14-16 Southwest Park
Westwood, MA 02090, USA
Phone: (781) 471-3000
FAX: (781) 471-3099
FCI P/N 9000-0572
CHG-120 Battery Charger
Instruction Manual
Document 52459
11/22/04Revision:
PN 52459:AECN 04-691
A
Fire Alarm System Limitations
While a fire alarm system may lower insurance
rates, it is not a substitute for fire insurance!
An automatic fire alarm system–typically made up of smoke
detectors, heat detectors, manual pull stations, audible warning devices, and a fire alarm control with remote notification
capability–can provide early warning of a developing fire.
Such a system, however, does not assure protection against
property damage or loss of life resulting from a fire.
The Manufacturer recommends that smoke and/or heat detectors be located throughout a protected premise following the
recommendations of the current edition of the National Fire
Protection Association Standard 72 (NFPA 72),
manufacturer's recommendations, State and local codes, and
the recommendations contained in the Guide for Proper Use
of System Smoke Detectors, which is made available at no
charge to all installing dealers. A study by the Federal Emergency Management Agency (an agency of the United States
government) indicated that smoke detectors may not go off in
as many as 35% of all fires. While fire alarm systems are designed to provide early warning against fire, they do not guarantee warning or protection against fire. A fire alarm system
may not provide timely or adequate warning, or simply may not
function, for a variety of reasons:
Smoke detectors may not sense fire where smoke cannot
reach the detectors such as in chimneys, in or behind walls, on
roofs, or on the other side of closed doors. Smoke detectors
also may not sense a fire on another level or floor of a building. A second-floor detector, for example, may not sense a
first-floor or basement fire.
Particles of combustion or "smoke" from a developing fire
may not reach the sensing chambers of smoke detectors because:
• Barriers such as closed or partially closed doors, walls, or
chimneys may inhibit particle or smoke flow.
• Smoke particles may become "cold," stratify, and not reach
the ceiling or upper walls where detectors are located.
• Smoke particles may be blown away from detectors by air
outlets.
• Smoke particles may be drawn into air returns before reaching
the detector.
The amount of "smoke" present may be insufficient to alarm
smoke detectors. Smoke detectors are designed to alarm at
various levels of smoke density. If such density levels are not
created by a developing fire at the location of detectors, the
detectors will not go into alarm.
Smoke detectors, even when working properly, have sensing
limitations. Detectors that have photoelectronic sensing
chambers tend to detect smoldering fires better than flaming
fires, which have little visible smoke. Detectors that have ionizing-type sensing chambers tend to detect fast-flaming fires
better than smoldering fires. Because fires develop in different ways and are often unpredictable in their growth, neither
type of detector is necessarily best and a given type of detector may not provide adequate warning of a fire.
Smoke detectors cannot be expected to provide adequate
warning of fires caused by arson, children playing with
matches (especially in bedrooms), smoking in bed, and violent
explosions (caused by escaping gas, improper storage of
flammable materials, etc.).
Heat detectors do not sense particles of combustion and alarm
only when heat on their sensors increases at a predetermined
rate or reaches a predetermined level. Rate-of-rise heat detectors may be subject to reduced sensitivity over time. For this
reason, the rate-of-rise feature of each detector should be tested
at least once per year by a qualified fire protection specialist.
Heat detectors are designed to protect property, not life.
IMPORTANT! Smoke detectors must be installed in the same
room as the control panel and in rooms used by the system for
the connection of alarm transmission wiring, communications,
signaling, and/or power. If detectors are not so located, a devel-
oping fire may damage the alarm system, crippling its ability to
report a fire.
Audible warning devices such as bells may not alert people if
these devices are located on the other side of closed or partly
open doors or are located on another floor of a building. Any
warning device may fail to alert people with a disability or those
who have recently consumed drugs, alcohol or medication.
Please note that:
• Strobes can, under certain circumstances, cause seizures in
people with conditions such as epilepsy.
• Studies have shown that certain people, even when they hear
a fire alarm signal, do not respond or comprehend the meaning of the signal. It is the property owner's responsibility to
conduct fire drills and other training exercise to make people
aware of fire alarm signals and instruct them on the proper
reaction to alarm signals.
• In rare instances, the sounding of a warning device can cause
temporary or permanent hearing loss.
A fire alarm system will not operate without any electrical
power. If AC power fails, the system will operate from standby
batteries only for a specified time and only if the batteries
have been properly maintained and replaced regularly.
Equipment used in the system may not be technically compatible with the control. It is essential to use only equipment
listed for service with your control panel.
Telephone lines needed to transmit alarm signals from a
premise to a central monitoring station may be out of service
or temporarily disabled. For added protection against telephone line failure, backup radio transmission systems are recommended.
The most common cause of fire alarm malfunction is inadequate maintenance. To keep the entire fire alarm system in
excellent working order, ongoing maintenance is required per
the manufacturer's recommendations, and UL and NFPA standards. At a minimum, the requirements of Chapter 7 of NFPA
72 shall be followed. Environments with large amounts of
dust, dirt or high air velocity require more frequent maintenance. A maintenance agreement should be arranged
through the local manufacturer's representative. Maintenance
should be scheduled monthly or as required by National and/
or local fire codes and should be performed by authorized professional fire alarm installers only. Adequate written records
of all inspections should be kept.
LimWarLg.p65 01/10/2000
Installation Precautions
Adherence to the following will aid in problem-free
installation with long-term reliability:
WARNING - Several different sources of power can be con-
nected to the fire alarm control panel. Disconnect all sources
of power before servicing. Control unit and associated equipment may be damaged by removing and/or inserting cards,
modules, or interconnecting cables while the unit is energized.
Do not attempt to install, service, or operate this unit until this
manual is read and understood.
CAUTION - System Reacceptance Test after Software
Changes. To ensure proper system operation, this product
must be tested in accordance with NFPA 72 Chapter 7 after
any programming operation or change in site-specific software. Reacceptance testing is required after any change, addition or deletion of system components, or after any modification, repair or adjustment to system hardware or wiring.
All components, circuits, system operations, or software functions known to be affected by a change must be 100% tested.
In addition, to ensure that other operations are not inadvertently affected, at least 10% of initiating devices that are not
directly affected by the change, up to a maximum of 50 devices, must also be tested and proper system operation verified.
This system meets NFPA requirements for operation at
0-49° C/32-120° F
condensing) at 30° C/86° F. However, the useful life of the
system's standby batteries and the electronic components
may be adversely affected by extreme temperature ranges
and humidity. Therefore, it is recommended that this system
and all peripherals be installed in an environment with a nominal room temperature of 15-27° C/60-80° F.
Verify that wire sizes are adequate for all initiating and
indicating device loops. Most devices cannot tolerate more
than a 10% I.R. drop from the specified device voltage.
and at a relative humidity of 85% RH (non-
Like all solid state electronic devices, this system may
operate erratically or can be damaged when subjected to lightning-induced transients. Although no system is completely
immune from lightning transients and interferences, proper
grounding will reduce susceptibility. Overhead or outside
aerial wiring is not recommended, due to an increased susceptibility to nearby lightning strikes. Consult with the Techni-
cal Services Department if any problems are anticipated or
encountered.
Disconnect AC power and batteries prior to removing or inserting circuit boards. Failure to do so can damage circuits.
Remove all electronic assemblies prior to any drilling, filing,
reaming, or punching of the enclosure. When possible, make
all cable entries from the sides or rear. Before making modifications, verify that they will not interfere with battery, transformer, and printed circuit board location.
Do not tighten screw terminals more than 9 in-lbs.
Over-tightening may damage threads, resulting in reduced
terminal contact pressure and difficulty with screw terminal
removal.
Though designed to last many years, system components
can fail at any time. This system contains static-sensitive
components. Always ground yourself with a proper wrist strap
before handling any circuits so that static charges are removed from the body. Use static-suppressive packaging
to protect electronic assemblies removed from the unit.
Follow the instructions in the installation, operating, and
programming manuals. These instructions must be followed
to avoid damage to the control panel and associated
equipment. FACP operation and reliability depend upon
proper installation by authorized personnel.
FCC Warning
WARNING: This equipment generates, uses, and can
radiate radio frequency energy and if not installed and
used in accordance with the instruction manual, may
cause interference to radio communications. It has
been tested and found to comply with the limits for class
A computing device pursuant to Subpart B of Part 15 of
FCC Rules, which is designed to provide reasonable
protection against such interference when operated in a
commercial environment. Operation of this equipment in
a residential area is likely to cause interference, in which
case the user will be required to correct the interference
at his own expense.
Canadian Requirements
This digital apparatus does not exceed the Class A
limits for radiation noise emissions from digital
apparatus set out in the Radio Interference Regulations
of the Canadian Department of Communications.
Le present appareil numerique n'emet pas de bruits
radioelectriques depassant les limites applicables aux
appareils numeriques de la classe A prescrites dans le
Reglement sur le brouillage radioelectrique edicte par le
ministere des Communications du Canada.
LimWarLg.p65 01/10/2000
Notes
Table of Contents
Introduction to the Charger ....................................................................................... 1
vi CHG-120 Instruction 11/22/04 PN: 52459:A FCI P/N:9000-0572
Note: Throughout this manual,
the term “charger” refers to a
CHG-120.
1. Introduction to the Charger
Overview
The CHG-120 battery charger is designed to charge lead-acid batteries that provide
emergency standby power for a Fire Alarm Control Panel (FACP). Two 12-volt batteries
are always used in series to supply 24 VDC nominal. The following list gives answers to
some common questions about the charger:
•What types of FACPs can be used with the charger? Any 24 VDC FACP that uses
lead-acid 25 AH to 120 AH batteries and that has the feature to disable the FACP
battery charger.
•Where does the charger mount? You can mount the charger into a CAB-X3 Series
Cabinet or into a BB-55 Battery Box.
•How many outputs does the charger provide? The charger provides two output
circuits for connection to multiple loads (such as a power supply, amplifier, auxiliary
amplifier, and so forth).
•What options are available with the charger? You can configure the charger to
disable the charger’s ground fault detection, to delay AC loss reporting (8 or 16 hours),
and to operate with 120 VAC or 240 VAC.
•How long does it take the charger to charge batteries? Typically, it takes 9 hours to
charge 25 AH batteries, 20 hours to charge 60 AH batteries, and up to 48 hours to
charge 120 AH batteries. Refer to “Specifications” on page 2 for details.
Figure 1 identifies features of the charger:
Note: For detailed descriptions of charger connections, jumpers, and
switches, see “Charger Connections, Jumpers, and Switches” on page 4.
Heavy duty primary
AC power
connections
Voltage Selection Switch
for 120 VAC or 240 VAC
operation
15 A replaceable fuses provide
short circuit and overload
protection
Nine LED status
indicators
Open collector trouble daisy chain
connections
External trouble
input
Form-C trouble relay to
other devices
Two output circuits to
load (power supply,
auxiliary power supply,
amplifiers, etc.)
The charger complies with the following standards:
•NFPA 72-1993 National Fire Alarm Code
•UL 864 Standard for Control Units for Fire Alarm Systems and UL 1481 Power
Supplies for Fire Alarm Systems
•CAN/ULC-S527-M87
Charger Maintenance
The charger does not require regular maintenance. While installing the charger, however,
make sure to maintain proper polarity when connecting power leads and battery
connections. To ensure optimal operation of the charger, observe the following:
Overload and reverse-polarity protection Fuses F1, F2 and F3 (15 A, PN
overload and reverse-polarity protection. Replace a blown fuse with a fuse with the same
rating and type.
Periodic Inspection Periodically inspect the batteries for corrosion and make sure that
corrosive effects to the batteries do not affect the charger or cabinet.
12057) provide
Troubleshooting Most problems with a charger are due to faulty batteries or loose
connections. If you encounter problems, inspect the charger, the battery, and all
connections for loose wiring or short circuits.
Replacing Batteries Only replace batteries with the same charge rate and capacity as
other batteries in the set. For example, if replacing one of four 60 AH batteries, make sure
the replacement battery has the same charge rate and capacity as the other three batteries.
This section contains instructions and illustrations for installing the charger, divided into
the following topics:
SectionTopic(s) CoveredPage
Installation Precautions and
Standards
Charger Connections,
Jumpers, and Switches
Connecting AC Power to
the Charger
Connecting Batteries to the
Charger
Mounting the ChargerHow to mount the charger to a CAB-X3.
Connecting the Charger to
a Load
Configuring the ChargerConfiguring the charger for the following
Trouble and Form-C Relay
Connections (Optional)
Precautions to take when installing the charger
and recommended installation standards.
Location and references to connections,
jumpers, and switches used to configure,
maintain, and operate the charger.
How to connect AC power to the charger.5
How to connect batteries to the charger in two
configurations: using two batteries and using
four batteries.
How to mount the charger to a BB-55.
Instructions and illustrations for wiring a charger
to a multiple load and for wiring a charger for a
large system installation.
options:
Delaying loss of AC reporting (DACT); and
Disabling ground fault detection
Instructions and illustrations for connecting the
following:
Open Collector Trouble In (JP5)
Trouble Out (JP4)
Master Trouble In (JP6)
Form-C Trouble Relay (TB3)
3
4
6
8
10
12
13
Installing Optional MetersHow to install an optional ammeter, voltmeter,
or both.
14
Table 2 Installation Topics
Installation Precautions and Standards
Battery Precautions When installing the charger, observe the following precautions:
Connecting AC Power to the ChargerInstalling the Charger
Connecting AC Power to the Charger
Caution: Before connecting AC power to the charger—make sure to set the Voltage Select
Switch (SW1) on the charger (Figure 2) to match your AC power source (120 VAC or 240
VAC). Figure 3 shows the voltage selection positions for SW1:
Note: The charger is rated
for 120 VAC or 240 VAC
operation. Therefore, 115V
on SW1 indicates 120 VAC
operation; and 230V,
indicates 240 VAC
operation.
Figure 4 shows the steps for connecting the charger to the main AC power source.
SW1 set to 120 VAC
operation
SW1 set to 240 VAC
operation
Figure 3 Using SW1 to Select AC Voltage
Plastic
insulating cover
(PN 02114)
TB1
Step 1: Remove the plastic insulating cover
from TB1.
Earth ground (
Neutral line in (
TB1
EARTH)
NUTRL)
Earth ground (
TB1
EARTH)
Step 2: Connect the Earth ground line to
TB1.
Primary Hot line in (
Earth ground (EARTH)
Neutral line in (
TB1
NUTRL)
HOT)
Step 3: Connect the Primary Neutral line to
TB1.
Step 4: Connect the Primary Hot line to TB1.
Check all connections, then replace the
plastic insulating cover.
Mounting the Charger into a CAB-X3 Series Cabinet You can mount a charger into the
bottom row of a CAB-X3 Series Cabinet, as long as the charger is within 20 feet of the
load. Typically, a charger mounts into the lower right corner of the CAB-X3—beside the
power supply (Figure 7, position 2). If using an additional CAB-X3, you can mount the
charger in the lower left corner (Figure 7, position 2). Figure 7 shows the two mounting
positions of a charger into a CAB-X3.
Mounting
hooks
Position 1: Lower right corner. Position 2: Lower left corner.
Figure 7 Mounting a Charger into a CAB-X3 (CAB-C3 shown)
To mount a charger into a CAB-X3 Series Cabinet, follow these instructions:
Step Action
1Place the charger chassis mounting slots in line with the mounting holes in the cabinet. If
mounting in position 2, place the charger chassis onto the mounting hooks in the cabinet.
2Insert the self-tapping screws through the charger chassis mounting slots and into the
Mounting the Charger into a BB-55 Battery Box You can also mount a charger into a
BB-55 battery box, as long as the BB-55 is within 20 feet of the load. Note that a charger
takes up half the space of the BB-55. This means you only have room left for two 25 AH
batteries in the BB-55. Figure 8 shows the mounting position of a charger in a BB-55.
Optional bracket for
mounting an optional
AM-1 or VM-1
Self-tapping screws
Figure 8 Mounting a Charger into a BB-55
To mount a charger into a BB-55 battery box, follow these instructions:
Step Action
1Place the charger chassis mounting slots in line with the mounting holes in the BB-55.
2Insert the self-tapping screws through the charger chassis mounting slots and into the
Installing the ChargerConnecting the Charger to a Load
Connecting the Charger to a Load
This section provides two applications for connecting a charger to a load. While connecting
a charger to a load, observe the following precautions:
•Make sure all power sources are off to the charger and the load.
•Follow polarity when making connections.
Connecting the Charger to a Multiple Load You can connect a charger to multiple
loads, such as a main power supply, auxiliary power supply, amplifiers, and so forth, as
shown in Figure 9.
Power Supply
Note: Figure 10 shows a
wiring diagram for tying the
load to battery terminals to
obtain additional current. For
example, the first AA-120
draws 7 A, the daisy-chained
Generic Audio Amplifiers
draw 7 A, and the second
AA-120 draws 7 A of
additional current from the
batteries.
CHG-120
Generic Audio
Amplifier
Figure 9 Typical Wiring for a Charger to a Multiple Load
To connect a charger as shown in Figure 9, follow these steps:
Step Action
1Connect the battery+ and battery– terminals of the power supply to the charger
output circuit (TB2: Out 1+ and Out 1–) as shown in Figure 9.
2Connect the battery+ and battery– terminals of the amplifier to the charger
output circuit (TB2: Out 2+ and Out 2–) as shown in Figure 9.
3Connect the batteries to the charger (for battery connections see Figure 5 or
Connecting the Charger to a LoadInstalling the Charger
Adding the Charger for Additional Current Due to internal fuses, the maximum alarm
current that can be drawn from the batteries and passed through the charger’s two output
circuits is limited to 10 amps maximum (each circuit). The PS-12600 batteries, however,
are capable of supplying up to 45 amps of current in alarm. The remaining 25 amps of
alarm current can be drawn directly from the battery terminals to supply Notification
Appliance Circuits, control modules and other alarm devices as illustrated in Figure 10:
First
AA-120
Charger
12 VDC
12 VDC
55 AH/60 AH
12 VDC
55 AH/60 AH
12 VDC
Power Supply
55 AH/60 AH
55 AH/60 AH
Figure 10 Typical Connections for Drawing Additional Current
To connect a charger as shown in Figure 10, follow these steps:
Step Action
Generic
Audio Amp
Second
Generic
Audio Amp
Second
AA-120
First
1Connect the Battery+ and Battery– terminals of the power supply to the charger
Battery output (TB2: Batt 1+ and Batt 1–) as shown in Figure 10.
2Connect the Battery+ and Battery– terminals of the first AA-120 to the charger
output circuit (TB2: Out 2+ and Out 2–) as shown Figure 10.
3Connect the Battery+ and Battery– terminals of the first Generic Audio Amp to
the charger output circuit (TB2: Out 1+ and Out 1–) as shown in Figure 10.
4Connect the Battery+ and Battery– terminals of the second Generic Audio Amp to
the Battery+ and Battery– terminals of the first Audio Amp as shown in Figure 10.
5Connect the Battery+ and Battery– terminals of the second AA-120 to the
You can configure the charger to do the following:
•Set the charger input power (see Figure 3 on page 5).
•Delay AC loss reporting (for Central Station applications); and
•Disable charger ground fault detection.
Figure 11 shows how to configure the charger for delaying the loss of AC reporting and for
disabling ground fault detection:
Disable ground fault detection
cut and remove R104
Delay loss of AC (16 hrs) cut and
remove R100, in addition to
cutting JP8
Delay loss of AC (8 hrs) cut JP8
Delay loss of AC Reporting If using a Digital Alarm Communicator (DACT), you must
delay the reporting of an AC loss condition to a central station. This delays activation of the
trouble bus and Form-C trouble contacts when AC fails. You can configure the charger for
an 8-hour or a 16-hour delay as follows:
•8-hour delay – Cut and remove jumper JP8 on the charger (Figure 11).
Disable Ground Fault Detection To disable local (charger) earth fault detection, cut and
remove resistor R104 (Figure 11). Figure 12 contains a simplified block diagram that
shows ground fault detection disabled on a charger connected to multiple power supplies:
Figure 11 Configuring the Charger
Charger
On the charger,
disable ground fault
detection (cut R104).
12
On Power Supply #1,
enable ground fault
detection.
Power
Supply
# 1
Power
Supply
# 2
Power
Supply
# 3
On Power Supply #2 and
#3, disable ground fault
detection.
You can also order and install a ammeter (AM-1) or voltmeter (VM-1) for use with the
charger. If mounting an AM-1 or a VM-1, mount the meter to a BB-55 as shown in Figure
14. Table 6 contains descriptions and part numbers for these optional meters:
ItemPart NumberDescription
AmmeterAM-10-10 A ammeter with a 3-ft. cable for connection to the
charger (JP3). Mounts into a BB-55 battery box only.
VoltmeterVM-10-50 V voltmeter with 3-ft. positive and negative leads
for connection to the charger output circuit. Mounts
into a BB-55 battery box only.
Table 6 Optional Meters
Installing an AM-1 To install an AM-1, follow these steps:
1.Cut jumper JP9 on the charger (Figure 13).
2.Connect the AM-1 harness to JP3 on the charger (Figure 11)—making sure to observe
proper polarity.
3.Mount the AM-1 into a mounting slot on the front of the BB-55 (Figure 14):
AM-1 or VM-1
(BB-55 only)
BB-55 Mounting Slot
Figure 14 Mounting an AM-1 or VM-1 to a BB-55 Battery Box
Installing a VM-1 You can connect a VM-1 across a charger output circuit. For example,
to install a VM-1 to measure voltage from charger output circuit 1, follow these steps:
1.Connect the positive lead to TB2 Out 1 (+). See Figure 13.
2.Connect the negative lead to TB2 Out 1 (–). SeeFigure 13.
14
3.Mount the VM-1 into a mounting slot on the front of the BB-55 battery box.
This section contains information on starting the charger, interpreting the LED Status
Indicators on the charger, and normal operation of the charger.
Starting the Charger
War ning: Before starting the charger, do the following:
!
Follow the installation instructions in Section 2, “Installing the Charger.”
Verify proper polarity on all connections between the charger and the batteries, load,
and optional meters.
Make sure there are no short circuits between leads and between battery terminals.
Make sure the Battery Interconnect Cable(s) is not connected.
To start the charger, follow these steps:
4.Connect AC power to the charger. The AC On LED and Trouble LED go on.
5.Connect the batteries to the charger
6.Connect the Battery Interconnect Cable. The Trouble LED goes off.
7.Connect the charger to the load (such as a power supply, an amplifier, and so on).
Understanding the LED Status Indicators
The charger provides nine LED Status Indicators, which are identified in Figure 15. Also
refer to Table 7 for conditions, such as troubles, that cause LEDs to light.
AC On Primary AC on
Trouble Charger in trouble condition (see Table 7)
Ground Fault Earth fault condition detected
HI Charge Charging current greater than 400 mA
LO Charge Charging current less than 400 mA (loss of AC)
Table 7 shows the conditions that cause the charger LEDs to come on:
LED
AC On
Trouble
Ground Fault
HI Charge
LO Charge
(Loss of AC)
27 V
25 V
23 V
Low Battery
Normal Operation
AC Trouble
Disconnected
Battery
Ground Fault
Short Circuit
Faulty Battery
(or less the 21 V)
Trouble (with AC Trouble
Delay used)
Trouble (Master Trouble In
JP6 connected)
HHHHHH
HH HHHHH
H
IIIII
IHH IIHI
IIH III
IIIII
IIIII
IIIHHII
Legend:
H
LED on.
I LED on or off, depending on battery voltage. Refer to “Normal Operation.”
Table 7 LED Status Indicators
Normal Operation
The CHG-120 charges batteries at 4.5 A. When batteries are fully charged, the charger
maintains a float charge of 27.6 VDC at a trickle charge rate of less than 400 mA. While
charging the batteries, the HI and LO Charge LEDs switch on and off approximately every
20 seconds. Also, one of the 23 V, 25 V, 27 V, or Low Battery LEDs also comes on,
depending on the battery voltage.
The manufacturer warrants its products to be free from defects in materials and workmanship
for eighteen (18) months from the date of manufacture, under normal use and service. Products
are date-stamped at time of manufacture. The sole and exclusive obligation of the manufacturer
is to repair or replace, at its option, free of charge for parts and labor, any part which is
defective in materials or workmanship under normal use and service. For products not under
the manufacturer's date-stamp control, the warranty is eighteen (18) months from date of
original purchase by the manufacturer's distributor unless the installation instructions or catalog
sets forth a shorter period, in which case the shorter period shall apply. This warranty is void
if the product is altered, repaired, or serviced by anyone other than the manufacturer or its
authorized distributors, or if there is a failure to maintain the products and systems in which
they operate in a proper and workable manner. In case of defect, secure a Return Material
Authorization form from our customer service department. Return product, transportation
prepaid, to the manufacturer.
This writing constitutes the only warranty made by this manufacturer with respect to its
products. The manufacturer does not represent that its products will prevent any loss by fire
or otherwise, or that its products will in all cases provide the protection for which they are
installed or intended. Buyer acknowledges that the manufacturer is not an insurer and assumes
no risk for loss or damages or the cost of any inconvenience, transportation, damage, misuse,
abuse, accident, or similar incident.
THE MANUFACTURER GIVES NO WARRANTY, EXPRESSED OR IMPLIED, OF
MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR OTHERWISE
WHICH EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF. UNDER
NO CIRCUMSTANCES SHALL THE MANUFACTURER BE LIABLE FOR ANY LOSS
OF OR DAMAGE TO PROPERTY, DIRECT, INCIDENTAL, OR CONSEQUENTIAL,
ARISING OUT OF THE USE OF, OR INABILITY TO USE THE MANUFACTURER'S
PRODUCTS. FURTHERMORE, THE MANUFACTURER SHALL NOT BE LIABLE FOR
ANY PERSONAL INJURY OR DEATH WHICH MAY ARISE IN THE COURSE OF, OR
AS A RESULT OF, PERSONAL, COMMERCIAL, OR INDUSTRIAL USE OF ITS
PRODUCTS.
This warranty replaces all previous warranties and is the only warranty made by the
manufacturer. No increase or alteration, written or verbal, of the obligation of this warranty
is authorized.
LimWarLg.p65 01/10/2000
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.