series are 64-bit processors that maintain compatibility with IA-32 software.

Note: In this document, the Intel® Core™2 Duo processor E8000 and E7000 series may be referred to as "the processor."

Note: In this document, unless otherwise specified, the Intel® Core™2 Duo processor E8000 series refers to the Intel® Core™2 Duo processors E8600, E8500, E8400, E8300, E8200, and E8190.

Note: In this document, unless otherwise specified, the Intel® Core™2 Duo processor E7000 series refers to the Intel® Core™2 Duo processors E7600, E7500, E7400, E7300 and E7200.

The processors use Flip-Chip Land Grid Array (FC-LGA8) package technology, and plugs into a 775-land surface mount, Land Grid Array (LGA) socket, referred to as the LGA775 socket.

The processors are based on 45 nm process technology. The processors feature the Intel Advanced Smart Cache, a shared multi-core optimized cache that significantly reduces latency to frequently used data. The Intel Core™2 Duo processor E8000 series features a 1333 MHz front side bus (FSB) and 6 MB of L2 cache. The Intel Core™2 Duo processor E7000 series features a 1333 MHz and 1066 MHz front side bus (FSB) and 3 MB of L2 cache. The processors support all the existing Streaming SIMD Extensions 2 (SSE2), Streaming SIMD Extensions 3 (SSE3), Supplemental Streaming SIMD Extension 3 (SSSE3), and the Streaming SIMD Extensions 4.1 (SSE4.1). The processors support several Advanced Technologies: Execute Disable Bit, Intel 64 architecture, and Enhanced Intel SpeedStep® Technology. The Intel Core™2 Duo processor E8600, E8500, E8400, E8300, and E8200 support Intel Trusted Execution Technology (Intel TXT) and Intel Virtualization Technology (Intel VT). The Intel Core™2 Duo processor E7600 supports Intel Virtualization Technology (Intel VT).

The processor's front side bus (FSB) use a split-transaction, deferred reply protocol. The FSB uses Source-Synchronous Transfer of address and data to improve performance by transferring data four times per bus clock (4X data transfer rate). Along with the 4X data bus, the address bus can deliver addresses two times per bus clock and is referred to as a "double-clocked" or 2X address bus. Working together, the 4X data bus and 2X address bus provide a data bus bandwidth of up to 10.7 GB/s.

Intel has enabled support components for the processor including heatsink, heatsink retention mechanism, and socket. Manufacturability is a high priority; hence, mechanical assembly may be completed from the top of the baseboard and should not require any special tooling.

Datasheet

9

Introduction

1.1Terminology

A ‘#’ symbol after a signal name refers to an active low signal, indicating a signal is in the active state when driven to a low level. For example, when RESET# is low, a reset has been requested. Conversely, when NMI is high, a nonmaskable interrupt has occurred. In the case of signals where the name does not imply an active state but describes part of a binary sequence (such as address or data), the ‘#’ symbol implies that the signal is inverted. For example, D[3:0] = ‘HLHL’ refers to a hex ‘A’, and D[3:0]# = ‘LHLH’ also refers to a hex ‘A’ (H= High logic level, L= Low logic level).

“Front Side Bus” refers to the interface between the processor and system core logic (a.k.a. the chipset components). The FSB is a multiprocessing interface to processors, memory, and I/O.

1.1.1Processor Terminology Definitions

Commonly used terms are explained here for clarification:

Intel® Core™2 Duo processor E8000 series — Dual core processor in the FCLGA8 package with a 6 MB L2 cache.

Intel® Core™2 Duo processor E7000 series — Dual core processor in the FCLGA8 package with a 3 MB L2 cache.

Processor — For this document, the term processor is the generic form of the Intel® Core™2 Duo processor E8000 series and Intel® Core™2 Duo processor E7000 series.

Voltage Regulator Design Guide — For this document “Voltage Regulator Design Guide” may be used in place of:

Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket

Enhanced Intel® Coremicroarchitecture — A new foundation for Intel® architecture-based desktop, mobile and mainstream server multi-core processors. For additional information refer to: http://www.intel.com/technology/architecture/ coremicro/

Keep-out zone — The area on or near the processor that system design can not use.

Processor core — Processor die with integrated L2 cache.

LGA775 socket — The processors mate with the system board through a surface mount, 775-land, LGA socket.

Integrated heat spreader (IHS) —A component of the processor package used to enhance the thermal performance of the package. Component thermal solutions interface with the processor at the IHS surface.

Retention mechanism (RM) — Since the LGA775 socket does not include any mechanical features for heatsink attach, a retention mechanism is required. Component thermal solutions should attach to the processor using a retention mechanism that is independent of the socket.

FSB (Front Side Bus) — The electrical interface that connects the processor to the chipset. Also referred to as the processor system bus or the system bus. All memory and I/O transactions as well as interrupt messages pass between the processor and chipset over the FSB.

10

Datasheet

Introduction

Storage conditions — Refers to a non-operational state. The processor may be installed in a platform, in a tray, or loose. Processors may be sealed in packaging or exposed to free air. Under these conditions, processor lands should not be connected to any supply voltages, have any I/Os biased, or receive any clocks. Upon exposure to “free air”(i.e., unsealed packaging or a device removed from packaging material) the processor must be handled in accordance with moisture sensitivity labeling (MSL) as indicated on the packaging material.

Functional operation — Refers to normal operating conditions in which all processor specifications, including DC, AC, system bus, signal quality, mechanical and thermal are satisfied.

Execute Disable Bit — Execute Disable Bit allows memory to be marked as executable or non-executable, when combined with a supporting operating system. If code attempts to run in non-executable memory the processor raises an error to the operating system. This feature can prevent some classes of viruses or worms

that exploit buffer over run vulnerabilities and can thus help improve the overall security of the system. See the Intel® Architecture Software Developer's Manual for more detailed information.

Intel® 64 Architecture— An enhancement to Intel's IA-32 architecture, allowing the processor to execute operating systems and applications written to take advantage of the Intel 64 architecture. Further details on Intel 64 architecture and programming model can be found in the Intel Extended Memory 64 Technology Software Developer Guide at http://developer.intel.com/technology/ 64bitextensions/.

Enhanced Intel SpeedStep® Technology — Enhanced Intel SpeedStep Technology allows trade-offs to be made between performance and power consumptions, based on processor utilization. This may lower average power consumption (in conjunction with OS support).

Intel® Virtualization Technology (Intel® VT) — A set of hardware enhancements to Intel server and client platforms that can improve virtualization solutions. Intel VT will provide a foundation for widely-deployed virtualization solutions and enables more robust hardware assisted virtualization solutions. More information can be found at: http://www.intel.com/technology/virtualization/

Intel® Trusted Execution Technology (Intel® TXT) — A key element in Intel's safer computing initiative which defines a set of hardware enhancements that interoperate with an Intel TXT enabled OS to help protect against software-based attacks. Intel TXT creates a hardware foundation that builds on Intel's Virtualization Technology (Intel VT) to help protect the confidentiality and integrity of data stored/created on the client PC.

Platform Environment Control Interface (PECI) — A proprietary one-wire bus interface that provides a communication channel between the processor and chipset components to external monitoring devices.

Datasheet

11

Introduction

1.2References

Material and concepts available in the following documents may be beneficial when reading this document.

Table 1.

References

 

 

 

 

 

Document

Location

 

 

 

 

Intel® Core™2 Duo Processor E8000 and E7000 Series Specification

www.intel.com/design/

 

processor/specupdt/

 

Update

 

318733.htm

 

 

 

 

 

 

Intel® Core™2 Duo Processor E8000 and E7000 Series and Intel®

www.intel.com/design/

 

Pentium Dual-Core Processor E6000 and E5000 Series Thermal and

processor/designex/

 

Mechanical Design Guidelines

318734.htm

 

 

 

 

Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design

http://www.intel.com/

 

design/processor/

 

Guidelines For Desktop LGA775 Socket

 

applnots/313214.htm

 

 

 

 

 

 

 

http://intel.com/design/

 

LGA775 Socket Mechanical Design Guide

Pentium4/guides/

 

 

302666.htm

 

 

 

 

Intel® 64 and IA-32 Intel Architecture Software Developer's Manuals

 

 

Volume 1: Basic Architecture

 

 

Volume 2A: Instruction Set Reference, A-M

http://www.intel.com/

 

 

 

Volume 2B: Instruction Set Reference, N-Z

products/processor/

 

Volume 3A: System Programming Guide, Part 1

manuals/

 

 

 

Volume 3B: System Programming Guide, Part 2

 

 

 

 

§

12

Datasheet

Electrical Specifications

2 Electrical Specifications

This chapter describes the electrical characteristics of the processor interfaces and signals. DC electrical characteristics are provided.

2.1Power and Ground Lands

The processor has VCC (power), VTT, and VSS (ground) inputs for on-chip power distribution. All power lands must be connected to VCC, while all VSS lands must be connected to a system ground plane. The processor VCC lands must be supplied the voltage determined by the Voltage IDentification (VID) lands.

The signals denoted as VTT provide termination for the front side bus and power to the I/O buffers. A separate supply must be implemented for these lands, that meets the VTT specifications outlined in Table 4.

2.2Decoupling Guidelines

Due to its large number of transistors and high internal clock speeds, the processor is capable of generating large current swings. This may cause voltages on power planes to sag below their minimum specified values if bulk decoupling is not adequate. Larger bulk storage (CBULK), such as electrolytic or aluminum-polymer capacitors, supply current during longer lasting changes in current demand by the component, such as coming out of an idle condition. Similarly, they act as a storage well for current when entering an idle condition from a running condition. The motherboard must be designed to ensure that the voltage provided to the processor remains within the specifications listed in Table 4. Failure to do so can result in timing violations or reduced lifetime of the component.

2.2.1VCC Decoupling

VCC regulator solutions need to provide sufficient decoupling capacitance to satisfy the processor voltage specifications. This includes bulk capacitance with low effective series resistance (ESR) to keep the voltage rail within specifications during large swings in load current. In addition, ceramic decoupling capacitors are required to filter high frequency content generated by the front side bus and processor activity. Consult the

Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket for further information. Contact your Intel field representative for additional information.

2.2.2VTT Decoupling

Decoupling must be provided on the motherboard. Decoupling solutions must be sized to meet the expected load. To ensure compliance with the specifications, various factors associated with the power delivery solution must be considered including regulator type, power plane and trace sizing, and component placement. A conservative decoupling solution would consist of a combination of low ESR bulk capacitors and high frequency ceramic capacitors.

Datasheet

13

Electrical Specifications

2.2.3FSB Decoupling

The processor integrates signal termination on the die. In addition, some of the high frequency capacitance required for the FSB is included on the processor package. However, additional high frequency capacitance must be added to the motherboard to properly decouple the return currents from the front side bus. Bulk decoupling must also be provided by the motherboard for proper [A]GTL+ bus operation.

2.3Voltage Identification

The Voltage Identification (VID) specification for the processor is defined by the Voltage Regulator-Down (VRD) 11.0 Processor Power Delivery Design Guidelines For Desktop LGA775 Socket. The voltage set by the VID signals is the reference VR output voltage to be delivered to the processor VCC lands (see Chapter 2.6.3 for VCC overshoot specifications). Refer to Table 13 for the DC specifications for these signals. Voltages for each processor frequency is provided in Table 4.

Note: To support the Deeper Sleep State the platform must use a VRD 11.1 compliant solution. The Deeper Sleep State also requires additional platform support.

Individual processor VID values may be calibrated during manufacturing such that two devices at the same core speed may have different default VID settings. This is reflected by the VID Range values provided in Table 4. Refer to the Intel® Core™2 Duo Processor E8000 and E7000 Series Specification Update for further details on specific valid core frequency and VID values of the processor. Note that this differs from the VID employed by the processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep® technology, or Extended HALT State).

The processor uses eight voltage identification signals, VID[7:0], to support automatic selection of power supply voltages. Table 2 specifies the voltage level corresponding to the state of VID[7:0]. A ‘1’ in this table refers to a high voltage level and a ‘0’ refers to a low voltage level. If the processor socket is empty (VID[7:0] = 11111110), or the voltage regulation circuit cannot supply the voltage that is requested, it must disable itself.

The processor provides the ability to operate while transitioning to an adjacent VID and its associated processor core voltage (VCC). This will represent a DC shift in the load line. It should be noted that a low-to-high or high-to-low voltage state change may result in as many VID transitions as necessary to reach the target core voltage. Transitions above the specified VID are not permitted. Table 4 includes VID step sizes and DC shift ranges. Minimum and maximum voltages must be maintained as shown in Table 5, Figure 1, Table 6, and Figure 2, as measured across the VCC_SENSE and VSS_SENSE lands.

The VRM or VRD utilized must be capable of regulating its output to the value defined by the new VID. DC specifications for dynamic VID transitions are included in Table 4 and Table 5. Refer to the Voltage Regulator Design Guide for further details.

14

Datasheet

Electrical Specifications

Table 2.

 

Voltage Identification Definition

 

 

 

 

 

 

 

 

 

 

VID

VID

VID

VID

VID

VID

VID

VID

Voltage

 

7

6

5

 

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

0

0

0

0

OFF

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

0

0

1

0

1.6

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

0

1

0

0

1.5875

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

0

1

1

0

1.575

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

1

0

0

0

1.5625

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

1

0

1

0

1.55

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

1

1

0

0

1.5375

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

0

1

1

1

0

1.525

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

0

0

0

0

1.5125

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

0

0

1

0

1.5

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

0

1

0

0

1.4875

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

0

1

1

0

1.475

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

1

0

0

0

1.4625

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

1

0

1

0

1.45

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

1

1

0

0

1.4375

 

 

 

 

 

 

 

 

 

 

 

 

0

0

0

 

1

1

1

1

0

1.425

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

0

0

0

0

1.4125

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

0

0

1

0

1.4

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

0

1

0

0

1.3875

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

0

1

1

0

1.375

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

1

0

0

0

1.3625

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

1

0

1

0

1.35

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

1

1

0

0

1.3375

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

0

1

1

1

0

1.325

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

0

0

0

0

1.3125

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

0

0

1

0

1.3

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

0

1

0

0

1.2875

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

0

1

1

0

1.275

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

1

0

0

0

1.2625

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

1

0

1

0

1.25

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

1

1

0

0

1.2375

 

 

 

 

 

 

 

 

 

 

 

 

0

0

1

 

1

1

1

1

0

1.225

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

0

0

0

0

1.2125

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

0

0

1

0

1.2

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

0

1

0

0

1.1875

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

0

1

1

0

1.175

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

1

0

0

0

1.1625

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

1

0

1

0

1.15

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

1

1

0

0

1.1375

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

0

1

1

1

0

1.125

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

1

0

0

0

0

1.1125

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

1

0

0

1

0

1.1

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

1

0

1

0

0

1.0875

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

1

0

1

1

0

1.075

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

1

1

0

0

0

1.0625

 

 

 

 

 

 

 

 

 

 

 

 

0

1

0

 

1

1

0

1

0

1.05

 

 

 

 

 

 

 

 

 

 

 

 

VID

VID

VID

VID

VID

VID

VID

VID

Voltage

7

6

5

4

3

2

1

0

 

 

 

 

 

 

 

 

 

 

0

1

0

1

1

1

0

0

1.0375

 

 

 

 

 

 

 

 

 

0

1

0

1

1

1

1

0

1.025

 

 

 

 

 

 

 

 

 

0

1

1

0

0

0

0

0

1.0125

 

 

 

 

 

 

 

 

 

0

1

1

0

0

0

1

0

1

 

 

 

 

 

 

 

 

 

0

1

1

0

0

1

0

0

0.9875

 

 

 

 

 

 

 

 

 

0

1

1

0

0

1

1

0

0.975

 

 

 

 

 

 

 

 

 

0

1

1

0

1

0

0

0

0.9625

 

 

 

 

 

 

 

 

 

0

1

1

0

1

0

1

0

0.95

 

 

 

 

 

 

 

 

 

0

1

1

0

1

1

0

0

0.9375

 

 

 

 

 

 

 

 

 

0

1

1

0

1

1

1

0

0.925

 

 

 

 

 

 

 

 

 

0

1

1

1

0

0

0

0

0.9125

 

 

 

 

 

 

 

 

 

0

1

1

1

0

0

1

0

0.9

 

 

 

 

 

 

 

 

 

0

1

1

1

0

1

0

0

0.8875

 

 

 

 

 

 

 

 

 

0

1

1

1

0

1

1

0

0.875

 

 

 

 

 

 

 

 

 

0

1

1

1

1

0

0

0

0.8625

 

 

 

 

 

 

 

 

 

0

1

1

1

1

0

1

0

0.85

 

 

 

 

 

 

 

 

 

0

1

1

1

1

1

0

0

0.8375

 

 

 

 

 

 

 

 

 

0

1

1

1

1

1

1

0

0.825

 

 

 

 

 

 

 

 

 

1

0

0

0

0

0

0

0

0.8125

 

 

 

 

 

 

 

 

 

1

0

0

0

0

0

1

0

0.8

 

 

 

 

 

 

 

 

 

1

0

0

0

0

1

0

0

0.7875

 

 

 

 

 

 

 

 

 

1

0

0

0

0

1

1

0

0.775

 

 

 

 

 

 

 

 

 

1

0

0

0

1

0

0

0

0.7625

 

 

 

 

 

 

 

 

 

1

0

0

0

1

0

1

0

0.75

 

 

 

 

 

 

 

 

 

1

0

0

0

1

1

0

0

0.7375

 

 

 

 

 

 

 

 

 

1

0

0

0

1

1

1

0

0.725

 

 

 

 

 

 

 

 

 

1

0

0

1

0

0

0

0

0.7125

 

 

 

 

 

 

 

 

 

1

0

0

1

0

0

1

0

0.7

 

 

 

 

 

 

 

 

 

1

0

0

1

0

1

0

0

0.6875

 

 

 

 

 

 

 

 

 

1

0

0

1

0

1

1

0

0.675

 

 

 

 

 

 

 

 

 

1

0

0

1

1

0

0

0

0.6625

 

 

 

 

 

 

 

 

 

1

0

0

1

1

0

1

0

0.65

 

 

 

 

 

 

 

 

 

1

0

0

1

1

1

0

0

0.6375

 

 

 

 

 

 

 

 

 

1

0

0

1

1

1

1

0

0.625

 

 

 

 

 

 

 

 

 

1

0

1

0

0

0

0

0

0.6125

 

 

 

 

 

 

 

 

 

1

0

1

0

0

0

1

0

0.6

 

 

 

 

 

 

 

 

 

1

0

1

0

0

1

0

0

0.5875

 

 

 

 

 

 

 

 

 

1

0

1

0

0

1

1

0

0.575

 

 

 

 

 

 

 

 

 

1

0

1

0

1

0

0

0

0.5625

 

 

 

 

 

 

 

 

 

1

0

1

0

1

0

1

0

0.55

 

 

 

 

 

 

 

 

 

1

0

1

0

1

1

0

0

0.5375

 

 

 

 

 

 

 

 

 

1

0

1

0

1

1

1

0

0.525

 

 

 

 

 

 

 

 

 

1

0

1

1

0

0

0

0

0.5125

 

 

 

 

 

 

 

 

 

1

0

1

1

0

0

1

0

0.5

 

 

 

 

 

 

 

 

 

1

1

1

1

1

1

1

0

OFF

 

 

 

 

 

 

 

 

 

Datasheet

15

Electrical Specifications

2.4Reserved, Unused, and TESTHI Signals

All RESERVED lands must remain unconnected. Connection of these lands to VCC, VSS, VTT, or to any other signal (including each other) can result in component malfunction or incompatibility with future processors. See Chapter 4 for a land listing of the processor and the location of all RESERVED lands.

In a system level design, on-die termination has been included by the processor to allow signals to be terminated within the processor silicon. Most unused GTL+ inputs should be left as no connects as GTL+ termination is provided on the processor silicon. However, see Table 8 for details on GTL+ signals that do not include on-die termination.

Unused active high inputs, should be connected through a resistor to ground (VSS). Unused outputs can be left unconnected, however this may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing. A resistor must be used when tying bidirectional signals to power or ground. When tying any signal to power or ground, a resistor will also allow for system testability. Resistor values should be within ± 20% of the impedance of the motherboard trace for front side bus signals. For unused GTL+ input or I/O signals, use pull-up resistors of the same value as the on-die termination resistors (RTT). For details see Table 15.

TAP and CMOS signals do not include on-die termination. Inputs and utilized outputs must be terminated on the motherboard. Unused outputs may be terminated on the motherboard or left unconnected. Note that leaving unused outputs unterminated may interfere with some TAP functions, complicate debug probing, and prevent boundary scan testing.

All TESTHI[12,10:0] lands should be individually connected to VTT using a pull-up resistor which matches the nominal trace impedance.

The TESTHI signals may use individual pull-up resistors or be grouped together as detailed below. A matched resistor must be used for each group:

TESTHI[1:0]

TESTHI[7:2]

TESTHI8/FC42 – cannot be grouped with other TESTHI signals

TESTHI9/FC43 – cannot be grouped with other TESTHI signals

TESTHI10 – cannot be grouped with other TESTHI signals

TESTHI12/FC44 – cannot be grouped with other TESTHI signals

Terminating multiple TESTHI pins together with a single pull-up resistor is not recommended for designs supporting boundary scan for proper Boundary Scan testing of the TESTHI signals. For optimum noise margin, all pull-up resistor values used for TESTHI[12,10:0] lands should have a resistance value within ± 20% of the impedance of the board transmission line traces. For example, if the nominal trace impedance is 50 Ω, then a value between 40 Ω and 60 Ω should be used.

2.5Power Segment Identifier (PSID)

Power Segment Identifier (PSID) is a mechanism to prevent booting under mismatched power requirement situations. The PSID mechanism enables BIOS to detect if the processor in use requires more power than the platform voltage regulator (VR) is capable of supplying. For example, a 130 W TDP processor installed in a board with a 65 W or 95 W TDP capable VR may draw too much power and cause a potential VR issue.

16

Datasheet

Electrical Specifications

2.6Voltage and Current Specification

2.6.1Absolute Maximum and Minimum Ratings

Table 3 specifies absolute maximum and minimum ratings only and lie outside the functional limits of the processor. Within functional operation limits, functionality and long-term reliability can be expected.

At conditions outside functional operation condition limits, but within absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. If a device is returned to conditions within functional operation limits after having been subjected to conditions outside these limits, but within the absolute maximum and minimum ratings, the device may be functional, but with its lifetime degraded depending on exposure to conditions exceeding the functional operation condition limits.

At conditions exceeding absolute maximum and minimum ratings, neither functionality nor long-term reliability can be expected. Moreover, if a device is subjected to these conditions for any length of time then, when returned to conditions within the functional operating condition limits, it will either not function, or its reliability will be severely degraded.

Although the processor contains protective circuitry to resist damage from static electric discharge, precautions should always be taken to avoid high static voltages or electric fields.

Table 3.

Absolute Maximum and Minimum Ratings

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

 

Min

Max

Unit

Notes1, 2

 

VCC

Core voltage with respect to VSS

 

–0.3

1.45

V

-

 

VTT

FSB termination voltage with

 

–0.3

1.45

V

-

 

respect to VSS

 

 

 

 

 

 

 

 

 

TCASE

Processor case temperature

 

See

See

°C

-

 

 

Section 5

Section 5

 

TSTORAGE

Processor storage temperature

 

–40

85

°C

3, 4, 5

NOTES:

1.For functional operation, all processor electrical, signal quality, mechanical and thermal specifications must be satisfied.

2.Excessive overshoot or undershoot on any signal will likely result in permanent damage to the processor.

3.Storage temperature is applicable to storage conditions only. In this scenario, the processor must not receive a clock, and no lands can be connected to a voltage bias. Storage within these limits will not affect the long-term reliability of the device. For functional operation, refer to the processor case temperature specifications.

4.This rating applies to the processor and does not include any tray or packaging.

5.Failure to adhere to this specification can affect the long term reliability of the processor.

Datasheet

17

Electrical Specifications

2.6.2DC Voltage and Current Specification

Table 4.

Voltage and Current Specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Min

Typ

Max

Unit

Notes2, 10

VID Range

 

VID

 

0.8500

1.3625

V

1

 

 

 

 

 

 

 

 

 

 

 

Processor Number

VCC for

 

 

 

 

 

 

 

(6 MB Cache):

775_VR_CONFIG_06:

 

 

 

 

 

 

 

E8600

3.33 GHz

 

 

 

 

 

 

 

E8500

3.16 GHz

Refer to Table 5, Figure 1

 

 

 

 

E8400

3 GHz

 

 

 

 

 

 

 

 

 

 

 

E8300

2.83 GHz

 

 

 

 

 

 

 

E8200

2.66 GHz

 

 

 

 

 

Core VCC

 

E8190

2.66 GHz

 

 

 

V

3, 4, 5

 

 

Processor Number

VCC for

 

 

 

 

 

 

 

(3 MB Cache):

775_VR_CONFIG_06:

 

 

 

 

 

 

 

E7600

3.06 GHz

 

 

 

 

 

 

 

E7500

2.93 GHz

Refer to Table 6, Figure 2

 

 

 

 

E7400

2.80 GHz

 

 

 

 

 

 

 

E7300

2.66 GHz

 

 

 

 

 

 

 

E7200

2.53 GHz

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCC_BOOT

 

Default VCC voltage for initial power up

1.10

V

 

VCCPLL

 

PLL VCC

 

- 5%

1.50

+ 5%

V

 

 

 

Product Number

ICC for

 

 

 

 

 

 

 

(6 MB Cache):

775_VR_CONFIG_06:

 

 

 

 

 

 

 

E8600

3.33 GHz

 

 

75

 

 

 

 

E8500

3.16 GHz

75

A

6

 

 

E8400

3 GHz

75

 

 

 

 

 

 

 

 

E8300

2.83 GHz

 

 

75

 

 

 

 

E8200

2.66 GHz

 

 

75

 

 

ICC

 

E8190

2.66 GHz

 

 

75

 

 

 

 

Processor Number

VCC for

 

 

 

 

 

 

 

(3 MB Cache):

775_VR_CONFIG_06:

 

 

 

 

 

 

 

E7600

3.06 GHz

 

 

75

 

 

 

 

E7500

2.93 GHz

75

A

 

 

 

E7400

2.80 GHz

 

 

75

 

 

 

 

E7300

2.66 GHz

 

 

75

 

 

 

 

E7200

2.53 GHz

 

 

75

 

 

 

 

 

 

 

 

 

 

 

 

 

FSB termination

on Intel 3 series

1.045

1.1

1.155

 

 

 

 

voltage

Chipset family boards

 

 

VTT

 

 

 

 

V

7, 8

 

(DC + AC

 

 

 

 

 

on Intel 4 series

1.14

1.2

1.26

 

 

specifications)

Chipset family boards

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VTT_OUT_LEFT

DC Current that may be drawn from

 

 

 

 

 

and

 

 

 

 

 

 

 

VTT_OUT_LEFT and VTT_OUT_RIGHT per

580

mA

 

VTT_OUT_RIGHT

 

land

 

 

 

 

 

 

ICC

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18

Datasheet

Electrical Specifications

Table 4.

Voltage and Current Specifications

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

 

Parameter

Min

Typ

Max

Unit

Notes2, 10

ITT

 

ICC for VTT supply before VCC stable

4.5

A

9

 

ICC for VTT supply after VCC stable

4.6

 

 

 

 

 

 

ICC_VCCPLL

 

ICC for PLL land

130

mA

 

ICC_GTLREF

 

ICC for GTLREF

200

µA

 

NOTES:

1.Each processor is programmed with a maximum valid voltage identification value (VID), which is set at manufacturing and can not be altered. Individual maximum VID values are calibrated during manufacturing such that two processors at the same frequency may have different settings within the VID range. Note that this differs from the VID employed by the

processor during a power management event (Thermal Monitor 2, Enhanced Intel SpeedStep® technology, or Extended HALT State).

2.Unless otherwise noted, all specifications in this table are based on estimates and simulations or empirical data. These specifications will be updated with characterized data from silicon measurements at a later date.

3.These voltages are targets only. A variable voltage source should exist on systems in the event that a different voltage is required. See Section 2.3 and Table 2 for more information.

4.The voltage specification requirements are measured across VCC_SENSE and VSS_SENSE lands at the socket with a 100 MHz bandwidth oscilloscope, 1.5 pF maximum probe capacitance, and 1 MΩ minimum impedance. The maximum length of ground wire on the probe should be less than 5 mm. Ensure external noise from the system is not coupled into the oscilloscope probe.

5.Refer to Table 5, Figure 1, Table 6, and Figure 2 for the minimum, typical, and maximum

VCC allowed for a given current. The processor should not be subjected to any VCC and ICC combination wherein VCC exceeds VCC_MAX for a given current.

6.ICC_MAX specification is based on VCC_MAX loadline. Refer to Figure 1 for details.

7.VTT must be provided using a separate voltage source and not be connected to VCC. This specification is measured at the land.

8.Baseboard bandwidth is limited to 20 MHz.

9.This is the maximum total current drawn from the VTT plane by only the processor. This specification does not include the current coming from on-board termination (RTT), through the signal line. Refer to the Voltage Regulator Design Guide to determine the total

ITT drawn by the system. This parameter is based on design characterization and is not tested.

10.Adherence to the voltage specifications for the processor are required to ensure reliable processor operation.

Datasheet

19

Electrical Specifications

Table 5. Intel® Core™2 Duo Processor E8000 Series VCC Static and Transient Tolerance

 

Voltage Deviation from VID Setting (V)1, 2, 3, 4

ICC (A)

Maximum Voltage

Typical Voltage

Minimum Voltage

 

1.40 mΩ

1.48 mΩ

1.55 mΩ

 

 

 

 

0

0.000

-0.019

-0.038

 

 

 

 

5

-0.007

-0.026

-0.046

 

 

 

 

10

-0.014

-0.034

-0.054

 

 

 

 

15

-0.021

-0.041

-0.061

 

 

 

 

20

-0.028

-0.049

-0.069

 

 

 

 

25

-0.035

-0.056

-0.077

 

 

 

 

30

-0.042

-0.063

-0.085

 

 

 

 

35

-0.049

-0.071

-0.092

 

 

 

 

40

-0.056

-0.078

-0.100

 

 

 

 

45

-0.063

-0.085

-0.108

 

 

 

 

50

-0.070

-0.093

-0.116

 

 

 

 

55

-0.077

-0.100

-0.123

 

 

 

 

60

-0.084

-0.108

-0.131

 

 

 

 

65

-0.091

-0.115

-0.139

 

 

 

 

70

-0.098

-0.122

-0.147

 

 

 

 

75

-0.105

-0.130

-0.154

 

 

 

 

NOTES:

1.The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.

2.This table is intended to aid in reading discrete points on Figure 1.

3.The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.

4.Adherence to this loadline specification is required to ensure reliable processor operation.

20

Datasheet

Electrical Specifications

Figure 1. Intel® Core™2 Duo Processor E8000 Series VCC Static and Transient Tolerance

Icc [A]

 

 

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

 

VID -

0.000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.013

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.025

 

 

 

 

 

 

 

 

Vcc Maximum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.038

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.050

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.063

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc [V]

VID -

0.075

 

Vcc Typical

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.088

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.113

 

 

 

 

Vcc Minimum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.125

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.138

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.163

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES:

1.The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.

2.This loadline specification shows the deviation from the VID set point.

3.The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.

Datasheet

21

Electrical Specifications

Table 6. Intel® Core™2 Duo Processor E7000 Series VCC Static and Transient Tolerance

 

Voltage Deviation from VID Setting (V)1, 2, 3, 4

ICC (A)

 

 

 

Maximum Voltage

Typical Voltage

Minimum Voltage

 

1.65 mΩ

1.73 mΩ

1.80 mΩ

 

 

 

 

0

0.000

-0.019

-0.038

 

 

 

 

5

-0.008

-0.028

-0.047

 

 

 

 

10

-0.017

-0.036

-0.056

 

 

 

 

15

-0.025

-0.045

-0.065

 

 

 

 

20

-0.033

-0.054

-0.074

 

 

 

 

25

-0.041

-0.062

-0.083

 

 

 

 

30

-0.050

-0.071

-0.092

 

 

 

 

35

-0.058

-0.079

-0.101

 

 

 

 

40

-0.066

-0.088

-0.110

 

 

 

 

45

-0.074

-0.097

-0.119

 

 

 

 

50

-0.083

-0.105

-0.128

 

 

 

 

55

-0.091

-0.114

-0.137

 

 

 

 

60

-0.099

-0.123

-0.146

 

 

 

 

65

-0.107

-0.131

-0.155

 

 

 

 

70

-0.116

-0.140

-0.164

 

 

 

 

75

-0.124

-0.148

-0.173

 

 

 

 

NOTES:

1.The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.

2.This table is intended to aid in reading discrete points on Figure 1.

3.The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.

4.Adherence to this loadline specification is required to ensure reliable processor operation.

22

Datasheet

Intel CORE 2 DUO PROCESSOR E8000, CORE 2 DUO PROCESSOR E7000 Manual

Electrical Specifications

Figure 2. Intel® Core™2 Duo Processor E7000 Series VCC Static and Transient Tolerance

Icc [A]

 

 

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

 

VID -

0.000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.013

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.025

 

 

 

 

 

 

 

 

Vcc Maximum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.038

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.050

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.063

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.075

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vcc [V]

VID -

0.088

 

Vcc Typical

 

 

 

 

 

 

 

 

 

 

 

 

VID - 0.100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.113

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.125

 

 

 

 

Vcc Minimum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.138

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.150

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.163

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.175

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VID -

0.188

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTES:

1.The loadline specification includes both static and transient limits except for overshoot allowed as shown in Section 2.6.3.

2.This loadline specification shows the deviation from the VID set point.

3.The loadlines specify voltage limits at the die measured at the VCC_SENSE and VSS_SENSE lands. Voltage regulation feedback for voltage regulator circuits must be taken from processor VCC and VSS lands. Refer to the Voltage Regulator Design Guide for socket loadline guidelines and VR implementation details.

2.6.3VCC Overshoot

The processor can tolerate short transient overshoot events where VCC exceeds the VID voltage when transitioning from a high to low current load condition. This overshoot cannot exceed VID + VOS_MAX (VOS_MAX is the maximum allowable overshoot voltage).

The time duration of the overshoot event must not exceed TOS_MAX (TOS_MAX is the maximum allowable time duration above VID). These specifications apply to the

processor die voltage as measured across the VCC_SENSE and VSS_SENSE lands.

Table 7.

VCC Overshoot Specifications

 

 

 

 

 

 

Symbol

Parameter

Min

Max

Unit

Figure

Notes

 

 

 

 

 

 

 

 

 

VOS_MAX

Magnitude of VCC overshoot above

50

mV

3

1

 

VID

 

 

TOS_MAX

Time duration of VCC overshoot above

25

µs

3

1

 

VID

 

NOTES:

1.Adherence to these specifications is required to ensure reliable processor operation.

Datasheet

23

Electrical Specifications

Figure 3. VCC Overshoot Example Waveform

Example Overshoot Waveform

VID + 0.050

 

 

 

VOS

 

 

 

 

 

 

Voltage [V]

 

 

 

 

 

VID - 0.000

 

 

 

 

 

 

 

 

TOS

 

 

0

5

10

15

20

25

Time [us]

TOS: Overshoot time above VID

VOS: Overshoot above VID

NOTES:

1.VOS is measured overshoot voltage.

2.TOS is measured time duration above VID.

2.6.4Die Voltage Validation

Overshoot events on processor must meet the specifications in Table 7 when measured across the VCC_SENSE and VSS_SENSE lands. Overshoot events that are < 10 ns in duration may be ignored. These measurements of processor die level overshoot must be taken with a bandwidth limited oscilloscope set to a greater than or equal to

100 MHz bandwidth limit.

2.7Signaling Specifications

Most processor Front Side Bus signals use Gunning Transceiver Logic (GTL+) signaling technology. This technology provides improved noise margins and reduced ringing through low voltage swings and controlled edge rates. Platforms implement a termination voltage level for GTL+ signals defined as VTT. Because platforms implement separate power planes for each processor (and chipset), separate VCC and VTT supplies are necessary. This configuration allows for improved noise tolerance as processor frequency increases. Speed enhancements to data and address busses have caused signal integrity considerations and platform design methods to become even more critical than with previous processor families.

The GTL+ inputs require a reference voltage (GTLREF) which is used by the receivers to determine if a signal is a logical 0 or a logical 1. GTLREF must be generated on the motherboard (see Table 15 for GTLREF specifications). Termination resistors (RTT) for GTL+ signals are provided on the processor silicon and are terminated to VTT. Intel chipsets will also provide on-die termination, thus eliminating the need to terminate the bus on the motherboard for most GTL+ signals.

24

Datasheet

Electrical Specifications

2.7.1FSB Signal Groups

The front side bus signals have been combined into groups by buffer type. GTL+ input signals have differential input buffers, which use GTLREF[1:0] as a reference level. In this document, the term “GTL+ Input” refers to the GTL+ input group as well as the GTL+ I/O group when receiving. Similarly, “GTL+ Output” refers to the GTL+ output group as well as the GTL+ I/O group when driving.

With the implementation of a source synchronous data bus comes the need to specify two sets of timing parameters. One set is for common clock signals which are dependent upon the rising edge of BCLK0 (ADS#, HIT#, HITM#, etc.) and the second set is for the source synchronous signals which are relative to their respective strobe lines (data and address) as well as the rising edge of BCLK0. Asychronous signals are still present (A20M#, IGNNE#, etc.) and can become active at any time during the clock cycle. Table 8 identifies which signals are common clock, source synchronous, and asynchronous.

Table 8.

FSB Signal Groups

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signal Group

 

Type

 

Signals1

 

GTL+ Common

 

Synchronous to

BPRI#, DEFER#, RESET#, RS[2:0]#, TRDY#

 

Clock Input

 

BCLK[1:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GTL+ Common

 

Synchronous to

ADS#, BNR#, BPM[5:0]#, BR0#3, DBSY#, DRDY#,

 

Clock I/O

 

BCLK[1:0]

HIT#, HITM#, LOCK#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Signals

Associated Strobe

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REQ[4:0]#, A[16:3]#3

ADSTB0#

 

 

GTL+ Source

 

Synchronous to

 

A[35:17]#3

ADSTB1#

 

 

Synchronous I/O

 

assoc. strobe

 

 

 

 

 

 

 

D[15:0]#, DBI0#

DSTBP0#, DSTBN0#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D[31:16]#, DBI1#

DSTBP1#, DSTBN1#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D[47:32]#, DBI2#

DSTBP2#, DSTBN2#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D[63:48]#, DBI3#

DSTBP3#, DSTBN3#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GTL+ Strobes

 

Synchronous to

ADSTB[1:0]#, DSTBP[3:0]#, DSTBN[3:0]#

 

 

BCLK[1:0]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A20M#, DPRSTP#. DPSLP#, IGNNE#, INIT#, LINT0/

 

CMOS

 

 

INTR, LINT1/NMI, SMI#3, STPCLK#, PWRGOOD, SLP#,

 

 

 

 

TCK, TDI, TMS, TRST#, BSEL[2:0], VID[7:0], PSI#

 

 

 

 

 

 

 

 

 

Open Drain Output

 

 

FERR#/PBE#, IERR#, THERMTRIP#, TDO

 

 

 

 

 

 

 

 

 

Open Drain Input/

 

 

PROCHOT#4

 

 

 

Output

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FSB Clock

 

Clock

BCLK[1:0], ITP_CLK[1:0]2

 

 

 

 

 

 

VCC, VTT, VCCA, VCCIOPLL, VCCPLL, VSS, VSSA,

 

 

 

 

GTLREF[1:0], COMP[8,3:0], RESERVED,

 

Power/Other

 

 

TESTHI[12,10:0], VCC_SENSE,

 

 

 

VCC_MB_REGULATION, VSS_SENSE,

 

 

 

 

 

 

 

 

VSS_MB_REGULATION, DBR#2, VTT_OUT_LEFT,

 

 

 

 

VTT_OUT_RIGHT, VTT_SEL, FCx, PECI, MSID[1:0]

 

 

 

 

 

 

 

 

 

NOTES:

 

 

 

 

 

1.Refer to Section 4.2 for signal descriptions.

2.In processor systems where no debug port is implemented on the system board, these signals are used to support a debug port interposer. In systems with the debug port implemented on the system board, these signals are no connects.

Datasheet

25

Electrical Specifications

3. The value of these signals during the active-to-inactive edge of RESET# defines the processor configuration options. See Section 6.1 for details.

4. PROCHOT# signal type is open drain output and CMOS input.

.

 

 

Table 9.

Signal Characteristics

 

 

 

 

 

Signals with RTT

Signals with No RTT

 

 

 

 

 

A20M#, BCLK[1:0], BPM[5:0]#, BSEL[2:0],

 

A[35:3]#, ADS#, ADSTB[1:0]#, BNR#, BPRI#,

COMP[8,3:0], FERR#/PBE#, IERR#, IGNNE#,

 

D[63:0]#, DBI[3:0]#, DBSY#, DEFER#,

INIT#, ITP_CLK[1:0], LINT0/INTR, LINT1/

 

DRDY#, DSTBN[3:0]#, DSTBP[3:0]#, HIT#,

NMI, MSID[1:0], PWRGOOD, RESET#, SMI#,

 

HITM#, LOCK#, PROCHOT#, REQ[4:0]#,

STPCLK#, TDO, TESTHI[12,10:0],

 

RS[2:0]#, TRDY#

THERMTRIP#, VID[7:0], GTLREF[1:0], TCK,

 

 

TDI, TMS, TRST#, VTT_SEL

 

 

 

 

Open Drain Signals1

 

 

THERMTRIP#, FERR#/PBE#, IERR#, BPM[5:0]#,

 

 

BR0#, TDO, FCx

 

 

 

 

NOTES:

1.Signals that do not have RTT, nor are actively driven to their high-voltage level.

Table 10.

Signal Reference Voltages

 

 

 

 

 

GTLREF

VTT/2

 

BPM[5:0]#, RESET#, BNR#, HIT#, HITM#, BR0#,

A20M#, LINT0/INTR, LINT1/NMI,

 

A[35:0]#, ADS#, ADSTB[1:0]#, BPRI#, D[63:0]#,

 

IGNNE#, INIT#, PROCHOT#,

 

DBI[3:0]#, DBSY#, DEFER#, DRDY#, DSTBN[3:0]#,

 

PWRGOOD1, SMI#, STPCLK#, TCK1,

 

DSTBP[3:0]#, LOCK#, REQ[4:0]#, RS[2:0]#,

 

TDI1, TMS1, TRST#1

 

TRDY#

 

 

 

 

 

NOTE:

1. See Table 12 for more information.

2.7.2CMOS and Open Drain Signals

Legacy input signals such as A20M#, IGNNE#, INIT#, SMI#, and STPCLK# use CMOS input buffers. All of the CMOS and Open Drain signals are required to be asserted/deasserted for at least eight BCLKs in order for the processor to recognize the proper signal state. See Section 2.7.3 for the DC specifications. See Section 6.2 for additional timing requirements for entering and leaving the low power states.

26

Datasheet

Electrical Specifications

2.7.3Processor DC Specifications

The processor DC specifications in this section are defined at the processor core (pads) unless otherwise stated. All specifications apply to all frequencies and cache sizes unless otherwise stated.

Table 11.

GTL+ Signal Group DC Specifications

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min

Max

Unit

Notes1

 

VIL

Input Low Voltage

-0.10

GTLREF – 0.10

V

2, 5

 

VIH

Input High Voltage

GTLREF + 0.10

VTT + 0.10

V

3, 4, 5

 

VOH

Output High Voltage

VTT – 0.10

VTT

V

4, 5

 

IOL

Output Low Current

N/A

VTT_MAX /

A

-

 

[(RTT_MIN) + (2 * RON_MIN)]

 

 

 

 

 

 

 

ILI

Input Leakage

N/A

± 100

µA

6

 

Current

 

ILO

Output Leakage

N/A

± 100

µA

7

 

Current

 

RON

Buffer On Resistance

7.49

9.16

Ω

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.

3.VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.

4.VIH and VOH may experience excursions above VTT.

5.The VTT referred to in these specifications is the instantaneous VTT.

6.Leakage to VSS with land held at VTT.

7.Leakage to VTT with land held at 300 mV.

Table 12. Open Drain and TAP Output Signal Group DC Specifications

Symbol

Parameter

Min

Max

Unit

Notes1

VOL

Output Low Voltage

0

0.20

V

-

IOL

Output Low Current

16

50

mA

2

ILO

Output Leakage Current

N/A

± 200

µA

3

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.Measured at VTT * 0.2 V.

3.For Vin between 0 and VOH.

Datasheet

27

Electrical Specifications

Table 13.

CMOS Signal Group DC Specifications

 

 

 

 

 

 

 

 

 

 

 

Symb

Parameter

Min

Max

Unit

Notes1

 

ol

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VIL

Input Low Voltage

-0.10

VTT * 0.30

V

3, 6

 

VIH

Input High Voltage

VTT * 0.70

VTT + 0.10

V

4, 5, 6

 

VOL

Output Low Voltage

-0.10

VTT * 0.10

V

6

 

VOH

Output High Voltage

0.90 * VTT

VTT + 0.10

V

2, 5, 6

 

IOL

Output Low Current

VTT * 0.10 / 67

VTT * 0.10 / 27

A

6, 7

 

IOH

Output Low Current

VTT * 0.10 / 67

VTT * 0.10 / 27

A

6, 7

 

ILI

Input Leakage Current

N/A

± 100

µA

8

 

ILO

Output Leakage Current

N/A

± 100

µA

9

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.All outputs are open drain.

3.VIL is defined as the voltage range at a receiving agent that will be interpreted as a logical low value.

4.VIH is defined as the voltage range at a receiving agent that will be interpreted as a logical high value.

5.VIH and VOH may experience excursions above VTT.

6.The VTT referred to in these specifications refers to instantaneous VTT.

7.IOL is measured at 0.10 * VTT. IOH is measured at 0.90 * VTT.

8.Leakage to VSS with land held at VTT.

9.Leakage to VTT with land held at 300 mV.

28

Datasheet

Electrical Specifications

2.7.3.1Platform Environment Control Interface (PECI) DC Specifications

PECI is an Intel proprietary one-wire interface that provides a communication channel between Intel processors, chipsets, and external thermal monitoring devices. The processor contains Digital Thermal Sensors (DTS) distributed throughout die. These sensors are implemented as analog-to-digital converters calibrated at the factory for reasonable accuracy to provide a digital representation of relative processor temperature. PECI provides an interface to relay the highest DTS temperature within a die to external management devices for thermal/fan speed control. More detailed information may be found in the Platform Environment Control Interface (PECI) Specification.

Table 14.

PECI DC Electrical Limits

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Definition and Conditions

Min

Max

Units

Notes1

 

Vin

Input Voltage Range

-0.15

VTT

V

 

 

Vhysteresis

Hysteresis

0.1 * VTT

V

2

 

 

 

Vn

Negative-edge threshold voltage

0.275 * VTT

0.500 * VTT

V

 

 

Vp

Positive-edge threshold voltage

0.550 * VTT

0.725 * VTT

V

 

 

Isource

High level output source

-6.0

N/A

mA

 

 

(VOH = 0.75 * VTT)

 

 

 

 

 

 

 

 

Isink

Low level output sink

0.5

1.0

mA

 

 

(VOL = 0.25 * VTT)

 

 

 

 

 

 

 

 

Ileak+

High impedance state leakage to VTT

N/A

50

µA

3

 

 

 

Ileak-

High impedance leakage to GND

N/A

10

µA

3

 

Cbus

Bus capacitance per node

N/A

10

pF

4

 

Vnoise

Signal noise immunity above 300

0.1 * VTT

Vp-p

 

 

MHz

 

NOTES:

1.VTT supplies the PECI interface. PECI behavior does not affect VTT min/max specifications. Refer to Table 4 for VTT specifications.

2.The leakage specification applies to powered devices on the PECI bus.

3.The input buffers use a Schmitt-triggered input design for improved noise immunity.

4.One node is counted for each client and one node for the system host. Extended trace lengths might appear as additional nodes.

.

Datasheet

29

Electrical Specifications

2.7.3.2GTL+ Front Side Bus Specifications

In most cases, termination resistors are not required as these are integrated into the processor silicon. See Table 9 for details on which GTL+ signals do not include on-die termination.

Valid high and low levels are determined by the input buffers by comparing with a reference voltage called GTLREF. Table 15 lists the GTLREF specifications. The GTL+ reference voltage (GTLREF) should be generated on the system board using high precision voltage divider circuits.

Table 15.

GTL+ Bus Voltage Definitions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Symbol

Parameter

Min

Typ

Max

Units

Notes1

 

GTLREF_PU

GTLREF pull up on Intel

 

 

 

 

 

 

3 Series Chipset family

57.6 * 0.99

57.6

57.6 * 1.01

Ω

2

 

 

boards

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GTLREF pull down on

 

 

 

 

 

 

GTLREF_PD

Intel 3 Series Chipset

100 * 0.99

100

100 * 1.01

Ω

2

 

 

family boards

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RTT

Termination Resistance

45

50

55

Ω

3

 

COMP[3:0]

COMP Resistance

49.40

49.90

50.40

Ω

4

 

 

 

 

 

 

 

 

 

COMP8

COMP Resistance

24.65

24.90

25.15

Ω

4

 

 

 

 

 

 

 

 

NOTES:

1.Unless otherwise noted, all specifications in this table apply to all processor frequencies.

2.GTLREF is to be generated from VTT by a voltage divider of 1% resistors. If an Adjustable GTLREF circuit is used on the board (for Quad-Core processors compatibility), the two GTLREF lands connected to the Adjustable GTLREF circuit require the following: GTLREF_PU = 50 Ω, GTLREF_PD = 100 Ω.

3.RTT is the on-die termination resistance measured at VTT/3 of the GTL+ output driver.

4.COMP resistance must be provided on the system board with 1% resistors. COMP[3:0] and COMP8 resistors are to VSS.

30

Datasheet

Loading...
+ 72 hidden pages