Hach-Lange RTC112 User Manual

DOC023.52.90447
RTC112 SD-Module
Real Time Control System for Sludge Dewatering
User manual
07/2013, Edition 1A
© HACH-LANGE GmbH, 2013. All rights reserved. Printed in Germany.
Table of contents
Section 2 General information............................................................................................................... 9
2.1 Safety information............................................................................................................................... 9
2.1.1 Hazard notices in this manual.................................................................................................... 9
2.1.2 Warning labels ........................................................................................................................... 9
2.2 Areas of application .......................................................................................................................... 10
2.3 Scope of delivery .............................................................................................................................. 10
2.4 Instrument overview.......................................................................................................................... 11
2.5 Theory of operation........................................................................................................................... 12
2.5.1 Theory of operation of the RTC Module................................................................................... 12
2.5.2 Input signals............................................................................................................................. 12
2.5.3 Parameters for configuration.................................................................................................... 12
2.5.4 Operating modes ..................................................................................................................... 13
Section 3 Installation............................................................................................................................ 17
3.1 Installation of the RTC Module ......................................................................................................... 17
3.1.1 Supply voltage of the RTC Module ..........................................................................................17
3.2 Connection of process measurement instruments for the TSS concentration.................................. 17
3.2.1 Power supply of the sc sensors and the sc1000 controller...................................................... 17
3.3 sc1000 controller connection ............................................................................................................ 17
3.4 Connection to the automation unit on the plant side.........................................................................18
Section 4 Parameterization and operation ......................................................................................... 21
4.1 Operating the sc controller................................................................................................................ 21
4.2 sc1000 setup .................................................................................................................................... 21
4.3 Menu structure.................................................................................................................................. 21
4.3.1 DIAGNOSIS............................................................................................................................. 21
4.4 Configuration of RTC112 SD-Module parameters on the sc1000 controller .................................... 21
4.4.1 RTC112 SD-Module open and closed-loop controller ............................................................. 21
4.5 Select sensors .................................................................................................................................. 26
4.6 PRESELECT PROG......................................................................................................................... 29
4.6.1 POLYMER DOSING CONTROL.............................................................................................. 29
4.6.2 FEED FLOW CONTROL .........................................................................................................29
4.6.3 CLOSED-LOOP EFFLUENT CONTROL................................................................................. 29
4.6.4 CLOSED-LOOP FILTRATE CONTROL .................................................................................. 29
3
Table of contents
4.7 CONTROL PARAMETER .................................................................................................................30
4.7.1 FACTOR POLYMER DOSING.................................................................................................30
4.7.2 POLYMER CONCENTRATION ...............................................................................................30
4.7.3 MANUAL POLYMER DOSING.................................................................................................30
4.7.4 MANUAL FEED FLOW ............................................................................................................30
4.7.5 MAX DECREASE CLOSED L ..................................................................................................30
4.7.6 MAX INCREASE CLOSED L ...................................................................................................30
4.7.7 SET-POINT TSS ......................................................................................................................30
4.7.8 P GAIN TSS .............................................................................................................................31
4.7.9 INTEGRAL TIME TSS..............................................................................................................31
4.7.10 DERIVATIVE TIME TSS ........................................................................................................31
4.7.11 SET-POINT FILT....................................................................................................................31
4.7.12 P GAIN FILT...........................................................................................................................31
4.7.13 INTEGRAL TIME FILT ...........................................................................................................31
4.7.14 DERIVATIVE TIME FILT........................................................................................................31
4.8 INPUT/OUTPUT LIMITS ...................................................................................................................31
4.8.1 FEED FLOW LOW ...................................................................................................................31
4.8.2 FEED FLOW HIGH ..................................................................................................................32
4.8.3 FEED FLOW SMOOTHING .....................................................................................................32
4.8.4 LIMIT TSS IN LOW ..................................................................................................................32
4.8.5 LIMIT MAX TSS IN HIGH.........................................................................................................32
4.8.6 TSS IN SMOOTHING...............................................................................................................32
4.8.7 LIMIT TSS OUT LOW ..............................................................................................................32
4.8.8 LIMIT TSS OUT HIGH..............................................................................................................32
4.8.9 TSS OUT SMOOTHING...........................................................................................................33
4.8.10 POLYMER DOSING MINIMUM .............................................................................................33
4.8.11 POLYMER DOSING MAXIMUM ............................................................................................33
4.9 INPUTS .............................................................................................................................................33
4.9.1 MIN FEED FLOW.....................................................................................................................33
4.9.2 MAX FEED FLOW....................................................................................................................33
4.9.3 0/4...20 mA...............................................................................................................................33
4.9.4 MIN POLYMER FLOW.............................................................................................................33
4.9.5 MAX POLYMER FLOW............................................................................................................33
4.9.6 0/4...20 mA...............................................................................................................................34
4.10 OUTPUTS .......................................................................................................................................34
4.10.1 MIN FEED FLOW...................................................................................................................34
4.10.2 MAX FEED FLOW..................................................................................................................34
4.10.3 0/4...20 mA.............................................................................................................................34
4.10.4 MIN POLYMER FLOW...........................................................................................................34
4.10.5 MAX POLYMER FLOW..........................................................................................................34
4.10.6 0/4...20 mA.............................................................................................................................34
4.10.7 CONTROL CYCLE.................................................................................................................34
4.10.8 MIN RUNTIME .......................................................................................................................34
4
Table of contents
4.11 Displayed measurement values and variables ............................................................................... 34
Section 5 Maintenance ......................................................................................................................... 37
5.1 Maintenance schedule...................................................................................................................... 37
Section 6 Troubleshooting................................................................................................................... 39
6.1 Error messages ................................................................................................................................ 39
6.2 Warnings........................................................................................................................................... 39
6.3 Wear parts ........................................................................................................................................ 39
Section 7 Replacement parts and accessories.................................................................................. 41
7.1 Replacement parts............................................................................................................................ 41
Section 8 Contact information............................................................................................................. 43
Section 9 Warranty and liability........................................................................................................... 45
Appendix A MODBUS address setting ............................................................................................... 47
Appendix B Configuration of the network modules.......................................................................... 49
B.1 RTC112 SD-Module Profibus/MODBUS telegram .......................................................................... 49
Index ...................................................................................................................................................... 51
5
Table of contents
6

Section 1 Technical data

These are subject to change without notice.
Embedded PC (compact industrial PC)
Processor
Flash memory 2 GB compact flash card
Internal working memory 256 MB DDR-RAM (not expandable)
Interfaces 1× RJ 45 (Ethernet), 10/100 Mbit/s
Diagnostic LED
Expansion slot 1× CompactFlash type II slot with ejector mechanism
Clock
Operating system Microsoft Windows
Control software TwinCAT PLC Runtime or TwinCAT NC PTP Runtime
System bus 16 bit ISA (PC/104 standard)
Power supply Via system bus (through power supply module CX1100-0002)
Max. power loss 6 W (including the system interfaces CX1010-N0xx)
Analog inputs 0/4 to 20 mA for input of the feed flow rate and the polymer flow rate
Number of inputs
Internal resistance 80 ohm + diode voltage 0.7 V
Pentium®1, MMX compatible, 500 MHz clock rate
1× power, 1× LAN speed, 1× LAN activity, TC status, 1× flash access
Internal, battery-buffered clock for time and date (battery can be replaced)
®2
CE or Microsoft Windows Embedded Standard
One-channel: 2 (KL3011) Two-channel: 4 (KL3011)
Signal current 0/4 to 20 mA
Common mode voltage (U
Measurement error (for entire measurement range)
Voltage surge resistance 35 V DC
Electrical isolation 500 V
Analog outputs Output of the polymer dosing, output of the feed flow rate
Number of outputs
Supply voltage
Signal current 0/4 to 20 mA
Working resistance <500 ohm
Measurement error
Resolution 12 bit
Conversion time Approximately 1.5 ms
) 35 V max.
CM
< ± 0.3 % (from end value of measurement range)
One-channel: 2 (KL4012) Two-channel: 4 (KL4012)
24 V DC via the power contacts (Alternatively, 15 V DC with bus termination KL9515)
± 0.5 LSB linearity error ± 0.5 LSB offset error ± 0.1 % (relative to the measuring range end value)
(K-bus/signal voltage)
eff
Electrical isolation 500 V
(K-bus/field voltage)
eff
7
Technical data
Digital outputs Control of polymer pump: feed flow rate and fault messages
Number of outputs
One-channel: 4 (KL2134) Two-channel: 8 (KL2408)
Nominal load voltage 24 V DC (–15 % / +20 %)
Load type ohmic, inductive lamp load
Max. output current 0.5 A (short-circuit proof) per channel
Reverse polarity protection Yes
Electrical isolation 500 V
(K-bus/field voltage)
eff
Equipment properties
Dimensions (W × H × D)
One-channel: 191 × 120 × 96 mm (7.52 × 4.72 × 3.78 in) Two-channel: 227 × 120 × 96 mm (8.94 × 4.72 × 3.78 in)
Mass Approximately 0.9 kg (approximately 1.98 lb)
Environmental conditions
Working temperature 0 to 50 °C (32 to 122 °F)
Storage temperature –25 to +85 °C (–13 to 185 °F)
Relative humidity 95 %, non-condensing
Miscellaneous
Pollution Degree Protection Class Installation Category Maximum Altitude
2 1 II 2000 m (6,562 ft.)
Protection class IP20
Installation DIN rail EN 50022 35 × 15.0
1
Pentium is a registered trademark of the Intel Corporation.
2
Microsoft Windows is a brand name for operating systems of the Microsoft Corporation.
1.
8

Section 2 General information

2.1 Safety information

Please read the entire manual carefully before unpacking, assembling or operating the instrument. Pay attention to all hazard and warning notices. Failure to do so could result in serious injury to the operator or damage to the instrument.
To prevent damage to or impairment of the device's protection equipment, the device may only be used or installed as described in this manual.

2.1.1 Hazard notices in this manual

DANGER
Indicates a potentially or imminently hazardous situation that, if not avoided, can result in death or serious injury.
WARNING
Indicates a potentially or imminently dangerous situation that, if it is not avoided, can lead to death or to serious injuries.
CAUTION
Indicates a possible dangerous situation that can have minor or moderate injuries as the result.
Indicates a situation that, if it is not avoided, can lead to damage to the device. Information that requires special emphasis.
Note: Information that supplements points in the main text.

2.1.2 Warning labels

Observe all labels and tags attached to the instrument. Failure to do so may result in personal injury or damage to the instrument.
This symbol may be attached to the device and refers to operation and/or safety notes in the user manual.
This symbol may be found on an enclosure or barrier within the product and indicates a risk of electric shock and/or death by electrocution.
Electrical equipment marked with this symbol may no longer be disposed of in unsorted domestic or industrial waste in Europe after August 12, 2005. In conformity with the provisions in force (EU Directive 2002/96/EC), consumers in the EU must return old electrical devices to the manufacturer for disposal from this date, at no charge to the consumer.
Note: You obtain instructions on the correct disposal of all (marked and not marked) electrical products that were supplied or manufactured by Hach-Lange at your relevant Hach-Lange sales office.
NOTICE
9
General information

2.2 Areas of application

The RTC112 SD-Module (Real Time Controller for Sludge Dewatering) is an open and closed-loop control unit for universal applications. It can be used by mechanical sludge dewatering devices, such as centrifuges in wastewater treatment plants.
The RTC112 SD-Module
Optimizes polymer consumption
Uniformly manages the concentration of solids in dewatered sludge
1-channel Open/closed-loop controller for one dewatering system 2-channel Open/closed-loop controller for two dewatering systems
The use of an RTC Module does not release the operator from the responsibility of maintaining the system. No guarantees as to the functionality or operational safety of the system.
In particular, the operator must make sure that instruments connected to the RTC open/closed-loop controller are always fully functional.
To make sure these instruments supply correct, reliable measurement values, regular maintenance work (for example, cleaning of the sensor and laboratory comparative measurements) is essential! (Refer to the user manual for the relevant instrument.)
Table 1 Versions of the RTC112 SD-Module
NOTICE

2.3 Scope of delivery

The combination of pre-assembled components supplied by the manufacturer does not represent a standalone functional unit. In accordance with EU guidelines, this combination of pre-assembled components is not supplied with a CE mark, and there is no EU declaration of conformity for the combination.
However, the conformity of the combination of components with the guidelines can be proved through technical measurements.
Each RTC Module is supplied with:
SUB-D connector (9 pin)
User manual
Ferrite core
Check that the order is complete. All listed components must be present. If anything is missing or damaged, contact the manufacturer or distributor immediately.
NOTICE
10

2.4 Instrument overview

Figure 1 Base module RTC 100-240 V version
General information
1 L(+) 7 Automatic circuit breaker (ON/OFF switch for item 10
and 11 without fuse function)
2 N(–) 8 sc1000 connection: RS485 (CX1010-N041) 3 Input AC 100–240 V / Input DC 95 V–250 V 9 Battery compartment 4 PE (protective earth) 10 CPU base module, consisting of Ethernet port with
battery compartment (CX1010-N000), CPU module with CF card (CX1010-0021) and passive aeration element
5 24 V transformer (Specification section 3.1.1, page 17) 11 Power supply module, consisting of bus coupler 6 Output DC 24 V, 0,75 A
Note: All components are pre-wired.
(CX1100-0002) and terminal module 24V.
11
General information
2
1
Figure 2 Design of the analog and digital input and output modules
1 Input- or Output- Module or Bus Termination Module
analog or digital
Note: The number of green LEDs indicates the number of channels.
2 LED area with installed LEDs or free LED installation

2.5 Theory of operation

2.5.1 Theory of operation of the RTC Module

The RTC112 SD-Module outputs analog (0/4–20 mA) and digital (0/24 V) signals for the polymer dosing rate or the feed flow rate of mechanical sludge dewatering devices. Digital fieldbus signals from sc1000 communication cards can also be used.

2.5.2 Input signals

The most important input signals are:
Sludge influent TSS concentration (concentration of solids)

2.5.3 Parameters for configuration

Feed flow rate of the dewatering system
Thickened sludge TSS concentration (optional)
Status of the thickened sludge pump (on/off)
spaces
12
The most important parameters for configuration are:
The required specific polymer dosing [g polymer/kg TSS]
The target TSS concentration in dewatered sludge or
The target TSS concentration in centrate
In a closed-loop circuit, TSS measurement is required in centrate or dewatered sludge. The program of the RTC112 SD-Module has to be adjusted to the type of measurement location that is being used for the closed loop part of the RTC. This is done by executing *.bat files on the CF card of the RTC. Make_Filtrate.bat has to be executed for applications where centrate TSS is measured and Make_Effluent for applications where dewatered/thickened sludge is measured.
Note: Never retrieve the CF-card from the RTC unit while power is on!

2.5.4 Operating modes

The RTC112 SD-Module can be operated as a combined open-loop and closed-loop controller. Several variants can be configured.
1. Configuration of a fixed polymer rate [L/h] with a fixed feed flow rate [m
2. Configuration of a specific polymer dosing rate [g polymer/kg TSS]. One of the
following settings is adjusted:
a. The polymer flow rate according to the TSS concentration and the feed flow rate
Based on the actual feed flow rate [L/h] and TSS concentration [g/L] in the feed
General information
NOTICE
3
/h].
(Figure 3).
flow, the polymer dosing rate [L/h] is calculated for the required specific dosing rate.
Or:
b. The feed flow rate according to the specified polymer dosing rate and the
measured TSS concentration of the influent (Figure 4).
Based on the measurement value of the TSS concentration from the influent [g/L] and the configurable specified polymer dosing rate [L/h], the feed flow rate [m is calculated such that it corresponds to the pre-defined specific polymer dosing rate [g/kg].
3. Both variants 2a and 2b can be combined with one of the closed-loop controllers described below:
a. Closed-loop control of the TSS concentration in the dewatered sludge
The specific polymer dosing rate is adjusted according to the difference between
the target and actual TSS concentration in the dewatered sludge. Higher TSS concentrations lead to a reduction of the dose and lower concentrations will lead to higher dose rates than preset in the open-loop part of the RTC.
b. Closed-loop control of the TSS concentration in the centrate or filtrate
The specific polymer dosing rate is adjusted according to the difference between
the target and actual TSS concentration in the centrate. Higher TSS concentrations lead to an increase of the dose and lower concentrations will lead to a decrease of the dose rates preset in the open-loop part of the RTC.
3
/h]
13
General information
Figure 3 Adjustment of the polymer dosing rate to the influent TSS load
1 Digester 9 Polymer supply 2 Static thickener 10 Pump for open-loop control of the polymer dosing rate 3 Measurement of the feed flow rate 11 Mechanical sludge dewatering device 4 TSS measurement from the influent 12 Dewatered sludge 5 Open-loop control of the polymer dosing rate (feed flow
rate measurement value)
6 Open-loop control of the polymer dosing rate (influent
TSS concentration measurement value)
7 RTC112 SD-Module 15 Option: Measurement of the TSS concentration in the 8 Pump for the feed flow rate (constant)
13 Centrate
14 Option: Measurement of the TSS concentration in the
centrate
dewatered sludge instead of centrate
14
Figure 4 Adjustment of the feed flow rate to fixed polymer dosing rate
General information
1 Digester 8 Pump for polymer dosing (constant) 2 Static thickener or sludge storage 9 Mechanical sludge dewatering device 3 TSS measurement from the influent 10 Dewatered sludge 4 Open-loop control for the feed flow rate 11 Centrate 5 RTC112 SD-Module 12 Option: Measurement of the TSS concentration in the
centrate
6 Pump for open-loop control of the feed flow rate 13 Option: Measurement of the TSS concentration in the 7 Polymer supply
dewatered sludge instead of centrate
15
General information
16
Loading...
+ 36 hidden pages