HP 1707A
This vintage Hewlett Packard document was preserved and distributed by www. hparchive.com Please visit us on the web !
Scanned by on-line curator: Tony Gerbic ** For FREE Distribution Only ***
Refer to Section VII for instruments with other Serial Prefixes.
Refer to Section VII for instruments with the following Standard Options: 001, 002, 003, 006, 007, 011, 012, 090, 091, 092, 093, 094, 602, 607, 611, and 631.
HEWLETT-PACKARD COMPANY/COLORADO SPRINGS DIVISION 900 GARDEN OF THE GODS ROAD, COLORADO SPRINGS, COLORADO, U.S.A.
Manual Part Number 01707-90901. Microfiche Part Number 01707-90801.
Sect | tion | Title Page | Section | Title | Page |
---|---|---|---|---|---|
I. | GENE | RAL INFORMATION 1-1 | 4-47. | General Information | . 4-3 |
15.5 | 1-1. | Introduction 1-1 | 4-49 | Input | 4-3 |
1-4 | Description 1-1 | 4-51 | Attenuator Stages | 4-3 | |
1.5 | Introduction 1-1 | 4.53 | Vertical Preamplifier (Schematics | ||
1.8 | Vartical Circuite 1.1 | 4 00. | 1.3 | ||
1 12 | 4 5 4 | General Information | . 4-3 | ||
1.10 | 4-04. | General Information | . 4-3 | ||
1-18. | Cathode Ray Tube | 4-57. | Input Stages (Schematic 4) | . 4-3 | |
1-21. | Warranty | 4-62. | Channel Switches (Schematic 5). | . 4-4 | |
1-23. | Instrument and Manual | 4-65. | Channel A Sync Amplifier | . 4-4 | |
Identification | 4-67. | Composite Sync Amplifier | . 4-4 | ||
1-27. | Inquiries1-2 | 4-70. | Delay Line | . 4-4 | |
4-72. | Vertical Output Amplifier | . 4-4 | |||
П. | INSTA | LLATION | 4-74. | Beam Finder | . 4-4 |
2-1. | Introduction | 4-76. | Steering Logic Circuit | ||
2-3. | Initial Inspection | (Schematic 7) | . 4-4 | ||
2-6. | Claims | 4-82. | Display Switch | . 4-4 | |
2-8. | Preparation for Use 2-1 | 4-84. | Trigger Assembly (Schematic 8, 9). | 4-4 | |
2-9 | Three-Conductor AC | 4-85. | General Information | 4-5 | |
Power Cable 2-1 | 4-88 | Main Trigger (Schematic 8) | 4.5 | ||
2.11 | DC Plug 2.1 | 4.92 | Current Steering Switches | ||
2.13 | Power Requirements 21 | 402. | (Schematic 9) | 4.5 | |
2.17 | Rattery Installation 22 | 4.05 | Bright Line Auto Circuit | 4.5 | |
2.17. | Papacking for Chipmont 22 | 4.09 | Delayed Trigger (Schematic 9) | 4-5 | |
2-19. | Repacking for Simplifient | 4-50. | Main Integrator (Schematic 10) | 4-5 | |
ODED | 2.1 | 4-100. | Conoral Information | . 4-5 | |
ш. | OPERA | ATION | 4-101. | 4-5 | |
3-1. | Introduction | 4-103. | . 4-5 | ||
3-3. | Controls and Connectors | 4-107. | Comparator | . 4-5 | |
3-25. | Battery Recharge Operation 3-2 | 4-112. | Main Sweep Time Assembly | ||
3-27. | Preoperational Adjustments 3-3 | (Schematic 11) | . 4-6 | ||
3-28. | Focus and Astigmatism | 4-113. | General Information | . 4-6 | |
Adjustment 3-3 | 4-115. | Operational Amplifier | . 4-6 | ||
3-29. | Initial Turn-on | 4-118. | Delayed Integrator (Schematic 12). | . 4-6 | |
3-31. | Operating Procedures | 4-119. | General Information | . 4-6 | |
3-33. | Operators Performance Check 3-3 | 4-124. | Comparator | . 4-6 | |
3-35. | Operating Information 3-12 | 4-129. | Delayed Sweep Time Assembly | ||
3-37. | Auto Versus Norm 3-12 | (Schematic 13) | . 4-7 | ||
3-40. | AC Versus DC 3-12 | 4-130. | General Information | . 4-7 | |
3-42. | Delayed Sweep 3-12 | 4-132. | Operational Amplifier | . 4-7 | |
4-135. | Holdoff and Comparator | ||||
IV. | PRINC | CIPLES OF OPERATION 4-1 | (Schematic 14) | . 4-7 | |
4-1 | Introduction 4-1 | 4-136. | General Information | 4-7 | |
4.3 | General Theory 4.1 | 4-139. | Ramp Comparator | 4.7 | |
4.6 | Block Diagram (Schematic 1) 4.1 | 4-141 | Holdoff Amplifier | 4.7 | |
4.0. | 4.143 | Comparator | 4.7 | ||
4-7. | Nertical Programifier 4.1 | 4.145 | Horizontal Model Assembly | ||
4-9. | 4-145. | (Schematic 15) | 1.9 | ||
4-11. | Delay Line 4-1 | 4 146 | (Schematic 15) | . 4-0 | |
4-13. | Vertical Output Amplifier 4-1 | 4-140. | Display Switch | . 4-0 | |
4-15. | Trigger Circuits 4-1 | 4-140. | Display Switch | . 4-0 | |
4-17. | Main Integrator 4-1 | 4-150. | . 4-7 | ||
4-22. | Hold-off and Comparator 4-2 | 4-153. | Horizontal Preamplifier Assembly | ||
4-25. | Delayed Integrator 4-2 | 1 121 | (Schematic 15) | . 4-8 | |
4-28. | Horizontal Model Assembly 4-2 | 4-154. | General Information | . 4-8 | |
4-32. | Power Supply Block Diagram | 4-156. | Input Circuit | . 4-8 | |
(Schematic 2) 4-2 | 4-158. | Differential Amplifier | . 4-8 | ||
4-33. | Low Voltage Power Supply 4-2 | 4-160. | Horizontal Output Amplifier | ||
4-39. | High Voltage Power Supply 4-2 | (Schematic 15) | . 4-8 | ||
4-42. | Gate Assembly 4-3 | 4-161. | General Information | . 4-8 | |
4-44. | Detailed Circuitry 4-3 | 4-163. | Output Amplifier | . 4-8 | |
4-46 | Input Attenuators (Schematic 3) 4-3 | 4-165. | Gate Assembly (Schematic 16) | . 4-8 |
٠ | |||
---|---|---|---|
1 | |||
Sectio | on | Title | Page | Sectio |
---|---|---|---|---|
4 100 | 4.0 | |||
4-100. | General Information | 4-0 | ||
4-168. | Intensity Control | 4-8 | ||
4-170. | Summing Amplifier | 4-8 | 3 | |
4-172. | Multivibrator | 4-8 | ||
4-174. | Low Voltage Power Supply | |||
(Schematic 18) | 4-8 | |||
4-175. | General Information | 4-8 | ||
4-177. | A1 Power Module | 4-8 | ||
4-179. | A2 Line Rectifier | 4-8 | ||
4-181. | A3A1 Low Voltage Mother | |||
Board | 4-9 | |||
4-183. | Line Switching | 4-9 | ||
4-185. | A4 Gate Assembly | 4-9 | ||
4-189. | Low Voltage Power Supply | |||
(Schematic 19) | 4-9 | |||
4-190. | General Information | 4-9 | 3 | |
4-193. | A3A1 Low Voltage Mother | |||
Board | 4-9 | 1 | ||
4-196. | Low Voltage Converter | |||
Assembly | 4-9 | |||
4-200. | Low Voltage Regulator | 4-10 | ||
4-205. | High Voltage Power Supply | |||
(Schematic 17) | 4-10 | |||
4-206. | General Information | 4-10 | ||
4-208. | High Voltage Oscillator | 4-10 | 3 | |
4-210. | CRT Cathode Voltage | 4-10 | ||
4-213. | CRT Control Grid Voltage | a lander | ||
and Blanking | 4-10 | VI. | ||
4-215. | CRT Post Accelerator | |||
Voltage | 4-10 | |||
V. | PERFO | RMANCE CHECKS AND | VII. | |
ADJ | USTMENTS | 5-1 | ||
5-1. | Introduction | 5-1 | ||
5-3. | Equipment Required | 5-1 | ||
5-5. | Pozidrive Screwdrivers | 5-1 | ||
5-7. | HP 01701-68701 Service Kit | 5-1 | ||
5-9. | Performance Check | 5-1 | VIII. | |
5-13. | Adjustments | 5-1 | 9 | |
5-15. | Performance Check Record | 5-2 | ||
5-17. | Front Panel Adjustments | 5-2 | ||
5-19. | Front Panel Settings | 5-2 | ||
5-21. | Performance Test | 5-3 | ||
5-22. | Deflection Factor | 5-3 | ||
5-23. | Risetime | 5-4 | ||
5-24 | Bandwidth | 5-6 | ||
5-25 | Input Resistance | 5-7 | ||
5-26. | Common Model Rejection | 5.0 | ||
E 07 | Main Sweep Time | 5.10 | ||
5-27. | 5 12 | |||
5-20. | Main Triggering | 5.14 | ||
5-29. | Trigger Level Repose and | 0.14 | ||
5-30. | Polarity | 5-16 | ||
5-31. | External Input Resistance | 5-17 | ||
5-32. | Delayed Sweep Time | 5-18 | ||
5-33. | Delayed Triggering | 5-21 | ||
5-34. | Delay Jitter | 5-22 | ||
5-35. | Adjustment Procedures | 5-25 |
i | on | Title | Page |
---|---|---|---|
5-36. | Low Voltage Power Supply | ||
Adjustment | 5-25 | ||
5-37. | High Voltage Power Supply | ||
Adjustment | 5-26 | ||
5-38. | Intensity Limit Adjustment | 5-26 | |
5-39. | Y-Axis Alignment | 5-27 | |
5-40. |
Gate Amplifier Response
Adjustment |
5-27 | |
5-41. | Trigger Amplifier Balance and DC | ||
Level Adjustment | 5-28 | ||
5-42. | Trigger Sensitivity Adjustment . | 5-28 | |
5-43. | Position Centering Adjustment . | 5-29 | |
5-44. | Sweep Length Adjustment | 5-30 | |
5-45. | Main Sweep Timing | ||
Adjustment | 5-30 | ||
5-46. | X10 Gain Adjustment | 5-32 | |
5-47. | Mag Centering Adjustment | 5-32 | |
5-48. | Calibrator Adjustment | 5-33 | |
5-49. | Delayed Sweep Time | ||
Adjustment | 5-33 | ||
5-50. | Low Frequency Pulse Response | 5 05 | |
Adjustment | 5-35 | ||
5-51. | Input Capacitance and Attenuator | F 05 | |
Compensation Adjustment | 5-35 | ||
5-52. | Adjustment | E 26 | |
Adjustment | 5-30 | ||
REPI AC | CEABLE PARTS | 6-1 | |
6-1 | Introduction | 6-1 | |
6-3. | Ordering Information | 6-1 | |
MANUA | L CHANGES AND OPTIONS | 7-1 | |
7-1. | Introduction | 7-1 | |
7-3. | Manual Changes | 7-1 | |
7-5. | Special Options | 7-1 | |
7-9. | Standard Options | 7-1 | |
SCHEM | ATICS AND TROUBLESHOOTING | 8-1 | |
8-1. | Introduction | 8-1 | |
8-3. | Schematics | 8-1 | |
8-8. | Reference Designators | 8-1 | |
8-12. | Component Locations | 8-1 | |
8-14. | Troubleshooting | 8-1 | |
8-17. | Troubleshooting Aids | 8-1 | |
8-19. | DC Voltages | 8-2 | |
8-21. | Waveforms | 8-2 | |
8-23. | Test Points | 8-2 | |
8-25. | Test Equipment Required | 8-2 | |
8.27. | Service Kit | 8-2 | |
8-30. | Disassembly and Assembly | ||
Procedures | 8-2 | ||
8-32. | CRT Removal and Replacement. | 8-2 | |
8-34. | CRT Shield Removal | 8-2 | |
8-36. | Vertical Module Removal | ||
0.00 | and Replacement | 8-3 | |
8-38. | and Replacement | 0.2 | |
8.40 | Attenuator Removal | 0.2 | |
040. | and Replacement | 8-3 | |
and the sector states the sector states and se | 1000 |
iii
Table of Contents List of Illustrations
Title
Section
Page
Page
8-42. | Horizontal Module Assembly | 8-59. | Diagram Notes | 8-6 |
Removal and Replacement 8-3 | 8-61. | Factory Selected Components | 8-6 | |
8-45. | Horizontal Mother Board Removal | 8-63. | Etched Circuits | 8-7 |
0.47 | and Replacement | 8-66. | Component Replacement | 8-7 |
8-47. | Power Supply Module Removal | 8-67. | Transistor Replacement | 8-7 |
8.50 | General Service Information 8.5 | 8-70. | Diode Replacement | 8-7 |
8-51 | Switch Maintenance 8-5 | 8-72. | Logic Circuits | |
8-55. | Attenuator Servicing | and Symbols | 8-7 | |
8-57. | Parts Location Aids 8-6 | 8-75. | Basic Gates | 8-8 |
Figure
Figur | re Title P | age |
---|---|---|
1-1. | Model 1707A Oscilloscope and | |
Accessories | 1-0 | |
1-2. | Instrument Serial Number | 1-2 |
2-1. | Rear Panel Module | 2-1 |
2-2. | Battery Pack Installation 2-3/ | 2-4 |
3-1. | Control and Connectors 3-4/ | 3-5 |
3-2. | Auto and Norm Operation | 3-6 |
3-3. | Single Sweep Operation | 3-7 |
3-4. | Single and Dual Channel Operation | 3-8 |
3-5. | A + B and A – B Operation | 3-9 |
3-6. | Amplifier Balance Adjust 3 | -10 |
3-7. | Delayed Operation 3 | -11 |
4-1. | Simplified Schematic of DC to DC | |
Converter 4 | -10 | |
5-1. | Deflection Factor Test Setup | 5-3 |
5-2. | Risetime Test Setup | 5-4 |
5-3. | Bandwidth Test Setup | 5-6 |
5-4. | Input Resistance Test Setup | 5-7 |
5-5. | Common Mode Rejection Test Setup | 5-9 |
5-6. | Main Sweep Time Test Setup 5 | -10 |
5-7. | Calibrator Measurement Test Setup 5 | -13 |
5-8. | Main Triggering Test Setup 5 | -14 |
5-9. | Trigger Range and Polarity Test Setup 5 | i-16 |
5-10. | . Ext Input Resistance Test Setup 5 | i-17 |
5-11. | . Delayed Sweep Time Setup 5 | 5-18 |
5-12 | . Delayed Triggering Test Setup | 5-21 |
5-13 | . Delay Jitter Test Setup | 5-22 |
5-14 | . Adjustment Location 5 | 5-37 |
6-1. | Exploded View of Model 1707A | 6-0 |
8-1. | Vertical Module Mechanical | |
Parts Removal | 8-4 | |
8-2. | Attenuator Removal | 8-4 |
8-3. | Examples of Diode and Transistor |
Marking Methods 8-8 | |
8-4. | Basic AND and OR Gates 8-9 |
8-5. | Basic NAND and NOR Gates 8-10 |
8-6. | Logic Comparison Diagrams 8-10 |
8-7. | Basic NOR Gate Flip-Flop 8-11 |
8-8. | Triggered Flip-Flop 8-11 |
8-9. | Component Identification, Interior |
Front and Rear Panel | |
8-10. | Component and Assembly |
Locations 8-17/8-18 | |
8-11. | Main Block Diagram 8-19/8-20 |
8-12. | Power Supply Block Diagram 8-21/8-22 |
8-13. | 75 MHz Attenuator Component |
Identification 8-23 | |
8-14. | 75 MHz Attenuator Schematic 8-23 |
8-15. | Vertical Preamplifier Assembly A5A4 |
Component Identification | |
8-16. | Channel A Preamplifier Measurement |
Conditions and Waveforms 8-25 | |
8-17. | Vertical Preamplifier Assembly A5A4 |
Schematic No. 4 8-25/8-26 | |
8-18. | Channel A Preamplifier Measurement |
Conditions and Waveforms 8-27 | |
8-19. | Vertical Preamplifier A5A4 |
Schematic No. 5 8-27 | |
8-20. | Vertical Output Amplifier A5A5 |
Component Identification | |
8-21. | Vertical Preamplifier and Output Amplifier |
Measurement Conditions | |
and Waveforms 8-29/8-30 | |
8-22. | Vertical Preamplifier A5A4 and Vertical |
Output Amplifier A5A5 | |
Schematic No. 6 8-29 | |
8-23. | Vertical Preamplifier Measurement |
Conditions and Waveforms 8-31 | |
8-24. | Vertical Preamplifier A5A4 |
Schematic No. 7 8-31 |
Title
Figure
Page
- Ci | |
---|---|
8-25. Trigger Assembly A6A2 | |
Component Identification | 8-32 |
8-26. Trigger Assembly Measurement Conditions | 10 21 |
8-27. Trigger Assembly A6A2 | /0-34 |
Schematic No. 8 8-33 | /8-34 |
Conditions and Waveforms | 8.35 |
0.20 Trigger Assembly AGA2 Sebematic No. 0 | 0.35 |
8-30. Main Integrator A6A3 Component | 0-30 |
Identification | 8-36 |
8-31. Horizontal Mother Board A6A1 | |
Component Identification | 8-36 |
8-32. Main Integrator Measurement Conditions | |
and Waveforms | 8-37 |
8-33. Main Integrator A6A3 Schematic No. 10 | 8-37 |
8-34. Main Sweep Time Assembly A6A5 | |
Component Identification | 8-38 |
8-35. Main Sweep Time Measurement | |
Conditions | 8-38 |
8-36. Main Sweep Time Assembly A6A5 | |
Schematic No. 11 | 8-39 |
8-37. Delayed Integrator A6A4 Component | 0.40 |
8-40 | |
8-38. Delayed Integrator Measurement | 0.41 |
Conditions and Waveforms | 8-41 |
8-39. Delayed Integrator A6A4 Schematic No. 12. | 8-41 |
8-40. Delayed Sweep Time Assembly A6A6 | |
Component Identification | 8-42 |
8-41. Delayed Sweep Time Measurement | |
Conditions | 8-43 |
8-42. Delayed Sweep Time Assembly A6A6 | |
Schematic No. 13 | 8-43 |
8-43. Holdoff and Comparator A6A7 | |
Component Identification | 8-44 |
8-44. Holdoff and Comparator Measurement | |
Conditions and Waveforms | 8-45 |
8-45. Holdoff and Comparator A6A7 | |
Schematic No. 14 | 8-45 |
8-46. Horizontal Mode Assembly A6A8 | |
Component Identification | 8-46 |
Title
Figure | Title | Page |
---|---|---|
8-47. H | orizontal Preamplifier Assembly A6A9 | |
8-48. H | Component Identification | 8-46 |
0 40 LL | A6A10 Component Identification | 8-46 |
0-49. H | Measurement Conditions and Waveforms . | 8-47 |
8-50. H |
orizontal Mode A6A8, Preamplifier A6A9
and Output Amplifier A6A10 |
|
8-51 G | Schematic No. 15 | 8-47 |
8.52 G | 8-48 | |
8.53 G | Waveforms | 8-49 |
8-54. H | igh Voltage Oscillator A3A4 | 0.45 |
8-55. H | igh Voltage Oscillator Measurement | 0-50 |
8-56. H | igh Voltage Oscillator A3A4 | 8-51 |
8-57. Lo | w Voltage Mother Board A3A1 | 8-51 |
8-58. Lo | Component Identification | 8-52 |
8-59. Po | Measurement Conditions | 8-53 |
8-60 1 | Schematic No. 18 | 8-53 |
0.00. 1 | 8-54 | |
8-61. Lo | 8-55 | |
0.02.1 | Schematic No. 19 | 8-55 |
8-03. L | 8-56 | |
8-64. G |
ate Assembly Measurement Conditions
and Waveforms |
/8-58 |
8-65. L | ine Rectifier and Filter A3A3 | 10 50 |
8-66. H | orizontal Mother Board A6A1 | /8-58 |
Schematic No. 21 8-59 | /8-60 |
lable | litte Page | |
---|---|---|
1-1. | Specifications 1-3 | |
1-2. | Reference Designators and | |
Abbreviations 1-5/1-6 | ||
1-3. | Model 1707A Accessories Available 1-5/1-6 | |
2-1. | Shipping Carton Test Strength 2-2 | |
5-1. | Recommended Test Equipment 5-0 | |
5-2. | Deflection Factor Accuracy 5-2 | |
5-3. | Main Sweep Performance Check 5-12 | |
5-4. | Delayed Sweep Performance 5-19 | |
5-5.
5-6. |
Power Supply Voltage Limits |
Table of Contents List of Tables
v
Figure 1-1. Model 1707A Oscilloscope and Accessories
1-2. This manual provides operating and servicing information for the Hewlett-Packard Model 1707A Oscilloscope (Figure 1-1). The manual is divided into eight sections, each covering a specific topic or aspect of the instrument. All schematics are located at the rear of the manual and can be unfolded and used for reference while reading any part of the manual.
1-3. This section contains a description of the Model 1707A. The instrument specifications are listed in Table 1-1. Table 1-2 lists and describes the abbreviations used in this manual. Table 1-3 lists the accessories available for the Model 1707A. Standard options available for this instrument are listed in Section VII.
1-6. The Hewlett-Packard Model 1707A Oscilloscope is a general purpose wide-band oscilloscope designed for bench or field service. The Model 1707A operates from an ac line, dc line or an optional battery pack. The optional rechargeable nickel cadmium battery provides up to 4 1/2 hours of operation and requires a recharge time of approximately 14 hours.
1-7. A carrying handle provides for ease of transportation and is adjustable to allow the Model 1707A to be placed at an angle for viewing the CRT. The CRT dimensions are 6 by 10 centimeters.
1-9. The Model 1707A contains two identical vertical amplifiers for single or dual channel operation. Each channel offers a choice of ac or dc coupling. Common mode rejection is at least 40 dB at 10 mV/div, and 20 dB for the rest of the deflection ranges.
1-10. Nine calibrated switch settings provide a deflection factor range from 10 mV/div to 5 V/div in a 1, 2, 5 sequence. The vertical verniers permit continuous adjustment between calibrated steps and extend the least sensitive deflection factor (5 V/div) to 12.5 V/div.
1-11. With the dual trace feature, (Channel A, Channel B) displays can be obtained on either Channel A or B, Channels A and B, Channels A + B and Channels A - B.
Simultaneous display of two signals is possible in either chop or alternate mode of operation. During chop operation, channels are switched at about 100-kHz rate during each sweep. In alternate mode of operation, the signal applied to each channel is displayed on alternate sweeps. Sweep is triggered on the displayed signal in A, B, and A + B modes. In chop or alternate modes the sweep is triggered by Channel A only.
1-13. Vertical input signals can be displayed by either an internally generated trigger or an external trigger signal. Trigger level, slope, and coupling are also selectable.
1-14. Operation of the delayed sweep while in the main mode provides for intensification of the trace. The amount of intensification width depends on the delay front panel settings. In the delay mode, the intensified portion is displayed across the entire CRT.
1-15. Sweep speed settings from 0.1 usec/div to 0.2 sec/div (Main mode) and 0.1 usec/div to 0.1 sec/div (Delayed mode) are available in a 1, 2, 5 sequence. Vernier controls allow continuous adjustment between steps and extends the slowest sweep to 0.5 sec/div (Main) and 0.25 sec/div (Delayed). Using the MAG X10 function, the fastest sweep speed can be expanded to 10 ns/div.
1-16. By operating in AUTO Mode, a bright baseline is displayed in the absence of a trigger input signal. When a trigger signal above 40 Hz is applied, it overrides the auto baseline circuit and controls the sweep. NORM mode of operation provides a baseline only in the presence of a trigger signal.
1-17. Single sweep operation can be operated in two modes.
a. SINGLE (RESET) NORM. Sweep activates when next trigger signal is applied.
b. SINGLE (RESET) AUTO. Sweep activates immediately when RESET button is pressed.
1-19. The Model 1707A uses a post-accelerator CRT with a non-glare rectangular faceplate. An internal graticule is located on the same plane as the display to eliminate parallax errors. The tube has a 20.2 K-volt accelerating potential. The six vertical by ten horizontal divisions are square centimeters.
1-20. A type P31 phosphor is used in the standard CRT. Other types of phosphors are optional. Special graticules
Model 1707A
(or no graticule) are also available by special order. Refer to Section VII for further information about optional and special-order modification.
Due to phosphor burn sensitivity, instruments with a P11 phosphor do not have the intensified function of the beamfinder.
1-22. The instrument (except the CRT) is certified and warranted as stated on the inside front cover of this manual. The CRT is covered by a separate warranty. The CRT warranty and a warranty claim form are located at the rear of this manual. Should the CRT fail within the time specified on the CRT warranty page, complete the warranty claim form and return it with the defective CRT. The procedure for returning a defective CRT is described on the CRT warranty page.
The warranty may be void for instruments having a mutilated serial tag.
1-24. This manual applies directly to Model 1707A instruments with a serial prefix number as listed on the manual title page. The serial prefix number is the first group of digits in the instrument serial number (Figure 1-2). The instrument serial number is on a tag located on the rear panel.
Figure 1-2. Instrument Serial Number
1-25. Check the serial prefix number of the instrument. If the serial prefix number is different from that listed on the title page of this manual, refer to Section VII for instructions to adapt this manual for proper instrument coverage.
1-26. Technical corrections to the manual are listed under errata on an enclosed MANUAL CHANGES sheet (if any).
1-28. Refer any questions regarding the manual, the change sheet, or the instrument to the nearest HP Sales/Service Office. Always identify instrument by model number, complete name, and complete serial number in all correspondence. Refer to the inside rear cover of this manual for a world-wide listing of HP Sales/Service Offices.
RISETIME: <4.7 ns Direct or with Model 10006A probe; 10% to 90% with 6 div input step from 25-ohm source).
Amplifier: bandwidth and deflection factors are unchanged; Channel B may be inverted for A – B operation.
Frequency: dc to 1 MHz.
Rejection Ratio: at least 40 dB on 10 mV/div, at least 20 dB on all other ranges with verniers set for optimum rejection. Common mode signal amplitude equivalent to 30 div.
A, B, A + B: on the signal displayed. Chop and Alternate Modes: on Channel A only.
Ranges: from 0.1 usec/div to 0.2 sec/div (20 ranges) in 1, 2, 5 sequence. ±3% accuracy with vernier in calibrated position.
Internal: dc to 35 MHz on signals causing 0.5 division or more vertical deflection increasing to 1.5 divisions at 75 MHz in all display modes except chop; dc to 100 kHz in CHOP mode.
Internal: at any point on the vertical waveform displayed.
External: continuously variable from +1.5V to -1.5V on either slope of the trigger signal. Maximum input, ±100V.
Coupling: (AC, DC, HF REJ, LF REJ).
AC: attenuates signals below approx 20 Hz.
Internal: dc to 35 MHz on signals causing 0.5 divisions or more vertical deflection increasing to 1 division at 75 MHz in all display modes except chop; dc to 100 kHz in CHOP mode.
Automatic: delayed sweep is automatically triggered at end of delay time.
Internal: at any point on the vertical waveform displayed.
2-2. This section contains instructions for performing an initial inspection of the Model 1707A. Installation procedures and precautions are presented in step-by-step order. The procedures for making a claim for warranty repairs and for repacking the instrument for shipment are also described in this section.
2-4. The instrument was inspected mechanically and electrically before shipment. Upon receipt, inspect it for damage that may have occurred in transit. Check for broken knobs, bent or broken connectors, and dents or scratches. If damage is found, refer to the claims paragraph in this section. Retain the packing material for possible future use.
2-5. Check the electrical performance of the instrument immediately after receipt. Refer to Section V for the performance check procedure. The performance check will determine whether or not the instrument is operating within the specifications listed in Table 1-1. Initial performance and accuracy of the instrument are certified as stated on the inside front cover of this manual. If the instrument does not operate as specified, refer to the claims paragraph in this section.
Voltages are present inside the instrument when the power switch is off and ac power cord connected.
2-7. The warranty statement applicable to this instrument is printed inside the front cover of this manual. Refer to the rear of this manual for the CRT warranty statement. If physical damage is found or if operation is not as specified when the instrument is received, notify the carrier and the nearest Hewlett-Packard Sales/Service Office immediately (refer to the list in back of this manual for addresses). The HP Sales/Service Office will arrange for repair or replacement without waiting for settlement of the claim with the carrier.
2-10. For the protection of operating personnel, Hewlett-Packard Company recommends that the instrument panel and cabinet be grounded. This instrument is equipped with a three-conductor ac power cable that, when connected to an appropriate receptacle, grounds the instrument through the offset pin. The power jack and mating plug of the power cord meet International Electrotechnical Commission (IEC) safety standards. To preserve this protection feature when operating from a two-contact outlet, use a three-conductor to two-conductor adapter, and connect the adapter wire to ground at the power outlet.
2-12. A dc plug is provided for operating from a dc line. The cable used for the dc power cord must be able to carry 2A of current with a voltage loss of less than 1 volt.
2-14. The Model 1707A can operate either from an AC or DC power source. For AC operation, the Model 1707A requires a 115-or 230-volt ±20%, single phase, 48 to 440 Hz source than can deliver 50 volt-amperes.
Figure 2-1. Rear Panel Module
2-15. A slide switch inside the power module (Figure 2-1) on the rear panel determines 115- or 230-volt operation. To check or change the position of this slide switch proceed as follows:
a. Turn instrument off and remove power cord from rear panel.
b. Move plastic cover to left (Figure 2-1).
c. Pull out lever under fuse. This removes fuse (0.5A/ 115V operation) from the instrument.
d. Check to see that slide switch (Figure 2-1) is to the right for 115V operation.
e. For 230V operation, move slide switch to the left and install a 0.25A slow-blow fuse.
2-16. For dc operation, the Model 1707A requires 11.5 to 36 volts 25 watts maximum. The instrument can also be operated from a battery pack. Depending on the power mode of operation, the POWER MODE switch (on rear panel) should be set to one of three positions: DC LINE, INTERNAL BATTERY, or AC LINE.
2-18. To install the battery pack in the Model 1707A see Figure 2-2 and proceed as follows:
Read operating Note on battery before installation.
a. Set power switch to OFF and remove power cord from the rear-panel connector.
b. Set POWER MODE switch to INTERNAL BAT-TERY position.
c. Remove bottom cover.
d. Place battery pack in instrument as shown in Figure 2-2.
e. Fasten battery pack in place using screws provided.
f. Connect P1 to battery J1.
g. Replace bottom cover.
h. Set Power Switch to ON and observe POWER indicator. If power lamp is lighted resume normal operation.
CALITION
If power lamp is flashing, battery is discharged. Damage to the battery will result if operated in this condition. Refer to Section III for battery charging procedure.
2-20. If the Model 1707A is to be shipped to a Hewlett-Packard Sales/Service Office for service or repair, attach a tag showing owner (with address), complete instrument serial number, and a description of the service required.
2-21. Use the original shipping carton and packing material. If the original packing material is not available, the HP Sales/Service Office will provide information and recommendations on materials to be used. Materials used for shipping an instrument normally include the following:
a. A double-walled carton; refer to Table 2-1 for test strength required.
b. Heavy paper or sheets of cardboard to protect all instrument surfaces; use a nonabrasive material such as polyurethane or cushioned paper such as Kimpak around projecting parts.
c. At least 4 inches of tightly-packed, industry-approved, shock-absorbing material such as extra-firm polyurethane foam.
d. Heavy-duty shipping tape for securing outside of carton.
Table 2-1. Shipping Carton Test Strength
Gross Weight (Ib) | Carton Test Strength (lb) |
---|---|
up to 10 | 200 |
10 to 30 | 275 |
30 to 120 | 350 |
120 to 140 | 500 |
140 to 160 | 600 |
Figure 2-2. Battery Pack Installation
3-2. This section provides general operating instructions and applications information for the Model 1707A. Frontand rear-panel controls and connectors are identified and briefly described in Figure 3-1. General operating instructions are provided in Figures 3-2 thru 3-5 and operational adjustments are detailed in Figure 3-6. Delayed operation is detailed in Figure 3-7.
3-4. The following paragraphs explain some of the controls and connectors in detail.
3-5. BEAM FINDER. Pressing this pushbutton increases the intensity and reduces amplifier gain enough to return beam to viewing area. This enables the operator to locate the beam and determine the action necessary to center a display (examples: reduce input signal amplitude, a change in coupling, adjust deflection factor, trigger level, dc balance, position controls, or intensity). When centered properly, the beam remains on the CRT when the pushbutton is released.
Due to phosphor burn sensitivity, instruments with a P11 phosphor do not have the intensified function of the beam finder.
3-6. SCALE ILLUMINATION. This control adjusts the overall brightness of the CRT graticule. It should be adjusted for good contrast between the background and graticule. The SCALE ILLUM control is especially useful when using a hood to view the display or when photographing waveforms. Rotate the control to off when scale illumination is not needed.
3-7. TRACE ALIGN. The TRACE ALIGN adjustment compensates for external magnetic fields that may affect the alignment of the horizontal trace with the graticule. The alignment should be checked when the instrument is moved to a new location and adjustment made whenever necessary.
3-8. CALIBRATOR 1 VOLT. The 1 volt, 1 kHz squarewave output of the calibrator can be used for vertical sensitivity calibration and for divider probe compensation. The amplitude accuracy is ±1% and the frequency accuracy is ±10%.
3-9. FOCUS AND ASTIGMATISM. Both of these controls are used to obtain a sharp display. Normally, the ASTIGMATISM control need not be readjusted once it is set.
3-10. COUPLING (AC-GND-DC). This lever switch selects either capacitive (AC) or direct (DC) coupling of the input signal to the amplifier, or it grounds (GND) the amplifier input stage while disconnecting the input signal. The switch should be positioned to DC when viewing long duration pulses or dc levels of waveforms. AC should be selected when viewing ac waveforms having large dc levels. GND position is used to disconnect the signal source from the input of the amplifier and at the same time grounds the input of the amplifier. It is useful to use GND position to establish a reference.
3-11. DISPLAY. This control selects the type of display. Input signals may be displayed either singly or simultaneously as explained below.
a. Position A displays channel A input signal and selects channel A as a trigger source.
b. Position A + B displays the algebraic sum of the channel A and channel B input signal and selects the composite signal of channels A and B as a trigger source.
c. CHOP position presents a separate display of each input. Both inputs are displayed during the same sweep by switching between each channel at a rate of 100 kHz. This mode should be used to display low frequency signals. Trigger source in this mode is channel A.
d. ALT position presents each channel on alternate sweeps. This mode should be used to display high frequency signals. Trigger source in this mode is channel A.
e. Position B displays channel B input signal and selects channel B as a trigger source.
3-12. B POL. This control inverts the channel B display 180°. This control can also be used to present an A-B display. Set DISPLAY to A + B mode. Put B POL switch in INVT position. Display observed is A – B.
3-13. SWEEP DISPLAY. This switch is mounted concentric to the MAIN and DELAYED TIME/DIV controls
and determines the sweep display mode; MAIN SWEEP and DELAYED SWEEP are the two display modes. The function of each mode is as follows:
a. Main Sweep. In this mode, the main sweep sets a time base reference for the vertical signal. Main sweep controls are mounted on the right side of the front panel, and sweep speed is selected by MAIN TIME/DIV. If DELAYED TIME/DIV is set to OFF, sweep intensity is uniform. However, any other setting of DELAYED TIME/DIV causes the sweep to intensify during the time that the delayed sweep is generated. This feature makes it possible to select a point of interest on the main sweep time base before viewing in the DELAYED SWEEP mode.
b. Delayed Sweep. Main sweep is not displayed in this mode. Only the intensified portion of the sweep displayed in MAIN SWEEP is used as a time base. The sweep speed is controlled by DELAYED TIME/DIV.
3-14. TIME/DIV. MAIN and DELAYED TIME/DIV switches determine the amount of time to sweep horizontally one graticule division. Both controls are concentric and interlocked so the delayed sweep is always faster than the main sweep. Main sweep speeds are selectable by MAIN TIME/DIV in twenty ranges from 0.1 usec/div to 0.2 sec/div. Nineteen ranges of delayed sweep speeds from 0.1 usec/div to 0.1 sec/div are provided by DELAYED TIME/DIV. Also, by switching the MAG control to X10, a display can be expanded up to ten times, increasing the fastest sweep to 10 nsec/div.
3-15. VERNIER. Sweep speed is calibrated to TIME/DIV when both the MAIN and DELAYED VERNIER controls are set fully clockwise to the CAL detent position. As the VERNIER controls are turned counterclockwise, the VERNIER UNCAL indicator lights and sweep speeds decrease. The MAIN VERNIER control extends the slowest sweep to at least 0.5 sec/div. The DELAYED VERNIER control extends the slowest sweep to at least 0.25 sec/div. The vernier controls are useful for making continuous adjustments of sweep speed, however TIME/ DIV readings are uncalibrated.
3-16. TRIGGER LEVEL. These controls select the point on the sync signal that starts the sweep. Triggering point is adjustable at any level on the displayed signal in INT position. In the EXT position the triggering point is adjustable from +1.5V to -1.5V along the sync signal. DELAYED TRIGGER LEVEL has no function when DELAYED SWEEP MODE is set to AUTO.
3-17. TRIGGER HOLDOFF. This adjustment is a dual purpose control. It is a log tapered potentiometer. When the control is rotated out of detent position, the first portion of the control acts as a high frequency stability control. This prevents double triggering on high frequency waveforms. As the control is rotated further out of detent position, it functions as a trigger hold off and allows the instrument to synchronize on complex waveforms.
3-18. SWEEP MODE. This group of controls selects the type of main and delayed sweep triggering. Main sweep free-runs in AUTO giving a bright base line in the absence of a sync signal. However, if a sync signal 40 Hz or greater is applied, it overrides free-run operation and triggers the sweep. Due to its convenience, the AUTO sweep mode can be used for most applications. Use NORM if the sync signal is erratic or is less than 40 Hz. A sync input signal is always needed in NORM to generate a sweep.
3-19. In the SINGLE mode, the sweep is generated only once. To sweep again, push RESET pushbutton and release. This arms the sweep circuit. This feature is particularly useful for viewing or photographing single transient waveforms.
3-20. When the DELAYED SWEEP MODE is set to AUTO, the delayed sweep starts at the end of the delay time. In the TRIG mode, the delayed sweep is started by the first sync signal after the delay time.
3-21. TRIGGER. Main and delayed trigger source is selected by this group of controls. In the INT position, sweep is synchronized to the vertical deflection signal.
3-22. When EXT is selected, the sweep is triggered by sync signals applied to the EXT TRIG INPUT connector.
3-23. Sync Coupling (AC-DC). These controls determine the type of main and delayed sync coupling. Direct coupling (DC) is normally used for sync signals from dc to less than 20 Hz. Capacitive coupling (AC) blocks the dc component of a sync signal and passes only the ac component. AC coupling does, however, attenuate signals below 20 Hz. LF REJ attenuates signals below approximately 15 kHz and is used to prevent power line or other low frequency signals from triggering the sweep. HF REJ attenuates signals above approximately 30 kHz and can be used to prevent high frequency noise from triggering the sweep.
3-24. SLOPE. These controls determine whether the sweep triggers on the positive-going (+) or negative-going (-) portion of the sync signal. When the DELAYED SWEEP MODE is set to AUTO, the DELAYED SLOPE control has no function.
3-26. To recharge Model 10103A Battery Pack proceed as follows:
c. Connect ac power to the instrument. Recharge time is approximately 14 hours.
d. To maintain a fully charged battery place POWER switch to ON position. This will apply a small trickle charge of about 40 mA to the batteries.
To adjust focus and astigmatism proceed as follows:
VOLTS/DI | ٧ | ÷ | • | ×. | ž | 4 | ÷ | x | ÷ | x | ÷ | ÷ | .01 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DISPLAY | ÷ | a. | ŝ | a. | ÷ | • | × | ÷ | Α | |||||||||||||||
POSITION | С | e | nt | e | r | Т | ra | C | е | 0 | n | С | RT |
f. Adjust FOCUS and ASTIGMATISM controls for best defined dot, as dot moves slowly across CRT.
3-30. To place the Model 1707A into operation perform the following steps:
k. Set MAIN and DELAYED VERNIER to CAL detent.
Verify proper position of POWER MODE switch located on rear panel.
n. Apply operating power and allow fifteen minutes warm up time.
3-32. Figures 3-2 thru 3-7 are operating plates containing step-by-step operating procedures indexed to photographs. The figures describe the operations to be accomplished in achieving the different modes of operation.
3-34. The operation of the Model 1707A may be checked without use of additional test equipment by using the CAL 1 VOLT output as a signal source. These operating tests will functionally check each of the operating display modes and the operation of the front-panel controls. To check specifications listed in Table 1-1, refer to Section V for Performance Checks. The operation check must be performed in the sequence given. Do not attempt to start a procedure in mid-sequence, as succeeding steps depend on control settings and results of previous steps. If any of the results are unobtainable, refer to Section V, Performance Checks and Adjustment Procedures, or Section VIII. Schematics and Troubleshooting.
a. Set Model 1707A controls as follows:
VOLTS/DI | V | ्र |
.,
, |
ų. | ÷ |
a. |
a. | , | a) | a. | 2 | G. | 4 | ŝ | 2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coupling . | ્ર | a. | • | ÷ | e, | ÷ | ÷ | J | A | С | ||||||||||||||||
VOLTS/DI | ٧ | ١ | 16 | er | ni | ie | r | × | С | A | L | |||||||||||||||
POSITION | × | а | S | re | q | ui | re | d | ||||||||||||||||||
DISPLAY | Ģ. | А | ||||||||||||||||||||||||
B POL | 2 | 2 | ÷. | ŝ | ŝ | į. | ç | ģ | 1 | N | 0 | RI | N |
VOLTS/DIV | a | a. | ÷ | a. | a. | 58 | ÷ | ÷ | ÷ | ÷ | ×. | N/A | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coupling | • | • | e | ÷ | • | • | æ | • | ÷ | N/A | ||||||
VOLTS/DIV Vernier | ŝ | ÷ | • | 4 | • | ÷ | æ | N/A | ||||||||
POSITION | N/A |
HORIZONTAL POSITI | C | 1 | ١ | ÷ | ÷ | as | re | quired | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAIN VERNIER | ÷ | ÷ | ÷ | i. | CAL | ||||||||||
DELAYED VERNIER | æ | ÷ | эř | ÷ | • | • | y. | CAL | |||||||
Sweep Display | × | ÷ | • | • | ÷ | ٢ | N. | A | IN | IS | WEEP | ||||
MAIN TIME/DIV | • | 0 | .5 | mSEC | |||||||||||
DELAYED TIME/DIV | • | ÷ | į. | • | • | ł | ł | ÷. | OFF |
AUTO/NORM AUTO |
---|
AUTO/TRIG AUTO |
RIGGER INT |
AIN SLOPE + |
DELAYED SLOPE + |
MAIN TRIGGER LEVEL as required |
DELAYED TRIGGER LEVEL N/A |
RIGGER HOLDOFF NORM |
MAG X1 |
Operation
Figure 3-1. Controls and Connectors
Figure 3-1. Controls and Connectors (Cont'd)
A. Press SWEEP MODE, AUTO/NORM pushbutton in.
Figure 3-2. Auto and Norm Operation
1707A -R - 7A
CHOPPED OR ALTERNATE, DUAL CHANNEL
Figure 3-4. Single and Dual Channel Operation
Operation
NOTE
In the A + B mode only one trace is observed. This trace is the sum of A + B and either channel POSITION control will vary the vertical position display.
Figure 3-5. A + B and A – B Operation
1707A - R - 10A
NOTE
If trace is not on CRT screen. Press BEAM FINDER pushbutton and adjust DC BAL until trace remains on screen.
5. Repeat steps 1 thru 4 for channel B.
Figure 3-6. Amplifier Balance Adjust
b. Set INTENSITY, FOCUS and POSITION controls for desired display in center of screen.
c. Connect CAL 1 VOLT output to channel A INPUT.
d. Adjust MAIN TRIGGER LEVEL for stable display. Observe six positive going pulses with the leading edge of the first and sixth pulse on the first and eleventh vertical graticule lines respectively (±10%).
e. Set DELAYED TIME/DIV to 0.2 mSEC. Observe an intensified portion of sweep.
Intensified portion should cover 4 to 5 divisions.
f. Adjust DELAY TIME until the intensified portion is centered on the CRT.
g. Set sweep mode switch to DELAYED SWEEP. Observe that intensified portion is expanded to full 10 divisions.
h. Set sweep display switch to MAIN SWEEP.
i. Vary DELAY TIME control. Observe that intensified portion moves smoothly along the display.
i. Set DELAYED AUTO/TRIG control to TRIG.
k. Adjust DELAYED TRIGGER LEVEL for a stable intensified portion of the trace.
I. Vary DELAY TIME control. Observe that leading edge of intensified portion jumps from one positive slope leading edge to next.
m. Set DELAYED TIME/DIV to OFF.
n. Rotate MAIN VERNIER ccw to stop. Observe 15 or more pulses between first and eleventh graticule lines.
o. Disconnect calibrator signal from vertical amplifier.
p. Set MAIN TIME/DIV to .1 SEC and MAIN TRIG-GER LEVEL to cw position.
q. Set AUTO/NORM to NORM and select SINGLE operation.
r. Press RESET pushbutton. Observe no sweep.
s. Rotate MAIN TRIGGER LEVEL to full ccw position. Observe one sweep and RESET indicator goes off after sweep.
t. Set AUTO/NORM to AUTO.
u. Press RESET pushbutton. Observe one sweep.
3-36. The following paragraphs provide additional information concerning use of specific function over another.
3-38. In AUTO operation, there will always be a baseline except in trigger operation. A trigger of 40 Hz or higher overrides AUTO operation and produces a stable presentation. Adjustment of MAIN TRIGGER LEVEL may be necessary for a stable display. If the trigger is 40 Hz or less NORM operation must be used. A trigger signal is always needed in NORM to generate a sweep.
3-39. AUTO delayed sweep operation is achieved when DELAYED AUTO/TRIG button is out. This causes the delayed sweep to start at the end of delay time as set by the DELAY TIME control. When the DELAYED AUTO/ TRIG is in depressed position, TRIG, the delayed sweep is started by the first trigger signal after the delay time as set by DELAY TIME control. That is, providing the DELAYED TRIGGER LEVEL is adjusted for stable sweep. In this mode, the delay time is longer than that set by the DELAY TIME control.
3-41. AC coupling removes the dc level of trigger signals and attenuates signals below about 20 Hz. For example, if the trigger signal contains vertical position voltage, extreme levels can cause the signal to move out of the trigger level range of the Model 1707A and lose the trigger operation. Use LF REJ coupling to prevent low frequency noise from triggering the sweep.
3-43. After obtaining a desired display, any portion can be expanded up to 10 ns per division with 5% accuracy (X10 magnification) or 100 ns per division with 3% accuracy. This permits viewing of critical risetimes or signal shapes with increased resolution. The portion to be expanded is selected by the DELAY TIME control in main sweep operation. It is then expanded to the sweep speed selected by the DELAYED TIME/DIV switch after delayed sweep operation is selected. Because the sweeps are independent, if the MAIN VERNIER is out of CAL position the delayed sweep is still calibrated.
3-44. Sweep jitter can be reduced by use of the delayed operation. By using TRIG mode instead of AUTO in delayed sweep operation, the delayed sweep starts on a new trigger. This reduces the jitter that has accumulated since start of the main sweep.
3-12
4-2. This section contains both an overall and detailed explanation of circuit theory. Refer to the overall block diagrams and Schematics in Section VIII while reading the theory.
4-4. An overall explanation of circuit operation based on block diagrams (Figure 8-12 and Figure 8-13) is presented to generate a basic understanding of the instrument in preparation for the detailed theory that follows. For simplicity, the block diagrams are drawn for function and do not show all circuit details.
For circuit theory, a logic high (1) is a more positive voltage and a logic low (0) is a less positive voltage.
4-5. This instrument consists of a CRT, line rectifier, gate assembly, and three modules. The modules are as follows: vertical amplifier modules containing attenuators, vertical preamplifier, delay line and vertical output amplifier; horizontal amplifier module containing trigger assembly, horizontal mother board, main and delayed integrator, main and delayed sweep time assembly, hold-off and comparator, horizontal mode assembly, horizontal pre-amplifier and horizontal output amplifier; and, power supply module containing low voltage mother board, low voltage converter, low voltage rectifier and filter, and high voltage oscillator.
4-8. The attenuators are compensated voltage-divider types. They provide division ratios of 1, 2, 5, 10 and 100 giving nine separate sensitivities. Each input sensitivity range has an input capacitance adjustment and an attenuator compensation adjustment. Coupling (AC, GND, and DC) is also controlled in the attenuator stages.
4-10. The vertical preamplifier provides amplification to the input signals for drive to the vertical output amplifier. Channel A sync and composite sync signals originate in the vertical preamplifier. The sync signals are applied to the trigger assembly for internal triggering. Channel
switching, chop operation, and display mode are also accomplished in the preamplifier (Schematic 7).
4-12. The delay line provides approximately 160 ns delay to the vertical signal allowing the horizontal circuits sufficient time to react to the trigger signal so the display is in the proper time relationship.
4-14. The vertical output amplifier provides drive to the CRT vertical plates.
4-16. The trigger assembly provides the main and delayed trigger signals. Sweep mode and trigger mode are selected in this assembly. The main trigger circuits provides two outputs to the main integrator (Schematic 10). One output is the main trigger and the other output is the bright line auto output. The bright line auto output is provided in AUTO mode only. The delayed trigger circuit provides the trigger to the delayed integrator (Schematic 12).
4-18. The main integrator initiates a horizontal sweep from the trigger input. When the trigger signal is applied to the input amplifier, the Miller integrator activates and produces the horizontal sweep ramp. The Miller integrator is connected to the main sweep timing components (Schematic 11). The MAIN TIME/DIV switch controls the ramp output from the Miller integrator. The output of the Miller integrator is amplified and applied to the horizontal amplifier circuits.
4-19. The horizontal sweep is also compared to a 12-volt reference by the ramp comparator which drives the main integrator set-reset multivibrator. The set-reset multivibrator, in conjunction with the hold-off and comparator circuit, controls the amplitude and timing sequence of the sweep ramp. When the sweep ramp reaches 12 volts, the ramp comparator turns on and resets the trigger set-trigger gates to a logic high (1). The signal from the hold-off amplitier determines the holdoff time of the circuits and sets the trigger set-trigger gates to a logic low (0) for a new sweep.
4-20. When the bright line auto circuit is used, the setreset multivibrator provides a ground for the bright line auto signal and terminates the sweep. This allows the sweep signal to return to its starting point.
4-21. At the same time the main ramp is generated, an output is provided by the Alt amplifier back to the vertical preamplifier J-K flip-flop for ALT operation.
4-23. The hold-off and comparator establishes the time interval between trigger points. This time interval is adjusted by the TRIGGER STABILITY control. A signal from the main integrator set-reset multivibrator activates the hold-off circuit. When the hold-off is activated, a ramp, determined by the hold-off amplifier RC circuits and the TRIGGER STABILITY control, is generated. When this ramp reaches a predetermined level, it activates the main integrator set-reset multivibrator. The set-reset multivibrator then sets the trigger set-trigger gates low for a new sweep.
4-24. The main horizontal sweep ramp from the Miller integrator also drives the comparator in the hold-off and comparator assembly. The main sweep is compared to a voltage set by the DELAY TIME control. When the main sweep is equal to this voltage, the Schmitt trigger sends a pulse to the delay integrator set-reset multivibrator. This sets the delayed trigger set-trigger gates low and arms the delayed integrator for a new sweep.
4-26. The delayed integrator operates the same as the main integrator except for the following differences. This circuit has no bright line auto input. In the AUTO mode, a voltage is applied to the input amplifier which activates the Miller integrator for a delayed sweep signal. The Miller integrator is connected to its own RC components for generating the delayed sweep. Sweep limits are set by a comparator and set-reset multivibrator as in the main integrator.
4-27. The set-reset multivibrator has an input from the main integrator set-reset multivibrator. If the main sweep terminates, a voltage from the main integrator is sent to set-reset multivibrator. The multivibrator terminates the delayed sweep and arms the delayed trigger set-trigger gates for a new sweep.
4-29. This assembly controls the main or delayed display and the trace intensity in these modes. A switch selects the main or delayed sweep signal to be displayed.
4-30. The blanking circuit blanks the trace in the MAIN SWEEP and DELAYED SWEEP modes. The blanking signal is applied to the gate assembly (Block Diagram 2) which controls the high voltage oscillator assembly.
4-31. Trace intensification of the delayed position of the sweep in the MAIN SWEEP mode is also provided by this circuit. When the DELAYED TIME/DIV switch is set to some position other than OFF, the main intensity is
reduced and the delayed sweep intensity is held at a normal level providing trace intensification.
4-34. The low voltage power supply operates from three different power sources. The sources are ac line, internal battery or external dc line. The ac line is applied to the input power module which is selectable for 115- or 230-volt operation and has an ac line protection fuse. The ac input is applied to a step-down power transformer.
4-35. The line rectifier rectifies and filters the power transformer ac output of approximately 36 volts. This voltage is applied to the voltage regulator and a ripple filter which filters out the 120 Hertz ripple.
4-36. The voltage regulator output is applied to the low voltage converter. This stage converts the input dc power to usable output dc of different voltage levels. The low voltage converter oscillates between 10 kHz and 45 kHz depending upon the input voltage and the output power.
4-37. The voltage coupled from the converter to the low voltage rectifier is filtered and applied to the low voltage mother board which provides low voltage distribution to the power supply module. A portion of the +15 and -15 volts is fed back to the low voltage regulator which determines the frequency and duty cycle of the converter for output voltage regulation.
4-38. The filtered voltages from the low voltage mother board are coupled to the gate assembly board. The gate assembly board provides filtering, fuse protection and distribution of the low voltage supplies to the rest of the Model 1701A circuits. The low voltage regulator output is also applied to the light driver which controls the brillance of the scale illumination lights. Scale illumination control (R3) controls the output of the light driver.
4-40. The high voltage power supply consists of the high voltage oscillator, power transformer, rectifying networks, and high voltage multiplier. When the instrument is turned on, the high voltage oscillator activates, coupling voltages from pins 1 and 2 into the secondary pins 6 and 7, 5, 8, and 9. Pins 11 and 10 are connected to the filaments of the CRT. The secondary voltage at pin 7 is connected thru a rectifying diode to the control grid of the CRT. Pin 8 of the secondary is connected thru a rectifying diode to the control grid of the CRT. Pin 8 of the secondary is connected thru a rectifying diode to the cathode. A correction voltage, coupled from this diode back thru a resistive divider network, controls the current source. The current source controls the oscillator amplitude and thus the high voltage oscillator output. The CRT voltages are negative except for the post-accelerator voltage.
4-41. The CRT cathode voltage is fed back to the current source. If the cathode voltage becomes more negative, less current is supplied to the high voltage (hv) oscillator. With less current supplied, the amplitude of the hv oscillator output is reduced and the cathode voltage will return to its normal operating value. If the cathode voltage becomes less negative, more current is supplied to the hv oscillator. The output amplitude now increases and the cathode voltage again returns to its normal operating value. A 6 kv peak-to-peak voltage is present at pin 9 of the power transformer. This voltage is applied to the high voltage multiplier circuit where it is tripled. The +18 kV output is applied to the post accelerator of the CRT.
4-43. The gate amplifier has five inputs. One input is from the INTENSITY control, another input is the blanking from the horizontal mode assembly, a third input is the chop blanking input from the vertical preamplifier, a fourth input is from the BEAM FINDER when connected and a fifth input is from the Z-AXIS INPUT. All of these inputs control the intensity or the A-axis of the CRT. The output from the gate amplifier to the CRT grid increases or decreases the intensity of the display.
4-45. The following detailed theory is subdivided according to module and referenced to the fold-out Schematics in Section VIII. Each Schematic is numbered and indexed in the appropriate test for easy location.
4-48. The 75 MHz attenuators provide attenuation, coupling selection, attenuator compensation, and input capacitance adjustment. The attenuators are compensated voltage-divider types divided into two cascaded sections. The front section provides a division ratio of 1, 10, and 100. The rear section provides division ratios of 1, 2, and 5.
4-50. S1 provides a choice of coupling. Choices are AC, DC, or GND. C1 provides a cutoff frequency of 10 Hz in the AC position.
4-52. C8 and C9 provide attenuator compensation for the first portion of the attenuator. These two components are adjusted for best frequency response. C4 and C5 provide input capacitance adjustment. These two components standardize the input capacitance of the attenuator so that when a compensated probe is used its compensation remains constant as the attenuator ranges are switched. C18 and C19 provide attenuator compensation for the rear section of the attenuator. C13 and C14 provide input
capacitance adjustment. RC networks A5C1/R1 protect the input FET A5A4Q1 from high input voltages if the attenuator is set to a high sensitivity range.
4-55. The vertical preamplifier circuits provide the following functions:
4-56. Front-panel controls to the vertical preamplifier determine dc balance, position, calibrated amplification of the amplifiers, choice of display, and trigger.
4-58. Since channel A and channel B are similar, only channel A will be described in detail. Where channel B differs from channel A, the difference will be described.
4-59. A5A4CR1/CR2/CR5/CR6 form an over-voltage protection circuit. If the input voltage from the attenuator exceeds 1.2 volts, these diodes conduct, limiting the voltage applied to the input of A5A4Q1. A5A4R1 limits the signal current to the gate of A5A4Q1. A5A4C3 ensures maximum response with no loss of high frequency signal.
4-60. The signal from the emitter of A5A4Q5 is applied to the differential cascode amplifier A5A4Q9/Q13 and A5A4Q10/Q14. The single-ended signal is converted to a differential signal by coupling A5A4Q9 and Q10 emitter current through A5A4R38. High frequency adjustment is accomplished by A5A4C25. The gain of the cascode amplifier is controlled by R5 and R11 which shunts current from the emitters of A5A4Q13/Q14. Differences in the base-to-emitter voltage drop of A5A4Q13/Q14 are compensated by adjusting Channel A DC Bal A5A4R43. The over-all DC level is adjusted by DC BAL R3.
4-61. The front-panel POSTION control A5A4R59 establishes the signal current at the emitters of A5A4Q22/ Q23 determining the vertical postion of the trace on the CRT.
4-63. Channel switches A5A4Q22/Q23 are controlled by A5A4Q20. A5A4Q20 is controlled by the J-K flip-flop, A5A4U2. A5A4U2 is controlled by the DISPLAY switch. If Channel A display is not used, the base of Q20 goes high, forward biasing Q20. This forward biases A5A4CR10/CR11 turning off A5A4Q22/Q23, preventing a display on this channel.
4-64. The Channel B switches operate in the same manner except there are two sets of transistors. A5A4Q25/Q26 are used for the B POL NORM polarity display. A5A4Q24/Q27 are used for the B POL INUT polarity display. The two transistor groups are controlled by the position of B POL switch A5S1. Depending upon the postion of A5S1, +5 volts is applied to the base of the appropriate transistors. The two displays are summed at the collectors of A5A4Q22/Q23 and applied to feedback amplifier A5A4Q28/Q29. A5A4R75/R76 compensates for the collector to base capacitance of the transistors.
4-66. Transistor A5A4Q18 sums the current from A5A4Q5 and the channel A sync zero control A5A4R66. A5A4Q17 provides the amplifier a gain of 10. This gain provides 100 mV of signal for each division of display deflection. Emitter follower A5A4Q19 provides low impedance drive to the trigger circuit.
4-68. A5A4Q30/Q31 are the composite sync take-off transistors. The collector output of A5A4Q30 is fed through the DISPLAY switch A5S2 to sync take-off amplifier A5A4Q38/Q39.
4-69. A5A4Q39 provides a low impedance output to drive the trigger circuit. Composit sync adjust A5A4R81 controls its output current to the sync take-off amplifier. A5A4R81 is adjusted for a sero-volt output from the composite sync amplifier with zero volts in.
4-71. The delay line provides 160 ns delay to the vertical signal. This allows the horizontal circuits sufficient time to react so the display is in the proper time sequence.
4-73. The output signals from the delay line drive A5A5Q1/Q2. Complementary current from A5A5Q1/Q2 drives shunt feedback amplifiers A5A5Q4/Q5. High frequency adjustment A5A5C7 is adjusted for optimum pulse response shaping. Feedback in A5A5Q4/Q5 corrects pulse response due to collector to base capacitance. The outputs of the shunt amplifiers drive cascode amplifiers consisting of A5A5Q6/Q7/Q8/Q9. High frequency adjustments. A5A5C12/R30 adjusts the output for optimum pulse response.
4-75. Current for operation of the cascode amplifier flows through the normally closed contacts of the BEAM FINDER switch S3. When the switch is pressed, the contacts are opened and the current source for the amplifier is reduced by A5A5R15. This limits the output of the amplifier and returns the trace to the CRT.
4-77. The gates of A5A4U1 drives multivibrator A5A4Q34/Q35 and A5A4U2. Inputs to A5A4U1 are from the DISPLAY switch and main integrator stage (Schematic 10). Gates U1A and U1B control the multivibrator and U1C and U1D control U2.
4-78. In all positions of the DISPLAY switch A5S2 (except CHOP), the first rear section (1R) is grounded. When a ground is connected, pin 2 of U1A is low, pin 3 of U1A is high, and pin 6 of U1B is low, holding A5A4Q34 base low. This prevents the multivibrator from running.
4-79. In the CHOP mode, this ground is removed and the multivibrator is activated. This is an astable multivibrator which free runs at approximately 100 kHz. The collector output of A5A4Q34 is applied to U1C pin 12. U1C and U1D drive U2. As the output of U1D pin 8 goes high and then low, the Q and Q outputs from U2 alternate high and low. In one state, U2 pin 9 (Q) and pin 4 are high, which turns on A5A4Q36. A5A4Q36 inverts the signal and drives channel control switch A5A4Q20 (Schematic 5). When another input pulse is applied to U2, pin 11 (Q) and pin 6 go high, turning on channel B control, A5A4Q37. This drives channel control switch A5A4Q21 (Schematic 5).
4-80. In the ALT mode, an input signal from the main integrator. is applied to U1C pin 13. This causes U2 to change state at the end of every sweep. When this happens, channel A A5A4Q36 is on for one sweep and channel B A5A4Q37 is on for the next sweep.
4-81. Chopped blanking from A5A4Q34/Q35 is provided through A5A4CR15 to the gate assembly (Schematic 16).
4-83. The five section of the DISPLAY switch control chopped blanking, the type of signal applied to the trigger circuit, and operation of U2, Section 1R controls U1A and U1B which controls the multivibrator. Section 2R, in the A + B mode, applies +15 volts to the A + B BAL control which is adjusted for maximum dynamic range of amplifiers A5A4Q28/Q29 (Schematic 5). Section 2F picks the type of sync signal to be applied to the trigger circuit. In the A, B, A + B mode the sync signal applied to the trigger is on the signal display. In the ALT and CHOP modes, the channel A sync is used. Section 1F controls the state of U2. In the A position, U2 is locked up to turn A5A4Q36 on. In the A + B mode both A5A4Q36/Q37 are turned on. In the CHOP and ALT mode U2 is alternated per input signal from U1D. In the B mode of operation U2 pin 11 and 5 (O) is high and A5A4O37 is on
4-86. The trigger assembly consists of the main and delayed trigger circuits. The main trigger has choice of trig-
ger coupling. Choices are INT/EXT, AC/DC, LF REJ and HF REJ. The delayed trigger is triggered internally and has choice of AC or DC coupling.
4-87. The main trigger provides two outputs to the main integrator (Schematic 10). One output is the main trigger signal and the other is the bright line auto signal. The delayed trigger provides a trigger to the delayed integrator (Schematic 12).
4-89. Input to the main trigger circuits is from the vertical preamplifier (Schematic 7) in the INT position, and from EXT TRIG INPUT, in EXT position. S2 provides AC or DC coupling. S3 and S4 provide LF REJ and HF REJ coupling.
4-90. Network A6A2R5/C3 protects FET A6A2Q1/Q2 from being overdriven. Diode array A6A2CR1 through CR4 protects A6A2Q1/Q2 from over voltage. These diodes on at 1.5 volts, clamping the input signal.
4-91. One half of the trigger circuit amplifies the signal and the other half determines the triggering point set by MAIN TRIGGER LEVEL R1. S5 (SLOPE) determines which half of the trigger circuit amplifies the signal and which half provides the triggering point. A6A2Q1/Q2 are connected in a source follower configuration providing high input impedance A6A2Q3/Q4 provide low impedance to drive the rest of the active components.
4-93. A6A2Q15/Q16 are current steering switches which drive the set-trigger gates (U1A and U1B). Normally the non-inverting outputs of both gates are high. When a trigger signal is applied, current through A6A2Q15 increases. This current is drawn through A6A2R52 causing U1A pin 4 to go low. When pin 4 goes low, pin 6 goes low. With pin 6 low, pin 11 of U1B is also low. Trigger sensitivity, A6A2R45, is adjusted so A6A2Q15 changes the state of U1A but A6A2Q16 has insufficient current to change the state of U1B. This allows U1B to set up one one-half cycle and change states on the other half.
4-94. As the current through A6A2Q16 increases, U1B pin 8 goes low and pin 9 goes high. When pin 8 goes low, A6A2Q19 turns on providing a trigger signal to main integrator A6A3Q1 (Schematic 10).
4-96. The bright line auto circuit consist of A6A2Q23/ Q24/Q25/Q26 and Schmitt Trigger A6A2Q27/Q28. When U1B activates, A6A2Q20 turns off. A6A2Q23 turns on and saturates. The collector of A6A2Q23 is coupled to the base of A6A2Q24. This coupling keeps A6A2Q24 off and A6A2Q23 on even though A6A2Q20 is turned back on.
4-97. If a trigger signal has not been applied, the collector voltage of A6A2Q23 decays through RC network
4-99. The delay functions are identical to the main trigger except it has no bright line auto circuit. The trigger signal is coupled from A6A2Q21 to delayed integrator A6A4Q1 (Schematic 12).
4-102. The main integrator in conjunction with the main sweep time assembly (Schematic 11) generates the main sweep ramp applied to the horizontal circuits (Schematic 15), provides main blanking to the horizontal mode assembly (Schematic 15), and alternate triggering to the vertical preamplifier (Schematic 7). The set-reset multivibrator terminates the main sweep, terminates the delayed sweep if the main sweep terminates, and set the trigger set-trigger gates high to initiate a new trigger.
4-104. A6A3Q1 has two inputs; one is the main trigger through pin K and the other input is the bright line auto signal through A6A3CR1/CR2. Either input will turn A6A3Q1 on. When A6A3Q1 turns on, A6A3Q4 turns off, inverting the signal on the collector of A6A3Q1. This inverted signal is the alternate triggering signal to the vertical preamplifier (Schematic 7).
4-105. Main blanking is also controlled when A6A3Q1 turns on. When A6A3Q1 is on, a ground is provided turning the horizontal mode blanking circuit off (Schematic 15). This allows the trace to be seen on CRT. When A6A3Q1 is off, the blanking circuit is on, blanking the CRT.
4-106. When A6A3Q1 is on, current is drawn through A6A3CR9 turning off A6A3Q6. With A6A3Q6 off, the Miller integrator A6A3Q7/Q8, in conjunction with the main timing components on Schematic 11, generates a positive-going ramp. The ramp is amplified by A6A3Q9 and applied to the horizontal mode assembly (Schematic 15).
4-108. The ramp is also coupled back to comparator A6A3Q2/Q5. This circuit sets the ramp limits from +2 volts to +12 volts. The 2-volt limit is set by current flow through A6A3R9/CR12/Q5 to ground. The 12-volt limit is set as follows: When the ramp applied to A6A3Q5 reaches 12 volts, current through A6A3R8 flows through
A6A3Q2 which is referenced to +12 volts. This turns A6A3Q3 on which applies a low to U1 pin 5 of set-reset multivibrator U1. When pin 5 goes low, pin 6 goes high. This high is applied back to A6A2 trigger set-trigger gates U1A and U1B. When A6A2U1B goes high the sweep is terminated by turning Q1 off.
4-109. If the bright line auto signal is operating the following action will occur. When the ramp reaches 12 volts, pin 6 of U1B goes high. This high is applied to U1A pin 2. U1A pin 12 goes low, forward biasing A6A3CR3. This provides a ground, removing the bright line auto signal from A6A3Q1, terminating the sweep.
4-110. The hold-off time is also applied to the set-reset multivibrator. While the hold-off time is in process, pin 1 U1A is low. This causes U1B pin 6 output to be high, locking the trigger set-trigger gates preventing a sweep. At the completion of hold-off time, U1A pin 1 goes low which applies a low to the trigger set-trigger gates allowing the trigger circuit to function on the next trigger signal.
4-111. Light driver, A6A1Q1, turns off the RESET light DS2 when the output from U1B is high (sweep off).
4-114. The main sweep timing components are tied to the main sweep Miller integrator. Except for the two fastest sweep speeds (.1 and .2 usec) the RC timing is determined by the main sweep time assembly. The capacitor for the two fastest sweep speeds on the main integrator board is A6A3C8.
4-116. The operational amplifier, A6A5Q1A/B/Q2/Q3, is connected in an inverting configuration. Since it is referenced to a regulated positive voltage (+15 volts), it produces a negative voltage at its output. This negative voltage is connected through one of the timing resistors to the Miller integrator (Schematic 10). Feedback for the amplifier is provided by A6A5R10.
4-117. When VERNIER A6R4 is used (out of CAL position), the +15 volt reference is reduced to some other voltage. This causes the operational amplifier output to rise toward ground. When the output rises toward ground, the sweep runs more slowly.
4-119. GENERAL INFORMATION.
4-120. The delayed integrator in conjunction with the delayed sweep time assembly (Schematic 13) generates the delayed sweep ramp applied to the horizontal circuits
(Schematic 15), and provides delayed blanking to the horizontal mode assembly (Schematic 15).
4-121. The set-reset multivibrator terminates the delayed sweep, and sets the delayed trigger set-trigger gates to a high state to initiate a new trigger.
4-122. A6A4Q1 has two inputs: one is the delayed trigger through pin K and the other is +15 volts for AUTO operation through A6A4CR1/CR2. Either input will turn A6A4Q1 on. Delayed blanking is controlled when A6A4Q1 turns on which provides a ground through A6A4Q1, turning the horizontal mode blanking circuit off (Schematic 15). This allows the trace to be seen on the CRT. When A6A4Q1 is off, the blanking circuit is on, blanking the CRT.
4-123. When A6A4Q1 is on, current is drawn through A6A4CR9 turning off A6A4Q6. With A6A4Q6 off, the Miller integrator A6A4Q7/Q8 in conjunction with the delayed timing components on Schematic 13, generates a positive going ramp. The ramp is amplified by A6A4Q9 and applied to the horizontal mode assembly (Schematic 15).
4-125. The ramp is also coupled back to comparator A6A4Q2/Q5. This circuit sets the ramp limits from +2 volts to +12 volts. The 2-volt limit is set by current flow through A6A4R9/CR12/Q5 to ground. The 12-volt limit is set as follows. When the ramp applied to A6A4Q5 reaches 12 volts, current flows through A6A4R8/Q2 which is referenced to +12 volts. This action turns A6A4Q3 on, applying a low to U1 pin 5 of set-reset multivibrator. When pin 5 goes high, pin 6 goes high. This high is applied back to A6A2U2B goes high, the sweep is terminated by turning A6A4Q1 off.
4-126. In AUTO operation the following action will occur: when the ramp reaches +12 volts, pin 6 of U1B goes high. This high is applied to pin 2 of U1A. U1A pin 12 goes low forward biasing A6A4CR3. This provides a ground, removing the +15V drive to A6A4Q1, terminating the sweep.
4-127. The delayed set-reset multivibrator is controlled by two other inputs. One input is from the comparator Schmitt trigger (Schematic 14) and the other from the main integrator set-reset multivibrator (Schematic 10). The Schmitt trigger input activates the set-reset multivibrator when the main sweep voltage equals the voltage set by the DELAY TIME control. This input provides a ground for the +15 volts to A6A4Q1 in the AUTO mode and sets the trigger set-trigger gates (Schematic 9) for a new sweep in the TRIG mode.
4-128. The main integrator input terminates the delayed sweep if the main sweep terminates before the comparator Schmitt trigger is activated. U1B pin 4 goes low and pin 6
goes high resetting the trigger set-trigger gates high for a new sweep. With the trigger gates high, delay integrator A6A4Q1 turns off terminating the sweep.
4-131. The delayed sweep timing components are tied to the delayed sweep Miller integrator. Except for the two fastest sweep speeds (.1 and .2 usec) the RC timing is determined by the main sweep time assembly. The capacitor for the two fastest sweep speeds on the delayed integrator board is A6A4C8.
4-133. The operational amplifier A6A6Q1A/B/Q2/Q3, is connected in an inverting configuration. Since it is referenced to a regulated positive voltage (+15 volts), it produces a negative voltage at its output. This negative voltage is connected through one of the timing resistors to the Miller integrator (Schematic 12). Feedback for the amplifier is provided by A6A6R10.
4-134. When VERNIER A6R5 is used (out of CAL position), the +15-volt reference is reduced to some other voltage. This causes the operational amplifier output to rise toward ground. When the output rises toward ground, the sweep runs more slowly.
4-137. This assembly determines the hold-off time between sweeps. The output from the hold-off amplifier is connected to the main integrator set-reset multivibrator. The multivibrator prevents the trigger gates (Schematic 9) and main integrator (Schematic 10) from functioning during hold-off time.
4-138. The comparator circuit compares the main sweep against a voltage set by the DELAY TIME control. When the main sweep reaches the voltage level set by the DELAY TIME control, the comparator activates the Schmitt trigger. The Schmitt trigger output is applied to the delayed integrator. This output turns the delayed integrator off, terminating the delayed sweep.
4-140. When the main integrator set-reset multivibrator goes high at the end of a sweep, a high is applied to A6A7Q1. This high turns A6A7Q1 on and A6A7Q4 off. When A6A7Q4 turns off, an exponential ramp is generated at the collector of A6A7Q4. This ramp is determined by A6A7C5/C6/C7/C8/R13 and TRIGGER HOLD-OFF control A6R7. A6A7C5/C6/C7 are controlled by the position
of the MAIN TIME/DIV control. The ramp starts at +15 volts and when it reaches approximately 0 volts, turns on hold-off amplifier A6A7Q7.
4-142. A6A7Q7 turns on when the ramp reaches 0 volt. This turns A6A7CR6 on and couples a low to the main integrator set-reset multivibrator. This activates the multivibrator and resets the trigger gates low to operate on the next trigger signal.
4-144. Ramp comparator A6A7Q2/Q3/Q5/Q6 compare the main sweep against the voltage from the DELAY TIME control. When the voltage from the main sweep ramp equals the voltage from the DELAY TIME control, A6A7Q3 turns on. This turns on A6A7Q6 and Schmitt trigger U1. When U1 turns on, pin 12 goes from a high to a low state. This output pulse differentiated by A6A7C9/R15 and sent to the delayed integrator as a reset pulse.
4-147. The horizontal mode assembly determines the type of display (main or delayed) and provides various blanking signals to the gate assembly (Schematic 16).
4-149. Display switch S1 picks the main or delayed sweep signal to be applied to the horizontal preamplifier assembly.
4-151. The blanking circuit provides main blanking, delayed blanking, and trace intensification to the gate assembly. Input from the main and delayed integrator determine the output to the gate assembly. Normal blanking current flows through A6A8R2/CR3 and out pin 7 to the gate assembly (Schematic 16). Inputs to this circuit at pin 8 and pin J are such that when the sweep is off, a high is applied to the input and when the sweep is running a low is applied. When a high is applied from A6A3Q1 or A6A4Q1, A6A8CR3 is forward biased and blanking current is applied to the gate circuit. When a low is applied (A6A3Q1 or A6A4Q1 on), the blanking current is shunted to the integrator circuits (Schematics 10 and 12).
4-152. Trace intesification is provided when the DELAY-ED TIME/DIV switch is moved from the OFF position while in the MAIN SWEEP mode. A6A8CR1 is normally on in the OFF position. When the ground is removed, A6A8CR1 turns off and A6A8R1/CR2 increase current flow to the gate. This current dims the trace but is insuf-
ficient to blank the trace. When the delayed sweep turns on, this increase in current flow goes out pin J to A6A4Q1 returning trace intensity to a normal level. When delayed sweep is used, it controls the blanking as the main sweep did.
4-155. The horizontal preamplifier assembly amplifies the sweep signal, provides sweep length adjustments and controls the horizontal position of the trace. Trace magnification (X10) and trace centering is also provided by this circuit.
4-157. The sweep signal is applied to A6A9Q1. A6A9Q1 sums the sweep and horizontal position currents. Feedback in this stage compensates for collector to base capacitance providing better pulse response. A6A9Q2 is a temperature compensation amplifier.
4-159. Differential amplifier A6A9Q3/Q4 converts the voltage signal from A6A9Q1/Q2 to a current signal. Trace magnification is also controlled by A6A9Q3/Q4. When the MAG (X10) pushbutton in engaged, the gain of the differential amplifier is increased by a factor of 10. When the BEAM FINDER is pressed, less current is supplied to A6A9Q3/Q4 limiting its amplification range. This allows the trace to return to the viewing area. U1 and U2 provide level shifting and drive the output amplifier assemblies.
4-162. The horizontal output amplifier is a class B amplifier used to drive the horizontal plates on the CRT.
4-164. As current is applied to input, A6A10Q3, feedback current from output A6A10Q5, is coupled back through A6A10R1. Since the input is connected to a relatively constant point, the output voltage changes to vary the feedback current. This voltage change is a reproduction of the input current and is applied to the horizontal plates of the CRT to move the trace.
4-167. The gate assembly circuit sums current signals from five sources and developes an output level which
sets the bias on the CRT and thus controls the display intensity. The current sources are: the input signal from the horizontal mode assembly; the chop blanking input from the vertical preamplifier assembly; the external Zaxis input (if any); the current through INTENSITY control R1; and the current through the BEAM FINDER switch when engaged.
4-169. The intensity control establishes the reference bias level on the CRT by setting the current level through the summing amplifier. Increasing intensity of the display by means of INTENSITY control will increase the conduction of A4Q1.
4-171. Summing amplifier A4Q1 adds the five input currents and the feedback current providing an output signal which is coupled through an emitter follower to the complementary output amplifiers A4Q5/Q6. The output amplifiers amplify the input signal to the CRT control grid controling the CRT trace intensity. A positive-going level will increase the conduction of the CRT and brighten the display.
4-173. Emitter-coupled multivibrator A4Q7/Q8 provide a 1 kHz, 1 volt square wave output. A4Q9 amplifies the square wave. Cal Ampl Adj A4R29, provides amplitude adjustment of the output calibration signal.
4-176. This Schematic contains the power module, line rectifier, part of the low voltage mother board and part of the A4 gate assembly. The A1 power module provides ac input power to the Model 1707A. The A2 line rectifier rectifies the incoming ac and provides some filtering. The trickle charge circuit for the battery is also contained on this board. The A3A1 low voltage mother board provides voltage regulation, filtering, and full charge current to the battery. The A4 gate assembly has the light driver for the scale illumination circuits and the low battery indicator circuit.
4-178. A1F1 is the ac input fuse. A1S1 provides selection between 115-and 230-volt operation. The ac input is applied to T1 which is a 3:1 stepdown transformer.
4-180. A2Z1 rectifies the incoming signal. A2C1/C2 are ripple filter capacitors. A2R1/CR1 provides a trickle
4-182. A3A1Q1 and A3Q2 form a series voltage regulator. A3A1R1 provides current to A3A1VR1 which sets the base reference voltage of A3A1Q1. A3A1R4 provides current limiting. A3A1CR1 is a protection diode for A3A1Q1 and A3Q2. A3A1C1/R3 form a ripple filter. A3A1R5/CR2 form the full charge circuit for the battery. When the instrument is OFF, approximately 400 milliamperes is applied to the battery. This charging current is always applied with the power MODE switch in AC LINE, the ac power connected and the instrument POWER switch set to OFF.
4-184. POWER MODE switch S2, provides selection for AC LINE, INTERNAL BATTERY or DC LINE. S1 provides for power on or power off. F1 is in the line during all modes of operation. J2 provides for DC LINE input. This input should be limited between 11.5 to 36 volts, 22 watts maximum.
4-186. A4Q2 and associated circuitry form the light driver network. When the instrument is operated in any mode except INTERNAL BATTERY the circuit is off. Current flows through R11/CR10/DS1 when the instrument is turned on. When the instrument is operated in INTERNAL BATTERY and the battery voltage drops below 22.5 volts, A4Q2 turns on. A1DS1/R13/C10 form a relaxation oscillator which causes A4DS1 to flash. This is an indication that the battery is discharged and further operation may damage the battery.
4-187. A4Q10 and associated circuitry form the scale illumination circuit. The position of A4R3 (SCALE ILLUM) determine drive to A4Q10. Current from A4Q10 goes through A7DS1 and A7DS2. The more A4Q10 conducts, the brighter DS1 and DS2 will be. A4R36/CR11/CR13 provide current limiting to protect A4Q10. A4VR3 limits the voltage across the light circuits.
4-188. The scale illumination lights will become very dim if the instrument is operated from a dc line voltage below approximately 18 volts.
4-191. This Schematic contains the low voltage converter protection circuits and the low voltage converter assembly. The protection circuit protects the instrument in the event that the regulator fails, the dc line input is more than 40 volts, or the polarity of the dc input is reversed.
4-192. A3A2 Low Voltage Converter assembly changes the input dc voltage to usable dc voltages of different levels. The low voltage converter assembly also contains the regulated network which controls the converter output.
4-194. A3A1CR3 protects the instrument against a dc voltage connected with the wrong polarity. If the wrong polarity is connected, A3A1CR3 turns on and the line fuse (F1, Schematic 18) opens. If a dc input over 40 volts is connected, A3A1VR3 conducts which turns on A3A1CR6 and opens F1 (Schematic 18).
4-195. If the regulated +15-volt supply goes above approximately 20 volts, bidirectional diode A3A1CR5 turns on. A3A1CR5/C2/R9 form a relaxation oscillator whose output is coupled across T1, rectified by A3A1CR4 and filtered by A3A1C3. This rectified voltage turns A3A1CR6 on opening line fuse F1.
4-197. A3A2Q2 with associated circuitry form the low voltage converter (Figure 4-1 and 8-69). This circuit changes the incoming dc voltage to useable dc voltages of different magnitudes A3A2B2/VB2 form a voltage source charging A3A2C7 through A3A2B6 A3A2C7 charges to the peak-point emitter voltage of the unijunction transistor A3A2Q1. At this voltage A3A2Q1 conducts supplying current through A3A2R12 to the base of A3A1Q2 (Figure 4-1). This current turns on A3A2Q2 allowing current to flow in the primary winding of A3A3T1 and A3A2T1. As the current in these windings increases, primary winding 1 and 2 (A3A2T1) induce voltage into pins 3 and 4 in such a direction as to turn A3A2Q2 on harder. The primary current continues to increase until the core (A3A2T1) saturates. At this point there is no longer magnetic coupling in A3A2T1 and A3A2Q2 turns off. When A3A3Q2 turns off, an open circuit condition on pins 1 and 2 of A3A3T1 exists and the energy stored in the primary windings of A3A3T1 causes a fly back voltage to appear on the secondary of A3A3T1. This allows the secondary circuits to conduct, charging the capacitors to the required dc voltages.
4-198. A fly back voltage also appears in the secondary windings A3A2T1 pins 3 and 4. This fly back voltage turns on A3A2CR4 charging A3A2C8. When all the energy has left the core, the cycle is repeated with A3A2C8 aiding the turn on of A3A2Q2. The magnetic field in the transformers provide drive for the rest of the operation.
4-199. A3A2VR3 is a protection diode protecting A3A2Q2 from base to collector breakdown. A3A2C1/C2 isolate the power supply from ground. Unijunction transistor A3A2Q1 fires only when the instrument is first turned on. A3A2CR5 provides a discharge path for A3A2C7 preventing A3A2Q1 from being turned on again.
Figure 4-1. Simplified Low Voltage Converter Schematic
Theory
4-201. The low voltage regulator controls the duty cycle of the low voltage converter thus controlling the output voltage. Current into or out of pin 5 or A3A2T1 increases or decreases the duty cycle of the low voltage converter. An increase in current flow from pin 5 decreases the conduction time of A3A2Q2 which lowers the output voltage from the line rectifier filter network.
4-202. The regulated +15 volts is applied to pin 3 of the low voltage converter assembly. The regulated -15 volts is applied to pin 10. The -15 volts turns on reference diode A3A2VR1. The +15 volts is compared to the voltage reference through A3A2R3/R4. The different current, which results in a small voltage variation, is applied to operational amplifier U1 which is connected in the inventing mode. If the voltage at pin 2 increases, the output at pin 6 decreases. When the output of pin 6 decreases, A3A2Q4 turns on harder, drawing current through pins 6 and 5 of the transformer. This increase in dc current from pin 5 of A3A2T1 lowers the output voltage.
4-203. If +15 volts decreases, the voltage applied to pin 2 decreases causing an increase at the output of U1. When the voltage increases A3A2O3 turns on providing more current into pin 5 and 6 of A3A2T1. The increase in dc current into pin 5 increases the conduction time of A3A2O2 causing the output voltage to increase.
4-204. A3A2CR1/CR2 protect U1 input. A3A2C10/R13/ C12 provides frequency compensation. U1 operates open loop dc and closed loop ac. The closed loop feedback is provided by A3A2C13/R14.
4-207. The high voltage power supply develops the voltages used to operate the CRT. The high voltage supply consists of a high voltage oscillator, current source, high voltage transformer. rectifying circuits, and a high voltage multiplier.
4-209. High voltage oscillator A3Q1, activates when the instrument is turned on. Current is drawn through windings 1 and 2 of high voltage transformer A3A4A1T1. This current couples energy into windings 3 and 4. This energy is coupled back in phase to the base of A3A4Q1, turning A3A4Q1 on harder. The signal developed on pins 1 and 2 is stepped up by A3A4A1T1, rectified and filtered.
4-211. AC for the CRT cathode supply is obtained from pins 8 and 5 of high voltage transformer A3A4A1T1. This voltage is rectified by A3A4CR8 and filtered by the associated capacitors, providing -1700 volts to the cathode. Feedback is coupled through RC network A3A4R5/R4, and A3R2/R3/C2 to the base of A3A4Q1. Resistors A3A4R1/R2/R3 form a reference network. Any variation in feedback voltage level is amplified by Darlington amplifier A3A4Q1/Q2 and applied to the base of A3A4Q3 to re-establish the proper output of -1700 volts.
4-212. If the cathode voltage goes in a more negative direction, the voltage at the base of A3A4Q1 will go more negative. This reduces the output from Darlington pair A3A4Q1 and Q2. This causes the base drive of A3A4Q3 to decrease, decreasing conduction. When A3A4Q3 decreases conduction, less current is applied to the base of A3Q1 causing the amplitude of oscillation to decrease reducing the magnitude of the output voltage. A3A4R10/C4 provide high frequency roll-off compensation
4-214. A3A4CR7 and associated circuitry provide -1700 volts to the CRT control grid. Blanking is provided to the
CRT control through A3A4CR7 by the gate assembly. The blanking input completely blanks the CRT. As a less negative voltage is applied to the grid circuit the trace intensity becomes brighter. As more negative voltage is applied the trace intensity decreases until it is blanked.
4-216. The sine wave signal produced by high voltage oscillator A3Q1 is stepped up by the high voltage transformer, A3A4A1T1, which produces a peak-to-peak voltage of approximately 6000 volts between pins 9 and 5. This signal is applied to high voltage multiplier circuit which is a tripler circuit. The multiplier assembly rectifies the input voltage, inverts it, and multiplies it to approximately +20.2 K-volts to drive the CRT post accelerator.
General Information
Model 1707A
Instru | ment | Required | Required for |
---|---|---|---|
Туре | Model | Characteristics | (see Note 1) |
Voltmeter Calibrator |
HP Model H01-
738BR |
Voltage: 0.5V to 150V
Accuracy: to 0.1% |
Ρ, Α |
Oscillator | HP Model 204C |
Frequency: 100 kHz
Voltage output: 15 mV |
Ρ, Α |
Time Mark
Generator |
Tektronix Type
184A |
Time marks: 0.1 usec to 0.5 sec | Ρ, Α |
Square Wave Gen.
Square Wave Gen. |
HP Model 211B
Tektronix Model 106 |
Frequency: 100 kHz; <5ns
Risetime: <1ns |
Р, А
Р, А |
Multifunction
Digital Voltmeter |
HP Model 3439A
with 3444A |
Voltage Range: 1000V
Accuracy: ±0.1% Resistance Range: 10 megohms Accuracy: ±0.1% |
Ρ, Α, Τ |
Constant Amplitude
Signal Generator |
Tektronix Type
191B |
Frequency: 50 kHz to 75 MHz
Voltage Output: 50 mV to 5V p-p |
Ρ, Α |
LC Meter |
Tektronix Type
130 LC |
Range: 30 pF | Ρ, Α, Τ |
Feed through | HP Model 11048B | Resistance: 50 ohms | Ρ, Α |
Termination
Cable (1) |
GR874
RG 213 |
GR874 to BNC 50 ohms
50-ohm cable |
P, A
P, A |
Cable (2) |
HP Model 10501A
Cable Assembly |
BNC 44" | Ρ, Α |
Cable (2) | HP Model 10502A | BNC 9" | Ρ, Α |
Adapter | HP Model 10110A | Banana Jack to BNC | Ρ, Α |
Adapter
Adapter |
HP Model 10111A
HP Model 10219A |
BNC to Binding Post
UHF to BNC Female Adapter |
P, A
P, A |
Test Leads | HP Model 11002A | Test Leads | Ρ, Α, Τ |
Probe | HP Model 10004A | Divide ratio: 10:1 Accuracy: ±3% | A |
RF Millivoltmeter | HP Model 411A | Range: 100 mV | Р |
Accuracy: ±3% | |||
High Voltage Probe |
HP Model K05-
3440A |
Divide ratio: 1000:1
Accuracy: ±3% |
P,A |
Monitor Oscilloscope | HP Models 180A, 1801A and 1820A | Bandwidth: 50 MHz | Ρ, Α, Τ |
Screwdriver |
HP Part No.
8710-0900 |
Pozidrive | А, Т |
Service Kit |
HP Part No.
01701-68701 |
Extender Boards and
Board Puller |
Ρ, Α, Τ |
Note 1. | P = Performance Check, | A = Adjustment Procedure, T = Troublesho | ooting. 7000-A-19 |
5-0
5-2. This section contains procedures for verifying the performance of the Model 1707A and adjustments necessary to calibrate the instrument. Procedures are arranged in numerical order. For best results, this order should be followed. Included in this section are test setups, procedures, and tips about tools and test equipment. Test point and adjustment location photograph (Figure 5-14) is located on fold-outs at the end of this section and may be referred to while performing the adjustments.
5-4. A complete list of test equipment and accessories is given in Table 5-1. In addition, each test procedure contains a list of test equipment required to make that test. Substitute test equipment may be used provided the substitute equipment has the required characteristics.
5-6. Pozidriv screws are used in this instrument. To avoid damage to the screws slots, a Pozidriv screwdriver should be used.
5-8. The HP 10701-68701 Service Kit is an accessory item available from Hewlett-Packard for use in maintaining the Model 1707A. This kit can be obtained by contacting your nearest HP Sales/Service Office. A list of HP field offices is included at the back of this manual.
5-10. The performance tests given in this section are suitable for incoming inspection, preventative maintenance, and troubleshooting. The tests are designed to verify the published instrument specifications. Perform the tests in the order given, and record the measurement information on the Performance Check Record at the end of this section.
5-11. The tests are arranged in the following order:
Test Description |
---|
Deflection Factor |
Risetime |
Bandwidth |
Input RC |
Common Mode Rejection Ratio (CMRR) |
Para. No. | Description |
---|---|
5-27 | Main Sweep Time |
5-28 | Calibrator |
5-29 | Main Triggering |
5-30 | Trigger Level Range and Polarity |
5-31 | Ext Input RC |
5-32 | Delayed Sweep Time |
5-33 | Delayed Triggering |
5-34 | Delay Jitter |
5-12. Each test is arranged so the specification is written out. Next, a description of the test and any special instructions or problem areas are included. Each test that requires test equipment has a test setup drawing and a list of required equipment and accessories. Each procedure gives the control settings required for that particular test.
5-14. The adjustment procedures are arranged in numerical order. Many adjustments are directly related to preceding or following adjustments. The following sets of adjustments are related, and if one adjustment in the set is made, the other procedures in that set should be checked or adjusted.
ower ouppry and oute regustments |
---|
Low Voltage Power Supply Adjustment |
High Voltage Power Supply Adjustment |
Intensity Limit Adjustment |
Y Axis Alignment |
Gate Amplifier Response Adjustment |
Horizontal Adjustments |
Trigger Amplifier Balance and DC Level |
Adjustment |
Trigger Sensitivity Adjustment |
Position Centering Adjustment |
Sweep Length Adjustment |
Main Sweep Timing Adjustment |
X10 Gain Adjustment |
MAG Centering Adjustment |
Calibrator Adjustment |
Delayed Sweep Time Adjustment |
Para. No. | Description |
---|---|
Vertical Adjustments | |
5-50 | Input Capacitance and Attenuator Com |
5-51 | Pulse Response Adjustment |
5-51 | Pulse Response Adjustment |
5-16. Each measurement point in the performance test is repeated in the Performance Check Record. This card is perforated and may be removed for filing. The first time the performance check is made, enter the results on the Performance Check Record and file it for future reference 5-17. FRONT-PANEL ADJUSTMENTS.
5-18. Set the instrument up and perform initial adjustments outlined in Section III before proceeding with the Performance Checks or Adjustment Procedures.
5-20. The control settings listed below are to be used in each performance test and adjustment procedure. If a control is to be set to another position it will be listed in the procedures. After the completion of each performance check or adjustment procedure, the controls should be set back to the original front-panel setting.
VOLTS/DIV | • | • | • | • | • | .01 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Coupling | • | 2 | ÷ | AC | |||||||||
VOLTS/DIV Vernier | • | • | ŝ | × | CAL | ||||||||
POSITION | i e | X | C | e | n | tered | |||||||
DISPLAY | . 10 | • | • | a. | ÷ | . A |
VOLTS/DIV |
---|
Coupling AC |
VOLTS/DIV Vernier CAL |
POSITION Centered |
B POL NORM |
HORIZONTAL POSITION Centered |
MAIN VERNIER CAL |
DELAYED VERNIER CAL |
Sweep Display MAIN SWEEP |
MAIN TIME/DIV |
DELAYED TIME/DIV OFF |
SWEEP MODE AUTO |
TRIGGER INT |
Trigger Coupling AC |
MAIN SLOPE + |
DELAYED SLOPE + + |
MAIN TRIGGER LEVEL Centered |
DELAYED TRIGGER LEVEL Centered |
TRIGGER STABILITY NORM |
MAG |
Voltmeter Calibrator Settings
(Volts p-p) |
VOLTS/DIV Settings | Vertical Display (div) |
---|---|---|
0.05 | .01 | 5± .15 div |
0.1 | .02 | 5± .15 div |
0.3 | .05 | 6± .18 div |
0.5 | .1 | 5± .15 div |
. 1 | .2 | 5± .15 div |
3 | .5 | 6± .18 div |
5 | 1 | 5± .15 div |
10 | 2 | 5± .15 div |
30 | 5 | 6± .18 div |
SPECIFICATION: Ranges: from 10 mV/div to 5 V/div (9 ranges) in 1, 2, 5 sequence. Accuracy: ±3% with vernier in the CAL position. Vernier: continuously variable between all ranges, extends maximum deflection factor to at least 12.5 V/div. VERNIER UNCAL light indicates when vernier is not in CAL position.
DESCRIPTION: The deflection factor is checked by applying a 400 Hz, voltage calibrated signal to the input. The displayed signal is compared against the voltage standard.
Channel A Vernier_____≤2.4 div
Performance Check
Model 1707A
6. Rotate Channel A vernier control fully clockwise into detent.
7. Connect voltmeter calibrator output to Channel B INPUT.
8. Set DISPLAY to B.
9. Repeat s
9. | Repeat steps 2 through 6 for Channel B. | .01 VOLTS/DIV 4.85 div | 5.15 div |
---|---|---|---|
Channel B Vernier | ≤2.4 div | ||
10. | Remove test equipment. | ||
11. | Set Model 1707A controls as follows: | ||
Channel A and B VOLTS/DIV | |||
12. | Refer to Paragraph 5-50 and Schematic 3 if any deflection facto | r is not within specifications. |
SPECIFICATION: Risetime is less than 4.6 ns; direct or with Model 10006A probe. Risetime is measured from 10% to 90% with a 6-division input step from a 25-ohm source.
DESCRIPTION: A 100-kHz signal with a risetime of less than 1.0 ns is applied to the vertical input of the instrument. The risetime displayed on the CRT is then checked to see that it is less than 4.6 ns.
Figure 5-2. Risetime Test Setup
Square Wave' Generator
50-ohm Feed-through Termination
RG 213 Cable
PROCEDURE:
1. Connect instruments as shown in Figure 5-2
2. Set instrument controls as follows:
VOLTS/DIV | .01 |
---|---|
MAIN TIME/DIV | SEC |
Set controls for a 60 mV, 100-kHz output signal.
3. Adjust HORIZONTAL POSITION control so risetime portion of signal is in center of CRT.
4. Push MAG pushbutton in (X10).
5. Measure pulse risetime between 10% and 90% points (dotted lines on CRT). Risetime should be less than 4.6 ns.
Channel A risetime_____< 4.6.ns
6. Move square wave generator output to Channel B INPUT.
8. Repeat steps 2 through 5 for Channel B risetime.
Channel B risetime_____< 4.6 ns
9. Remove test equipment.
10. Set Model 1707A controls as follows:
DISPLAY | A |
---|---|
MAIN TIME/DIV | 5 uSEC |
MAG | X1 |
11. Refer to Paragraph 5-50 and Schematics 3 and 4 if the risetime specification is not met.
Performance Check
SPECIFICATION: (Direct or with Model 10006A probe, 3 dB down from 50 kHz, 6 div reference signal from 25-ohm source) DC-coupled: dc to 75 MHz, AC-coupled: 10 Hz to 75 MHz,
DESCRIPTION: To check bandwidth, a constant amplitude signal generator is used to apply a 6-division, 50-kHz signal to the input of the Model 1707A. The constant amplitude signal generator frequency is increased to 75 MHz. The signal amplitude displayed on the CRT must always be equal to or greater than 4.3 divisions to meet bandwidth specifications.
Figure 5-3. Bandwidth Test Setup
Constant Amplitude Signal Generator
50-ohm RG 213 Cable
50-ohm Feed-through Termination
VOLTS/DIV | .01 |
---|---|
MAIN TIME/DIV | EC |
Constant Amplitude Signal Generator
Set controls for 60 mV 50-kHz signal.
5. Set constant amplitude signal generator controls for a frequency output of 75 MHz. The vertical display on the CRT should be equal to or greater than 4.3 divisions.
Channel A Bandwidth ≥4.3 div_____
Channel B Bandwidth >4.3 div
DISPLAY ....................................
11. Refer to Schematics 3 through 7 if either channel does not meet the bandwidth specification.
SPECIFICATION: The input is 1 megohm ±2% shunted by approximately 24 pF.
DESCRIPTION: The input resistance is measured with an ohmmeter to verify input impedance.
Multifunction Digital Voltmeter
Banana Jack to BNC Adapter
Channel A and B Coupling ..... DC
Multifunction digital voltmeter.
Set controls to measure 10 megohm.
Use a range on the digital voltmeter having an output voltage of less than 1.2 volts. The input circuit is protected against voltages in excess of 1.2 volts.
3. Connect BNC cable to the Channel A INPUT. Channel A INPUT should measure 1 megohm ±2%.
Channel A Resistance 0.98 megohm_____1.02 megohm
4. Check all Channel A VOLTS/DIV ranges.
5. Move the BNC cable from Channel A to Channel B. Channel B input resistance should measure 1 megohm ±2%.
Channel B Resistance 0.98 megohm_____1.02 megohm
6. Check all Channel B VOLTS/DIV ranges.
Channel A and B VOLTS/DIV .01 Channel A and B Coupling ....................................
9 Refer to Paragraph 5-50 and Schematics 3 and 4 if input resistance specifications are not met.
Performance Check
SPECIFICATION: Frequency: dc to 1 MHz. Rejection ratio: At least 40 dB on 10 mV/DIV range, at least 20 dB on all other ranges with verniers set for optimum rejection. Common mode signal amplitude equal to 30 divisions.
DESCRIPTION: This measurement is made by applying identical signals to channel A and channel B and operating in the A + B (B INVT) mode. The signal displayed on the CRT will be the common mode signal.
Figure 5-5. Common Mode Rejection Test Setup
Constant Amplitude Signal Generator
BNC Cable 9" (2)
BNC Tee
RG 213 Cable
50-ohm Feed-through Termination
OLTS/DIV | 5 |
---|---|
IAIN TIME/DIV | С |
Constant Amplitude Signal Generator
Set controls for a 50-kHz, 0.3-volt p-p output signal.
5. Set B POL switch to INVT position. The display should be less than 0.3 division.
CMRR (50 kHz/0.01 VOLTS/DIV) _____<0.3 div
6. Increase constant amplitude signal generator frequency to 1 MHz. The display should be less than 0.3 division.
CMRR (1 MHz/0.01 VOLTS/DIV)_____<0.3 div
7. For all other vertical sensitivity ranges (VOLTS/DIV), 30 divisions of signal at 1 MHz applied to Channel A and B INPUT will result in a deflection factor equal to or less than 3 divisions. This deflection factor is with verniers adjusted for optimum rejection.
8. Remove test equipment.
9. Set Model 1707A controls as follows:
DISPLAY | a e | 0.08 | 639 |
6 K. |
• • | a i | 0.0 | × | R (5) | 063 | 103 | • xa |
Es |
A | ł | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B POL | es s |
|
539 | 0.0 | 1 3 |
s 18 |
18 | 036 | 102 |
|
03 | ю | - 30 | 00 | es. | NO | RN | Λ | ||||||||||||||||||
Channel A a | and B | VOI | _TS | /DI | V | i x |
× e |
• • | 8 | ः | • | • | ¢. | • |
a s |
0 | ж.) | 04 | × ) |
8.9 |
• | • • | • | • • | •••• | • | .0 | 1 |
10. Refer to Schematic 4 if the CMRR specification is not met.
Ranges: From 0.1 usec/div to 0.2 sec/div (20 ranges) and 1, 2, 5 sequence. Accuracy is ±3% with vernier in CAL position.
Vernier: Continuously variable between all ranges; extends slowest sweep to at least .5 sec/div. VERNIER UNCAL light indicates when vernier is not in CAL position.
Magnifier: Expands all sweeps by a factor of 10 and extends the fastest sweep speed to 10 ns/div. Accuracy is ±5%.
DESCRIPTION: The instrument time base is compared against a time mark generator to verify specifications.
Performance Check
Model 1707A
EQUIPMENT:
Time Mark Generator
BNC Cable
Channel A VOLTS/DIV | As required |
---|---|
MAIN TIME/DIV | 1 uSEC |
Set output for 0.1 usec markers.
3. Adjust HORIZONTAL POSITION control so the first marker is aligned with the first left hand vertical graticule. Eleven markers should be present on the screen.
.1 uSEC ______11 markers in 10 div ±0.3 div
4. Proceed to check the rest of the TIME/DIV settings using Table 5-3.
5. Set TIME/DIV switch to 1 uSEC.
6. Set time mark generator for 5 usec time marks. Adjust HORIZONTAL POSITION control so three time marks appear on the CRT.
7. Rotate MAIN VERNIER full counterclockwise. VERNIER UNCAL light should be lighted. The time period between time marks should be less than 2 major divisions.
MAIN VERNIER Check _____ <2 div
8. Return MAIN VERNIER to CAL position.
9. Set time mark generator for 1 usec time marks. Eleven time marks should appear on CRT.
10. Press MAG pushbutton (X10). Adjust HORIZONTAL POSITION control until two time marks appear 10 divisions apart ±0.5 division.
MAG (X10) 9.5 div _____10.5 div
11. Remove test equipment.
12. Set Model 1707A controls as follows:
Channel A VOLTS/DIV | 1 |
---|---|
MAIN TIME/DIV | 2 |
MAG X | 1 |
13. Refer to the following paragraphs and schematics if any of these tests fail:
a. Sweep ranges: Paragraph 5-45, Schematics 10 and 11.
b. Vernier check: Paragraph 5-45, Schematics 10 and 11.
c. MAG (X10) check: Paragraph 5-46, Schematic 15.
Performance Check
Model 1707A
Time Mark Generator | Main Time/Div | Time Marks To Check |
---|---|---|
.1 usec | .1 uSEC | 11 in 10 div ±.3 div |
.5 usec | .2 uSEC | 5 in 10 div ±.3 div |
.5 usec | .5 uSEC | 11 in 10 div ±.3 div |
1 usec | 1 uSEC | 11 in 10 div ±.3 div |
5 usec | 2 uSEC | 5 in 10 div ±.3 div |
5 usec | 5 . uSEC | 11 in 10 div ±.3 div |
10 usec | 10 uSEC | 11 in 10 div ±.3 div |
50 usec | 20 uSEC | 5 in 10 div ±.3 div |
50 usec | 50 uSEC | 11 in 10 div ±.3 div |
.1 ms | .1 mSEC | 11 in 10 div ±.3 div |
.5 ms | .2 mSEC | 5 in 10 div ±.3 div |
.5 ms | .5 mSEC | 11 in 10 div ±.3 div |
1 ms | 1 mSEC | 11 in 10 div ±.3 div |
5 ms | 2 mSEC | 5 in 10 div ±.3 div |
5 ms | 5 mSEC | 11 in 10 div ±.3 div |
10 ms | 10 mSEC | 11 in 10 div ±.3 div |
50 ms | 20 mSEC | 5 in 10 div ±.3 div |
50 ms | 50 mSEC | 11 in 10 div ±.3 div |
.1 sec | .1 SEC | 11 in 10 div ±.3 div |
.5 sec | .2 SEC | 5 in 10 div ±.3 div |
Performance Check
Type: 1 kHz ±10% square wave.
Voltage: 1 volt p-p ±1%.
DESCRIPTION: The frequency is checked by the Model 1707A. The calibrator amplitude is checked by comparing the p-p signal against a known 0.1% 1 volt p-p signal.
Figure 5-7. Calibrator Measurement Test Setup
Voltmeter Calibrator
Banana Jack to BNC Adapter
BNC Cable
Test Lead
Channel A VOLTS/DIV | .1 | |
---|---|---|
Channel A Coupling | 9 K. | DC |
MAIN TIME/DIV | 2 m | SEC |
Set for 1V p-p output.
3. Adjust VOLTS/DIV Vernier knob so the display is exactly 6 divisions of vertical amplitude.
50-ohm Feed-Through Termination
Female BNC to GR874 Adapter
MAIN TIME/DIV |
|
254 |
a u | 2.20 | 2.2 | 1 7 | 20 | 2 22 | 174 |
|
10 | 1.2 | a seg | .1 ι | JSE | EC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAG |
|
201 |
÷., |
a i |
- | 1. | 5.5 |
|
- 2 | - |
- |
10 | - | 20 | Х | 10 | ||||||||||||
Channel A VOLTS | /DIV |
1000 |
- 259 |
2.4 | - | a e |
4 |
- | : | 4 |
÷ |
a is | • • |
- |
E.C | a e | - | 6.43 | .1 |
Set controls for a 35 MHz, 0.5 division display output signal.
3. Adjust MAIN TRIGGER LEVEL for a stable display. If a stable display is obtained, the instrument is triggering properly.
Internal Triggering (35 MHz) (V)
4. Set constant amplitude signal generator controls for 75 MHz, 1.5 division display output signal.
5. Adjust MAIN TRIGGER LEVEL for a stable display. If a stable display is obtained, the instrument is triggering properly.
Internal Triggering (75 MHz) (V)
6. Push INT/EXT pushbutton (EXT).
7. Set constant amplitude signal generator controls for 75 MHz, 35 mV RMS (100 mV p-p) signal as read on the RF millivoltmeter
8. Adjust MAIN TRIGGER LEVEL for a stable display. If a stable display is obtained, the instrument is triggering properly.
External Triggering (75 MHz)_____(
9. Set constant amplitude signal generator controls for 35 MHz, 17.5 mV RMS (50 mV p-p) signal as read on the RF millovoltmeter.
10. Adjust MAIN TRIGGER LEVEL for a stable display. If a stable display is obtained, the instrument is triggering properly.
External Triggering (35 MHz) _____(\scrime)
11. Release INT/EXT pushbutton (INT).
12. Release MAG pushbutton (X1).
13. Disconnect the constant amplitude signal generator from the instrument.
14. Connect audio oscillator output to Channel A INPUT.
15. Set DISPLAY to CHOP.
16. Set Model 1707A TIME/DIV control to 2 uSEC.
17. Set oscillator controls for a 50 mV, 100 kHz output signal.
Performance Check
18. Adjust MAIN TRIGGER LEVEL for a stable display. A segmented display should be observed. This is a normal display.
Chop Triggering (100 kHz) (V) | |
---|---|
19. | Remove test equipment. |
20. | Set Model 1707A controls as follows: |
DISPLAY A VOLTS/DIV .01 MAIN TIME/DIV 5 uSEC |
21. Refer to Paragraphs 5-41 and 5-42 and Schematic 8 and 9 if any of the triggering specifications are not met.
SPECIFICATION: The trigger level should adjust smoothly at any point on the vertical waveform for both the negative and positive portions of the slope. In the EXT mode, triggering should adjust from -1.5V to +1.5V.
DESCRIPTION: The trigger level range and polarity are checked against a calibrated input to ensure that the instrument triggers on both the negative and positive slopes of the input signal.
Figure 5-9. Trigger Range and Polarity Test Setup
EQUIPMENT:
Voltmeter Calibrator
BNC Cable
BNC Tee
Banana Jack to BNC Adapter
VOLTS/DIV | 5 |
---|---|
MAIN TIME/DIV | .5 mSEC |
Set controls for a 5-volt, 400-Hz output signal.
Performance Check
3. Rotate MAIN TRIGGER LEVEL to both extremes. Triggering point should adjust smoothly across positive slope of the waveform displayed on the CRT.
4. Press MAIN SLOPE pushbutton (-).
5. Rotate TRIGGER LEVEL to both extremes. Triggering point should adjust smoothly across negative slope of the waveform displayed on the CRT.
INT Trigger Level (−)_____(√)
6. Press INT/EXT pushbutton (EXT).
7. Repeat steps 1 through 5 in EXT position. Triggering in EXT for both positive and negative slope should operate smoothly -1.5V to +1.5V.
EXT | Trigger | Level | (+) -1.5V | +1.5V |
---|---|---|---|---|
EXT | Trigger | Level | (-)-1.5V | +1.5V |
8. Remove test equipment.
9. Set Model 1707A controls as follows:
VOLTS/DIV |
|
---|---|
MAIN TIME/DIV |
|
INT/EXT |
INT |
SLOPE |
|
10. Refer to Paragraph 5-41 and Schematic 8 if any of these measurements are not met.
5-31. EXT INPUT RESISTANCE
SPECIFICATION: The input is 1 megohm ±2% shunted by approximately 27 pF.
DESCRIPTION: The input resistance is measured with a meter to verify input impedance.
Multifunction Digital Voltmeter
BNC Cable
Banana Jack to BNC Adapter
Model 1707A | |
---|---|
MAIN AC/DC | DC |
INT/EXT | EXT |
Multifunction Digital Voltmeter
Set controls to 10 megohm range.
Use a range on the digital voltmeter having an output voltage of less than 1.2 volts. The input circuit is protected against voltages in excess of 1.2 volts.
3. Connect BNC cable to the EXT INPUT. Input resistance should measure 1 megohm ±2%.
Input Resistance 0.98 megohm ______1.02 megohm
Ranges: From 0.1 usec/div to 0.1 sec/div (19 ranges) in a 1, 2, 5 sequence. Accuracy ±3% with vernier in CAL position.
Vernier: Continuously variable between all ranges; extends slowest sweep speed to at least .25 sec/div. VERNIER UNCAL light indicates when vernier is not in CAL position.
DESCRIPTION: The delayed time base is compared against a time mark generator to verify specifications.
Figure 5-11. Delayed Sweep Time Setup
EQUIPMENT:
Time Mark Generator
BNC Cable
VOLTS/DIV | • | ÷ | 9 | • | • | . , | • • | • | • • | • | ÷ | • • | • | • | • | • | ž ž | • • | • | а | s red | quire | ed | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DELAYED TIME/DIV | 1 | 10 | i 183 | 2 | 81 ¥ | ••• | 123 | - 2 | s | 84 | a v | a. | 27.2 | 134 | 2.2 | si. | 23 |
а.
С |
83 | 254 | - 63 | 4.16 | . i . | .1 | uSE | С | |||||||||||
Display | a k | 36 B | 1 | a. 4 | 0.9 | 124 | 83 | ×. | a, | ÷ | • • | DE | LA | YE | DS | WEE | Ρ | ||||||||||||||||||||
MAIN TIME/DIV | • | • •:> | • • | e x | e e | æ | 1.1 | ्र | 24 | x : A | • • | • | • • | • | • • | • | - | • • | : | .2 | uSE | С |
Set output for .1 usec markers.
2. Adjust HORIZONTAL POSITION controls so the first marker is aligned with the first left hand vertical graticule. Eleven markers should be present on the screen.
.1 usec_____11 markers in 10 div ±.3 div
3. Proceed to check the rest of the DELAYED TIME/DIV settings using Table 5-4. The MAIN TIME/DIV control should be one step slower than DELAYED TIME/DIV.
Table 5-4. Delayed Sweep Performance
Time Mark Generator | Delayed Time/Div | Time Marks To Check |
---|---|---|
.1 usec | .1 uSEC | 11 in 10 div ±.3 div |
.5 usec | .2 uSEC | 5 in 10 div ±.3 div |
.5 usec | .5 uSEC | 11 in 10 div ±.3 div |
1 usec | 1 uSEC | 11 in 10 div ±.3 div |
5 usec | 2 uSEC | 5 in 10 div ±.3 div |
5 usec | 5 uSEC | 11 in 10 div ±.3 div |
10 usec | 10 uSEC | 11 in 10 div ±.3 div |
50 usec | 20 uSEC | 5 in 10 div ±.3 div |
50 usec | 50 uSEC | 11 in 10 div ±.3 div |
.1 ms | .1 mSEC | 11 in 10 div ±.3 div |
.5 ms | .2 mSEC | 5 in 10 div ±.3 div |
.5 ms | .5 mSEC | 11 in 10 div ±.3 div |
1 ms | 1 mSEC | 11 in 10 div ±.3 div |
Performance Check
Time Mark Generator | Delayed Time/Div | Time Marks To Check |
---|---|---|
0 | ||
5 ms | 2 mSEC | 5 in 10 div ±.3 div |
5 ms | 5 mSEC | 11 in 10 div ±.3 div |
10 ms | 10 mSEC | 11 in 10 div ±.3 div |
50 ms | 20 mSEC | 5 in 10 div ±.3 div |
50 ms | 50 mSEC | 11 in 10 div ±.3 div |
.1 sec | .1 SEC | 11 in 10 div ±.3 div |
4. Set DELAYED TIME/DIV switch to 1 mSEC.
5. Set time mark generator for 5 ms time marks.
6. Adjust DELAY TIME until three time marks appear on the CRT.
7. Rotate delay VERNIER full counterclockwise. VERNIER UNCAL light should be lighted. The time period should be equal to or less than two divisions.
NOTE
Sweep length decreases as VERNIER is turned counterclockwise.
Delayed Vernier Check_____≤2 div
8. Return DELAYED VERNIER to CAL position.
9. Remove all test equipment.
10. Set Model 1707A controls as follows:
VOLTS/DIV | 01 |
---|---|
DELAYED TIME/DIV | OFF |
Display | MAIN SWEEP |
11. Refer to Paragraph 5-49 and Schematics 12 and 13 if any of the tests fail.
Performance Check
SPECIFICATION: Internal; DC to 35 MHz on signals causing one-half division or more of vertical deflection increasing to 1.5 divisions at 75 MHz in all display modes except chop; dc to 100 kHz in chop mode.
DESCRIPTION: Delayed triggering is checked with known input signals to ensure proper triggering.
Figure 5-12. Delay Triggering Test Setup
Constant Amplitude Signal Generator
RG 213 Cable
50-ohm Feed-through Termination
VOLTS/DIV | ō |
---|---|
MAIN TIME/DIV | 2 |
DELAYED TIME/DIV | С |
DELAYED AUTO/TRIG TRIC | 3 |
Display DELAYED SWEE | Ρ |
MAIN TRIGGER LEVEL | ٧ |
Set controls for a 35 MHz, 0.5 division display output signal.
3. Adjust MAIN TRIGGER LEVEL for a stable display. If a stable display is obtained, the instrument is triggering properly.
Delayed Internal Triggering (35 MHz)_____(
4. Set constant amplitude signal generator controls for 75 MHz, 1.5 division display output signal.
5. Adjust MAIN TRIGGER LEVEL for a stable display. If a stable display is obtained, the instrument is triggering properly
Delayed Internal Triggering (75 MHz) (V)
6. Disconnect test equipment.
VOLTS/DIV | 01 |
---|---|
MAIN TIME/DIV | 5 uSEC |
DELAYED TIME/DIV | OFF |
DELAYED AUTO/TRIG | AUTO |
Display I | MAIN SWEEP |
8. Refer to Paragraph 5-42 and Schematics 8 and 9 if delayed triggering specifications are not met.
SPECIFICATION: Delay jitter should be less than .02%.
DESCRIPTION: The delay jitter is checked by expanding the sweep by 20,000 and visually monitoring the jitter.
Figure 5-13. Delay Jitter Test Setup
Time Mark Generator
BNC Cable
VOLTS/DIV | 5 |
---|---|
MAIN TIME/DIV | 1 mSEC |
DELAYED TIME/DIV | .5 uSEC |
Display MAIN | SWEEP |
Set for 1 ms time marks.
Display jitter_____<1 div
VOLTS/DIV | 01 |
---|---|
MAIN TIME/DIV. | 5 uSEC |
DELAYED TIME/DIV | OFF |
Display | MAIN SWEEP |
9. Refer to Schematics 8, 9, 12, 13, and 15 if specifications are not met.
Serial No.
REFERENCE | DESCRIPTION | RESULTS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STEP | DESCRIPTION | MIN | ACTUAL | MAX | |||||||||
5-22 | DEFLECTION FACTOR |
Chan Chan
A B |
|||||||||||
.01 VOLTS/DIV
.02 VOLTS/DIV .05 VOLTS/DIV .1 VOLTS/DIV .2 VOLTS/DIV .5 VOLTS/DIV 1 VOLTS/DIV 2 VOLTS/DIV 5 VOLTS/DIV |
4.85 div
4.85 div 5.82 div 4.85 div 4.85 div 5.82 div 4.85 div 4.85 div 5.82 div |
5.15 div
5.15 div 6.18 div 5.15 div 5.15 div 6.18 div 5.15 div 5.15 div 6.18 div |
|||||||||||
Channel A Vernier
Channel B Vernier |
≪2.4 div
≪2.4 div |
||||||||||||
5-23 | RISETIME | ||||||||||||
Channel A Risetime
Channel B Risetime |
<4.6 ns
<4.6 ns |
||||||||||||
5-24 | BANDWIDTH | ||||||||||||
Channel A Bandwidth
Channel B Bandwidth |
≥4.3 div
≥4.3 div |
||||||||||||
5.25 | INPUT RESISTANCE | ||||||||||||
Channel A Resistance
Channel B Resistance |
.98 megohm
.98 megohm |
1.02 megohm
1.02 megohm |
|||||||||||
5-26 |
COMMON MODE
REJECTION RATIO (CMRR) |
||||||||||||
CMRR (50 kHz/0.01
volts/div) CMRR (1 MHz/0.01 volts/div) |
<.3 div
<.3 div |
||||||||||||
5.27 | MAIN SWEEP TIME | ||||||||||||
.1 uSEC
.2 uSEC .5 uSEC 1 uSEC 2 uSEC 5 uSEC |
11 in 9.7 div
5 in 9.7 div 11 in 9.7 div 11 in 9.7 div 5 in 9.7 div 11 in 9.7 div 11 in 9.7 div |
11 in 10.3 div
5 in 10.3 div 11 in 10.3 div 11 in 10.3 div 5 in 10.3 div 11 in 10.3 div |
Serial No. _____
REFERENCE | DESCRIPTION | RESULTS | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
STEP | DESCRIPTION | MIN | ACTUAL | МАХ | ||||||||
5-27 (Cont'd) |
10 uSEC
20 uSEC 50 uSEC .1 mSEC .2 mSEC .5 mSEC 1 mSEC 2 mSEC 5 mSEC 10 mSEC 20 mSEC .1 SEC .1 SEC .2 SEC Main Vernier Check |
11 in 9.7 div
5 in 9.7 div 11 in 9.7 div 11 in 9.7 div 5 in 9.7 div 11 in 9.7 div 11 in 9.7 div 5 in 9.7 div 5 in 9.7 div 11 in 9.7 div 5 in 9.7 div 11 in 9.7 div 11 in 9.7 div 5 in 9.7 div |
11 in 10.3 div
5 in 10.3 div 11 in 10.3 div 11 in 10.3 div 5 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 5 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 5 in 10.3 div 11 in 10.3 div 2 div <2 div |
|||||||||
5-28 | 9.5 div | 10.5 div | ||||||||||
Calibrator Amplitude
Calibrator Frequency |
5.94 div
900 Hz |
6.06 div
1100 Hz |
||||||||||
5-29 | MAIN TRIGGERING | |||||||||||
Internal Triggering (35 MHz)
Internal Triggering (75 MHz) External Triggering (75 MHz) External Triggering (35 MHz) Chop Triggering (100 kHz) |
~~~~~ | |||||||||||
5-30 | TRIGGER LEVEL RANGE AND POLARITY | |||||||||||
Int Trigger Level (+)
Int Trigger Level (-) Ext Trigger Level (+) Ext Trigger Level (-) |
-1.5V
-1.5V |
√
√ +1.5V +1.5V |
||||||||||
5-31 | EXT INPUT RESISTANCE | |||||||||||
Input Resistance | .98 megohm | 1.02 megohm | ||||||||||
5-32 | DELAYED SWEEP TIME | |||||||||||
.1 uSEC
.2 uSEC |
11 in 9.7 div
5 in 9.7 div |
11 in 10.3 div
5 in 10.3 div |
Serial No. _____
REFERENCE | DESCRIPTION | RESULTS | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
STEP | DESCRIPTION | MIN | ACTUAL | MAX | |||||||||
.5 uSEC
1 uSEC 2 uSEC 5 uSEC 10 uSEC 20 uSEC 50 uSEC .1 mSEC .2 mSEC .1 mSEC .2 mSEC 1 mSEC 2 mSEC 5 mSEC 10 mSEC 20 mSEC 50 mSEC .1 SEC Delayed Vernier Check |
11 in 9.7 div
11 in 9.7 div 5 in 9.7 div 11 in 9.7 div 11 in 9.7 div 5 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div 11 in 9.7 div |
11 in 10.3 div
11 in 10.3 div 5 in 10.3 div 11 in 10.3 div 11 in 10.3 div 5 in 10.3 div 11 in 10.3 div 11 in 10.3 div 5 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div 11 in 10.3 div |
|||||||||||
5-33 | DELAYED TRIGGERING | ||||||||||||
Delayed Internal Triggering
(35 MHz) Delayed Internal Triggering (75 MHz) |
~ | ||||||||||||
5-34 | DELAY JITTER | √ | |||||||||||
Delay Jitter | <1 div |
REFERENCE: Schematics 19 and 20, Figures 8-70, 8-71 and 8-72, Adjustment Locations Figure 5-14.
DESCRIPTION: The +15V is the only regulated voltage in this instrument. The rest of the voltages in this instrument are referenced to +15V. The voltage accuracy is set by using a digital voltmeter to monitor the +15V.
Digital Voltmeter
Test Leads
Power is present in the Line Rectifier Assembly, (A2) and Low Voltage Mother Board (A3A1) when POWER switch is OFF.
Low Voltage Adj 14.99V_____15.01V
5. Check the rest of power supply output voltages as shown in Table 5-5.
Supply | Test Point | Lir | mits | |||||
---|---|---|---|---|---|---|---|---|
+15V | A4 Wire (92) | +14.99V | +15.01V | |||||
-15V | A4 Wire (97) | -14.5V | -15.75V | |||||
+5V | A4 Wire (93) | +5.1V | +5.5V | |||||
+50V | A4 Wire (2) | +47V | +52V | |||||
-50V | A4 Wire (7) | -47V | -52V | |||||
+80V | A4 Wire (926) | +80V | +90V |
REFERENCE: Schematics 17, Figures 5-14 and 8-58.
DESCRIPTION: The high voltage is adjusted by comparing it against a known calibrated voltage standard.
Digital Voltmeter
Voltmeter Calibrator
1000: 1 Divider Probe
5-38. INTENSITY LIMIT ADJUSTMENT.
REFERENCE: Schematic 17, Figures 5-14 and 8-58.
DESCRIPTION: The intensity limit adjustment is set so the front panel INTENSITY control has complete range. This range is from extinguished to complete brightness.
REFERENCE: Schematics 16 and 17, Figures 5-14, 8-55 and 8-58.
DESCRIPTION: The internal orth adjust is set to align the trace on the Y-Axis.
Make sure the horizontal trace is properly aligned before proceeding with this adjustment.
REFERENCE: Schematic 16, Figures 5-14 and 8-58.
DESCRIPTION: The gate amplifier is adjusted for optimum response.
Monitor Oscilloscope
10:1 Divider Probe
а. | Coupling . | DC | ||
---|---|---|---|---|
b. | All others | N | lormal dis | play |
4. Adjust Model 1707A INTENSITY for 20V amplitude pulse as displayed on monitor oscilloscope.
REFERENCE: Schematics 5 and 6, Figures 5-14 and 8-15.
DESCRIPTION: The Composite Sync adj and Channel A Sync adj are set so the instrument triggers at the same point on all signals.
Oscillator
DISPLAY |
|
• |
|
a. |
|
× |
• |
÷ | 82 |
• |
3 |
×. | • | • • | • |
100 |
1 | 4 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VOLTS/DIV |
|
|
|
• |
e |
e |
• |
|
• |
• |
28 |
• | ÷ | a |
|
.0 | 1 |
13. Refer to Schematics 5, 6 and 9 if this adjustment cannot be made.
5-42. TRIGGER SENSITIVITY ADJUSTMENT.
REFERENCE: Schematic 9, Figures 5-14 and 8-31.
DESCRIPTION: Trigger sensitivity is adjusted with a calibrated input to ensure proper triggering range.
Constant Amplitude Signal Generator
RG 213 Cable
50-ohm Feed-through Termination
1. Set Model 1707A controls as follows:
Coupling A( | 2 |
---|---|
DISPLAY A | • |
MAIN TIME/DIV | ; |
Channel A VOLTS/DIV | I. |
Trigger Coupling HF RE. | I |
DELAYED AUTO/TRIG | ì |
MAIN TIME/DIV | ; |
---|---|
DELAYED TIME/DIV OFF | ŧ. |
Display MAIN SWEEP | > |
Channel A VOLTS/DIV | |
DELAYED AUTO/TRIG AUTO | C. |
13. Refer to Schematics 8 and 9 if this adjustment cannot be made.
5-43. POSITION CENTERING ADJUSTMENT.
REFERENCE: Schematic 4, 5 and 6, Figures 5-14 and 5-15.
DESCRIPTION: Internal controls are adjusted to center the display. This adjustment varies the amplifier dc reference thus establishing position.
DISPLAY ..... A
15. Refer to Schematics 4, 5, 6 and 7 if this adjustment cannot be made.
5-44. SWEEP LENGTH ADJUSTMENT.
REFERENCE: Schematic 15, Figures 5-14 and 8-51.
DESCRIPTION: The X1 gain adjust of the horizontal preamplifier is adjusted to set sweep length to 11 divisions.
NOTE
Adjust A6A9R1 for a display length of 10 divisions. Position right end of display 1 division to the left and readjust A6A9R1 to increase display length of 1 division.
3. Refer to Schematic 15 if this adjustment cannot be made.
REFERENCE: Schematics 10 and 11, Figures 5-14, 8-34 and 8-38.
DESCRIPTION: The main sweep time adjustments are made with a known time reference input to provide a calibrated sweep.
Time Mark Generator
DELAYED TIME/DIV | OFF | |
---|---|---|
MAIN TIME/DIV | ***** | 1 uSEC |
Display | MAII | N SWEEP |
VOLTS/DIV | as | s required |
Set time mark generator for 0.1 usec time marks.
3. Adjust A6A5R16, Cal adjust, for 11 time marks in 10 divisions.
Time marks | MAIN TIME/DIV | Adjustment | Time marks |
---|---|---|---|
.1 usec | .1 uSEC | A6A5R16 | 11 |
1 usec | 1 uSEC | A6A5R15 | 11 |
.1 msec | .1 mSEC | A6A5R14 | 11 |
10 msec | 10 mSEC | A6A5R13 | 11 |
4. Complete the rest of the sweep time adjustments per Table 5-6.
MAIN TIME/DIV | 5 uSEC |
---|---|
VOLTS/DIV | .01 |
7. Refer to Schematics 10 and 11 if this adjustment cannot be made.
REFERENCE: Schematic 15, Figures 5-14 and 8-51.
DESCRIPTION: The horizontal preamplifier circuit X10 gain adjust is adjusted in the expand mode for X10 magnification.
Time Mark Generator
BNC Cable
MAIN TIME/DIV |
|
|
|
• • |
• • | • • | • •= |
|
• | • • |
|
• • | • • | • • |
••• |
•:• | 1 mSE | EC | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VOLTS/DIV |
|
|
|
|
• • | • • |
|
• | ••• |
|
a | s requir | ed |
Set time mark generator for 0.1 ms time marks.
REFERENCE: Schematic 15, Figures 5-14 and 8-51.
DESCRIPTION: The Mag centering adjust is set so the display is expanded around center screen.
Time Mark Generator
MAIN TIME/DIV |
- |
୍କ |
. :: |
A |
- |
ø |
13 |
100 | 2 | a. | à | i. | .2 | mS | SEC | С | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
VOLTS/DIV |
e. |
• | 20 |
- |
• |
• |
• |
٠ |
s s |
|
• | • | × | • |
|
• | • | , | as | s re | qui | ire | d |
Set time mark generator for 1 ms time mark.
MAIN | тι | M | E/ | DI | ٧ |
- |
4 |
ः |
÷ |
- |
• | • | • • |
• |
• | • | 5 u | ISE | С | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAG |
• |
× |
|
200 | • | • |
|
÷ | × | e e | • |
÷ |
• | • | • | × | • | • | • | ÷ | X | 1 |
8. Refer to Schematic 15 if this adjustment cannot be made.
REFERENCE: Schematic 16, Figures 5-14 and 8-55.
DESCRIPTION: The calibrator output is compared against a voltmeter calibrator standard to accurately set the calibrator amplitude.
Voltmeter Calibrator
Test Leads
Channel A Vernier .
12. Refer to Schematic 16 if this adjustment cannot be made.
REFERENCE: Schematics 12 and 13, Figures 5-14, 8-41 and 8-44,
DISCRIPTION: The delayed sweep time adjustments are made with a known time reference input to provide a calibrated sweep.
Time Mark Generator
BNC Cable
VOLTS/DIV | as required |
---|---|
MAIN TIME/DIV | .2 uSEC |
DELAYED TIME/DIV | .1 uSEC |
Display | 'ED SWEEP |
Time Mark Generator
Set output for .1 usec time marks.
3. Adjust A6A6R16, cal adjust, for 11 marks in 10 divisions.
4. Complete the rest of the sweep time adjustments per Table 5-7. The MAIN TIME/DIV control should be one step slower than DELAYED TIME/DIV.
Time Mark Generator |
Model 1707A
Delay Time/Div |
Adjustment | Time Mark |
---|---|---|---|
.1 usec | .1 uSEC | A6A6R16 | 11 |
1 usec | 1 uSEC | A6A6R15 | 11 |
1 msec | 1 mSEC | A6A6R14 | 11 |
10 msec | 10 mSEC | A6A6R13 | 11 |
Table 5-7. Delayed Sweep Time Adjustments
5. Disconnect test equipment.
6. Set the Model 1707A controls as follows;
VOLTS/DIV | 01 |
---|---|
MAIN TIME/DIV | 5 uSEC |
DELAYED TIME/DIV | OFF |
Display MAIN | SWEEP |
7. Refer to Schematic 12 and 13 if this adjustment cannot be made.
DESCRIPTION: The low frequency compensation resistor in the vertical preamplifier is adjusted for optimum pulse response.
Square Wave Generator
50-ohm Termination
Channel A VOLTS/DIV | 1 | • • | ж |
|
× | • | . , | - | • |
÷ |
• |
• | :0 | ÷ | • |
× |
÷ |
9 | ). | 0 |
|
|
. , | • | £ | .0 | )1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MAIN TIME/DIV | • | . , | • | ٠ |
|
c.) | : | • |
× |
• |
÷ |
• |
, | • • | • | ÷ | Ę | i us | ес |
Square Wave Generator
Adjust square wave generator output for a 6-division 50 KHz display.
DESCRIPTION: The input capacitance is adjusted to make the capacitance the same on all ranges. The attenuator compensation adjustment is made with a square wave input to provide optimum square wave response.
LC Meter
Square Wave Generator
BNC Cable
DISPLAY AL | T |
---|---|
VOLTS/DIV (both channels) | )2 |
MAIN TIME/DIV | C |
Coupling (both channels) D | С |
VOLTS/DIV | CHANNEL A | CHANNEL B |
---|---|---|
.02 | A5A1C18 | A5A2C18 |
.05 | A5A1C19 | A5A2C19 |
.1 | A5A1C8 | A5A2C8 |
.2 | A5A1C13 | A5A2C13 |
.5 | A5A1C14 | A5A2C14 |
1 | A5A1C9 | A5A2C9 |
Table 5-8, Square Wave Adjustment
5. Disconnect square wave generator.
6. Connect LC meter to appropriate channel as listed in Table 5-9 and measure input capacitance on .01 VOLTS/DIV range. Adjust appropriate capacitor to obtain same input capacitance as measured on .01 VOLTS/DIV range.
Table | 5-9 | Capacitance | Ad | iustment |
---|
VOLTS/DIV | CHANNEL A | CHANNEL B |
---|---|---|
.01 | REFERENCE | REFERENCE |
.1 | A5A1C4 | A5A2C4 |
1 | A5A1C5 | A5A2C5 |
7. Disconnect test equipment.
8. Set the Model 1707A controls as follows:
VOLTS/DIV | • | • | • |
|
• | • | • |
c. |
• | • | • | • | į. | 01 | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DISPLAY | • | ÷ | • | • |
× |
|
|
• |
|
А | |||||||||||||||||||||||||
MAIN TIME/DIV | ÷ | ÷ | • |
|
ç. | ÷ | • | , | Ę | 5ι | uSI | EC | |||||||||||||||||||||||
Coupling | ÷ | • | • • | • | ÷ | • |
|
• | į. |
÷ |
• | • | • |
• |
• | • | A | AC |
9. Refer to Schematics 3 and 4 if the adjustments cannot be made.
REFERENCE: Schematic 6, Figures 5-14, 8-21, and 8-22.
DESCRIPTION: The high frequency compensation capacitors in the vertical amplifiers are adjusted for optimum pulse response.
Fast Rise Square Wave Generator
50-ohm Termination.
RG213 Cable
DISPLAY .
....В
Channel B VOLTS/DIV | .01 |
---|---|
MAIN TIME/DIV | I uSEC |
MAG | X10 |
Adjust square wave generator output for a 6-division, 100-kHz display.
3. Adjust A5A4C26, A5A4C46, A5A5C7, A5A5C12, and A5A5R30 for the best pulse response with a risetime of less than 4.6 ns.
4. Observe pulse response of Channel B in the NORM and INVT positions.
5. Readjust A5A4C26, if necessary, to obtain optimum pulse response for both positions with a risetime of less than 4.6 ns.
6. Connect square wave generator to Channel A INPUT.
7. Set DISPLAY to A.
8. Adjust A5A4C5 for the best pulse response with a risetime of less than 4.6 ns.
9. Repeat steps 3 through 8 for optimum pulse response on both channels.
10. Disconnect test equipment.
11. Perform paragraph 5-24, bandwidth check, to ensure 75 MHz bandwidth is met.
12. Refer to Schematic 6 if this adjustments cannot be made.
6-2. This section contains information for ordering replacement parts. The abbreviations used in the parts list are described in Table 6-1. Table 6-2 lists the parts in alphanumeric order by reference designator and includes the manufacturer and manufacturer's part number. Table 6-3 contains the list of manufacturer's codes.
6-4. To obtain replacement parts from Hewlett-Packard, address order or inquiry to the nearest Hewlett-Packard Sales/Service Office and supply the following information:
6-5. To order a part not listed in the table, provide the following information:
a. Instrument model and serial number.
b. Description of the part, including function and location in the instrument.
c. Quantity desired.
A
ASSY |
= ampere(s)
= assembly |
GRD | = ground(ed) | NPO |
= negative positive
zero (zero temper- |
RWV |
= reverse working
voltage |
---|---|---|---|---|---|---|---|
BD | = board(s) |
H
HG |
= henry(ies)
= mercury |
NPN | = negative-positive- | S-B | = slow-blow |
вн
вр |
= binder head
= bandpass |
HP
HZ |
= Hewlett-Packard
= hertz |
NSR |
= not separately
replaceable |
SCR |
= silicon controlled
rectifier |
1018 | Duniquisi |
SE
SEC |
= selenium
= second(s) |
||||
C
CAB |
= centi (10
-2
)
= carbon |
IF
IMPG |
= intermediate freq.
= impregnated |
OBD |
= order by
description |
SECT |
= section(s)
= silicon |
CCW | = counterclockwise | INCD | = incandescent | он | = oval head | SIL | = silver |
CER | = ceramic | INCL | = include(s) | ox | = oxide | SL | = slide |
CMO | = cabinet mount only | INS | = insulation(ed) | SP | = single pole | ||
COAX | = coaxial | INT | = internal | P | = peak | SPL | = special |
COEF | = coefficient | PC | = printed (etched) | ST | = single throw | ||
COMP | = composition | r | - kilo (10 3 ) | circuit(s) | STD | = standard | |
CONN | = connector(s) | KG | = kilogram | PF | = picofarads | ||
CHI | = cathode-ray tube | KG | - Kilograffi | PHL | = Phillips | TA | = tantalum |
CW | = CIOCKWISE | PIV | = peak inverse | TD | = time delay | ||
10 may 10 | LB | = pound(s) | - | voltage(s) | TFL | = teflon | |
D | = deci (10 -1 ) | LH | = left hand | PNP | = positive-negative- | TGL | = toggle |
DEPC | = deposited carbon | LIN | = linear taper | 2/0 | positive | THYR | = thyristor |
DP | = double pole | LOG | = logarithmic taper | P/O | = part of | TI | = titanium |
DT | = double throw | LPF | = low-pass filter(s) | PORC | = porcelain | TNLDIO | = tunnel diode(s) |
LVR | = lever | POS | TOL | = tolerance | |||
PPI | = potentiometer(s) | TRIM | = trimmer | ||||
ELECT | = electrolytic | м | - milli (10 -3 ) | PRGM | = peak-to-peak | ||
ENCAP | = encapsulated | MEG | = min (10 6 ) | PS | = program | 22 | |
EXT | = external | METELLM | = mega (10 ) | PWV | = peak working | U | = micro (10 - ) |
METOX | = metal oxide | voltage | |||||
F | = farad(s) | MER | = manufacturer | to ridge | V | = volts | |
FET | = field-effect | MINAT | = miniature | VAR | = variable | ||
transistor(s) | MOM | = momentary | RECT | = rectifier(s) | VDCW | = dc working volt(s) | |
FH | = flat head | MTG | = mounting | RF | = radio frequency | 5.5 | |
FIL H | = fillister head | MY | = mylar | REI | - radio frequency | ||
FXD | = fixed | 1941 Mar 1942 | BH | multiplence | w | = watt(s) | |
-9 | 00 | - round nead | W/ | = with | |||
~ | 1 (1 9) | N | = nano (10 °) | right hand | WIV | = working inverse | |
G | = giga (10°) | N/C | = normally closed | PMO | = reck mount only | 14/0 | voltage |
GL | = germanium | NE | - neon | PMC | - rack mount only | = without | |
GL | = glass | N/O | - normany open | RMS | = root mean square | **** | = wirewound |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
A1
A1F1 |
5060-1196
2110-0018 |
1 |
POWER MODULE:NON-FILTERED
FUSE:CARTRIDGE 0.25 AMP SLOW BLOW |
28480
75915 |
5060-1196
313.250 |
41+1 | 2110-0008 | 1 |
FOR 230V OPERATION
FUSE:0.50AMP 125V SLOW-BLOW FOR 115V OPERATION |
71400 | MDL 1/2 |
41J1
4151 |
N.S.R. PART OF A1
NSR P/O A1 |
||||
A2
A2C1 A2C2 |
01701-66502
0160-3453 0180-2351 |
1
26 1 |
BDARD ASSY:LINE RECTIFIER
C:FXD CER 0.05 UF +80-20% 100VDCH C:FXD ELECT 2000 UF +75-10% 50VDCH |
28480
56289 56289 |
01701-66502
C023A101L5032S25-CDH 39D243 |
A2CR1
A2R1 A2R2 A2Z1 A3 |
1901-0045
0811-1204 0687-1031 1906-0021 01701-611 |
5
1 1 1 |
DIODE:SILICON 0.75A 100PIV
R:FXD WH 200 DHM 5% 5W R:FXD COMP 10K DHM 10% 1/2W DIODE ASSY:SILICON POWER SUPPLY ASSY |
04713
28480 01121 28480 28480 |
SR1358-7
0811-1204 EB 1031 1906-9021 01701-611 |
A 3MP 1
A 3MP 2 A 3MP 3 A 3Q1 A 3Q2 |
0340-0450
01701-04101 01701-65501 5030-0476 1854-0063 |
2
2 2 1 1 |
WASHER:TRANSISTOR INSULATOR
COVER:POWER BOX BOX:POWER ASSEMBLY TRANSISTOP ASSY:SI NPN TSTR:SI NPN |
04713
28480 28480 28480 80131 |
14852600F12
01701+04101 01701-65501 5080-0476 2N3055 |
A3W1
A3XQ2 A3A1 A341C1 A341C2 |
01701-61602
1200-0077 01701-66527 0180-0141 0150-0084 |
1
1 1 7 |
CABLE:LOW TO HIGH VOLTAGE
INSULATOR:TRANSISTOR, MICA BOARD ASSY:MOTHER C:FXD ELECT 50 UF +75-10% 50VDCW C:FXD CER 0.1 UF +80-20% 100VDCW |
28480
16037 28480 56289 56289 |
01701-61602
#112 01701-66527 3005066050002-05M 33C4185-C0H |
A3A1C3
A3A1C4 A3A1C5 A3A1C6 A3A1C7 |
0180-0229
0150-0084 0180-0269 0180-0137 0180-0230 |
1
1 9 |
C:FXD ELECT 33 UF 10% 10VDCW
C:FXD CER 0.1 UF +80-20% 100VDCW C:FXD ELECT 10.0 UF +50-10% 10VDCW C:FXD ELECT 10.0 UF +75-10% 10VDCW C:FXD ELECT 10.0 UF 20% 50VDCW |
28480
56289 56289 56289 56289 56289 |
0180-0229
33C4185-CDH 30D135F1508A2-DSM 150DX1070010R2-DYS 150D105X0050A2-DYS |
A341CR1
A341CR2 A341CR3 A341CR4 A341CR5 |
1901-0045
1901-0045 1901-0418 1901-0040 1884-0094 |
1
61 1 |
DIODE:SILICON 0.75A 100PIV
DIODE:SILICON 0.75A 100PIV DIODE:SILICON 400PIV 1N5000 DIODE:SILICON 30MA 30WV THYRISTOR:BILATERAL SWITCH |
04713
04713 04713 07263 04713 |
SR1358-7
SR1358-7 IN5000 FDG1088 SPT-12 |
A341CR6
A341J1 A341J2 A341J3 A341L1 |
1884-0082
01701-67601 1251-1968 1251-1968 9100-3139 |
1
2 10 |
THYRISTOR:SCR JEDEC TYPE 2N4441
CONNECTOR ASSY CONNECTOR:PC 10 TUNING FORK TYPE CONT CONNECTOR:PC 10 TUNING FORK TYPE CONT COLL:75 UH |
04713
28480 02660 02660 28480 |
2N4441
01701-67601 143-010-07-1158 143-010-07-1158 9100-3139 |
A341L2
A341L3 A341L4 A341L5 A341L6 |
9100-3139
9100-1645 9100-3139 9100-3139 9100-3139 |
1 |
COIL:75 UH
COIL/CHOKE 390.0 UH 5% COIL:75 UH COIL:75 UH COIL:75 UH |
28480
82142 28480 28480 28480 |
9100-3139
19-1331-25J 9100-3139 9100-3139 9100-3139 |
A3A1L7
A3A1L8 A3A1L9 A3A1L9 A3A1MP1 A3A101 |
9100-3139
9100-3139 9100-3139 0890-1028 1854+0090 |
8
1 |
COIL:75 UH
COIL:75 UH COIL:75 UH SLEEVING TSTR:SI NPN(SIMILAR TO 2N3053) |
28480
28480 28480 28480 28480 28480 |
9100-3139
9100-3139 9100-3139 0890-1028 1854-0090 |
434181
434182 434183 434184 434185 |
0761-0015
0687-4711 0684-1011 0687-2201 0811-1673 |
1
2 36 1 1 |
R:FXD MET 0X 1500 OHM 5% 1W
R:FXD COMP 470 DHM 10% 1/2W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 22 OHM 10% 1/4W R:FXD COMP 22 OHM 10% 1/2W R:FXD WW 3.9 OHM 5% 2W |
28480
01121 01121 01121 01121 28480 |
0761-0015
EB 4711 CB 1011 EB 2201 0911-1673 |
A3A1R6
A3A1R7 A3A1R8 A341R9 A341R10 |
0812-0086
0684-4701 0684-4711 0687-4711 0687-4711 0684-1041 |
1
2 2 13 |
R:FXD WW 5 OHM 53 3W
R:FXD COMP 47 OHM 103 1/4W R:FXD COMP 470 OHM 103 1/4W R:FXD COMP 470 OHM 103 1/2W R:FXD COMP 100K OHM 103 1/4W |
28480
01121 01121 01121 01121 01121 |
0812-0086
CB 4701 CB 4711 EB 4711 CB 1941 |
A3A1R11
A3A1R12 A3A1R13 A3A1R14 A3A1R15 |
0684-2731
0684-1041 0684-2731 0684-1031 0684-2731 |
4
11 |
R:FXD COMP 27K OHM 10% 1/4W
R:FXD COMP 100K OHM 10% 1/4W R:FXD COMP 27K OHM 10% 1/4W R:FXD COMP 10K OHM 10% 1/4W R:FXD COMP 27K OHM 10% 1/4W |
01121
01121 01121 01121 01121 |
CB 2731
CB 1041 CB 2731 CB 1031 CB 1031 CB 2731 |
A3A1R16
A341R17 A3A1T1 A341VK1 A341VR2 |
0684-2731
0684-1011 01701-61104 1902-3302 1902-3070 |
1
1 1 |
R:FXD COMP 27K DHM 10% 1/4W
R:FXD COMP 100 OHM 10% 1/4W TOROID:FERRITE DIDDE BREAKDOWN:34.8V 2% 400 MM DIDDE:BREAKDOWN 4.22V 5% |
01121
01121 28480 28480 04713 |
CB 2731
CB 1011 01701-61104 1902-3302 S210939-74 |
A3A1VR3
A3A2 A3A2C1 A3A2C2 A3A2C2 A3A2C3 |
1902-3315
01701-66504 0150-0084 0150-0084 0180-0098 |
1
1 2 |
DIDDE BREAKDOWN: 39.2V 2% 400 MW
BOARD ASSY:LOW VOLTAGE CONVERTER C:FKD CER 0.1 UF +80-20% 100VDCW C:FKD CER 0.1 UF +80-20% 100VDCW C:FKD ELECT 100 UF 20% 20VDCW |
29480
28480 56289 56289 56289 |
1902-3315
01701-65504 33C4185-CDH 33C4185-CDH 150D107X0020S2-DYS |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
A 3A2C4
A 3A2C5 A 3A2C5 A 3A2C5 A 3A2C7 A 3A2C8 |
0180-1802
0180-0098 0180-1780 0160-0168 0160-0380 |
1
2 4 1 |
C:FXD ELECT 150 UF +75-10% 40VDCW
C:FXD ELECT 100 UF 20% 20VDCW C:FXD ELECT 500 UF +75-10% 10VDCW C:FXD MY 0.1 UF 10% 200VDCW C:FXD MY 0.22 UF 10% 200VDCW |
56289
56289 28480 56289 28480 |
39D1576040EJ4-DSB
150D107X002052-DYS 0180-1780 192P10492-PTS 0160-0380 |
A3A2C9
A3A2C10 A3A2C11 A3A2C12 A3A2C13 |
0160-3453
0160-3451 0160-3453 0160-2141 0160-0168 |
17
3 |
C:FXD CER 0.05 UF +80-20% 10°YCH
C:FXD CER 0.01 UF +80-20% 100VDCH C:FXD CER 0.05 UF +80-20% 100VDCH C:FXD CER 0.05 PF 80/20% 100VDCH C:FXD CER 0.00 PF 80/20% 100VDCH C:FXD MY 0.1 UF 10% 200VDCH |
56289
56289 56289 91418 56289 |
C023A101L503Z525-CDH
C023B101F103Z525-CDH C023A101L503Z525-CDH TYPE B 192P10492-PTS |
A3A2C14
A3A2CR1 A3A2CR2 A3A2CR3 A3A2CR3 A3A2CR4 |
0160-0168
1901-0040 1901-0040 1901-0049 1901-0049 |
4 |
C:FXD MY 0.1 UF 10% 200VDCM
DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV DIDDE:SILICON 0.75A 50PIV DIDDE:SILICON 0.75A 50PIV |
56289
07263 07263 04713 04713 |
192P10492-PTS
FDG1088 FDG1088 SR1358-6 SR1358-6 |
A3A2CR5
A3A2L1 A3A2MP1 A3A2Q1 A3A2Q2 |
1901-0045
9140-0128 1205-0227 1855-0010 1854-0476 |
1
1 1 |
DIODE:SILICON 0.75A 100PIV
COIL:FXD RF 22 UH HEAT DISSIPATOR:SEMICONDUCTOR TSTR:SI TSTR:SI NPN |
04713
28480 28480 80131 02735 |
SR1358-7
9140-0128 1205-0227 2N2646 2N3879 |
A 3A 203
A 3A 204 A 3A 2R1 A 3A 2R2 A 3A 2R3 |
1854-0039
1853-0027 0684-1221 0684-2721 2100-1760 |
2
1 7 1 2 |
TSTR:SI NPN
TSTR:SI PNP R:FXD COMP 1.2K OHM 10% 1/4W R:FXD COMP 2700 OHM 10% 1/4W R:VAR WW 5K OHM 5% TYPE V 1W |
80131
07263 01121 01121 28480 |
2N3053
S1554S CB 1221 CB 2721 2100-1760 |
A3A2R4
A3A2R5 A3A2R6 A3A2R7 A3A2R8 |
0757-0199
0757-0442 0684-4721 0684-1011 0684-1011 |
10
7 |
R:FXD MET FLM 21.5K OHM 1% 1/8W
R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD COMP 4700 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W |
28480
28480 01121 01121 01121 |
0757-0199
0757-0442 C8 4721 C8 1011 C8 1011 |
A3A2R9
A3A2R10 A3A2R11 A3A2k12 A3A2R13 |
0684-1011
0684-1011 0698-3159 0757-0401 0684-1521 |
2
14 1 |
R:FXD COMP 100 OHM 103 1/4W
R:FXD COMP 100 OHM 103 1/4W R:FXD MET FLM 26-1K OHM 13 1/8W R:FXD MET FLM 100 OHM 13 1/8W R:FXD COMP 1500 OHM 103 1/4W |
01121
01121 28480 28480 01121 |
CB 1011
CB 1011 C698-3159 0757-0401 CB 1521 |
A3A2R14
A3A2R15 A3A2R16 A3A2T1 A3A2U1 |
0684-1041
0684-2211 0761-0014 9100-3152 1820-0058 |
12
1 1 1 |
R:FXD COMP 100K OHM 10% 174W
R:FXD COMP 220 OHM 10% 174W R:FXD MET 0X 180 OHM 5% 1W TRANSFORMER IC:LIN, OP AMPL |
01121
01121 28480 28480 07263 |
CB 1041
CB 2211 0761-0014 9100-3152 SL21434 |
A3A2VR1
A3A2VR2 A3A2VR3 A3A2X11 A3A3 |
1902-0033
1902-3256 1902-0197 1200-0763 01701-66534 |
2
1 1 1 1 |
DIODE:BREAKDOWN 6.2V
DIODE:BREAKDOWN SILICON 23.7V 5% DIODE BREAKDOWN:SILICON 82.5V 5% SOCKET:IC 8-PIN, FOR TO-5 CASE BOARD ASSY:RECTIFIER FILTER |
04713
28480 28480 71785 28480 |
1N823
1902-3256 1902-0197 133-98-92-061 01701-66534 |
A3A3C1
A3A3C2 A3A3C3 A3A3C4 A3A3C5 |
0180-0116
0180-2344 0180-0098 0180-0098 0180-2344 |
1
4 3 |
C:FXD ELECT 6.8 UF 10% 35VDCW
C:FXD ELECT 150 UF +75-10% 75VDCW C:FXD ELECT 100 UF 20% 20VDCW C:FXD ELECT 100 UF 20% 20VDCW C:FXD ELECT 100 UF 20% 20VDCW |
56289
56289 56289 56289 56289 56289 |
1500685X903582-0YS
39D-1576075FJ4 1500107X002052-DYS 1500107X002052-DYS 39D-1576075FJ4 |
A 3A 3C 6
A 3A 3C 7 A 3A 3C 8 A 3A 3C 8 A 3A 3C 8 A 3A 3C 8 2 |
0180-0159
0180-0098 0180-1746 1901-0646 1901-0646 |
1
8 |
C:FXD ELECT 220 UF 20% 10VDCW
C:FXD ELECT 100 UF 20% 20VDCW C:FXD ELECT 15 UF 10% 20VDCW DIODE:SI 200V 1A DIODE:SI 200V 1A |
28480
56289 28480 28480 28480 28480 |
0180-0159
1500107X002052-DYS 0180-1746 1901-0646 1901-0646 |
4343CR3
4343CR4 4343CR5 4343CR5 4343CR6 4343CR7 |
1901-0646
1901-0646 1901-0646 1901-0646 1901-0646 |
DIODE:SI 200V 1A
DIODE:SI 200V 1A DIODE:SI 200V 1A DIODE:SI 200V 1A DIODE:SI 200V 1A DIODE:SI 200V 1A |
28480
28480 28480 28480 28480 28480 |
1901-0646
1901-0646 1901-0646 1901-0646 1901-0646 |
|
A3A3CR8
A3A3L1 A3A3L2 A3A3L3 A3A3L4 |
1901-0646
9140-0096 9140-0096 9140-0096 9140-0096 |
7 |
DIODE:SI 200V 1A
COIL:FXD RF 1 UH COIL:FXD RF 1 UH COIL:FXD RF 1 UH COIL:FXD RF 1 UH |
28480
28480 28480 28480 28480 28480 |
1901-0646
9140-0096 9140-0996 9140-0996 9140-0096 |
434315
434316 434317 4343mp1 434371 |
9140-0096
9140-0096 9140-0096 0403-0175 9100-3235 |
1 |
COIL:FXD RF 1 UH
COIL:FXD RF 1 UH COIL:FXD RF 1 UH BUMPER:RUBBER 0.750" DIA TRANSFORMER |
28480
28480 28480 77969 28480 |
9140-0096
9140-0096 9140-0096 6657 9100-3235 |
A3A4
A3A4A1 A3A4A2 A3A4C1 A3A4C2 |
01701-66528
01701-61102 01701-61101 0160-0168 0160-2403 |
1
1 1 |
BOARD ASSY:HIGH VOLTAGE OSCILLATOR
HIGH VOLTAGE TRANSFORMER ASSY MULTIPLIER BOARD:HIGH VOLTAGE C:FXD MY 0-1 UF 10% 2009DCH C:FXD CER 1500 PF 20% 5K VDCW |
28480
28480 28480 56289 72982 |
01701-66528
01701-61102 01701-61101 192210492-015 828-025-X5R0-152M |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
A3A4C3
A3A4C4 A3A4C5 A3A4C5 A3A4C5 A3A4C7 |
0160-3453
0180-0291 0180-1746 0170-0040 0160-3453 |
3
5 1 |
C:FXD CER 0.05 UF +80-20% 100VDCW
C:FXD ELECT 1.0 UF 10% 35VDCW C:FXD ELECT 15 UF 10% 20VDCW C:FXD MY 0.047 UF 10% 200VDCW C:FXD CER 0.05 UF +80-20% 100VDCW |
56289
56289 28480 56289 56289 |
C023A101L503Z525-CDH
150D105X9035A2-DYS 0180-1746 192P47392-PTS C023A101L503Z525-CDH |
434468
434469 4344610 4344611 |
0160-3626
0160-3626 DELETED 0160-3626 |
14 |
C:FXD CER 5000 PF 20% 2K VDCW
C:FXD CER 5000 PF 20% 2K VDCW C:FXD CER 5000 PF 20% 2K VDCW |
56289
56289 56289 |
29C231A
29C231A 29C231A |
A3A4C12
A3A4C13 A3A4C14 A3A4C15 A3A4C16 A3A4C16 A3A4C17 |
DELETED
0160-3626 0160-3626 0160-3626 0160-3626 0160-3626 |
C:FXD CER 5000 PF 20% 2% VDCW
C:FXD CER 5000 PF 20% 2% VDCW C:FXD CER 5000 PF 20% 2% VDCW C:FXD CER 5000 PF 20% 2% VDCW C:FXD CER 5000 PF 20% 2% VDCW |
56289
56289 56289 56289 56289 56289 |
29C231A
29C231A 29C231A 29C231A 29C231A |
|
A3A4C18
A3A4C19 A3A4C20 |
0160-3626
0167-3626 DELETED |
C:FXD CER 5000 PF 20% 2K VDCW
C:FXD CER 5000 PF 20% 2K VDCW |
56289
56289 |
29C231A
29C231A |
|
4344C21
4344CR1 |
0160-3626
1901-0040 |
C:FXD CER 5000 PF 20% 2K VDCH
DIDDE:SILICON 30MA 30WV |
56289
07263 |
29C2314
FDG1088 |
|
A3A4CR2
A3A4CR3 A3A4CR4 A3A4CR5 A3A4CR5 A3A4CR6 |
1901-0040
1901-0040 1901-0040 1901-0049 1901-0049 |
DIDDE:SILICON 30MA 30MV
DIDDE:SILICON 30MA 30MV DIDDE:SILICON 30MA 30MV DIDDE:SILICON 30MA 30MV DIDDE:SILICON 0.75A 50PIV DIDDE:SILICON 0.75A 50PIV |
07263
07263 07263 04713 04713 |
F0G1088
F0G1088 F0G1088 SR1358-6 SR1358-6 |
|
A3A4CR7
A3A4CR8 A3A4CR9 A3A4CR9 A3A4DS1 A3A4DS2 |
1901-1022
1901-1022 1901-0033 2140-0018 2140-0018 |
2
1 2 |
DIDDE:SI RECTIFIER HV, 10 MA
DIDDE:SI RECTIFIER HV, 10 MA DIDDE:SILICON 100MA 180WV LAMP:GLOW 1.0 MILLIAMPS 0.1W LAMP:GLOW 1.0 MILLIAMPS 0.1W |
28480
28480 07263 08906 08806 |
1901-1022
1901-1022 FD3369 A9A-C(NE-251) A9A-C(NE-251) |
A344F1
A344L1 A344MP1 A344MP2 A344MP3 |
2110-0033
9100-2268 5040-0402 5040-0430 2200-0125 |
1
1 1 1 |
FUSE:0.75A 250V
CDIL:FXD 22-0 UH 10% MOUNT:TRANSFORMER MOUNT:TRANSFORMER SCREW:SST PAN HD POZI DR 4-40X1.500"LG |
75915
82142 28480 28480 00000 |
F02GR750A
09-1316-4K 5040-0402 5040-0430 08D |
A 3A 4 MP4
A 3A 4 MP5 A 3A 4 MP7 A 3A 4 MP8 A 3A 4 01 |
2110-0269
2110-0269 2200-0111 01701-26509 1854-0023 |
12
1 1 1 |
CLIP:FUSE 0.250" DIA
CLIP:FUSE 0.250" DIA SCREW:PAN HD POZI DR 4-40 X 0.500" LG BOARD:ETCHED TSTR:SI NPN(SELECTED FROM 2N2484) |
91506
91506 00000 28480 28480 |
6008-32CN
6008-32CN 080 01701-26509 1854-0023 |
A3A402
A3A403 A3A4R1 A3A4R2 A3A4R3 |
1854-0215
1853-0036 2100-1762 0757-0467 0698-7807 |
20
19 6 1 |
TSTR:SI NPN
TSTR:SI PNP R:VAR WW 20K 5% 1W R:FXD MET FLM 121K OHM 1% 1/8W R:FXD MET FLM 8.5 MEGOHM 1% 2.0W |
80131
80131 75042 28480 28480 |
2N3904
2N3906 CT-106-4 0757-0467 0698-7807 |
434484
434485 434486 434487 434485 |
0698-5922
0698-5922 0757-0280 0757-0438 0684-1011 |
2
2 10 |
R:FXD MET FLM 1.8 MEGOHM 1.0% 1/2W
R:FXD MET FLM 1.8 MEGOHM 1.0% 1/2W R:FXD MET FLM 1K DHM 1% 1/8W R:FXD MET FLM 5.11K DHM 1% 1/8W R:FXD COMP 100 DHM 10% 1/4W |
28480
28480 28480 28480 01121 |
0698-5922
0698-5922 0757-0280 0757-0438 CB 1011 |
434489
4344810 4344811 4344812 4344813 |
0757-0458
6684-1021 0684-1011 0757-0338 0757-0442 |
3
13 1 |
R:FXD MET FLM 51.1K OHM 1% 1/8W
R:FXD COMP 1000 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W R:FXD MET FLM 1.00K OHM 1% 1/4W R:FXD MET FLM 10.0K OHM 1% 1/8W |
28480
01121 01121 28480 28480 |
0757-0458
CB 1021 CB 1011 0757-0339 0757-0442 |
A3A4R14
A3A4R15 A3A4R16 A3A4R16 A3A4R18 |
0757-0442
2100-2692 0684-1031 0836-0002 0684-1051 |
1
1 2 |
R:FXD MET FLM 10.3K OHM 1% 1/8W
R:VAR CERMET 1 MEGOHM 20% TYPE V 1/2W R:FXD COMP 10K OHM 10% 1/4W R:FXD CARBON 20 MEGOHM 10% 1W R:FXD COMP 1MEGOHM 1% 1/4W |
28480
28480 01121 28480 01121 |
0757-0442
2100-2692 CB 1031 0836-0002 CB 1051 |
A3A4R19
A3A4R20 A3A4R21 A3A4R22 A4 |
0684-1531
0684-1011 0684-4711 0684-1011 01701-66533 |
4 |
R:FXD COMP 15K OHM 10% 1/4W
R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 470 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W BOARD ASSY:GATE |
01121
01121 01121 01121 28480 |
CB 1531
CB 1011 CB 4711 CB 1011 01701-66533 |
A4C1
A4C2 A4C3 A4C4 A4C5 |
0180-2344
0180-0098 0180-0098 0180-2344 0180-0137 |
2 |
C:FXD ELECT 150 UF +75-10% 75VDCW
C:FXD ELECT 100 UF 20% 20VDCW C:FXD ELECT 100 UF 20% 20VDCW C:FXD ELECT 150 UF +75-10% 75VDCW C:FXD ELECT 100 UF 20% 10VDCW |
56289
56289 56289 56289 56289 |
390-1576075FJ4
1500107X002052-DYS 1500107X002052-DYS 390-1576075FJ4 1500107X0010R2-DYS |
A4C6
A4C7 A4C8 A4C9 A4C10 |
0160-3453
0160-2146 0160-3453 0160-3453 0150-0084 |
2 |
C:FXD CER 0.05 UF +80-20% 100VDCW
C:FXD CER 0.02 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.1 UF +80-20% 100VDCW |
56289
91418 56289 56289 56289 |
C023A101L503Z525-C0H
TA C023A101L503Z525-CDH C023A101L503Z525-CDH 33C4185-CDH |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
A4C11
A4C12 A4C13 A4C14 A4C15 |
0160-2146
0121-0168 0150-0084 0150-0084 0180-0058 |
1 |
C:FXD CER 0.02 UF +80-20% 100VDCM
C:VAR TEFLON 0.25-1.50 PF 600VDCM C:FXD CER 0.1 UF +80-20% 100VDCM C:FXD CER 0.1 UF +80-20% 100VDCM C:FXD ELECT 50UF -10%+100% 25VDCM |
91418
28480 56289 56289 56289 |
TA
0121-0168 33C4185-CDH 33C4185-CDH 33D506G°25DD4M1 |
A4C16
A4C17 A4CR1 A4CR2 A4CR3 |
0160-2432
0180-0197 1901-0040 1901-0040 1901-0040 |
1 6 |
C:FXD POLY 0.1 UF 5% 100VDCWW
C:FXD ELECT 2.2 UF 10% 20VDCW DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV |
84411
56289 07263 07263 07263 |
863T
150D225X9020A2-DYS FDG1088 FDG1088 FDG1088 |
44084
44085 44086 44087 44087 44088 |
1901-0040
1901-0040 1901-0040 1901-0040 1901-0040 |
DIODE:SILICON 30MA 30WV
DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV |
07263
07263 07263 07263 07263 07263 |
FDG1088
FDG1088 FDG1088 FDG1088 FDG1088 |
|
A4CR9
A4CR10 A4CR11 A4CR12 A4CR13 |
1901-0040
1901-0044 1901-0040 1901-0045 1901-0040 |
1 |
DIODE:SILICON 30MA 30WV
DIODE:SILICON 20MA/IV DIODE:SILICON 30MA 30WV DIODE:SILICON 0.75A 100PIV DIODE:SILICON 30MA 30WV |
07263
28480 07263 04713 07263 |
FDG1088
1901-0044 FDG1088 SR1358-7 FDG1088 |
44F1
44F2 44F3 44F4 44F5 |
2110-0004
2110-0012 2110-0012 2110-0004 2110-0012 |
2
3 |
FUSE:CARTRIDGE 1/4 AMP 250V
FUSE:0+5 AMP 250V FUSE:0+5 AMP 250V FUSE:CARTRIDGE 1/4 AMP 250V FUSE:0+5 AMP 250V |
75915
75915 75915 75915 75915 75915 |
3AG/CAT. 312.250
312.500 312.500 3AG/CAT. 312.250 312.500 |
A4L1
A4L2 A4MP1 A4MP2 A4MP3 |
9100-3139
9100-3139 1205-0073 1200-0185 2110-0269 |
1
1 |
CDIL:75 UH
CDIL:75 UH HEAT SINK:DUAL PADITRANSISTOR MOUNTING CLIP:FUSE 0.250" DIA |
28480
28480 13103 13103 91506 |
9100-3139
9100-3139 22108 7717-22N RED 6008-32CN |
44MP4
44MP5 44MP6 44MP7 44MP8 |
2110-0269
2110-0269 2110-0269 2110-0269 2110-0269 2110-0269 |
CLIP:FUSE 0.250" DIA
CLIP:FUSE 0.250" DIA CLIP:FUSE 0.250" DIA CLIP:FUSE 0.250" DIA CLIP:FUSE 0.250" DIA |
91506
91506 91506 91506 91506 91506 |
6008-32CN
6008-32CN 6008-32CN 6008-32CN 6008-32CN |
|
A4MP9
A4MP10 A4MP11 A4MP12 A401 |
2110-0269
2110-0269 2110-0269 2110-0269 1854-0215 |
CLIP:FUSE 0.250" DIA
CLIP:FUSE 0.250" DIA CLIP:FUSE 0.250" DIA CLIP:FUSE 0.250" DIA TSTR:SI NPN |
91506
91506 91506 91506 80131 |
6008-32CN
6008-32CN 6008-32CN 6008-32CN 2N3904 |
|
A402
A403 A404 A405 A406 |
1853-0045
1853-0036 1854-0215 1853-0037 1854-0271 |
1
3 3 |
TSTR:SI PNP
TSTR:SI PNP TSTR:SI NPN TSTR:SI PNP TSTR:SI NPN |
80131
80131 80131 04713 28480 |
2N4036
2N3906 2N3904 55 2109 1854-0271 |
4407
4408 4409 44010 44R1 |
1854-0071
1854-0071 1853-0036 1854-0039 0757-0280 |
2 |
TSTR:SI NPN(SELECTED FROM 2N3704)
TSTR:SI NPN(SELECTED FROM 2N3704) TSTR:SI PNP TSTR:SI NPN R:FXD MET FLM 1K OHM 1% 1/8W |
28480
28480 80131 80131 28480 |
1854-0071
1854-0071 2N3906 2N3053 0757-0280 |
44R2
44R3 44R4 44R5 44R5 |
0698-3154
0757-0449 0757-0440 0684-2211 0684-4721 |
546 |
R:FXD MET FLM 4220 OHM 1% 1/8W
R:FXD FLM 20K OHM 1% 1/8W R:FXD MET FLM 7.50K OHM 1% 1/8W R:FXD COMP 220 OHM 10% 1/4W R:FXD COMP 4700 OHM 10% 1/4W |
28480
28480 28480 01121 01121 |
0698-3154
0757-0449 0757-0440 CB 2211 CB 4721 |
44R7
44R3 44R9 44R10 44R11 |
0684-1011
0684-1011 0684-4721 0684-1011 0684-5631 |
ĩ |
R:FXD COMP 100 OHM 103 1/4H
R:FXD COMP 100 OHM 103 1/4H R:FXD COMP 4700 OHM 103 1/4H R:FXD COMP 100 OHM 103 1/4H R:FXD COMP 56K OHM 103 1/4H |
01121
01121 01121 01121 01121 |
C8 1911
C8 1911 C8 4721 C8 1911 C8 5631 |
A4R12
A4R13 A4R14 A4R15 A4R16 |
0757-0457
0684-1051 0757-0273 0757-0449 0757-0416 |
1
8 1 |
R:FXD MET FLM 47.5K OHM 1% 1/8W
R:FXD COMP IMEGOHM 1% 1/4W R:FXD MET FLM 3.01K OHM 1% 1/8W R:FXD FLM 20K OHM 1% 1/8W R:FXD MET FLM 511 OHM 1% 1/8W |
29480
01121 28480 28480 28480 |
0757-0457
C8 1051 0757-0273 0757-0449 0757-0416 |
A4R17
A4R18 A4R19 A4R20 A4R21 |
0757-0437
0757-0281 0684-1011 0684-4701 0757-0453 |
1
1 1 |
R:FXD MET FLM 4750 OHM 1% 1/8W
R:FXD MET FLM 2.74K OHM 1% 1/8W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 47 OHM 10% 1/4W R:FXD MET FLM 30.1K OHM 1% 1/8W |
28480
28480 01121 01121 28480 |
0757-0437
0757-0281 CB 1011 CB 4701 0757-0453 |
A4R22
A4R23 A4R24 A4R25 A4R25 A4R26 |
C684-1011
0757-0442 0757-0438 0757-0454 0757-0418 |
1
3 |
R:FXD COMP 100 DHM 10% 1/4H
R:FXD MET FLM 10.0K DHM 1% 1/8W R:FXD MET FLM 5.11K DHM 1% 1/8W R:FXD MET FLM 33.2K DHM 1% 1/8W R:FXD MET FLM 619 DHM 1% 1/8W |
01121
28480 28480 28480 28480 28480 |
CB 1011
0757-0442 0757-0438 0757-0454 0757-0418 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
A4R27
A4R28 A4R29 A4R30 A4R31 |
0684-1021
0757-0284 2100-1770 0684-1021 0684-2221 |
7
1 11 |
R:FXD COMP 1000 OHM 10% 1/4W
R:FXD MET FLM 150 OHM 1% 1/8W R:VAR WW 100 OHM 5% TYPE H 1W R:FXD COMP 1000 OHM 10% 1/4W R:FXD COMP 2200 OHM 10% 1/4W |
01121
28480 28480 01121 01121 |
CB 1021
0757-0284 2100-1770 CB 1021 CB 2221 |
A4R32
A4R33 |
0684=2221
Deleted |
R:FXD COMP 2200 DHM 10% 1/4W | 01121 | CB 2221 | |
44R34
44R35 44R36 |
0684-1001
2100-1777 0684-1001 |
1
13 |
R:FXD COMP10 OHM 10% 1/4W
R:VAR NH 20K OHM 5% TYPE H 1N R:FXD COMP10 OHM 10% 1/4W |
01121
28480 01121 |
CB 1001
2100-1777 CB 1001 |
A4R37
A4VR1 A4VR2 A4VR3 A5 |
0 68 4- 22 31
1 90 2-00 52 1 90 2-00 33 1 90 2-0 24 4 01707-65804 |
6
1 1 1 |
R:FXD GOMP 22K OHM 10% 174W
DIDDE BREAKOMN:6.81V DIDDE:BREAKOMN 6.2V DIDDE BREAKDOWN:30.1V VERTICAL AMPLIFIER MOD ASSY |
01121
28480 04713 28480 28480 |
C8 2231
1902-0052 1N823 1902-0244 01701-65804 |
A5C1
A5C2 A5C3 A5C4 A5C5 A5DS1 A5J1 A5J2 A5MP1 A5MP2 A5MP3 |
0160-2913
0160-2257 0160-2257 0160-2261 0160-2261 1450-0709 1250-0118 1250-0118 1490-0841 01701-00603 01701-00608 |
2
9 3 4 2 1 1 |
C:FXD CER 0.01 UF +85-20% 500VDCW
C:FXD CER 10 PF 5% 500VDCW C:FXD CER 10 PF 5% 500VDCW C:FXD CER 15 PF 5% 500VDCW C:FXD MICA 100 PF LIGHT:INDICATOR 90 VDC CONNECTOR:BNC CONNECTOR:BNC COUPLING:SHAFT 0.127" ID SHIELD:VERTICAL OUTPUT SHIELD:VERTICAL MODULE |
72982
72982 72982 72136 72765 24931 24931 28480 28480 28480 |
811-014-Y5U0-1032
811-014-Y5U0-1032 301-000-C0H0-100J 301-MPO-15FF RDM15F101J3C 6140-000-603 28JR 128-1 28JR 128-1 1490-0841 01701-00673 01701-09608 |
45MP4
45MP5 45MP6 45MP7 45MP8 |
01701-01202
01701-04107 01701-21701 01701-24701 01707-01201 |
1
4 2 2 |
BRACKET:DISPLAY SWITCH
PLATE:ATTENUATOR COVER BUSHING:POT SPACER:BNC BRACKET:POT |
28480
28480 28480 28480 28480 28480 |
01701-01202
01701-04107 01701-21701 01701-24701 01707-01201 |
45MP9
45MP10 45R1 45R2 45R3 |
01707-09102
01707-23701 0757-0476 0757-0476 2100-3007 |
1
2 2 4 |
SPRING:SHAFT GROUND
SHAFT:POT EXTENDER R:FXD MET FLM 301K OHM 1% 1/8W R:FXD MET FLM 301K OHM 1% 1/8W R:FVAR COMP 50K OHM 20% LIN 1/4W |
28480
28480 28480 28480 28480 28480 |
01707-09102
01707-23701 0757-0476 0757-0476 2100-3007 |
4584
4585 4586 4587 4588 |
2100-3007
2100-2492 0757-0397 0698-3432 2100-2492 |
4
2 4 |
R:VAR COMP 50K OHM 20% LIN 1/4W
R:VAR COMP 5K OHM 20% LIN 1/2W R:FXD MET FLM 68.1 OHM 1% 1/8W R:FXD MET FLM 26.1 OHM 1% 1/8W R:VAR COMP 5K OHM 20% LIN 1/2W |
28480
28480 28480 28480 28480 28480 |
2100-3007
2100-2492 0757-0397 0698-3432 2100-2492 |
4589
45810 45811 45812 4581 |
0757-0397
0698-3432 2100-3099 2100-3099 3101-1396 |
4
2 |
R:FXD MET FLM 68.1 OHM 1% 1/8W
R:FXD MET FLM 26.1 OHM 1% 1/8W R:VAR CERMET 5K OHM 10% LIN 2W R:VAR CERMET 5K OHM 10% LIN 2W SWITCH:PUSHBUTTON 2 POLE 1 STATION |
28480
28480 28480 28480 28480 28480 |
0757-0397
0698-3432 2100-3099 2100-3099 3101-1396 |
4552
45W1 45W2 4541 4541C1 |
3100-2557
01707-61604 01707-61605 01707-63401 0150-0115 |
2
1 1 2 2 |
SWITCH:ROTARY 2 POLE 1 STATION
CABLE ASSY:VERTICAL CABLE ASSY:VERTICAL SUB ATTENUATOR ASSY C:FXD CER 27 PF 10% 500VDCW |
28480
28480 28480 28480 72982 |
3100-2557
01707-61604 01707-61605 01707-63401 301-000-U2J0-270K |
454102
454103 454104 454105 454105 |
D170-0043
D160-2204 0121-0407 0121-0407 0160-2257 |
3
6 16 |
C:FXD MY 0.022UF 10% 400VDCH
C:FXD MICA 100PF 5% C:VAR TRIMMER 0.7-3.0 PF C:VAR TRIMMER C.7-3.0 PF C:FXD CER 10 PF 5% 500VDCW |
24446
72136 72982 72982 72982 |
64FDA223
RDM15F101J3C 536-016 536-016 301-000-C0H0-100J |
A5A1C7
A5A1C8 A5A1C9 A5A1C10 A5A1C11 |
0160-2257
0121-0407 0121-0407 0150-0074 0160-2262 |
2
3 |
C:FXD CER 10 PF 5% 500VDCW
C:VAR TRIMMER 0.7-3.0 PF C:VAR TRIMMER 0.7-3.0 PF C:FXD CER 7 PF 5% 500VDCW C:FXD CER 16 PF 5% 500VDCW |
72982
72982 72982 72982 72982 72982 |
301-000-C0H0-100J
536-016 536-016 301-000-C0H0 7090 301-000 C060 160J |
A5A1C12
A5A1C13 A5A1C14 A5A1C15 A5A1C16 |
0140-0130
0121-0407 0121-0407 0160-2240 0160-2254 |
2
2 2 |
C:FXD MICA 220 PF 5% 500VDCW
C:VAR TRIMMER 0.7-3.0 PF C:VAR TRIMMER 0.7-3.0 PF C:FXD CER 2.0 PF 500VDCW C:FXD CER 7.5 PF 500VDCW |
72982
72982 72982 72982 72982 72982 |
654-014(C811RD221J)
536-016 536-016 301-000-COKD-209C 301-000-COHD-759C |
A5A1C17
A5A1C18 A5A1C19 A5A1L1 A5A1L2 |
0160-2258
0121-0407 0121-0407 9100-3196 9100-3195 |
2
2 |
C:FXD CER 11 PF 5% 500VDCW
C:VAR TRIMMER 0.7-3.0 PF C:VAR TRIMMER 0.7-3.0 PF COLL:40 UH COLL:50 UH |
72982
72982 72982 28480 28480 |
301-000-COGO-110J
536-016 536-016 9100-3196 9100-3195 |
A5A1MP
A5A1MP1 A5A1MP2 A5A1MP2 A5A1MP3 A5A1MP4 A5A1R1 |
01701-3
01701-00605 01701-00607 01701-61201 1750A-64A 0757-0997 |
2 2 |
SHIELD:SWITCH OUTER
SHIELD:SWITCH INNER BRACKET ASSY:SWITCH HOLDER-TRIMMER R:FXD MET FLM 3.92 OHM 1.0% 1/2W |
28480
28480 28480 28480 28480 28480 |
01701-00605
01701-00607 01701-61201 1750A-64A 0757-0997 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
454182
454183 454184 454185 454185 |
0757-0346
0698-3430 0698-3431 0684-0271 0698-6400 |
4
2 2 2 2 |
R:FXD MET FLM 10 0HM 1% 1/8W
R:FXD MET FLM 21.5 0HM 1% 1/8W R:FXD MET FLM 23.7 0HM 1% 1/8W R:FXD COMP 2.7 0HM 10% 1/4W R:FXD FLM 900K 0HM 1.0% 1/4W |
28480
28480 28480 91121 28480 |
0757-0346
2698-3430 0698-3431 CB 2761 0698-6400 |
A5A1R7
A5A1R8 A5A1K9 A5A1R10 A5A1R11 |
0698-6634
0698-3109 0698-3429 0698-5470 0698-3432 |
2
2 4 2 |
R:FXD FLM 990K 0HM 1.0% 1/4W
R:FXD MET FLM 10.1K 0HM 1% 1/8W R:FXD MET FLM 19.6 0HM 1% 1/8W R:FXD FLM 11K 0HM 1% 1/8W R:FXD MET FLM 26.1 0HM 1% 1/8W |
28480
28480 28480 28480 28480 28480 |
0698-6634
0698-3109 0698-3429 0698-3429 0698-5470 0698-3432 |
4541812
4541813 4541814 4541815 4541816 |
0684-1001
0684-1001 0698-3263 0698-6654 0757-0344 |
2
2 4 |
R:FXD COMP 10 OHM 10% 1/4W
R:FXD COMP 10 OHM 10% 1/4W R:FXD MET FLM 500K OHM 1% 1/8W R:FXD MET FLM 800K OHM 1% 1/4W R:FXD MET FLM 1.00 MEGOHM 1% 1/4W |
01121
01121 28480 28480 28480 |
C8 1001
C6 1001 0698-3263 0698-654 0757-0344 |
4541R17
4541R18 |
0698-4011
0757-0344 |
2 |
R:FXD FLM 250K DHM 1% 1/8W
R:FXD MET FLM 1.00 MEGOHM 1% 1/4W |
28480
28480 |
0698-4011
0757-0344 |
454151
454152 |
3100-3018 | 2 |
NSR P/O MP3
SWITCH:ROTARY 3 SECTION 9 POSITION |
28480 | 3100-3018 |
A 542
A 542 A 543 A 543MP1 A 544 A 544(1 A 544(1 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2 A 544(2))))))))))))))))))))))))))))))))))) |
01707-63401
01701-61616 01701-01206 01701-01207 01707-66501 0160-3443 0160-3443 0160-3443 0160-3443 0160-3443 0160-1746 0160-2261 0160-3443 |
1
30 |
SAME AS ASAL, USE PREFIX ASAC
ATTENUATOR ASSY DELAY LINE BRACKET:DELAY LOWER BRACKET:DELAY LOPER BOARD ASSY:VERTICAL PREAMPLIFIER CIFXD CER 0.1 UF +80-20% 50VDCW CIFXD CER 0.1 UF +80-20% 50VDCW CIFXD CER 0.1 UF +80-20% 50VDCW CIFXD CER 0.1 UF 10% 20VDCW CIFXD CER 0.1 UF +80-20% 50VDCW CIFXD CER 0.1 UF +80-20% 50VDCW |
28480
28480 28480 28480 72982 72982 72982 72982 72982 72982 72982 72982 |
01707-63401
01701-61616 01701-01206 01701-01207 01707-66501 8131-050-651-1042 301-NPD-15 PF 8131-050-651-1042 0180-1746 301-NPD-15 PF 8131-050-651-1042 |
A5A4C8
A5A4C9 A5A4C10 A5A4C11 A5A4C12 |
0160-3443
0160-3443 0160-3443 0180-1746 0160-3443 |
C:FXD CER 0.1 UF +80-20% 50VDCW
C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 50VDCW |
72982
72982 72982 28480 72982 |
8131-050-651-1042
8131-050-651-1042 8131-050-651-1042 0180-1746 8131-050-651-1042 |
|
A5A4C13
A5A4C14 A5A4C15 A5A4C16 A5A4C17 |
0150-0093
0160-3443 0180-1746 0150-0093 0160-3443 |
4 |
C:FXD CER 0.01 UF +80-20% 100VDCH
C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD ELECT 15 UF 10% 20VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.1 UF +80-20% 50VDCW |
72982
72982 28480 72982 72982 |
801-K800011
8131-050-651-1042 0180-1746 801-K800011 8131-050-651-1042 |
A5A4C18
A5A4C19 A5A4C20 A5A4C21 |
Deleted
0180-1746 0160-3443 Deleted |
C:FXD ELECT 15 UF 10% 20VDCW
C:FXD CER 0.1 UF +80-20% 50VDCW |
28480
72982 |
0180-1746
8131-050-651-1042 |
|
A544C22 | 0160-3443 | C:FXD CER 0.1 UF +80-20% 50VDCW | 72982 | 8131-050-651-1042 | |
A544025
A544025 A544025 A544026 A544027 |
0160-3443
0121-0451 0121-0455 0160-3443 |
1
2 |
CIFKD CER 0-1 UF +80-20% 50VDCW
CIFKD CER 0-1 UF +80-20% 50VDCW C:VAR AIR TRIMMER 1.7-11 PF 250VDC C:VAR AIR 1.9 & 15.7 PF C:FKD CER 0.1 UF +80-20% 50VDCW |
72982
74970 74970 72982 |
8131-050-651-1042
187-106-5 187-109-5 8131-050-651-1042 |
A5A4C28
A5A4C29 A5A4C30 A5A4C31 A5A4C32 |
0160-2264
0160-2264 0160-2264 0160-2264 0160-2264 0180-0197 |
5 |
C:FXD CER 20 PF 5% 500VDCW
C:FXD CER 20 PF 5% 500VDCW C:FXD CER 20 PF 5% 500VDCW C:FXD CER 20 PF 5% 500VDCW C:FXD ELECT 2.2 UF 10% 20VDCW |
72982
72982 72982 72982 56289 |
301-000-0060-200J
301-000-0060-200J 301-000-0060-200J 301-000-0060-200J 1500225X9020A2-0YS |
A5A4C33
A5A4C34 A5A4C35 A5A4C36 A5A4C36 |
0160-3443
0160-2202 0160-2141 0160-2141 0150-0059 |
1
4 |
C:FXD CER 0.1 UF +80-20% 50VDCW
C:FXD MICA 75 PF 5% C:FXD CER 680 PF 80/20% 1000VDCW C:FXD CER 680 PF 80/20% 1000VDCW C:FXD CER 3.3 PF 500VDCW |
72982
28480 91418 91419 72982 |
9131-050-651-1042
0160-2202 TYPE 8 TYPE 8 301-000-00JD-3390 |
4544C 38
4544C 39 4544C 40 |
0150-0059
0160-3443 0160-3443 |
C:FXD CER 3.3 PF 500VDCW
C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 50VDCW |
72982
72982 72982 |
301-000-00J0-3390
8131-050-651-1042 8131-050-651-1042 |
|
4544641 | 0180-0161 | 1 | C:FXD ELECT 3.3 UF 20% 35VDCW | 56289 | 1500335X003582-DYS |
8584042
8584043 8584044 8584045 8584045 |
0160-3443
0160-3443 0160-3443 0150-0093 0121-0455 |
C:FXD CER D.1 UF +80-20% 50VDCW
C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:VAR AIR 1.9 & 15.7 PF |
72982
72982 72982 72982 72982 74970 |
8131-050-651-1042
8131-050-651-1042 8131-050-651-1042 801-K800011 187-109-5 |
|
4544047
4544048 4544049 4544050 4544051 |
0160-2207
0150-0093 0160-2200 0140-0191 0160-2205 |
2
1 1 1 |
C:FXD MICA 300 PF 5% 300VDCW
C:FXD CER 0.01 UF +80-20% 100VDCH C:FXD MICA 43 PF 5% C:FXD MICA 43 PF 5% 300VDCH C:FXD MICA 120 PF 5% |
28480
72982 72136 19701 28480 |
0160-2207
801-x800011 RDM15E430J3C RDM15E560J 300V 0160-2205 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
4544052
4544053 45440R1 45440R2 45440R3 |
0180-0197
0180-0291 1901-0376 1901-0040 1901-0376 |
4 |
C:FXD ELECT 2.2 UF 10% 20VDCW
C:FXD ELECT 1.0 UF 10% 35VDCW DIDDE:SILICON 35V DIDDE:SILICON 30MA 30WV DIDDE:SILICON 35V |
56289
56289 28480 07263 28480 |
150D225X9020A2-DYS
1500105X9035A2-DYS 1901-0376 FDG1088 1901-0376 |
4544CR4
4544CR5 4544CR6 4544CR7 4544CR8 |
1901-0040
1901-0376 1901-0040 1901-0376 1901-0040 |
DIDDE:SILICON 30MA 30WV
DIDDE:SILICON 35V DIDDE:SILICON 30MA 30WV DIDDE:SILICON 35V DIDDE:SILICON 35V |
07263
28480 07263 28480 07263 |
FDG1088
1901-0376 FDG1088 1901-0376 FDG1088 |
|
A5A4CR9
A5A4CR10 A5A4CR11 A5A4CR12 A5A4CR13 |
1901-0040
1901-0040 1901-0040 1901-0040 1901-0040 |
DIODE:SILICON 30MA 30WV
DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV |
07263
07263 07263 07263 07263 07263 |
FDG1088
FDG1088 FDG1088 FDG1088 FDG1088 |
|
45446814
45446815 454411 454412 454413 |
1901-0040
1901-0040 9100-2276 9100-2276 9100-2276 |
12 |
DIODE:SILICON 30MA 30WV
DIODE:SILICON 30MA 30WV CDIL/CHOKE 100 UH 10% CDIL/CHOKE 100 UH 10% CDIL/CHOKE 100 UH 10% |
07263
07263 28480 28480 28480 |
FDG1088
FDG1088 9100-2276 9100-2276 9100-2276 |
4544L4
4544L5 4544L6 4544L7 4544L8 |
9100-2276
9100-2276 9100-2276 9100-2276 9100-2276 |
COIL/CHOKE 100 UH 10%
COIL/CHOKE 100 UH 10% COIL/CHOKE 100 UH 10% COIL/CHOKE 100 UH 10% COIL/CHOKE 100 UH 10% |
28480
28480 28480 28480 28480 28480 |
9100-2276
9100-2276 9100-2276 9100-2276 9100-2276 |
|
4544L9
4544L10 4544L11 4544L12 4544L13 |
9100-2276
9100-2276 9100-3194 9100-3194 9100-2247 |
2 |
COIL/CHOKE 100 UH 10%
COIL/CHOKE 100 UH 10% COIL:MOLDED 6+5 TURNS COIL:MOLDED 6+5 TURNS COIL:FXD RF 0+10 UH 10% |
28480
28480 28480 28480 28480 28480 |
9100-2276
9100-2276 9100-3194 9100-3194 9100-2247 |
A5A4L14
A5A401 A5A402 A5A403 A5A403 A5A404 |
9100-2257
1855-0085 1855-0085 1855-0085 1855-0085 1855-0085 |
1 4 |
CDIL/CHOKE:0.82UH 10%
TSTR:FET TSTR:FET TSTR:FET TSTR:FET |
82142
28480 28480 28480 28480 28480 |
09-4426-5K
1855-0085 1855-0085 1855-0085 1865-0085 |
454405
454406 454407 454408 454408 |
1854-0345
1854-0345 1854-0345 1854-0345 1854-0345 1854-0345 |
8 |
TSTR:SI NPN
TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN |
80131
80131 80131 80131 80131 80131 |
2N5179
2N5179 2N5179 2N5179 2N5179 2N5179 |
4544010
4544011 4544012 4544013 4544013 |
1854-0345
1854-0345 1854-0345 1854-0280 1854-0280 |
4 |
TSTR:SI NPN
TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN DUAL TSTR:SI NPN DUAL |
80131
80131 80131 28480 28480 |
2N5179
2N5179 2N5179 1854-0280 1854-0280 |
4544015
4544016 4544017 4544018 4544018 |
1854-0280
1854-0280 1853-0015 1854-0019 1854-0019 |
11
4 |
TSTR:SI NPN DUAL
TSTR:SI NPN DUAL TSTR:SI PNP TSTR:SI NPN TSTR:SI NPN |
28480
28480 80131 28480 28480 |
1854-0280
1854-0280 2N3640 1854-0019 1854-0019 |
4544020
4544021 4544022 4544023 4544023 |
1854-0215
1854-0215 1854-0009 1854-0009 1854-0009 |
6 |
TSTR:SI NPN
TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN |
80131
80131 80131 80131 80131 |
2N3904
2N3904 2N709 2N709 2N709 2N709 |
4544025
4544026 4544027 4544028 4544028 |
1854-0009
1854-0009 1854-0009 1854-0073 1854-0073 |
2 |
TSTR:SI NPN
TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN(SELECTED FROM 2N2857) TSTR:SI NPN(SELECTED FROM 2N2857) |
80131
80131 80131 28480 28480 |
2N709
2N709 2N709 1954-0073 1854-0073 |
4544030
4544031 4544033 4544033 4544035 4544035 4544036 4544036 4544038 4544039 4544039 |
1853-0015
1853-0015 1853-0015 1854-0215 1854-0215 1854-0215 1854-0215 1854-0215 1853-0015 1853-0015 0757-0398 |
4 |
TSTR:SI PNP
TSTR:SI PNP TSTR:SI PNP TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI PNP TSTR:SI PNP R:FXD MET FLM 75 OHM 1% 1/8W |
80131
80131 80131 80131 80131 80131 80131 80131 80131 28480 |
2N3640
2N3640 2N3640 2N3904 2N3904 2N3904 2N3904 2N3904 2N3640 2N3640 2N3640 0757-0398 |
A5A4R2
A5A4R3 A5A4R4 A5A4R5 A5A4R6 |
0698-4130
0757-0398 0684-1041 0757-0469 0684-1041 |
2
2 |
R:FXD COMP 39 DHM 5% 1/8W
R:FXD MET FLM 75 DHM 1% 1/8W R:FXD COMP 100K OHM 10% 1/4W R:FXD FLM 150K DHM 1% 1/8W R:FXD COMP 100K OHM 10% 1/4W |
28480
28480 01121 28480 01121 |
0698-4130
0757-0398 CB 1041 0757-0469 CS 1041 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
4544R7
4544R8 4544R9 4544R10 4544R11 |
0757-0469
0684-1041 0684-1221 0684-1041 0684-1221 |
R:FXD FLM 150K OHM 1% 1/8W
R:FXD COMP 100K OHM 10% 1/4W R:FXD COMP 1.2K OHM 10% 1/4W R:FXD COMP 1.00K OHM 10% 1/4W R:FXD COMP 1.2K OHM 10% 1/4W |
28460
01121 01121 01121 01121 01121 |
0757-0469
C6 1041 C8 1221 C8 1041 C8 1041 C3 1221 |
|
A5A4R12 | 0698-4130 | R:FXD COMP 39 OHM 5% 1/8W | 28480 | 0698-4130 | |
A5A4R13 | 0684-1011 | R:FXD COMP 100 OHM 10% 1/4W | 01121 | C8 1011 | |
A5A4R14 | 0684-1011 | R:FXD COMP 100 OHM 10% 1/4W | 01121 | C8 1011 | |
A5A4R15 | 0757-0438 | R:FXD MET FLM 5.11K OHM 1% 1/8W | 28480 | 0757-0438 | |
A5A4R16 | 0757-0438 | R:FXD MET FLM 5.11K OHM 1% 1/8W | 28480 | 0757-0438 | |
4544R17 | 0757-0438 | 36 | R:FXD MET FLM 5.11K OHM 1% 1/8W | 28480 | 0757-0438 |
4544R18 | 0757-0438 | R:FXD MET FLM 5.11K OHM 1% 1/8W | 28480 | 0757-0438 | |
4544R19 | 0684-3901 | R:FXD COMP 39 OHM 10% 1/4W | 01121 | CB 3901 | |
4544R20 | 0684-3901 | R:FXD COMP 39 OHM 10% 1/4W | 01121 | CB 3901 | |
4544R21 | 0684-3901 | R:FXD COMP 39 OHM 10% 1/4W | 01121 | CB 3901 | |
4544R22
4544R23 4544R24 4544R25 4544R25 |
0684-3901
0757-0346 0757-0430 0757-0430 0757-0346 |
6 |
R:FXD COMP 39 OHM 103 1/4W
R:FXD MET FLM 10 OHM 13 1/8W R:FXD MET FLM 2.21K OHM 13 1/8W R:FXD MET FLM 2.21K OHM 13 1/8W R:FXD MET FLM 10 OHM 13 1/8W |
01121
28480 28480 28480 28480 28480 |
CB 3901
0757-0346 0757-0430 0757-0430 0757-0346 |
A5A4R27 | 0757-0430 | -4-1 | R:FXD MET FLM 2.21K OHM 1% 1/8W | 28480 | 0757-0430 |
A5A4R28 | 0757-0430 | R:FXD MET FLM 2.21K OHM 1% 1/8W | 28480 | 0757-0430 | |
A5A4R29 | 0684-8201 | R:FXD COMP 82 OHM 10% 1/4W | 01121 | C6 8201 | |
A5A4R30 | 0684-8201 | R:FXD COMP 82 OHM 10% 1/4W | 01121 | C8 8201 | |
A5A4R31 | 0684-1041 | R:FXD COMP 100K OHM 10% 1/4W | 01121 | C8 1041 | |
A5A4R32 | 0684-8201 | R:FXD COMP 82 OHM 10% 1/4W | 01121 | CB 8201 | |
A5A4R33 | 0684-8201 | R:FXD COMP 82 OHM 10% 1/4W | 01121 | CB 8201 | |
A5A4R34 | 0698-3155 | R:FXD MET FLM 4.64K OHM 1% 1/8W | 28480 | C698-3155 | |
A5A4R35 | 0698-3155 | R:FXD MET FLM 4.64K OHM 1% 1/8W | 28480 | C698-3155 | |
A5A4R36 | 0698-3155 | R:FXD MET FLM 4.64K OHM 1% 1/8W | 28480 | C698-3155 | |
4544R37
4544R38 4544R39 4544R40 4544R41 |
0698-3155
0757-0284 0757-0284 0757-0388 0757-0388 |
2 |
R:FXD MET FLM 4.64K OHM 1% 1/8W
R:FXD MET FLM 150 OHM 1% 1/8W R:FXD MET FLM 150 OHM 1% 1/8W R:FXD FLM 30.1 OHM 1% 1/8W R:FXD FLM 30.1 OHM 1% 1/8W |
28480
28480 28480 28480 28480 28480 |
0698-3155
0757-0284 0757-0284 0757-0388 0757-0388 |
A5A4R42
A5A4R43 A5A4R44 A5A4R45 A5A4R46 |
0698-3434
2100-2574 0684-1001 0698-3434 2100-2574 |
2
3 |
R:FXD MET FLM 34.8 OHM 1X 1/8W
R:VAR FLM 500 OHM 10% LIN 1/2W R:FXD COMP 10 OHM 10X 1/4W R:FXD MET FLM 34.8 OHM 1X 1/8W R:VAR FLM 500 OHM 10% LIN 1/2W |
28480
28480 01121 28480 28480 |
0698-3434
2100-2574 C8 1001 0698-3434 2100-2574 |
A5A4R47
A5A4R48 A5A4R49 A5A4R50 A5A4R51 |
0684-1001
0684-1021 0684-1021 0684-1011 0684-1011 |
R:FXD COMP 10 DHM 10% 1/4W
R:FXD COMP 1000 OHM 10% 1/4W R:FXD COMP 1000 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W |
01121
01121 01121 01121 01121 |
C8 1001
C8 1021 C8 1021 C8 1021 C8 1011 C8 1011 |
|
A5A4R52 | 0757-0438 | R:FXD MET FLM 5.11K OHM 1% 1/8W | 28480 | 0757-0438 | |
A5A4R53 | 0757-0438 | R:FXD MET FLM 5.11K OHM 1% 1/8W | 28489 | 0757-0438 | |
A5A4R54 | 0757-0284 | R:FXD MET FLM 150 OHM 1% 1/8W | 28489 | 0757-0284 | |
A5A4R55 | 0684-2211 | R:FXD COMP 220 OHM 10% 1/4W | 01121 | CB 2211 | |
A5A4R55 | 0684-2211 | R:FXD COMP 220 OHM 10% 1/4W | 01121 | CB 2211 | |
4544857 | 0757-0392 | 1 | R:FXD MET FLM 43.2 DHM 1% 1/8W | 28480 | 0757-0392 |
4544858 | C757-0440 | R:FXD MET FLM 7.50K OHM 1% 1/8W | 28480 | 0757-0440 | |
A5A4R59 | 2100-2517 | 2 | R:VAR CERMET 5K OHM 10% LIN 1/2W | 28480 | 2100-2517 |
A5A4R60 | 0 757-0440 | R:FXD MET FLM 7.50K OHM 1% 1/8W | 28480 | 0757-0440 | |
A5A4R61
A5A4R62 A5A4R63 A5A4R64 A5A4R65 |
0757-0440
2100-2517 0757-0440 0757-0421 0684-1021 |
R:FXD MET FLM 7.50K OHM 1% 1/8W
R:VAR CERMET 5K OHM 10% LIN 1/2W R:FXD MET FLM 7.50K OHM 1% 1/8W R:FXD COMP 825 OHM 10% 1/4W R:FXD COMP 1000 OHM 10% 1/4W |
28480
28480 28480 28480 28480 01121 |
0757-0440
2100-2517 0757-0440 0757-0421 CB 1021 |
|
A5A4R66 | 2100-1986 | 5 | R:VAR CERMET 1000 DHM 10% LIN 1/2W | 28480 | 2100-1986 |
A5A4R67 | 0684-1011 | R:FXD COMP 100 DHM 10% 1/4W | 01121 | C8 1011 | |
A5A4R68 | 0684-3901 | R:FXD COMP 39 OHM 10% 1/4W | 01121 | C8 3901 | |
A5A4R69 | 0757-0433 | R:FXD MET FLM 3.32K OHM 1% 1/8W | 28480 | 0757-0433 | |
A5A4R70 | 2100-1986 | R:VAR CERMET 1000 DHM 10% LIN 1/2W | 28480 | 2100-1986 | |
A5A4R71
A5A4R72 A5A4R73 A5A4R74 A5A4R75 |
0757-0433
0684-1021 0684-1021 0757-0421 0757-0408 |
3
2 |
R:FXD MET FLM 3.32K OHN 1% 1/8W
R:FXD COMP 1000 OHM 10% 1/4W R:FXD COMP 1000 OHM 10% 1/4W R:FXD MET FLM 825 OHM 1% 1/8W R:FXD MET FLM 243 OHM 1% 1/8W |
28480
01121 01121 28480 28480 |
0757-0433
C8 1021 C8 1021 0757-0421 0757-0408 |
A5A4R76 | 0757-0408 | R:FXD MET FLM 243 OHM 1% 1/8W | 28480 | 0757-0408 | |
A5A4R77 | 0757-0421 | R:FXD MET FLM 825 OHM 1% 1/8W | 28480 | 0757-0421 | |
A5A4R78 | 0684-3901 | R:FXD COMP 39 OHM 10% 1/4W | 01121 | CB 3901 | |
A5A4R79 | 0684-3901 | R:FXD COMP 39 OHM 10% 1/4W | 01121 | CB 3901 | |
A5A4R80 | 0684-3901 | R:FXD MET FLM 150 OHM 1% 1/8W | 28480 | 0757-0284 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
4544881
4544882 4544883 4544884 4544884 4544885 |
2100-1738
0757-0931 0684-2211 0684-2211 0684-1011 |
1 |
R:VAR FLM 10K DHM 10% LIN 1/2W
R:FXD MET FLM 2K OHM 1% 1/8W R:FXD COMP 220 OHM 10% 1/4W R:FXD COMP 220 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W |
28480
28480 01121 01121 01121 |
2100-1738
0757-0931 CB 2211 CB 2211 CB 2211 CB 1011 |
4544886
4544887 4544888 4544888 4544889 4544890 |
0757-0451
0757-0451 0757-0398 0757-0399 0757-0398 |
2 |
R:FXD MET FLM 24.3K DHM 1% 1/8W
R:FXD MET FLM 24.3K OHM 1% 1/8W R:FXD MET FLM 75 DHM 1% 1/8W R:FXD MET FLM 82.5 DHM 1% 1/8W R:FXD MET FLM 75 DHM 1% 1/8W |
28480
28480 28480 28480 28480 28480 |
0757-0451
0757-0451 0757-0398 0757-0399 0757-0399 |
A544R91
A544R92 A544R93 A544R94 A544R94 A544R95 |
0757-0415
2100-2574 0757-0418 0757-0400 0757-0284 |
5 |
R:FXD MET FLM 475 OHM 1% 1/8W
R:VAR FLM 500 OHM 10% LIN 1/2W R:FXD MET FLM 619 OHM 1% 1/8W R:FXD MET FLM 90.9 OHM 1% 1/8W R:FXD MET FLM 150 OHM 1% 1/8W |
28480
28480 28480 28480 28480 28480 |
0757-0415
2100-2574 0757-0418 0757-0400 0757-0284 |
4544896
4544897 4544898 4544899 45448100 |
2100-2031
0757-0284 0757-0420 0757-0406 0757-0400 |
1 |
R:VAR MET FLM 50K OHM 10% 1/8W
R:FXD MET FLM 150 OHM 1% 1/8W R:FXD MET FLM 750 OHM 1% 1/8W R:FXD MET FLM 182 OHM 1% 1/8W R:FXD MET FLM 90.9 OHM 1% 1/8W |
28480
28480 28480 28480 28480 28480 |
2100-2031
0757-0284 0757-0420 0757-0406 0757-0400 |
A5A4R101
A5A4R102 A5A4R103 A5A4R104 A5A4R105 |
0757-0400
0684-4731 0684-2221 0684-4731 0684-3321 |
2 |
R:FXD MET FLM 90.9 OHM 1% 1/8W
R:FXD COMP 47K OHM 10% 1/4W R:FXD COMP 2200 OHM 10% 1/4W R:FXD COMP 47K OHM 10% 1/4W R:FXD COMP 3300 OHM 10% 1/4W |
28480
01121 01121 01121 01121 |
0757-0400
CB 4731 CB 2221 CB 4731 CB 3321 |
4544R106
4544R107 4544R108 4544R109 4544R110 |
0684-3321
0684-2221 0684-3901 0684-4721 0684-4721 |
R:FXD COMP 3300 OHM 10% 1/4W
R:FXD COMP 2200 OHM 10% 1/4W R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 4700 OHM 10% 1/4W B:FXD COMP 4700 OHM 10% 1/4W |
01121
01121 01121 01121 01121 |
C8 3321
C9 2221 C8 3901 C8 4721 C8 4721 |
|
4544R111
4544R112 4544R113 4544R114 4544R115 |
0757-0421
0757-0290 0684-3901 0684-1021 |
2 |
R:FXD MET FLM 825 DHM 1
%
1/8W
R:FXD MET FLM 6.19K DHM 1 % 1/8W R:FXD COMP 39 DHM 10 % 1/4W R:FXD COMP 100D DHM 10 % 1/4W R:FXD COMP 100D DHM 10 % 1/4W |
28480
28480 01121 01121 01121 |
0757-0421
0757-0290 C8 3901 C8 1021 C8 1021 |
A5A4R116
A5A4R117 A5A4R118 A5A4R119 A5A4R120 |
0757-0283
0684-5621 0684-5621 0684-3321 0684-1011 |
32 |
R:FXD MET FLM 2.00K OHM 1% 1/8W
R:FXD COMP 5.6K OHM 10% 1/4W R:FXD COMP 5.6K OHM 10% 1/4W R:FXD COMP 300 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W |
28480
01121 01121 01121 01121 |
0757-0283
C8 5621 C8 5621 C8 3321 C8 1011 |
4544U1
4544U2 4544VR1 4544VR2 4544XU1 |
1820-0094
1820-0308 1902-3059 1902-3104 1200-0768 |
1
1 1 8 |
IC:DTL QUAD 2-INPUT NAND NOR GATE
IC:DTL CLOCKED FF RL:6K DIODE BREAKDOWN:SILICON 3.83V 5% DIODE:BREAKDOWN 5.62V 5% SOCKET:INF6GRATED CIRCUIT 14 CONTACT |
07263
07263 28480 04713 91506 |
U6A994659X
U6A994559X 1902-3059 S210939-110 314-AG50-38 |
4544XU2
4545 4545C1 4545C2 4545C3 |
1200-0768
01707-66502 0160-3443 0160-3443 0160-2262 |
1 |
SOCKET:INTEGRATED CIRCUIT 14 CONTACT
BOARD ASSY:VERTICAL DUTPUT C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 16 PF 5% 500VDCW |
91506
2P480 72982 72982 72982 |
314-AG5D-3R
01707-66502 8131-050-651-1042 8131-050-651-1042 301-000 CD60 160J |
454504
454505 454506 454507 454507 |
0160-0157
0180-0376 0160-0157 0121-0166 0160-3443 |
3
1 2 |
C:FXD MY 4700 PF 10% 200VDCW
C:FXD ELECT 0.47 UF 10% 35VDCW C:FXD MY 4700 PF 10% 200VDCW C:VAR AIR 2.4-245 PF 650VDCW C:FXD CER 0.1 UF +80-20% 50VDCW |
56289
56289 56289 28480 72982 |
192P47292-PTS
1500474X9035A2-DYS 192P47292-PTS 0121-0166 8131-050-651-1042 |
A5A5C9
A5A5C10 A5A5C11 A5A5C12 A5A5C12 |
0150-0059
0150-0059 0140-0199 0121-0166 0160-3443 |
1 |
C:FXD CER 3.3 PF 500VDCW
C:FXD CER 3.3 PF 500VDCW C:FXD MICA 240 PF 53 C:VAR AIR 2.4-24.5 PF 650VDCW C:FXD CER 0.1 UF +80-203 50VDCW |
72982
72982 28480 28480 72982 |
301-000-C0JD-339C
301-000-C0JD-339C 0140-0199 0121-0166 8131-050-651-104Z |
A5A5C14
A5A5C15 A5A5C16 A5A5L1 A5A5L2 |
0160-2263
0160-3443 0160-3443 9100-2276 9100-2276 |
1 |
C:FXD CER 18 PF 5% 500VDCW
C:FXD CER 0.1 UF +80-20% 50VDCW C:FXD CER 0.1 UF +80-20% 50VDCW CDIL/CHOKE 100 UH 10% CDIL/CHOKE 100 UH 10% |
72982
72982 72982 28480 28480 |
301-000-COGO-180H
8131-050-651-1042 8131-050-651-1042 9100-2276 9100-2276 |
4545L3
4545L4 4545Q1 4545Q2 4545Q3 |
9100-2254
9100-2254 1853-0218 1853-0218 1853-0218 |
2
4 |
COIL:FXD RF 0.39 UH 10%
COIL:FXD RF 0.39 UH 10% TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP |
28480
28480 80131 80131 80131 |
9100-2254
9100-2254 2N2894 2N2894 2N2894 2N3906 |
454504
454505 454506 454507 454508 |
1853-0218
1853-0218 1854-0233 1854-0233 1854-0359 |
2
2 |
TSTR:SI PNP
TSTR:SI PNP TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN |
80131
80131 80131 80131 28480 |
2N2894
2N2894 2N3866 2N3866 1854-0359 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
454509
4545R1 4545R2 4545R3 4545R4 |
1854-0359
0757-0400 0757-0400 0757-0400 0757-0400 0757-0420 |
TSTR:SI NPN
R:FXD MET FLM 90.9 DHM 1% 1/8W R:FXD MET FLM 90.9 DHM 1% 1/8W R:FXD MET FLM 90.9 DHM 1% 1/8W R:FXD MET FLM 750 DHM 1% 1/8W |
28480
28480 28480 28480 28480 28480 |
1854-0359
0757-0400 0757-0400 0757-0400 0757-0420 |
|
454585
454586 454587 454588 454588 |
0757-0290
0757-0420 0684-1001 0757-0410 0684-1001 |
3 |
R:FXD MET FLM 6.19K OHM 1% 1/8W
R:FXD MET FLM 750 DHM 1% 1/8W R:FXD COMP 10 OHM 10% 1/4W R:FXD MET FLW 301 OHM 1% 1/8W R:FXD COMP 10 OHM 10% 1/4W |
28480
28480 01121 28480 01121 |
0757-0290
0757-0420 CB 1001 0757-0410 CB 1001 |
4545R10
4545R11 4545R12 4545R13 4545R13 |
0757-0433
0757-0433 0757-0416 0757-0442 0684-3901 |
R:FXD MET FLM 3.32K OHM 1% 1/8W
R:FXD MET FLM 3.32K OHM 1% 1/8W R:FXD MET FLM 511 OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD COMP 39 OHM 10% 1/4W |
28480
28480 28480 28480 28480 01121 |
0757-0433
0757-0433 0757-0416 0757-0442 CB 3901 |
|
A5A5R15
A5A5R16 A5A5R17 A5A5R18 A5A5R18 |
0698-3159
0757-0416 0684-1001 0757-0442 0684-1001 |
R:FXD MET FLM 26.1K OHM 1% 1/8W
R:FXD MET FLM 511 OHM 1% 1/8W R:FXD COMP 10 OHM 10% 1/4W R:FXD MET FLM 10.0K OHM 13% 1/8W R:FXD COMP 10 OHM 10% 1/4W |
28480
28480 01121 28480 01121 |
0698-3159
0757-0416 CB 1001 0757-0442 CB 1001 |
|
A5A5R20
A5A5R21 A5A5R22 A5A5R23 A5A5R23 |
0757-0411
0757-0420 0757-0420 0684-2201 0757-0802 |
1
2 2 |
R:FXD MET FLM 332 OHM 1% 1/8H
R:FXD MET FLM 750 OHM 1% 1/8H R:FXD MET FLM 750 OHM 1% 1/8H R:FXD COMP 22 OHM 10% 1/4H R:FXD MET FLM 162 OHM 1% 1/2H |
28489
28480 28480 01121 28480 |
0757-0411
0757-0420 0757-0420 CB 2201 0757-0802 |
A5A5R25
A5A5R26 A5A5R27 A5A5R28 A5A5R29 |
0757-0802
0684-2201 0698-3429 0698-3429 0757-0280 |
1 |
R:FXD MET FLM 162 OHM 1% 1/2W
R:FXD COMP 22 OHM 10% 1/4W R:FXD MET FLM 19.6 OHM 1% 1/8W R:FXD MET FLM 19.6 OHM 1% 1/8W R:FXD MET FLM 1000 OHM 1% 1/8W |
28480
01121 28480 28480 28480 |
0757-0802
C6 2201 0698-3429 0698-3429 0757-0280 |
4545830
4545831 4545832 4545833 4545833 |
2100-2061
0757-0401 0698-5563 0698-5563 0757-0814 |
2 |
R:VAR FLM 200 OHM 10% LIN 1/2W
R:FXD MET FLM 100 OHM 1% 1/8W R:FXD CARBON 180 OHM 5% 1/8W R:FXD CARBON 180 OHM 5% 1/8W R:FXD MET FLM 511 OHM 1% 1/2W |
28480
28480 28480 28480 28480 28480 |
2100-2061
0757-0401 0698-5563 0698-5563 0757-0814 |
A5A5R35
A5A5R36 A5A5R37 A6 A6DS1 |
0757-0814
0757-0814 0757-0814 01701-65802 1450-0709 |
1 |
R:FXD MET FLM 511 OHM 1% 1/2W
R:FXD MET FLM 511 OHM 1% 1/2W R:FXD MET FLM 511 OHM 1% 1/2W MODULE ASSY:HORIZONTAL AMPLIFIER LIGHT:INDICATOR 90 VDC |
28480
28480 28480 28480 28480 72765 |
0757-0814
0757-0814 0757-0814 01701-65802 6140-000-603 |
A6D52
A6MP1 A6MP2 A6MP3 A6MP4 |
1450-0709
01701-00609 01701-02301 01701-60601 01701-63704 |
1
1 1 |
LIGHT:INDICATOR 90 VDC
SHIELD:HOLD-OFF KEEPER:PC BOARDS SHIELD ASSY:HORIZONTAL SHAFT ASSY:SWEEP TIME |
72765
28480 28480 28480 28480 |
6140-000-603
01701-00609 01701-02301 01701-60801 01701-63704 |
A6MP5
A6MP6 A6MP7 A6R1 A6R2 |
01701-63703
0510-1036 01830-23201 2100-1841 2100-1841 |
1
1 1 2 |
SHAFT ASSY:PB EXTENDER
COLLAR:PRECISION SST COUPLER:BAL SHAFT R:VAR 100K OHM 20% LIN 1/3W R:VAR 100K OHM 20% LIN 1/3W |
28480
28480 28480 28480 28480 28480 |
01701-63703
0510-1036 01830-23201 2109-1841 2109-1841 |
46R3
46R4 46R5 46R5 46R7 |
2100-3014
2100-3009 2100-3009 2100-3006 2100-3015 |
1
2 1 1 |
R:VAR COMP DUAL 20K OHM 20% LIN
R:VAR COMP 20K OHM 20% LIN R:VAR COMP 20K OHM 20% LIN R:VAR COMP 20K OHM 20% LIN 1/3W R:VAR COMP 200K OHM 20% 2/10W |
28480
28480 28480 28480 28480 28480 |
2100-3014
2100-3009 2100-3009 2100-3006 2100-3015 |
46W1
46W2 46W3 4641 4641 |
01701-61606
01701-61610 01701-61604 01701-66512 0160-2204 |
1
1 1 1 |
CABLE ASSY:COAX
CABLE ASSY:COAX CABLE:HORIZONTAL BOARD ASSY:HORIZONTAL MOTHER C:FXD MICA 100PF 5% |
28480
28480 28480 28480 28480 72136 |
01701-61606
01701-61610 01701-61604 01701-65612 RDM15F101J3C |
A6A1C2
A6A1C3 A6A1J1 A6A1J2 A6A1J3 |
0180-0094
0180-9094 1251-1626 1251-1626 1251-1626 |
2
6 |
C:FXD ELECT 100 UF +75-10% 25VDCW
C:FXD ELECT 100 UF +75-10% 25VDCW CONNECTOR:PC (2 X 12) 24 CONTACT CONNECTOR:PC (2 X 12) 24 CONTACT CDNNECTOR:PC (2 X 12) 24 CONTACT |
56289
56289 71785 71785 71785 71785 |
3001076025002-05M
3001076025002-05M 252-12-30-300 252-12-30-300 252-12-30-300 |
4641J4
4641J5 4641J6 464101 4641R1 |
1251-1626
1251-1626 1251-1626 1854-0087 0684-1041 |
1 |
CONNECTOR:PC (2 X 12) 24 CONTACT
CONNECTOR:PC (2 X 12) 24 CONTACT CONNECTOR:PC (2 X 12) 24 CONTACT TSTR:SI NPN R:FXD COMP 100K DHM 10X 1/4W |
71785
71785 71785 80131 01121 |
252-12-30-300
252-12-30-300 252-12-30-300 252-12-30-300 2N3417 CB 1041 |
4641R2
4641R3 4641R4 4641R5 4641R5 |
0684-1041
0684-6821 0757-0418 0757-0430 0757-0413 |
1
1 |
R:FXD COMP 100K OHM 10% 1/4W
R:FXD COMP 6.8K OHM 10% 1/4W R:FXD MET FLM 619 OHM 1% 1/8W R:FXD MET FLM 2.21K OHM 1% 1/8W R:FXD MET FLM 392 OHM 1% 1/8W |
01121
01121 28480 28480 28480 |
C8 1041
C8 6821 0757-0418 0757-0430 0757-0413 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
464187
464188 464189 464151 464152 |
0684-2221
0684-1041 0757-0407 3101-1399 |
1
1 |
R:FXD COMP 2200 OHM 10% 1/4W
R:FXD COMP 100K OHM 10% 1/4M R:FXD MET FLM 200 OHM 1% 1/8W SWITCH:PUSHBUITON 2 POLE 4 STATION N.S.R. PART OF A6A1S1 |
01121
01121 28480 28480 |
CB 2221
CB 1041 0757-0407 3101-1399 |
464153
464154 464155 4642 4642C1 |
3101-1400
01701-66513 0170-0043 |
3
1 |
N.S.R. PART OF A6A1S1
SWITCH:PUSHBUTTON DPDT N.S.R. PART OF A6A1S1 BOARD ASSY:TRIGGER C:FXD MY 0.022UF 10% 400VDCW |
71590
28480 24446 |
P8-1
01701-66513 64FDA223 |
A642C2
A642C3 A642C4 A642C5 A642C6 |
0160-2204
0140-0203 0180-0197 0160-3451 0160-3451 |
3 |
C:FXD MICA 100PF 5%
C:FXD MICA 30 PF 5% C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW |
72136
28480 56289 56289 56289 |
RDM15F101J3C
0140-0203 1500225x9020A2-DYS C0238101F103Z525-C0H C0238101F103Z525-C0H |
A6A2C7
A6A2C8 A6A2C9 A6A2C10 A6A2C11 |
0160-3453
0160-3453 0160-3453 0160-3453 0160-3453 |
C:FXD CER 0.05 UF +80-20% 100VDCW
C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW |
56289
56289 56289 56289 56289 56289 |
C023A101L503Z525-CDH
C023A101L503Z525-CDH C023A101L503Z525-CDH C023A101L503Z525-CDH C023A101L503Z525-CDH |
|
A6A2C12
A6A2C13 A6A2C14 A6A2C15 A6A2C16 |
0160-3453
0180-0197 0160-3453 0160-3453 0160-2012 |
1 |
C:FXD GER 0.05 UF +80-20% 100VDCW
C:FXD ELECT 2.2 UF 10% 20VDCW C:FXD GER 0.05 UF +80-20% 100VDCW C:FXD GER 0.05 UF +80-20% 100VDCW |
56289
56289 56289 56289 56289 |
C023A101L503ZS25-CDH
1500225X902CA2-DYS C023A101L503ZS25-CDH C023A101L503ZS25-CDH |
4642CR1
4642CR2 4642CR3 4642CR4 4642CR5 |
1901-0040
1901-0040 1901-0040 1901-0040 1901-0040 |
DIODE:SILICON 30MA 30WV
DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV |
07263
07263 07263 07263 07263 |
FDG1088
FDG1088 FDG1088 FDG1088 FDG1088 |
|
A6A2CR6
A6A2CR7 A6A2CR8 A6A2CR9 A6A2CR9 |
1901-0040
1901-0040 1901-0040 1901-0040 1855-0085 |
2 |
DIDDE:SILICON 30MA 30WV
DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV TSTR:FET (MATCHED PAIR) |
07263
07263 07263 07263 28480 |
FDG1088
FDG1088 FDG1088 FDG1088 1855-9085 |
A6A2Q2
A6A2Q3 A6A2Q4 A6A2Q5 A6A2Q6 |
1855-0085
1854-0296 1854-0296 1854-0215 1854-0215 |
6 |
TSTR:FET (MATCHED PAIR)
TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN |
28480
28480 28480 80131 80131 |
1855-0085
1854-0296 1854-0296 2N3904 2N3904 |
A6A207
A6A208 A6A209 A6A2010 A6A2011 |
1854-0296
1854-0296 1854-0296 1854-0296 1853-0015 |
TSTR:SI NPN
TSTR:SI NPN TSTR:SI NPN TSTR:SI NPN TSTR:SI PNP |
28480
28480 28480 28480 28480 80131 |
1854-0296
1854-0296 1854-0296 1854-0296 2N3640 |
|
A6A2012
A6A2013 A6A2014 A6A2015 A6A2016 |
1853-0015
1853-0015 1853-0015 1854-0215 1854-0215 |
TSTR:SI PNP
TSTR:SI PNP TSTR:SI PNP TSTR:SI NPN TSTR:SI NPN |
80131
80131 80131 80131 80131 80131 |
2N3640
2N3640 2N3640 2N3904 2N3904 |
|
4642017
4642018 4642019 4642020 4642021 |
1854-0215
1854-0215 1853-0036 1853-0036 1853-0036 |
8 |
TSTR:SI NPN
TSTR:SI NPN TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP |
80131
80131 80131 80131 80131 |
2N3904
2N3904 2N3906 2N3906 2N3906 2N3906 |
A6A2022
A6A2023 A6A2024 A6A2025 A6A2026 |
1853-0036
1853-0036 1853-0036 1854-0215 1853-0049 |
4 |
TSTR:SI PNP
TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP TSTR:SI PNP |
80131
80131 90131 80131 28480 |
2N39D6
2N39D6 2N39D6 2N39D6 2N39D4 1853-0049 |
A6A2Q27
A6A2Q28 A6A2R1 A6A2R2 A6A2R3 |
1853-0049
1853-0049 0684-1041 0757-0273 0757-0367 |
1 |
TSTR:SI PNP
TSTR:SI PNP R:FXD COMP 100K OHM 10% 1/4W R:FXD MET FLM 3.01K OHM 1% 1/8W R:FXD MET FLM 100K OHM 1% 1/2W |
28480
28480 01121 28480 28480 |
1853-0049
1853-0049 68 1041 0757-0273 0757-0367 |
A6A2R4
A6A2R5 A6A2R6 A6A2R7 A6A2R8 |
0757-0273
0757-0465 0757-0410 0757-0410 0757-0488 |
5 |
R:FXD MET FLM 3.DIK OHM 1% 1/8H
R:FXD MET FLM 100K OHM 1% 1/8H R:FXD MET FLM 301 OHM 1% 1/8H R:FXD MET FLM 301 OHM 1% 1/8H R:FXD MET FLM 909K OHM 1% 1/8H |
28480
28480 28480 28480 28480 28480 |
0757-0273
0757-0465 0757-0410 0757-0410 0757-0498 |
A6A2R9
A6A2R10 A6A2R12 A6A2R12 A6A2R13 |
0757-0442
0684-3901 0684-3901 0757-0442 0757-0442 |
R:FXD MET FLM 10.0K OHM 1% 1/8W
R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 39 OHM 10% 1/4W R:FXD MET FLM 10.0K OHM 1% 1/8W R:FXD MET FLM 10.0K OHM 1% 1/8W |
28480
01121 01121 28480 28480 |
0757-0442
CB 3901 CB 3901 0757-0442 0757-0442 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
A6A2R14
A6A2R15 A6A2R16 A6A2R17 A6A2R18 |
0684-3901
0684-3901 0684-3901 0684-3901 0684-391 |
2 |
R:FXD COMP 39 OHM 10% 1/4W
R:FXD COMP 39 OHM 10% 1/4H R:FXD COMP 39 OHM 10% 1/4H R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 330 OHM 10% 1/4W |
01121
01121 01121 01121 01121 01121 |
CB 3901
CB 3901 CB 3901 CB 3901 CB 3901 CB 3311 |
4642819
4642820 4642821 4642822 4642823 |
0684-3311
0684-3901 0684-3901 0684-1031 0684-1031 |
R:FXD COMP 330 DHM 10% 1/4W
R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 10K OHM 10% 1/4W |
01121
01121 01121 01121 01121 01121 |
CB 3311
CB 3901 CB 3901 CB 1031 CB 1031 |
|
4642824
4642825 4642826 4642827 4642828 |
0684-1031
0684-1031 0684-3901 0684-3901 0684-3901 |
R:FXD COMP 10K 0HM 10% 1/4W
R:FXD COMP 10K 0HM 10% 1/4W R:FXD COMP 39 0HM 10% 1/4W R:FXD COMP 39 0HM 10% 1/4W R:FXD COMP 39 0HM 10% 1/4W |
01121
01121 01121 01121 01121 |
CB 1031
CB 1031 CB 3901 CB 3901 CB 3901 CB 3901 |
|
A6A2R29
A6A2R30 A6A2R31 A6A2R32 A6A2R32 A6A2R33 |
0684-3901
0684-3901 0684-3901 0684-3321 0684-3321 |
R:FXD COMP 39 OHM 10% 1/4W
R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 390 OHM 10% 1/4W R:FXD COMP 3300 OHM 10% 1/4W |
01121
01121 01121 01121 01121 01121 |
CB 3901
CB 3901 CB 3901 CB 3321 CB 3321 |
|
A6A2R34
A6A2R35 A6A2R36 A6A2R37 A6A2R37 |
0757-0401
0757-0401 0757-0401 0757-0401 0684-2221 |
R:FXD MET FLM 100 0HM 1% 1/8W
R:FXD MET FLM 100 0HM 1% 1/8W R:FXD MET FLM 100 0HM 1% 1/8W R:FXD MET FLM 100 0HM 1% 1/8W R:FXD COMP 2200 0HM 10% 1/4W |
28480
28480 28480 28480 28480 01121 |
0757-0401
0757-0401 0757-0401 0757-0401 CB 2221 |
|
4642R39
4642R40 4642R41 4642R42 4642R43 |
0684-2221
0757-0401 0757-0401 0757-0401 0757-0401 |
R:FXD COMP 2200 OHM 10% 1/4W
R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W R:FXD MET FLM 100 OHM 1% 1/8W |
01121
28480 28480 28480 28480 28480 |
CB 2221
0757-0401 0757-0401 0757-0401 0757-0401 |
|
A6A2R44
A6A2R45 A6A2R46 A6A2R46 A6A2R47 A6A2R48 |
0757-0429
2100-2216 0757-0429 2100-2216 |
2
2 |
R:FXD MET FLM 1.82K OHM 1% 1/8W
R:VAR FLM 5K OHM 10% LIN 1/2W R:FXD MET FLM 1.82K OHM 1% 1/8W R:VAR FLM 5K OHM 10% LIN 1/2W NOT ASSIGNED |
28480
28480 28480 28480 |
0757-0429
2100-2216 0757-0429 2109-2216 |
A6A2R49
A6A2R50 A6A2R51 A6A2R52 A6A2R52 A6A2R53 |
0684-2221
0684-2221 0757-0401 0684-1011 |
NOT ASSIGNED
R:FXD COMP 2200 DHM 10% 1/4H R:FXD COMP 2200 DHM 10% 1/4H R:FXD MET FLH 100 DHM 1% 1/8H R:FXD COMP 100 DHM 10% 1/4H |
01121
01121 28480 01121 |
C8 2221
C8 2221 0757-0401 C8 1011 |
|
4642854
4642855 4642856 4642857 4642858 |
0757-0401
0757-0401 0757-0401 0757-0438 |
R:FXD MET FLM 100 0HM 1% 1/8W
NDT ASSIGNED R:FXD MET FLM 100 0HM 1% 1/8W R:FXD MET FLM 100 0HM 1% 1/8W R:FXD MET FLM 5.11K 0HM 1% 1/8W |
28480
28480 28480 28480 |
0757-0401
0757-0401 0757-0401 0757-0438 |
|
4642859
4642860 4642861 4642862 |
0757-0438
0684-2231 0684-3341 0684-1531 |
1 |
R:FXD MET FLM 5.11K OHM 13 1/8W
R:FXD COMP 22K OHM 103 1/4W R:FXD COMP 15K OHM 103 1/4W |
28480
01121 01121 |
0757-0438
CB 2231 CB 1531 CB 1531 |
4642R64
4642R65 4642R65 4642R67 4642R67 |
0757-0465
0684-1031 0684-1001 0684-1001 0684-1031 |
R:FXD COMP 12:00 OHM 10% 1/4W
R:FXD COMP 10% OHM 10% 1/4W R:FXD COMP 10 OHM 10% 1/4W R:FXD COMP 10 OHM 10% 1/4W R:FXD COMP 10 OHM 10% 1/4W |
28480
01121 01121 01121 01121 |
0757-0465
CB 1031 CB 1001 CB 1001 CB 1031 |
|
A6A2R69
A6A251 A6A252 A6A253 A6A254 |
0684-3321
3101-1398 |
1 |
R:FXD COMP 3300 OHM 10% 1/4W
SWITCH:PUSHBUTTON 2 POLE 5 STATION N.S.R. PART OF A6A251 N.S.R. PART OF A6A251 N.S.R. PART OF A6A251 |
01121
28480 |
CB 3321
3101-1398 |
464255
464256 464257 464201 464202 |
3101-1400
3101-1400 1820-0142 |
2 |
SWITCH: PUSHBUTTON DPDT
SWITCH: PUSHBUTTON DPDT N.S.R. PART OF A6A2S1 INTEGRATED CIRCUIT: 4 INPUT, 2-OR/NOR INTEGRATED CIRCUIT: 4 INPUT, 2-OR/NOR |
71590
71590 04713 04713 |
PB-1
PB-1 MC1004P MC1004P |
A6A2XU1
A6A2XU2 A6A3 A6A3C1 A6A3C2 |
1200-0768
1200-0768 01701-66514 0180-0230 0180-0230 |
1 |
SOCKET: INTEGRATED CIRCUIT 14 CONTACT
SOCKET: INTEGRATED CIRCUIT 14 CONTACT BOARD ASSY: INTEGRATOR C:FXD ELECT 1.0 UF 20% 50VDCW C:FXD ELECT 1.0 UF 20% 50VDCW |
91506
91506 28480 56289 56289 |
314-4050-38
314-4050-38 01701-66514 1500105X005042-0YS 1500105X005042-DYS |
A6A3C3
A6A3C4 A6A3C5 A6A3C6 A6A3C7 |
0180-0230
0180-0230 0160-3451 0160-3451 0160-3458 |
1 |
C:FXD ELECT 1.0 UF 20% 50VDCW
C:FXD ELECT 1.0 UF 20% 50VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 1000 PF 10% 1000VDCW |
56289
56289 56289 56289 56289 |
1500105X015042+DYS
1500105X005042+DYS C0238101F103Z525+C0H C0238101F103Z525+C0H C0678251F102K525+C0H |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
4643C8
4643C9 4643C10 4643C11 4643CR1 |
0160-2264
0160-3451 0160-2257 0160-2257 1901-0040 |
C:FXD CER 20 PF 5% 500VDCW
C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD CER 10 PF 5% 500VDCW C:FXD CER 10 PF 5% 500VDCW DIODE:SILICON 30MA 30WV |
72982
56289 72982 72982 07263 |
301-000-CD60-200J
C0238101F1032S25-CDH 301-000-COH0-100J 301-000-COH0-100J FDG1088 |
|
A643LR2
A643CR3 A643CR4 A643CR5 A643CR5 |
1901-0040
1901-0040 1910-0030 1901-0040 1901-0040 |
ä.: |
DIDDE:SILICON 30MA 30WV
DIDDE:SILICON 30MA 30WV DIDDE:GERMANIUM 100 MA 0.65V DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV |
07263
07263 28480 07263 07263 |
FDG1088
FDG1088 1910-0030 FDG1088 FDG1088 |
4543CR7
4543CR8 4643CR9 4643CR9 4643CR10 4643CR11 |
1901-0040
1901-0040 1901-0040 1901-0040 1901-0040 |
DIDDE:SILICON 30MA 30WV
DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV |
07263
07263 07263 07263 07263 07263 |
FDG1288
FDG1288 FDG1288 FDG1288 FDG1288 FDG1288 |
|
A6A3CR12
A6A3CR13 A6A301 A6A302 A6A303 |
1901-0040
1901-0040 1854-0092 1853-0036 1854-0092 |
٠ |
DIDDE:SILICON 30MA 30WV
DIDDE:SILICON 30MA 30WV TSTR:SI NPN TSTR:SI PNP TSTR:SI NPN |
07263
07263 80131 80131 80131 |
FDG1088
FDG1088 2N3563 2N3906 2N3563 |
464304
464305 464306 464307 464308 |
1854-0092
1853-0036 1853-0276 1855-0057 1854-0215 |
1 |
TSTR:SI NPN
TSTR:SI PNP TSTR:SI FET N-CHANNEL TSTR:SI NPN |
80131
80131 28480 28480 80131 |
2N3563
2N3906 1853-0276 1855-0057 2N3904 |
464309
464381 464382 464383 464384 |
1854-0215
0684-3901 0684-3901 0684-3901 0684-3901 |
- |
TSTR:SI NPN
R:FXD COMP 39 DHM 10% 1/4W R:FXD COMP 39 DHM 10% 1/4W R:FXD COMP 39 DHM 10% 1/4W R:FXD COMP 39 DHM 10% 1/4W |
80131
01121 01121 01121 01121 |
2N3904
CB 3901 CB 3901 CB 3901 CB 3901 CB 3901 |
A6A3R5
A6A3R6 A6A3R7 A6A3R8 A6A3R9 |
0684-1221
0684-1221 0684-1031 0684-2231 0757-0446 |
2 |
R:FXD COMP 1.2K OHM 10% 1/4W
R:FXD COMP 1.2K OHM 10% 1/4W R:FXD COMP 10K OHM 10% 1/4W R:FXD COMP 22K OHM 10% 1/4W R:FXD MET FLM 15.0K OHM 1% 1/6W |
01121
01121 01121 01121 28480 |
CB 1221
CB 1221 CB 1031 CB 2231 0757-0446 |
A6A3R10
A6A3R11 A6A3R12 A6A3R13 A6A3R14 |
0684-1021
0684-1011 0684-1011 0684-2231 0684-1221 |
R:FXD COMP 1000 OHM 10% 1/4W
R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 22K OHM 10% 1/4W R:FXD COMP 2.2K OHM 10% 1/4W |
01121
01121 01121 01121 01121 |
C8 1021
C6 1011 C8 1011 C8 2231 C6 1221 |
|
A6A3R15
A6A3R16 A6A3R17 A6A3R18 A6A3R18 |
0684-1011
0684-1031 0684-2211 0684-3901 0684-1031 |
R:FXD COMP 100 OHM 10% 1/4W
R:FXD COMP 10K OHM 10% 1/4W R:FXD COMP 220 OHM 10% 1/4W R:FXD COMP 39 OHM 10% 1/4W R:FXD COMP 10K OHM 10% 1/4W |
01121
01121 01121 01121 01121 |
CB 1011
CB 1031 CB 2211 CB 3901 CB 1031 |
|
A6A3R20
A6A3U1 A6A3XU1 A6A4 A6A5 |
0684-1011
1820-0068 1200-0768 01701-66515 |
2 |
R:FXD COMP 100 OHM 10% 1/4W
IC:TTL TRIPLE 3-INPUT POS NAND GATE SOCKET:INTEGRATED CIRCUIT 14 CONTACT SAME AS A6A3, USE PREFIX A6A4. BOARD ASSY:SWEEP TIME |
01121
12040 91506 28480 |
C8 1011
SN7410N 314-AG50-3P 01701-66515 |
A6A5C1
A6A5C2 A6A5C3 A6A5C4 A6A5C5 |
0160-3324
0160-3451 0140-0193 0160-3451 0160-3541 |
1
1 1 |
C:FXD POLY 1 UF 5% 100VDCW
C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD MICA 82 PF 5% C:FXD CER 0.01 UF +80-20% 100VDCW C:FXD POLY 0.01 UF 5% 100VDCW |
84411
56289 28480 56289 84411 |
HEW-132
C0239101F103Z525-COH 0140-0193 C0238101F103Z525-COH HEW-192 |
4645MP1 | 0510-1101 | 3 | SPRING:RETAINER(PC_SWITCH) | 28480 | 2510-1121 |
4645MP2
4645MP3 |
1460-1148
01840-22502 |
3 |
SPRING: TORSION
ROLLER: DETENT |
00000
28480 |
DBD
01849-22502 |
464501
464502 464503 464581 464582 |
1854-0221
1853-0086 1853-0049 0757-0156 0757-0779 |
1
1 4 4 |
TSTR:SI NPN(REPL.BY 2N4044)
TSTR:SI PNP TSTR:SI PNP R:FXD MET FLM 1.5 MEGDHM 1% 1/2W R:FXD MET FLM 150K OHM 1% 1/4W |
28480
80131 28480 28480 28480 28480 |
1854-0221
285087 1853-0049 0757-0156 0757-0779 |
4645R3
4645R4 4645R5 4645R6 4645R7 |
0757-0156
0757-0779 0757-0156 0757-0779 0687-1231 |
1 |
R:FXD MET FLM 1.5 MEGDHM 1% 1/2H
R:FXD MET FLM 150K OHM 1% 1/4W R:FXD MET FLM 1.5 MEGOHM 1% 1/2W R:FXD MET FLM 150K OHM 1% 1/4H R:FXD COMP 12K OHM 10% 1/2W |
28480
28480 28480 28480 28480 01121 |
0757-0156
0757-0779 0757-0156 0757-0779 E8 1231 |
464588
464589 4645810 4645811 4645812 |
0757-0156
0757-0779 0757-0465 0757-0460 0757-0462 |
1
1 |
R:FXD MET FLM 1.5 MEGDHM 1% 1/2W
R:FXD MET FLM 150K OHM 1% 1/4W R:FXD MET FLM 100K OHM 1% 1/8W R:FXD MET FLM 61.9K OHM 1% 1/8W R:FXD MET FLM 75.0K OHM 1% 1/8W |
28480
28480 28480 28480 28480 28480 |
0757-0156
0757-0779 0757-0465 0757-0460 0757-0462 |
Reference
Designation |
HP Part Number | Qty | Description |
Mfr
Code |
Mfr Part Number |
---|---|---|---|---|---|
40435813
4645814 4645815 4645816 4645818 A64581MP1 A64581MP2 4645 4647 4647 4647 4647 4647 4647 4647 |
2100-1762
2100-1762 2100-1762 2100-1762 0684-1541 (684-1041 3130-0355 3130-0355 3130-0354 01701-66516 0160-3451 0180-0230 0180-0197 0160-3451 0160-0291 0160-2291 |
1
1 1 |
R:VAR WW 20K 5% 1W
R:VAR WW 20K 5% 1W R:VAR WW 20K 5% 1W R:VAR WW 20K 5% 1W R:VAR WW 20K 5% 1W R:FXD COMP 150K OHM 10% 1/4W ROTOR ASSY:FEMALE ROTOR ASSY:FEMALE SAME AS A6A5, USE PREFIX A6A6. HOLDOFF COMP ASSY C:FXD CER 0.01 UF +80-20% 100V0CH C:FXD ELECT 1.0 UF 20% 50VDCW C:FXD CER 0.01 UF +80-20% 100V0CH C:FXD ELECT 1.0 UF 10% 20V0CH C:FXD CER 0.01 UF +80-20% 100V0CH C:FXD MY0.01 UF 10% 20V0CH C:FXD MY0.01 UF 10% 35VDCM C:FXD MICA 100PF 5% |
75042
75042 75042 75042 01121 01121 28480 28480 56289 56289 56289 56289 56289 56289 56289 56289 |
CT-106-4
CT-106-4 CT-106-4 CT-106-4 CB 1041 3130-0355 3130-0354 C1701-66516 C02381c1F1032525-C0H 1500105X005042-0YS C02381c1F1032525-C0H 192P10392-PTS 1500105X9035A2-0YS RDM15F101J3C |
464708
464709 4647081 4647082 4647083 |
0140-0203
0140-0203 1901-0040 1901-0040 1901-0040 |
C:FXD MICA 30 PF 5%
C:FXD MICA 30 PF 5% DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV DIDDE:SILICON 30MA 30WV |
28480
28480 07263 07263 07263 |
0140-0203
0140-0203 FDG1088 FDG1088 FDG1088 |
|
4647CR4
4647CR5 4647CR6 4647CR7 4647CR7 |
1901-0040
1901-0040 1901-0040 1901-0040 0510-1101 |
DIODE:SILICON 30MA 30NV
DIODE:SILICON 30MA 30NV DIODE:SILICON 30MA 30NV DIODE:SILICON 30MA 30NV SPRING:RETAINER(PC SWITCH) |
07263
07263 07263 07263 07263 28480 |
FDG1088
FDG1088 FDG1088 FDG1088 0510-1101 |
|
A6A7MP2
A6A7MP3 A6A701 A6A702 A6A703 |
1460-1148
01840-22502 1854-0215 1853-0203 1853-0203 |
z |
SPRING:TORSION
ROLLER:DETENT TSTR:SI NPN TSTR:SI PNP TSTR:SI PNP |
00000
28480 80131 28480 28480 |
080
01840-22502 2N3904 1853-0203 1853-0203 |
464704
464705 464706 464707 464781 |
1853-0036
1853-0036 1854-0092 1853-0036 0684-2211 |
TSTR:SI PNP
TSTR:SI PNP TSTR:SI NPN TSTR:SI PNP R:FXD COMP 220 OHM 10% 1/4W |
80131
80131 80131 80131 01121 |
2N3906
2N3906 2N3563 2N3506 CB 2211 |
|
464782
464783 464784 464785 464785 |
0684-2211
0684-1011 0684-3901 0684-2231 0684-1011 |
R:FXD COMP 220 OHM 103 1/4W
R:FXD COMP 100 OHM 103 1/4W R:FXD COMP 39 OHM 103 1/4W R:FXD COMP 22K OHM 103 1/4W R:FXD COMP 100 OHM 103 1/4W |
01121
01121 01121 01121 01121 01121 |
CB 2211
CB 1011 CB 3901 CB 2231 CB 1011 |
|
A647R7
A647R8 A647R9 A647R10 A647R11 |
0684-1221
C684-2211 0684-1011 0684-1011 0684-1831 |
1 |
R:FXD COMP 1.2K OHM 10% 1/4W
R:FXD COMP 220 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 18K OHM 10% 1/4W |
01121
01121 01121 01121 01121 01121 |
C6 1221
C8 2211 C8 1011 C8 1011 C8 1011 C8 1831 |
A647R12
A647R13 A647R14 A647R15 A647R16 |
0684-2221
0757-0465 0684-1011 0684-2231 0684-1021 |
R:FXD COMP 2200 OHM 10% 1/4W
R:FXD MET FLM 100K OHM 1% 1/8W R:FXD COMP 100 OHM 10% 1/4W R:FXD COMP 22K OHM 10% 1/4W R:FXD COMP 1000 OHM 10% 1/4W |
01121
28480 01121 01121 01121 |
CB 2221
C757-C465 CB 1011 CB 2231 CB 1021 |
|
A6A7S1MP1
A6A7S1MP2 A647U1 A647U1 A648 |
3130-0352
3130-0353 1820-0068 1200-0768 01701-66517 |
1
1 1 |
ROTOR ASSY:FEMALE
ROTOR ASSY:MALE IC:TTL TRIPLE 3-INPUT POS NAND GATE SOCKET:INTEGRATED CIRCUIT 14 CONTACT BOARD ASSY:HORIZONTAL MODULE |
28480
28480 12040 91506 28480 |
3130-0352
3130-0353 SN7410N 314-AG5D-3R 01701-66517 |
A6A8C1
A6A8C2 A6A8C3 A6A8CR1 A6A8CR2 |
0160-3451
0180-0230 0160-2204 1901-0040 1901-0040 |
C:FXD CER 0.01 UF +80-20% 100VDCW
C:FXD ELECT 1.0 UF 20% 50VDCW C:FXD MICA 100PF 5% DIODE:SILICON 30MA 30WV DIODE:SILICON 30MA 30WV |
56289
56289 72136 07263 07263 |
CC23B101F103ZS25-CDH
150D105X0050A2-DYS RDM15F101J3C FDG1088 FDG1088 |
|
A6A8CR3
A6A8MP1 A6A8MP2 A6A8MP3 A6A8R1 |
1901-0040
1460-1148 01840-22502 0510-1101 0757-0456 |
1 |
DIODE:SILICON 30MA 30WV
SPRING:TORSION ROLLER:DETENT SPRING:RETAINER(PC SWITCH) R:FXD MET FLM 43.2K DHM 1% 1/8W |
07263
00000 28480 28480 28480 28480 |
F0G1088
080 01840-22502 0510-1101 0757-0456 |
A6A8K2
A6A8S1MP1 A6A8S1MP2 A6A9 A6A9C1 |
0757-0793
3130-0351 3130-0350 01701-66535 0160-3453 |
1
1 1 |
R:FXD MET FLM 2000 OHM
1% 1/8
H
ROTOR ASSY:MALE ROTOR ASSY:FEMALE BOARD ASSY:HORIZONTAL PRE-AMPLIFIER C:FXD CER 0.05 UF +80-20% 100VDCW |
28480
28480 28480 28480 56289 |
n 757-0739
3130-0351 3130-0350 01701-66535 C023A101L5032S25-CDH |
464902
464903 464904 464905 464905 |
0160-3453
0160-3453 0160-3453 0160-3453 0160-3453 0180-0230 |
C:FXD CER 0.05 UF +80-20% 100VDCW
C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD CER 0.05 UF +80-20% 100VDCW C:FXD ELECT 1.0 UF 20% 50VDCW |
56289
56289 56289 56289 56289 |
C023A101L503ZS25-CDH
C023A101L503ZS25-CDH C023A101L503ZS25-CDH C023A101L503ZS25-CDH 150D105X0050A2-DYS |