Honeywell HPB, HPA User Manual

Honeywell Precision Barometer
HPB & HPA
ADS-14071 5/02 Solid State Electronics Center
Users Manual
Version H2.4
ADS-14071 Rev. 5/02
Customer Service Representative (800) 323-8295 fax: (763) 954-2257 E-Mail: ssec.customer.service@honeywell.com Web Site: www.ssec.honeywell.com
No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Honeywell, Inc. Honeywell reserves the right to make changes to any products or technology herein to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.
©Copyright 2001 Honeywell Inc., All rights reserved. Printed in U.S.A.
Table of Contents
1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Product Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hardware Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.0 GETTING STARTED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Equipment Needed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3 Terminal Program Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.4 Initial Turn-On Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.6 Step-By-Step Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.7 Command Functional Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.0 COMMANDS - QUICK REFERENCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.0 FUNCTIONAL OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 What Is Integration? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Pressure Reading Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Customized Pressure Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.5 Command Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.6 Pressure Reading Decimal Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.7 HPB Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.0 COMMANDS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1 Command Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2 Information Request Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Action Directing Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.4 Command RepliesGeneral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5 ASCII Format Replies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.6 Binary Format Replies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.7 Command And Reply Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.8 Command Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.9 Command Summary Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.10 Command Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.0 ELECTRICAL CONNECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.0 TIMING DIAGRAMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
8.0 SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
9.0 DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
i
Figures
Figure 1. HPB Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 2. Pressure Reading Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. Custom Slope (X=) Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. Custom Offset (Z=) Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5. Integration (I=) Command, Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 6. Integration (I=) Command, Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 7a. Deadband and Sensitivity (DS) Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 7b. Deadband and Sensitivity (DS) Command Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 8. Idle Count (IC) Command Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 9. Synchronize Integration Cycles (SI) Command Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 10. HPB Ring Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11. HPB Multi-drop Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 12. Single HPB Command and Reply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 13. Multiple HPB Network Command and Replies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 14. HPB Electrical Connector Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 15. Connection to a Host Computer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 16. Default Single Pressure Reading Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 17. Default Continuous Pressure Reading Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 18. Continuous Pressure (with IC = 1) Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 19. Timing Diagram for 20 Readings Per Second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 20. Timing Diagram for 50 Readings Per Second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 21. Timing Diagram for 120 Readings Per Second . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 22. HPB Case Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 23. Electrical Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
ii
Tables
Table 1. Decimal Place Locations for Pressure Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 2. Header Description for Binary Format Pressure Readings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 3. Binary Format Character Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 4. Command List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 5. Command Factory Default List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 6. Display Units Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 7. Transmission Times at Selected Baud Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 8. Number of bytes in Various Replies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 9. ASCII Conversion Table, Decimal to Hexadecimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 10. RS-232 Standard Pin Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
iii
1.0 INTRODUCTION
1.1 Product Overview
The Honeywell Precision Barometer* (HPB) provides high accuracy absolute pressure readings in digital form. The first-time user will be able to use the HPB within minutes, yet capability exists to configure the HPB for optimum performance in specific applications.
The heart of the HPB measuring system is a silicon piezoresistive sensor, which contains both pressure and temperature-sensitive elements. Digital signals representing temperature and pressure are processed by a microprocessor to produce fully temperature compensated and calibrated pressure readings over the entire -40 to 85°C temperature range.
The HPB receives commands and sends data in either a ring or a multidrop TTL-Level configuration. Using an RS232­to-TTL converter, up to 89 units can be connected in a ring or multi-drop configuration to a single serial port of a computer. Group (multicast) addressing allows up to nine groups of HPBs to be addressed with a single command. Global (broadcast) addressing will send a command to all HPBs on the bus.
Any computer having a serial port, terminal emulation software and a RS232-to-TTL converter can be connected to the HPB to allow the user to select baud rates, sample rates, readout resolution, units of pressure and other choices.
User selected functions are set through the digital interface. The selected functions may either be used temporarily, until the HPB is powered down, or may be stored in the internal EEPROM to automatically configure the HPB each time power is applied.
The HPB is a low power device. It can be configured to enter a micropower shut down mode with a simple command or by switching the state of power control line, see the OP command in section 5.10 for details. For buoy applications, the HPB has a wave filtering routine to make data acquisition easier. See the DO command in section
5.10 for details.
1.2 Hardware Description
See Sections 8 and 9.
* For simplicity, references thoughout this manual to both HPB & HPA have been shortened to HPB.
1
2. 0 GETTING STARTED
2.1 Overview
The first-time user should approach the HPB in a manner analogous to using a word processor program; i.e., many features are available but one may begin by using those of interest at the moment. Section 2.7 of this manual lists command features by functional groups to assist in this selection. When shipped from the factory, the default settings provide a pressure transducer that will be usable for many applications. Feel free to make command-driven configuration changes as you become familiar with the HPB. Default parameters are restored when the power is cycled. Once the user is familiar with the performance and command structure, changes may be made and stored using the Store Parameters (SP) command. Once stored, the new default settings are activated each time the HPB is powered up. This tailors the personality of the HPB to meet the needs of a particular application.
2.2 Equipment Needed
To prepare the HPB for operation, several items are needed:
 A mating connector with proper wiring connections (see connector part number and wiring diagram in Section 6-
Electrical Connections);
 A DC power supply;
 A pressure source;
 A computer, or host processor, having an RS-232 serial port and terminal program software such as PROCOMMTM,
VERSATERMTM, TERMINAL (Windows® 3.x) or HYPERTERMINAL (Windows® 95). These programs are normally used to interface to a modem. The wiring diagram designates which HPB pins must connect to the computer send, receive and common pins for proper communications. Some computers may not have an RS-232 serial port connection identical to the one shown in Section 6, making it necessary to adapt the HPB connections to that particular computer.
 An RS232-to-TTL converter
2.3 Terminal Program Settings
 Enter the following settings in the terminal program:
Baud Rate.............................................................9600
Start Bits......................................................................1
Data Bits......................................................................8
Stop Bits......................................................................1
Parity....................................................................None
 Attach a line feed to the incoming carriage return <CR>.
 Turn the local echo ON.
When shipped from the factory, the HPB is set to a baud rate of 9600, 1 start bit, 8 data bits with no parity and one stop bit. If the baud rate has been subsequently changed, and is unknown, it will be necessary to search all baud rate values to reestablish communication. See the BP command description in Section 5.10 of this manual for possible settings.
2
2.4 Initial Turn-on Response
Digital Output
Once the wiring connections and terminal program settings are complete, the HPB will automatically send the following response (or similar to) when power is applied. This reply will be generated any time power is applied to the HPB.
Typical Reply:
?01HPB_ _ 1200HPAa ring network configuration ?00HPB_ _1200HPAa multi-drop network configuration
The ?01 or ?00 indicates a default address device called a null address. This HPB has not yet been assigned an ID number so it assumes the null address.
2.5 Command Format
Any command interaction with the HPB requires electrical connection to the TTL serial communications pins. There are two basic types of commands  action directing commands and information requesting commands. Theses are described in Commands  Section 5
Typical HPB commands have the form *ddcc = nnn <cr>
Where: * is the command header character
dd is the decimal address of the HPB cc is a command (refer to Commands  Section 5 for a complete description of commands) = equal sign (required in some commands) nnn additional characters (required in some commands) <cr> carriage return is required to end all commands
(do not type, press the ENTER/RETURN key)
2.6 Step-by-Step Examples (Only for single HPB connection)
 READ SINGLE PRESSURE
Once the HPB is powered up and connected to a computer, enter the following command:
Type: *00P1 <cr> Response: ?01CP=15.458 (ring)
Where: * indicates the start of a command
00 is the null address of the HPB (see note below) P1 is the command to read the most current pressure
Note: The ? indicates a response from a null address HPB  one which has not been assigned a device ID. A
null address, 00, is coded into each HPB at the factory. When a ring networked null address HPB responds, it adds one to its address, hence, the response 01. Refer to the ID command in Section 5.10 for a description of addresses and responses.
In the reply, the 01 identifies the individual unit address (range 01-89). The CP=15.458 indicates a compensated pressure of 15.458 psi. Your unit may not show this specific reading, depending on the applied pressure it is measuring.
?00CP=15.458 (multi-drop)
3
SET DEVICE ID
To give the HPB an assigned address of 01 up to 89, enter the following commands (Assumes the HPB is still null­addressed):
Type: *00WE <cr> This enables the HPB to change a parameter in RAM
Type: *00ID=01 <cr> This sets the null addressed HPB to device ID=01.
Note: The device ID is now used in the command input
Type: *01S= <cr> Response: #01S=00052036 (serial number test)
The # now replaces the ? in the header and indicates the HPB response is from an address assigned unit.
Where: * indicates the start of a command
00 is the null address of the HPB WE is the command to enable a configuration parameter change ID is the command to change the device address 01 is the assigned HPB address for this example S= is the command to read the serial number
 READ PRODUCTION DATE
To read the production date, enter the following command:
Type: *01P= <cr> Response: #01P=09/26/00
 READ CONTINUOUS PRESSURE
For continuous pressure readings at the factory set default rate of 5 per second, enter the following command:
Type: *01P2 <cr> This enables a continuous stream of compensated pressure readings
to flow into the terminal program.
Type: $*99IN <cr> This is the best way to stop the continuous pressure reading commands.
The $ character temporarily stops, or suspends, either the continuous pressure or temperature readings. The *99IN command stops the continuous readings.
 CHANGE TO A NEW SAMPLE RATE
Enter the following command:
Type: *01WE <cr> This enables the HPB to change a parameter in RAM.
Type: *01I=M20<cr> This sets the integration time to value 20, which corresponds to an output
sample every 2 seconds.
The sample rate will change to one every 2 seconds. I= is an abbreviation for Integration time which determines how long to accumulate pressure samples between readings. Each integration period gathers the data for one pressure reading output (see Section 4.2 What is integration?). The range of integration times can be set by specifying readings per second (I=R45 for 45 readings/sec) or time delay in 100 millisecond intervals (I=M60 for 6 seconds). The factory set integration time is 5 samples per second (I=M2). See Section 5.10, command descriptions, for more detail.
The output data rate can also be altered by use of the idle count (IC) command or by changing the reading rate (RR) command in conjunction with the operating mode (OP) command. See Section 4 for description of these commands.
REPEAT THE READ CONTINUOUS PRESSURE STEP ABOVE
Notice the slower output rate of one sample every 2 seconds.
4
 TRY OTHER COMMANDS
Experiment with other commands to become familiar with the command structures. A short overview of each command with input and response examples is shown in Section 3 Commands  Quick Reference. See Section 5Commands for complete command descriptions. Until an SP=ALL command is executed, no changes will be stored in the EEPROM. Cycle the power or send an IN=RESET command to revert to previous EEPROM settings.
2.7 Command Functional Groups
PRESSURE DISPLAY UNITS HPB reads out psi, in wc, mm Hg, etc.
DU Set pressure units for output readingsany one of 17 units U= Specify a user supplied unit of measure
TEMPERATURE
T1 Single °C T2 Continuous °C T3 Single °F T4 Continuous °F
 RING/MULTI-DROP BUS PARAMETERS
BP Changes baud rate and parity ID Assign device ID and group addresses M= Select alternate message Headers [Multi-Drop] SI Synchronize Integration cycles among units [Multi-Drop] TO Set Transceiver Operating parameters
OUTPUT READING AND RATESpeed up or slow down output rate
Single Reading Commands
P1 Single pressure reading...ASCII format P3 Single pressure reading...binary format T1 Single temperature reading...°C T3 Single temperature reading...°F
Continuous Readings Commands
P2 Continuous pressure readings...ASCII format P4 Continuous pressure readings...binary format T2 Continuous temperature readings...°C T4 Continuous temperature readings...°F
Integration Time Commands Changes pressure reading response time
DS Set deadband and sensitivity parameters I= Set pressure integration time and reading rate SI Synchronize pressure Integration cycles
Idle Count Command Changes pressure reading response time
IC Set number of idle integration cycles
Reading Response To Changes In Input PressureFilters small changes
RR Set number of identical readings to skip OP Transmit all readings or only changed readings
5
FORMAT PRESSURE READINGSChanges data length into host processor
Binary Format Commands
P3 Single pressure...binary format P4 Continuous pressure...binary format OP Set operating mode...binary format checksum...set signed or extended binary output format
ASCII Format Commands
All readings, except P3, P4 and ~, are ASCII format readings.
OP Set operating mode...all readings or only changed readings
START-UP PARAMETERSSets the HPB configuration after power is applied
WE Enable parameter writes to the RAM or EEPROM SP Store RAM parameters to the EEPROM for startup MO Specify the power-up message and operating mode
PRESSURE NOISE REDUCTIONReduces pressure noise signals
DS Set deadband and sensitivity parameters
DIAGNOSTIC AND RESET CONTROL
IN Performs a software reset of microprocessor RS Read status of error indicators CK Performs and provides the result of EEPROM checksum OP Use pressure reading checksum for binary format
USER AND STARTUP MESSAGES
A= Store 8 characters of user supplied data B= Store 8 characters of user supplied data C= Store 8 characters of user supplied data, which can be configured as a watchdog or reset message D= Store 8 characters of user supplied data, which can be configured as a watchdog or reset message MO Specify the startup header selection
HPB UNIT INFORMATION
P= HPB production date S= HPB serial number V= HPB software version number ID Assign device ID and group addresses M= Read the maximum full scale pressure limit allowed
CUSTOMIZE PRESSURE WINDOW
F= Customize the full scale pressure limit X= Set the slope m parameter for user input mx+b control Z= Set the offset b parameter for user input mx+b control
6
3.0 COMMANDSQUICK REFERENCE
A= Data String A
(up to 8 characters, a <cr> indicates end-of-message. *00A=2-8-95 More than 8 characters is an invalid write) (Can store info. such as dates, readings, etc.) Inquiry *00A= ?01A=2-8-95
BP Baud Rate and Parity Setting
B= Data String B
(up to 8 characters, a <cr> indicates end-of-message, *00B=123.4567 and more than 8 characters will not write to location) (Can store info. such as dates, readings, etc.) Inquiry *00B= ?01B=123.4567
CK Check EEPROM
C= Data String C
(up to 8 characters, a <cr> indicates end-of-message, *00C=This_is_ and more than 8 characters will not write to location The C and D string can be used for a watchdog or reset message(see MO command). Inquiry *00C= ?01C=This_is_
DO Default Operating Parameters
(factory default setting) *00DO=E
DS Deadband and Sensitivity Control
set deadband to 20 x 0.005% = 0.10%FS ) *00DS=20
DU Display Units Control
D= Data String D
(up to 8 characters, a <cr> indicates end-of-message, *00D=A_HPB!!! of more than 8 characters will not write to location) The C and D string can be used for a watchdog or reset message (see MO command). Inquiry *00D= ?01D=A_HPB!!!
F= Custom Full Scale Range
(set custom FS range to 10.5psi) *00F=10.5
Example Example Input (1) Response (2)
Write string A *00WE
Set parameters *99WE
(no parity, 1200 baud) *99BP=N1200
Write string B *00WE
Inquiry *00CK ?01CK=OK
Write string C *00WE
Set DO parameters *00WE
Inquiry *00DO ?01DO=E0NX
Set DS parameters *00WE
Inquiry *00DS ?01DS=00S0
Set DU parameters *00WE
(set units to in. Hg) *00DU=INHG
Inquiry *00DU ?01DU=INHG
Write string D *00WE
Set F= parameter *00WE
Inquiry *00F= ?01F=10.500
Note: See Section 5.10 for complete command descriptions.
7
IC Idle Count Parameter
Set IC parameter *00WE
(set idle count to 12 , so that 12 output samples are skipped) *00IC=12
Inquiry *00IC ?01IC=12
ID Identification Number
Set ID number *00WE
(set device ID of first null addressed unit to 12) *00ID=12
Confirmation of ID=12 *12P1 #12CP= 14.32
Set group number *12WE
[Ring Network] (set group ID of unit 12 to 95) *12ID=95
[Ring Network] Group no. inquiry of device ID=12 *12ID #12ID=95
[Multi-Drop](set group ID of unit 12 to 95 with group sub-address of 01) *12ID=9501
[Multi-Drop] Group no. inquiry of device ID=12 *12ID #12ID=9501
IN Initialize HPB Microprocessor
Stop all current operations *99IN
(does not affect RAM data)
Full reset of HPB processor *99IN=reset
Changes to RAM data are lost unless an SP =ALL command
was previously issued. (Response is user message, if selected) ?01Pressure_tank_1
I= Integration time
Set I parameter *00WE
(set output rate to 50 readings/second) *00I=R50
Inquiry *00I= ?01I=R050
M= Maximum Full Scale Value Allowed
(Factory set) Inquiry *00M= ?01M=0017psia
MO Power Up Mode
Set MO parameter *00WE
Required to save in EEPROM for power-up *00SP=ALL
Inquiry *00MO ?01MO=X2M1
OP Operating Mode Parameters
Set OP parameter *00WE
(set to extended binary output mode) *00OP=E
Inquiry *00OP ?01OP=ANEW
P1 Pressure, Single, ASCII Format
Request compensated pressure *00P1 ?01CP= 14.450
P2 Pressure, Continuous, ASCII Format
Request compensated pressure *00P2 ?01CP= 14.450
P3 Pressure, Single, Binary Format
Compensated pressure (null address) *00P3 ^@PSA or
Compensated pressure (assigned address) *01P3 {@PSA
(typical response is a ^ or { char plus 4 data bytes
that are encoded for computer translation)
Example Example Input (1) Response (2)
*00MO=M1 *00WE
(repeated)
Note: See Section 5.10 for complete command descriptions.
8
P4 Pressure, Continuous, Binary Format
Compensated pressure (null address) *00P4 ^@P@@ or
Compensated pressure (assigned address) *01P4 {@P@@
(typical response is a ^ or { char plus 4 data bytes (repeated)
that are encoded for computer translation)
P= Production Date
(factory set date, mm/dd/yy) Inquiry *00P= ?01P=09/26/00
RR Reading Rate
(skip 5 x 100 = 500 readings if identical) *00RR=5
RS Read Status
SI Synchronize Pressure Integration
SP Store Parameters in EEPROM
(store all settings stored in RAM in EEPPROM) *00SP=ALL
S= Serial Number
T1 Temperature, Single, °C
T2 Temperature, Continuous, °C
T3 Temperature, Single, °F
T4 Temperature, Continuous, °F
T0 Transceiver Operating Parameters
Set multi-drop response delay to 2 character times *01WE
U= User Supplied Display Units
V= Version Number
Example Example Input (1) Response (2)
Set RR parameter *00WE
Inquiry *00RR ?01RR=5
Inquiry *00RS ?01RS=0000
Synchronize Integration *01SI
Store Parameter *00WE
Inquiry *00S= ?01S=00005137
Request Celsius temperature *00T1 ?01CT=24.5 or ?01CT=..
Request Celsius temperature *00T2 ?01CT=24.5 (repeated)
Request Fahrenheit temperature *00T3 ?01FT= 76.1 or ?01FT=..
Request Fahrenheit temperature *00T4 ?01FT=76.1 (repeated)
*01T0=2
Inquiry *01T0 #01TO=M2C
Set display units *00WE
(set units to 5.1 x psi) *00U=5.100
Activate user display units *00WE *00DU=USER
Inquiry *00U= ?01U=5.100
Inquiry *00V ?01V=H2.4E0Mnn
Note: See Section 5.10 for complete command descriptions.
9
Example Example Input (1) Response (2)
WE Write Enable to EEPROM or RAM
Write several RAM parameters *01WE=RAM
(example to set output units to cm water column) *01DU=CMWC
(factory default setting) *01DO=E
(Cancel continuous WE=RAM command) *01WE=OFF
Note:Any command changes in RAM will be lost when the PPT is powered down unless an SP command
saves them to EEPROM.
X= Slope - User Compensation Control
Set X= parameter *00WE
(set user slope control to 0.005% x 17 = 0.085%FS) *00X=17
Inquiry *00X= ?01X=17
Note:The input slope and offset control are for user supplied mx+b correction.
Z= Offset - User Compensation Control
Set Z= parameter *00WE
(set mx+b pressure offset to 20 x 0.005%FS = 0.1%FS) *00Z=20
(null adjust output at zero pressure) *00Z=CAL
Inquiry *00Z= ?01Z=20
(1) A carriage return, <cr>, should follow each input. If the HPB has an established address of 12, for instance, then
begin the command with *12.. instead of *00...
(2) The responses shown here begin with ?01.. and are for a null address HPB. That is, a HPB that has not yet
established unit identification (see ID command). If the HPB has an assigned address of 23, for instance, the response will begin with #23.. instead of ?01...
Note: See Section 5.10 for complete command descriptions.
10
4.0 FUNCTIONAL OPERATION
4.1 Overview
Honeywells Precision Pressure Barometer (HPB) is based on a silicon piezoresistive sensor coupled with a microprocessor and other electronic circuitry. The Piezoresistive sensor contains both pressure sensitive and temperature sensitive elements. After testing the sensor over a matrix of pressure and temperatures at the factory, values are stored in the EEPROM and used by the microprocessor to correct for any sensor non-linearities. Because of the internal digital circuitry, having a digital output capability is straight forward. The digital readings are transmitted via TTL-level signals in either a ring or multi-drop configuration. When connected to a computer via an RS232-to-TTL converter, the user can modify the pressure reading rate, integration times, units of pressure, thresholds for deadbands, etc.
Pressure
Input
HPB
Pressure
Sensor
Temperature
Sensor
16 bit
Analog
to
Digital
Converter
EEPROM
Micro-
processor
RAM
Voltage Regulator
TTL-Level
COM
(Digital
Serial Data)
Figure 1. HPB Block Diagram
The HPB can be tailored to specific application requirements. Configuration information is sent to, or read from, the HPB by user command messages over the serial port. Most configuration parameters that can be changed by a command may be retrieved by use of that same command. Commands used to change parameters must be preceded by an enabling command (WE), but commands used to retrieve information do not require an enable. All configuration changes are stored in the HPB RAM for immediate use until power is removed. These configuration changes are only made permanent in the EEPROM when the user executes the Write Enable (WE) command followed by the EEPROM Store Parameters (SP) command. (Exceptions to this are the A=, B=, C=, and D= commands, which are immediately stored to EEPROM if preceded by the WE command.)
DC Power
Power Control
The HPB is a low power device. It can be configured to enter a micro-power shut down mode by either sending a simple command (See OP=O Command) or by applying +5V to the power control pin on the electrical connector.
If the micro-power mode was entered with a simple command, normal operation is restored by momentarily grounding the power control pin. If the HPB was configured to enter a micro-power state by applying +5V to the power control pin (See OP=P Command), normal operation is restored by permanently grounding the power control pin.
11
4.2 What Is Integration?
The input pressure is converted to an analog electrical signal at the pressure sensor. This signal feeds into a delta­sigma analog-to-digital (A/D) converter where it is changed into a digital signal representing the pressure value. During the A/D conversion cycle, the signal is integrated over time. That is, the pressure reading is averaged (integrated) over the A/D conversion cycle so the resultant digital value is the summation of the average pressures observed during the cycle. This conversion cycle can be controlled by the user with the Deadband and Sensitivity (DS), Synchronization Integration (SI), Idle Count (IC), and Integration (I=) commands.
4.3 Pressure Reading Control
The HPB commands allow considerable flexibility in tailoring pressure acquisition times, sample windows, thresholds, and output rates. These are controlled by five commands: Deadband and Sensitivity (DS), Integration (I=), Idle Count (IC), Reading Rate (RR), and OPerating mode (OP). Figure 2 illustrates how the user may control these attributes in three ways:
First, the internal analog-to-digital converter integration time may be controlled over a range of 1 sample every 12 seconds up to 120 samples per second. This is controlled using the Integration (I=) command. The integration time is used to control the A/D integration cycle that allow noisy pressure inputs to be filtered, or averaged, over a selected period of time. See Figures 5. The integration time can be set within a range of 1 to 120 samples/sec using the I=Rn form or a range of 100msec to 12 sec/sample using the I=Mn form. The values for n range from 1 to 120 for both the rate (Rn) form and the millisecond (Mn) form.
Second, the integration cycles may be spaced with idle periods that cause pressure reading times to increase to only as one every 51 minutes. The Idle Count (IC) command will skip from 0 to 255 idle periods equal to the integration time. If the integration time is set to the maximum, 12 sec/sample, and an idle count of 255 is selected, then the time between samples = 12 sec. x 256 = 51.2 minutes.
Third, the reading rate may be controlled so pressure readings are obtained only when pressure changes occur. The Reading Rate (RR) command can be set to output only changed readings, or skip from 100 to 1000 identical readings. The Operating Mode command (OP) can be set to output every reading or to only output changes. The Deadband setting in the DS command can filter a small pressure change by not allowing the pressure reading to vary as long as it remains within the deadband limits. This controls the sensitivity to change of the RR and OP command modes when the output only when pressure changes options are selected. If the pressure signal is stable within the deadband limit, then the pressure reading time can be increased up to 1000 times the integration time by using the RR command.
12
IC = c
Idle Count
(IC=0 factory default)
if c = 0 then no output
Delay
if c = 1 - 255 then add 'c' wait
cycles between inputs
if I = Mn
if I = Rn
Scalar
Display Units
Pressure
P1, P2, P3, P4
TD, RD
Output Mode
and Format
• Single or Continuous
Digital
Outputs
TTL-Level
• ASCII or Binary
Pressure Values
Display Units
HPB Pressure Rate Conditioning
User Compensation
Dead Band
DS = dd Sn
(DS=00S0 factory default)
DB = n x dd x 0.005% FS range
(dd= 0 - 60, n=1, 2, 4, or 8)
(X=m, Z= b)
Press. = mX + b
User Compensation
X=nn, Z=nn
(X=1.000 factory default)
Dead Band and Sensitivity
A/D
Converter
Integration
I = Rn or I = Mn
(I=M002 factory default)
Integration Time
range for n value: 1-120
Rn: n readings/sec
Mn: n x 100 msec/reading
Input
Pressure
RR = r
Reading Rate
(RR=00 factory default)
OP = d m n p
Operating Mode
Output Control
(OP=ANEX factory default)
Output Control
if r = 0 then output every input
if r = 1 - 10 then skip r x 100
identical readings
if d = A then output every input
if d = U then output only changes
if p = X then no watchdog timer
if p = W then use watchdog timer
For binary format mode:
if m = N then no checksum
if m = C then use checksum
if n = S then use standard format
if n = E then use extended format
Shaded blocks represent command codes executed in the microprocessor
Figure 2. Pressure Reading Control
13
4.4 Customized Pressure Range
The user can adjust the pressure vs. output value transfer curve using the X=, Z= and F= commands. The X= command adjusts the slope of the pressure output curve. The range of adjustment for X=, and Z= commands is ±0.6%FS in 0.005% increments. The F= command can change the full scale pressure span to any value between 50% and 100% of the factory specified range (M=).
The purpose of these commands is to allow the user to provide compensation for the pressure values specific to an application. This type of adjustment is made after the HPB temperature compensates the pressure reading according to the factory calibration. The user supplied values (X=, Z=) are used as an mx+b correction. The X= command supplies the slope adjustment, or m, value and the Z= command supplies the offset adjustment, or b, value. Figures 3 and 4 illustrate these commands.
1200 hPa
Digital Output
+0.6%FS
Figure 3. Custom Slope (X=) Options
○○
- 0.6%FS
1200
Slope=1
Digital Output
Applied Pressure (hPa)
Figure 4. Custom Offset (Z=) Options
+0.6% FS
○○○
Offset=0
- 0.6%FS
1200
Applied Pressure (hPa)
The user compensated pressure output can be expressed in terms of X= slope values m where m=0 to ±120. The offset value, Z=, can be expressed as b where b=0 to +120.
Pressure Output = [(1 + m x 0.00005) x Pressure Reading] + [(b x 0.00005) x (full scale)]
The F= command is used in conjunction with the X=, and Z= command to customize the full scale range and user compensation of the HPB. The F= command allows the user to reduce the full scale range of the HPB as much as one-half the factory FS value. The F= command value can have up to 5 significant digits with a decimal point. Enter an F=0 command to disable this function and return to the factory default (M=) full scale value. Using the F= command, the maximum allowable full scale pressure is the M= value and the minimum allowable FS pressure is (0.5 x the M= value). The new F= value becomes the standard FS number used for other commands and range calculations. (Note that the accuracy specification is always referenced to the factory (M=) full scale value.) For example, to customize the full scale range of a 1200 hPa (900mm Mercury - mmhg) device to 800 mmhg, first select the desired display units using the DU command. Enter the command *ddWE followed by a *ddDU=mmhg. Then enter a *ddWE followed by a *ddF=800. The full scale pressure for this unit is now 800 mmhg.
14
4.5 Command Illustrations
The figures below illustrate the commands that affect the pressure output rate. Figure 5 shows a varying pressure signal having a reading integration time of 200 msec. If the small variations on the pressure signal are considered noise and are undesirable, increase the integration time to time-average the pressure signal, and filter out the noise.
Pressure
5.24
5.20
5.16
5.12
5.08
5.04
5.00
4.96
4.92
(psi)
1.0 2.0 3.0
Integration Time
Integration Time = 0.2 sec
(I=M2 sets 2x100 msec/sample)
(0.2 sec)
I = M2 IC = 0 RR = 0 OP=A
Integration time HPB pressure output Actual pressure
Time (sec)
Figure 5. Integration (I=) Command, Example 1
Figure 6 shows the same pressure signal with a 1 second integration time reducing the noise variations on the output readings. Of course, the penalty for doing this is reducing the response time to rapidly changing pressures that are not considered noise.
Integration Time (1 sec)
Integration Time = 1 sec
(I=R1 sets 1 reading/sec)
I=R1 IC = 0 RR = 0 OP=A
Integration time HPB pressure output Actual pressure
5.24
5.20
5.16
5.12
5.08
5.04
5.00
4.96
4.92
Pressure
(psi)
1.0 2.0 3.0
Time (sec)
Figure 6. Integration (I=) Command, Example 2
15
Figure 7 shows the effect of the deadband setting in the DS command. If a deadband of ±0.02% FS is selected, then the pressure output will not change reading as long as it is within this limit (±2.4hPa for a 1200 hpa unit). If the pressure exceeds or falls below this threshold, the pressure reading will track the actual pressure value. It will continue to track the pressure value until there is no change again within the threshold limit.
Figure 8 illustrates the effect of the Idle Count (IC) command for four different pressure curves. The IC command does nothing more than skip over a set number of readings. If the idle count were set to IC=4, then after a pressure output reading, the HPB would not output the next 4 readings and the fifth one would become the next output reading. This feature allows the reading rate to be established different from the integration time. This feature is useful for minimizing the communications traffic on a network of many HPB units.
Figure 9 illustrates the Synchronize Integration cycle (SI) command as well as the Transceiver Operating parameters (TO) options that affect it. This is only for units configured to multi-drop operation.
16
Loading...
+ 47 hidden pages