IKW50N60T
TrenchStop
®
Series q
Low Loss DuoPack : IGBT in TrenchStop
®
and Fieldstop technology
with soft, fast recovery anti-parallel EmCon HE diode
• Very low V
1.5 V (typ.)
CE(sat)
• Maximum Junction Temperature 175 °C
• Short circuit withstand time – 5µs
• Designed for :
- Frequency Converters
- Uninterrupted Power Supply
• TrenchStop
®
and Fieldstop technology for 600 V applications
offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
- very high switching speed
• Positive temperature coefficient in V
CE(sat)
• Low EMI
• Low Gate Charge
• Very soft, fast recovery anti-parallel EmCon HE diode
• Qualified according to JEDEC
1
for target applications
• Pb-free lead plating; RoHS compliant
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type V
I
CE
C
V
CE(sat),Tj=25°C
T
Marking Package
j,max
G
PG-TO-247-3-21
C
E
IKW50N60T 600V 50A 1.5V
175° C
K50T60 PG-TO-247-3-21
Maximum Ratings
Parameter Symbol Value Unit
V
Collector-emitter voltage
DC collector current, limited by T
T
= 25°C
C
= 100°C
T
C
jmax
Pulsed collector current, t p limited by T
Turn off safe operating area (V
Diode forward current, limited by T
T
= 25°C
C
T
= 100°C
C
Diode pulsed current, t p limited by T
≤ 600V, T j ≤ 175 ° C)
CE
jmax
jmax
Gate-emitter voltage
Short circuit withstand time3)
VGE = 15V, V
≤ 400V, T j ≤ 150 ° C
CC
Power dissipation T C = 25°C
Operating junction temperature
Storage temperature
I
jmax
I
CE
I
C
Cpuls
-
I
F
Fpuls
V
GE
t
SC
P
tot
T
j
T
stg
600 V
A
80
2)
50
150
150
100
50
150
± 20
5
V
µ s
333 W
-40...+175
-55...+175
° C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
1
J-STD-020 and JESD-022
2)
Value limited by bond wire
3)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1 Rev. 2.3 May 06
IKW50N60T
TrenchStop
®
Series q
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction – case
Diode thermal resistance,
R
R
thJC
thJCD
0.45
K/W
0.8
junction – case
Thermal resistance,
thJA
40
R
junction – ambient
Electrical Characteristic, at T
Parameter Symbol Conditions
= 25 ° C, unless otherwise specified
j
Value
Unit
min. Typ. max.
Static Characteristic
Collector-emitter breakdown voltage
Collector-emitter saturation voltage
Diode forward voltage
Gate-emitter threshold voltage
Zero gate voltage collector current
Gate-emitter leakage current
Transconductance
Integrated gate resistor
V
(BR)CESVGE
V
V
V
I
CES
I
GES
g
R
fs
V GE = 15V, I C=50A
CE(sat)
V GE=0V, I F=50A
F
I C=0.8mA,V CE=V
GE(th)
V CE=600V,
V CE=0V,V GE=20V
V CE=20V, I C=50A
Gint
=0V, IC=0.2mA
T
=25°C
j
T
=175°C
j
T
=25° C
j
=175°C
T
j
VGE=0V
=25° C
T
j
=175°C
T
j
600 - -
GE
-
-
-
-
4.1 4.9 5.7
-
-
1.5
1.9
1.65
1.6
-
-
- - 100 nA
- 31 - S
-
2
-
2.05
-
40
1000
V
µA
Dynamic Characteristic
Input capacitance
Output capacitance
Reverse transfer capacitance
Gate charge
Internal emitter inductance
C
C
C
Q
L
iss
oss
rss
Gate
E
V
=25V,
CE
V
=0V,
GE
f =1MHz
V CC=480V, I C=50A
V
=15V
GE
- 3140 -
pF
- 200 -
- 93 -
- 310 - nC
- 13 - nH
measured 5mm (0.197 in.) from case
Short circuit collector current1)
I
C(SC)
=15V,t SC≤5 µs
V
GE
V
= 400V,
CC
≤ 150° C
T
j
- 458.3 - A
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2 Rev. 2.3 May 06
IKW50N60T
TrenchStop
®
Series q
Switching Characteristic, Inductive Load, at T
Parameter Symbol Conditions
=25 °C
j
Value
min. Typ. max.
IGBT Characteristic
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
T
=25° C,
j
V
=400V,I C=50A,
CC
=0/15V,
V
GE
= 7 Ω,
R
G
1)
L
=103nH,
σ
1)
C
=39pF
σ
Energy losses include
“tail” and diode
reverse recovery.
- 26 -
- 29 -
- 299 -
- 29 -
- 1.2 -
- 1.4 -
- 2.6 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Diode peak reverse recovery current
Diode peak rate of fall of reverse
recovery current during t
b
t
Q
I
di
rr
rr
rrm
rr
/dt
T
=25° C,
j
=400V, I F=50A,
V
R
di
/dt=1280A/µs
F
- 143 - ns
- 1.8 - µC
- 27.7 - A
- 671 -
Switching Characteristic, Inductive Load, at T j=175 °C
Parameter Symbol Conditions
min. Typ. max.
IGBT Characteristic
t
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
T
=175° C,
j
V
=400V,I C=50A,
CC
V
=0/15V,
GE
= 7 Ω
R
G
1)
L
=103nH,
σ
1)
C
=39pF
σ
Energy losses include
“tail” and diode
reverse recovery.
- 27 -
- 33 -
- 341 -
- 55 -
- 1.8 -
- 1.8 -
- 3.6 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time
Diode reverse recovery charge
Diode peak reverse recovery current
Diode peak rate of fall of reverse
recovery current during t
b
t
Q
I
di
rr
rr
rrm
rr
/dt
T
=175°C
j
V
=400V, I F=50A,
R
/dt=1280A/µs
di
F
- 205 - ns
- 4.3 - µC
- 40.7 - A
- 449 -
Value
Unit
ns
mJ
A/µs
Unit
ns
mJ
A/µs
1)
Leakage inductance L
an d Stray capacity C σ due to dynamic test circuit in Figure E.
σ
Power Semiconductors
3 Rev. 2.3 May 06
IKW50N60T
40A
20A
00A
80A
60A
40A
, COLLECTOR CURRENT
C
I
20A
0A
100Hz 1kHz 10kHz 100kHz
Figure 1. Collector current as a function of
TC=80°C
TC=110°C
I
c
I
c
f, SWITCHING FREQUENCY
switching frequency
(T
≤ 175° C, D = 0.5, V CE = 400V,
j
= 0/+15V, R G = 7Ω)
V
GE
TrenchStop
100A
10A
, COLLECTOR CURRENT
C
I
1A
Figure 2. Safe operating area
®
Series q
tp=2µs
10µs
50µs
1ms
DC
1V 10V 100V 1000V
10ms
VCE, COLLECTOR -EMITTER VOLTAGE
(D = 0, T
V
GE
= 25°C, T j ≤ 175° C;
C
=15V)
300W
250W
200W
150W
, POWER DISSIPATION
100W
tot
P
50W
0W
25°C 50°C 75°C 100°C 125°C 150°C
, CASE TEMPERATURE
T
C
Figure 3. Power dissipation as a function of
80A
60A
40A
, COLLECTOR CURRENT
C
I
20A
Figure 4. Collector current as a function of
case temperature
≤ 175° C)
(T
j
0A
25°C 75°C 125°C
TC, CASE TEMPERATURE
case temperature
≥ 15V, T j ≤ 175° C)
(V
GE
Power Semiconductors
4 Rev. 2.3 May 06
IKW50N60T
120A
100A
, COLLECTOR CURRENT
C
I
Figure 5. Typical output characteristic
VGE=20V
15V
80A
60A
40A
20A
0A
13V
11V
9V
7V
0V 1V 2V 3V
V
, COLLECTOR -EMITTER VOLTAGE
CE
(
T
= 25°C)
j
TrenchStop
120A
100A
80A
60A
40A
, COLLECTOR CURRENT
C
I
20A
0A
Figure 6. Typical output characteristic
®
Series q
VGE=20V
15V
13V
11V
9V
7V
0V 1V 2V 3V 4V
V
, COLLECTOR -EMITTER VOLTAGE
CE
(T j = 175°C)
2.5V
80A
2.0V
60A
1.5V
40A
1.0V
, COLLECTOR CURRENT
C
I
20A
0A
0V 2V 4V 6V 8V
Figure 7. Typical transfer characteristic
TJ=175°C
25°C
V
, GATE-EMITTER VOLTAGE
GE
=10V)
(V
CE
0.5V
COLLECTOR- EMITT SATURATION VOLTAGE
CE(sat),
0.0V
V
Figure 8. Typical collector-emitter
IC=100A
IC=50A
IC=25A
0°C 50°C 100°C 150°C
T
, JUNCTION TEMPERATURE
J
saturation voltage as a function of
junction temperature
(
V
= 15V)
GE
Power Semiconductors
5 Rev. 2.3 May 06
IKW50N60T
100ns
t
d(on)
t, SWITCHING TIMES
10ns
0A 20A 40A 60A 80A
I
Figure 9. Typical switching times as a
function of collector current
(inductive load,
V
CE
Dynamic test circuit in Figure E)
t
f
, COLLECTOR CURRENT
C
T
=175°C,
= 400V, V
J
= 0/15V, R G = 7,
GE
TrenchStop
t
d(off)
t
r
®
Series q
t
d(off)
100ns
t, SWITCHING TIMES
10ns
t
f
t
r
t
d(on)
0Ω 5Ω 10Ω 15Ω 20Ω 25Ω
R
, GATE RESISTOR
G
Figure 10. Typical switching times as a
function of gate resistor
(inductive load,
V
= 400V, V
CE
T
= 175°C,
J
= 0/15V, I C = 50A,
GE
Dynamic test circuit in Figure E)
7V
t
d(off)
6V
5V
100ns
t
f
4V
3V
t
r
t, SWITCHING TIMES
10ns
25°C 50 °C 75°C 100°C 125°C 150°C
T
, JUNCTION TEMPERATURE
J
Figure 11. Typical switching times as a
t
d(on)
2V
GATE- EMITT TRSHOLD VOLTAGE
1V
GE(th),
V
0V
-50°C 0°C 50°C 100°C 150°C
Figure 12. Gate-emitter threshold voltage as
function of junction temperature
(inductive load,
V
= 0/15V, I C = 50A, R G=7 ,
GE
V
CE
= 400V,
Dynamic test circuit in Figure E)
max.
typ .
min.
T
, JUNCTION TEMPERATURE
J
a function of junction temperature
(
I
= 0.8mA)
C
Power Semiconductors
6 Rev. 2.3 May 06
IKW50N60T
*) E on and E ts include losses
due to diode recovery
8.0mJ
6.0mJ
4.0mJ
2.0mJ
E , SWITCHING ENERGY LOSSES
0.0mJ
0A 20A 40A 60A 80A
I
Figure 13. Typical switching energy losses
, COLLECTOR CURRENT
C
as a function of collector current
(inductive load,
V
= 400V, V
CE
T
= 175°C,
J
= 0/15V, R G = 7,
GE
Dynamic test circuit in Figure E)
TrenchStop
Ets*
6.0mJ
5.0mJ
Eon*
E
off
4.0mJ
3.0mJ
2.0mJ
E , SWITCHING ENERGY LOSSES
1.0mJ
0.0mJ
Figure 14. Typical switching energy losses
®
Series q
*) E on and E ts include losses
due to diode recovery
Ets*
E
off
Eon*
0Ω 10Ω 20Ω
R
, GATE RESISTOR
G
as a function of gate resistor
(inductive load,
V
= 400V, V
CE
Dynamic test circuit in Figure E)
T
= 175°C,
J
= 0/15V, I C = 50A,
GE
*) E on and E ts include losses
due to diode recovery
3.0mJ
2.0mJ
E
off
1.0mJ
Eon*
E, SWITCHING ENERGY LOSSES
0.0mJ
25°C 50°C 75°C 100°C 125°C 150°C
T
, JUNCTION TEMPERATURE
J
Figure 15. Typical switching energy losses
Ets*
4mJ
3mJ
2mJ
1mJ
E , SWITCHING ENERGY LOSSES
0mJ
Figure 16. Typical switching energy losses
as a function of junction
temperature
(inductive load,
= 0/15V, I C = 50A, R G = 7,
V
GE
V
CE
= 400V,
Dynamic test circuit in Figure E)
*) E on and E ts inc lude lo sses
due to diode recovery
Ets*
E
300V 350V 400V 450V 500V 550V
V
, COLLECTOR -EMITTER VOLTAGE
CE
as a function of collector emitter
voltage
(inductive load,
V
= 0/15V, I C = 50A, R G = 7,
GE
Dynamic test circuit in Figure E)
T
= 175°C,
J
Eon*
off
Power Semiconductors
7 Rev. 2.3 May 06
IKW50N60T
15V
120V
10V
, GATE -EMITTER VOLTAGE
GE
5V
V
0V
0nC 100nC 200nC 300nC
Q
Figure 17. Typical gate charge
(
I
, GATE CHARGE
GE
=50 A)
C
480V
TrenchStop
1nF
c, CAPACITANCE
100pF
Figure 18. Typical capacitance as a function
®
Series q
C
iss
C
oss
C
rss
0V 10V 20V 30V 40V
V
, COLLECTOR -EMITTER VOLTAGE
CE
of collector-emitter voltage
(
V
=0V, f = 1 MHz)
GE
12µs
800A
700A
600A
500A
400A
300A
200A
, short circuit COLLECTOR CURRENT
sc
100A
C
I
0A
12V 14V 16V 18V
V
, GATE -EMITTETR VOLTAGE
GE
Figure 19. Typical short circuit collector
10µs
8µs
6µs
4µs
2µs
, SHORT CIRCUIT WITHSTAND TIME
SC
t
0µs
Figure 20. Short circuit withstand time as a
current as a function of gateemitter voltage
(
V
≤ 400V, T j ≤ 150° C)
CE
10V 11V 12V 13V 14V
V
, GATE -EMITETR VOLTAGE
GE
function of gate-emitter voltage
(
V
=600V, start at T
CE
T
<150°C)
Jmax
=25°C,
J
Power Semiconductors
8 Rev. 2.3 May 06
IKW50N60T
D=0.5
-1
10
K/W
-2
10
K/W
, TRANSIENT THERMAL RESISTANCE
thJC
Z
Figure 21. IGBT transient thermal resistance
0.2
0.1
0.05
R ,(K/W)
0.18355 7.425*10-2
0.12996 8.34*10
0.09205 7.235*10-4
0.03736 1.035*10-4
0.00703 4.45*10-5
R
0.02
1
τ
0.01
C1=
1/ R1
C2=
single pulse
1µs1 0µs100µs 1ms 10ms 100ms
t
, PULSE WIDTH
P
(
D = tp / T)
, (s)
R
R
2
2
-3
2
TrenchStop
-1
10
K/W
, TRANSIENT THERMAL RESISTANCE
-2
10
K/W
thJC
Z
Figure 22. Diode transient thermal
®
Series q
D=0.5
0.2
0.1
0.02
0.05
R ,(K/W)
0.2441 7.037*10-2
0.2007 7.312*10
0.1673 6.431*10-4
0.1879 4.79*10-5
R
1
τ
, (s)
-3
R
2
0.01
C1=
1/ R1
C2=
R
2
2
single pulse
1µs1 0µs 100µs 1ms 10ms 100ms
t
, PULSE WIDTH
P
impedance as a function of pulse
width
(
D= t
/T )
P
300ns
TJ=175°C
250ns
200ns
150ns
TJ=25°C
100ns
, REVERSE RECOVERY TIME
rr
t
50ns
0ns
700A/µs 800A/µs9 0 0 A /µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 23. Typical reverse recovery time as
4.0µC
3.5µC
3.0µC
2.5µC
2.0µC
1.5µC
1.0µC
, REVERSE RECOVERY CHARGE
rr
Q
0.5µC
0.0µC
Figure 24. Typical reverse recovery charge
a function of diode current slope
(
V
=400V, I F=50A,
R
Dynamic test circuit in Figure E)
TJ=175°C
TJ=25°C
700A/µs 800A/µs 900A/µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
as a function of diode current
slope
(
V
= 400V, I F = 50A,
R
Dynamic test circuit in Figure E)
Power Semiconductors
9 Rev. 2.3 May 06
IKW50N60T
40A
30A
20A
10A
, REVERSE RECOVERY CURRENT
rr
I
0A
700A/µs 800A/µs 900A/µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
Figure 25. Typical reverse recovery current
as a function of diode current
slope
(
V
Dynamic test circuit in Figure E)
TJ=175°C
= 400V, I F = 50A,
R
TJ=25°C
TrenchStop
-750A/µs
-600A/µs
-450A/µs
-300A/µs
/dt , DIODE PEAK RATE OF FALL
-150A/µs
rr
d
OF REVERSE RECOVERY CURRENT
0A/µs
Figure 26. Typical diode peak rate of fall of
®
Series q
TJ=25°C
TJ=175°C
700A/µs 800A/µs 900A/µs 1000A/µs
diF/dt, DIODE CURRENT SLOPE
reverse recovery current as a
function of diode current slope
(V R=400V, I F=50A,
Dynamic test circuit in Figure E)
120A
100A
, FORWARD CURRENT
F
I
80A
60A
40A
20A
0A
TJ=25°C
175°C
0V 1V 2V
V
, FORWARD VOLTAGE
F
Figure 27. Typical diode forward current as
2.0V
1.5V
1.0V
, FORWARD VOLTAGE
F
V
0.5V
0.0V
Figure 28. Typical diode forward voltage as a
a function of forward voltage
IF=100A
50A
25A
0°C 50°C 100°C 150°C
T
, JUNCTION TEMPERATURE
J
function of junction temperature
Power Semiconductors
10 Rev. 2.3 May 06
IKW50N60T
PG-TO247-3-21
TrenchStop
®
Series q
Power Semiconductors
11 Rev. 2.3 May 06
IKW50N60T
TrenchStop
®
Series q
i,v
+
di /dt
F
I
F
I
rrm
t=t t
rr S F
Q=Q Q
rr S F
t
rr
t
S
Q
Q
S
+
t
F
F
90% I
10% I
di /dt
rrm
rrm
rr
t
V
R
Figure C. Definition of diodes
switching characteristics
p(t)
1
rrrr
1
T(t)
j
12 n
2
2
n
n
r r
Figure A. Definition of switching times
T
C
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
Figure E. Dynamic test circuit
Power Semiconductors
12 Rev. 2.3 May 06
IKW50N60T
TrenchStop
®
Series q
Edition 2006-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 11/20/06.
All Rights Reserved.
Attention please!
The information given in this data sheet shall in no event be regarded as a guarantee of conditions or
characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical
values stated herein and/or any information regarding the application of the device, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of
non-infringement of intellectual property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types
in question please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express
written approval of Infineon Technologies, if a failure of such components can reasonably be expected to
cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or
system. Life support devices or systems are intended to be implanted in the human body, or to support
and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health
of the user or other persons may be endangered.
Power Semiconductors
13 Rev. 2.3 May 06