INFINEON SPP20N60C3, SPB20N60C3, SPI20N60C3, SPA20N60C3 User Manual

SPP20N60C3, SPB20N60C3
)
)
jmax
A
jmax
A
j
g
SPI20N60C3, SPA20N60C3
Cool MOS™ Power Transistor
Feature
New revolutionary high voltage technology
Worldwide best R
DS(on
Ultra low gate charge
Periodic avalanche rated
Extreme dv/dt rated
High peak current capability
Improved transconductance
P-TO-220-3-31: Fully isolated package (2500 VAC; 1 minute)
Type Package Ordering Code
SPP20N60C3 P-TO220-3-1 Q67040-S4398
SPB20N60C3 P-TO263-3-2 Q67040-S4397
SPI20N60C3 P-TO262-3-1 Q67040-S4550
SPA20N60C3 P-TO220-3-31
in TO 220
P-TO220-3-31
P-TO262-3-1 P-TO263-3-2P-TO220-3-31 P-TO220-3-1
3
2
1
Q67040-S4410
Marking
20N60C3
20N60C3
20N60C3
20N60C3
VDS @ T
R
DS(on
I
D
650 V
0.19
20.7 A
Maximum Ratings
Parameter
Continuous drain current
T
= 25 °C
C
T
= 100 °C
C
Pulsed drain current, tp limited by T
Avalanche energy, single pulse
I
=10A, V
D
Avalanche energy, repetitive t
I
=20A, V
D
Avalanche current, repetitive t
DD
DD
=50V
=50V
limited by T
AR
limited by T
R
jmax
Symbol Value Unit
I
I
E
2)
E
I
Gate source voltage static V
Gate source voltage AC (f >1Hz)
Power dissipation, T
= 25°C P
C
V
D
D puls
AS
AR
R
GS GS
tot
SPP_B
SPP_B_I
20.7
13.1
SPA
20.7
13.1
1)
1)
62.1 62.1 A
690 690 mJ
1 1
20 20 A
±20 ±20 V
±30 ±30
208 34.5 W
A
Operating and storage temperature
Rev.2.1 Page 1
T
T
,
st
-55...+150 °C
2004-09-07
SPP20N60C3, SPB20N60C3
)
S
SPI20N60C3, SPA20N60C3
Maximum Ratings
Parameter Symbol Value Unit
Drain Source voltage slope
V
= 480 V, I
DS
= 20.7 A, T
D
= 125 °C
j
dv/dt 50 V/ns
Thermal Characteristics
Parameter Symbol Values Unit
min. typ. max.
Thermal resistance, junction - case
R
Thermal resistance, junction - case, FullPAK R
Thermal resistance, junction - ambient, leaded
R
Thermal resistance, junction - ambient, FullPAK R
SMD version, device on PCB:
R
@ min. footprint
@ 6 cm2 cooling area
Soldering temperature,
1.6 mm (0.063 in.) from case for 10s
3)
T
4)
thJC
thJC_FP
thJA
thJA_FP
thJA
sold
- - 0.6 K/W
- - 3.6
- - 62
- - 80
-
-
-
35
62
-
- - 260 °C
Electrical Characteristics, at Tj=25°C unless otherwise specified
Parameter Symbol Conditions Values Unit
min. typ. max.
Drain-source breakdown voltage
Drain-Source avalanche
V
(BR)DSS
V
(BR)DS
V
=0V, ID=0.25mA
GS
V
=0V, ID=20A - 700 -
GS
600
- - V
breakdown voltage
I
Gate threshold voltage V
Zero gate voltage drain current I
Gate-source leakage current I
Drain-source on-state resistance R
Gate input resistance
R
GS(th
DSS
GSS
DS(on)
G
=1000µA, V
D
VDS=600V, V T
=25°C
j
T
=150°C
j
VGS=30V, V V
=10V, ID=13.1A
GS
T
=25°C
j
T
=150°C
j
f=1MHz, open drain - 0.54 -
GS=VD
=0V,
GS
=0V - - 100 nA
DS
2.1 3 3.9
-
-
-
-
0.1
-
0.16
0.43
1
100
0.19
-
µA
Rev.2.1 Page 2
2004-09-07
SPP20N60C3, SPB20N60C3
(
)
SPI20N60C3, SPA20N60C3
Electrical Characteristics
Parameter Symbol Conditions Values Unit
min. typ. max.
Transconductance g
Input capacitance C Output capacitance C Reverse transfer capacitance C
Effective output capacitance,
5)
C
energy related
Effective output capacitance,
6)
C
time related
Turn-on delay time t
Rise time t Turn-off delay time t Fall time t
fs
iss oss rss
o(er)
o(tr)
d(on)
r d(off)
f
VDS≥2*I
I
D
VGS=0V, V f=1MHz
V V
VDD=380V, V
I
D
R VDD=380V, V
I
D
R
D*RDS(on)max
=13.1A
=0V,
GS
=0V to 480V
DS
=20.7A,
=3.6, T
G
=20.7A,
=3.6
G
DS
=25V,
GS
=125
j
GS
,
=0/13V,
=0/13V,
- 17.5 - S
- 2400 - pF
- 780 -
- 50 -
- 83 -
- 160 -
- 10 - ns
- 5 -
- 67 100
- 4.5 12
Gate Charge Characteristics
Gate to source charge Q Gate to drain charge Q
Gate charge total Q
Gate plateau voltage V
1
Limited only by maximum temperature
2
Repetitve avalanche causes additional power losses that can be calculated as P
3
Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 µm thick) copper area for drain connection. PCB is vertical without blown air. 4
Soldering temperature for TO-263: 220°C, reflow 5
C
is a fixed capacitance that gives the same stored energy as C
o(er)
6
C
is a fixed capacitance that gives the same charging time as C
o(tr)
gs gd
g
plateau
V
=480V, ID=20.7A - 11 - nC
DD
- 33 -
V
=480V, ID=20.7A,
DD
V
=0 to 10V
GS
V
=480V, ID=20.7A - 5.5 - V
DD
while V
oss
while V
oss
- 87 114
=EAR*f.
AV
is rising from 0 to 80% V
DS
is rising from 0 to 80% V
DS
DSS
DSS
.
.
Rev.2.1 Page 3
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Electrical Characteristics
Parameter Symbol Conditions Values Unit
min. typ. max.
T
Inverse diode continuous
forward current
I
S
=25°C - - 20.7 A
C
Inverse diode direct current,
I
SM
- - 62.1
pulsed
V
Inverse diode forward voltage V
Reverse recovery time t Reverse recovery charge Q Peak reverse recovery current I
Peak rate of fall of reverse
dirr/dt
SD
rr
rr
rrm
=0V, IF=IS - 1 1.2 V
GS
V
=480V, IF=IS ,
R
di
/dt=100A/µs
F
- 500 800 ns
- 11 - µC
- 70 - A
T
=25°C - 1400 - A/µs
j
recovery current
Typical Transient Thermal Characteristics
Symbol Value Unit Symbol Value Unit
R
R
R
R
R
R
th1
th2
th3
th4
th5
th6
SPP_B_I SPP_B_I
0.00769 0.00769 K/W C
0.015 0.015 C
0.029 0.029 C
0.114 0.163 C
0.136 0.323 C
0.059 2.526 C
SPA SPA
th1
th2
th3
th4
th5
th6
0.0003763 0.0003763 Ws/K
0.001411 0.001411
0.001931 0.001931
0.005297 0.005297
0.012 0.008453
0.091 0.412
T
R
j T
th1
P
(t)
tot
C
th1
Rev.2.1 Page 4
C
th2
R
th,n
C
th,n
T
case
amb
External Heatsink
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
1 Power dissipation
P
= f (T
tot
tot
P
240
W
200
180
160
140
120
100
80
60
40
20
)
C
SPP20N60C3
0
0 20 40 60 80 100 120
°C
2 Power dissipation FullPAK
P
= f (T
tot
35
W
25
tot
P
20
15
10
160
T
C
)
C
5
0
0 20 40 60 80 100 120
°C
T
160
C
3 Safe operating area
ID = f ( VDS )
parameter : D = 0 , T
2
10
A
1
10
D
I
0
10
tp = 0.001 ms tp = 0.01 ms tp = 0.1 ms tp = 1 ms DC
0
10
10
-1
-2
10
10
C
1
=25°C
10
4 Safe operating area FullPAK
I
= f (V
D
parameter: D = 0, T
10
A
10
D
I
10
10
2
V
V
DS
10
3
10
)
DS
2
1
0
tp = 0.001 ms tp = 0.01 ms
-1
tp = 0.1 ms tp = 1 ms tp = 10 ms DC
-2 0
10
10
C
1
= 25°C
10
2
V
V
DS
10
3
Rev.2.1 Page 5
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
5 Transient thermal impedance
Z
= f (tp)
thJC
parameter: D = tp/T
0
10
K/W
-1
10
thJC
Z
-2
10
10
10
-3
-4
10
-7
-6
-5
10
10
10
-4
10
-3
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
10
6 Transient thermal impedance FullPAK
Z
= f (t
thJC
parameter: D = t
10
K/W
10
thJC
Z
10
10
-2
s
t
0
10
p
10
-1
-2
-3
1
0
10
)
p
/t
p
D = 0.5 D = 0.2 D = 0.1 D = 0.05 D = 0.02 D = 0.01 single pulse
-6
-5
-4
-3
-2
10
10
10
10
10
-1
s
t
1
10
p
7 Typ. output characteristic
I
= f (VDS); T
D
parameter: t
80
A
60
D
50
I
40
30
20
10
0
0 5 10 15
=25°C
j
= 10 µs, V
p
20V 10V 8V
GS
V
7V
6,5V
6V
5,5V
5V
4,5V
V
DS
25
8 Typ. output characteristic
I
= f (VDS); T
D
parameter: t
45
A
35
30
D
I
25
20
15
10
5
0
0 2 4 6 8 10 12 14 16 18 20 22 V25
=150°C
j
= 10 µs, V
p
GS
20V 10V 7V
5.5V
5V
4.5V
V
6V
DS
Rev.2.1 Page 6
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
9 Typ. drain-source on resistance
R
DS(on)
parameter: Tj=150°C, V
R
=f(I
)
D
1.5
1.3
1.2
1.1
DS(on)
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3 0 5 10 15 20 25 30
GS
4V
4.5V 5V
5.5V 6V
6.5V 20V
A
I
10 Drain-source on-state resistance
R
DS(on)
parameter : I
R
40
D
= f (Tj)
= 13.1 A, V
D
SPP20N60C3
1.1
0.9
0.8
DS(on)
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-60 -20 20 60 100
98%
typ
= 10 V
GS
°C
180
T
j
11 Typ. transfer characteristics
ID= f ( VGS ); V
DS
2 x I
D
x R
DS(on)max
parameter: tp = 10 µs
80
A
25°C
60
D
50
I
40
30
20
10
0
0 1 2 3 4 5 6 7
150°C
V
V
GS
12 Typ. gate charge
V
GS
= f (Q
Gate
)
parameter: ID = 20.7 A pulsed
SPP20N60C3
16
V
12
V
0,2
GS
10
V
8
6
4
2
9
0
0 20 40 60 80 100
DS max
0,8 V
DS max
nC
Q
140
Gate
Rev.2.1 Page 7
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
13 Forward characteristics of body diode
IF = f (VSD)
parameter: Tj , tp = 10 µs
2
SPP20N60C3
10
A
1
10
F
I
0
10
Tj = 25 °C typ
Tj = 150 °C typ
Tj = 25 °C (98%)
Tj = 150 °C (98%)
-1
10
0 0.4 0.8 1.2 1.6 2 2.4
3
V
V
SD
14 Typ. switching time
t = f (I
), inductive load, T
D
=125°C
j
par.: VDS=380V, VGS=0/+13V, RG=3.6
2
10
td(off)
ns
t
1
10
tr
0
10
0 4 8 12 16
td(on)
tf
A
I
D
24
15 Typ. switching time
t = f (RG), inductive load, T par.: VDS=380V, V
3
10
ns
2
10
t
1
10
tr tf
0
10
0 5 10 15 20 25 30
=0/+13V, ID=20.7 A
GS
td(off)
=125°C
j
td(on)
R
16 Typ. drain current slope
di/dt = f(RG), inductive load, T par.: VDS=380V, V
5000
A/µs
4000
3500
3000
di/dt
2500
2000
1500
1000
500
40
G
di/dt(off)
0
0 5 10 15 20 25 30
=0/+13V, ID=20.7A
GS
di/dt(on)
= 125°C
j
R
40
G
Rev.2.1 Page 8
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
17 Typ. drain source voltage slope
dv/dt = f(RG), inductive load, T par.: VDS=380V, V
150
V/ns
100
dv/dt
75
50
25
0
0 5 10 15 20 25 30
dv/dt(off)
=0/+13V, ID=20.7A
GS
dv/dt(on)
= 125°C
j
R
18 Typ. switching losses
E = f (I
), inductive load, T
D
=125°C
j
par.: VDS=380V, VGS=0/+13V, RG=3.6
0.08
*) Eon includes SPD06S60 diode
mWs
E
40
G
commutation losses
0.06
0.05
Eoff
0.04
0.03
0.02
0.01
0
0 3 6 9 12 15
Eon*
A
21
I
D
19 Typ. switching losses
E = f(RG), inductive load, T par.: VDS=380V, V
0.4
*) Eon includes SPD06S60 diode
mWs
E
commutation losses
0.3
0.25
0.2
0.15
0.1
0.05
0
0 5 10 15 20 25 30
=0/+13V, ID=20.7A
GS
Eoff
=125°C
j
Eon*
R
20 Avalanche SOA
IAR = f (tAR)
par.: Tj 150 °C
20
A
AR
I
10
-3
10
Tj(Start)=125°C
-2
-1
10
10 0 10 1 10
5
40
G
0
10
Tj(Start)=25°C
2
µs
t
AR
10
4
Rev.2.1 Page 9
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
21 Avalanche energy
E
= f (T
AS
par.: I
mJ
AS
E
750
600
550
500
450
400
350
300
250
200
150
100
)
j
= 10 A, V
D
50
0
20 40 60 80 100 120
= 50 V
DD
°C
22 Drain-source breakdown voltage
V
(BR)DSS
(BR)DSS
V
160
T
j
= f (T
SPP20N60C3
720
V
680
660
640
620
600
580
560
540
-60 -20 20 60 100
)
j
°C
180
T
j
23 Avalanche power losses
P
= f (f )
AR
parameter: E
500
W
AR
P
300
200
100
0
4
10
AR
=1mJ
10
5
Hz
24 Typ. capacitances
C = f (V parameter: V
10
pF
10
10
C
10
10
6
10
f
10
)
DS
=0V, f=1 MHz
GS
5
4
Ciss
3
2
1
0
0 100 200 300 400
Crss
Coss
V
V
600
DS
Rev.2.1 Page 10
2003-10-08
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
25 Typ. C
E
=f(V
oss
14
µJ
12
11
10
oss
9
E
8
7
6
5
4
3
2
1
0
0 100 200 300 400
stored energy
oss
)
DS
V
V
600
DS
Definition of diodes switching characteristics
Rev.2.1 Page 11
2004-09-07
P-TO-220-3-1
±0.4
10
±0.2
3.7
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
B
A
±0.13
1.27
4.44
±0.6
±0.2
2.8
0.05
15.38
±0.5
C
±0.9
5.23
13.5
3x
±0.1
0.75
±0.22
1.17
2x
2.54
M
C
A0.25
B
All metal surfaces tin plated, except area of cut.
Metal surface min. x=7.25, y=12.3
P-TO-263-3-2 (D2-PAK)
0.5
2.51
±0.48
9.98
±0.1
±0.2
Rev.2.1 Page 12
2004-09-07
P-TO-262-3-1 (I2-PAK)
±0.2
10
0...0.3
1)
±0.3
8.5
1)
7.55
±0.3
1
11.6
C
±0.2
4.55
0...0.15
1.05
3 x 0.75
2 x
2.54
A
±0.5
13.5
±0.1
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
B
4.4
1.27
0.05
2.4
2.4
M
C
A0.25
B
0.5
±0.2
9.25
±0.1
1)
Typical
Metal surface min. X = 7.25, Y = 6.9
All metal surfaces tin plated, except area of cut.
P-TO-220-3-31 (FullPAK)
P-TO220-3-31
dimensions
symbol
min
A 10.37 10.63
B 15.86 16.12
C 0.65
D 2.95 typ. 0.1160 typ.
E 3.15
F 6.05
G 13.47 13.73
H 3.18
K 0.45
L 1.23
M 2.54 typ. 0.100 typ.
N 4.57
P 2.57
T 2.51
[mm] [inch]
max
0.78
3.25
6.56
3.43
0.63
1.36
4.83
2.83
2.62
min max
0.4084
0.6245
0.0256
0.124
0.2384
0.5304
0.125
0.0177
0.0484
0.1800
0.1013
0.0990
0.4184
0.6345
0.0306
0.128
0.2584
0.5404
0.135
0.0247
0.0534
0.1900
0.1113
0.1030
Rev.2.1 Page 13
2004-09-07
SPP20N60C3, SPB20N60C3
SPI20N60C3, SPA20N60C3
Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Rev.2.1 Page 14
2004-09-07
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.
Loading...