GW Instek GRF-1300A User Manual

RF & Communication Trainer
GRF-1300A
STUDENT BOOK
USER MANUAL and TEXT BOOK
GW INSTEK PART NO. 82RF-1300AM01
ISO-9001 CERTIFIED MANUFACTURER
This manual contains proprietary information, which is protected by copyright. All rights are reserved. No part of this manual may be photocopied, reproduced or translated to another language without prior written consent of Good Will Corporation.
The information in this manual was correct at the time of printing. However, Good Will continues to improve its products and therefore reserves the right to change the specifications, equipment, and maintenance procedures at any time without notice.
Good Will Instrument Co., Ltd. No. 7-1, Jhongsing Rd., Tucheng Dist., New Taipei City 236, Taiwan.
Table of Contents
Table of Contents
SAFETY INSTRUCTIONS ................................................................ 2
ABOUT THIS BOOK ....................................................................... 5
INTRODUCTION to the GRF-1300A ............................................... 6
Package Contents .................................................................................................... 8
Product Specifications and Function........................................................................ 8
Usage Instructions .................................................................................................. 9
OVERVIEW of the TIME and FREQUENCY DOMAIN.................... 16
Observation from a different perspective................................................................16
AN INTRODUCTION to SPECTRUM ANALYZERS ........................ 24
Broadband Receiver ................................................................................................24
Attenuator ..............................................................................................................25
Resolution Bandwidth Filter....................................................................................25
Detector .................................................................................................................27
Video Bandwidth Filter ...........................................................................................27
RF COMMUNICATION and SIGNALS EXPERIMENTS.................. 31
Experiment 1: Basic Operation of a Spectrum Analyzer...........................................32
Experiment 2: Measuring a Baseband Waveform.....................................................36
Experiment 3: Different Baseband Waveforms and their Harmonic Measurement...40
Experiment 4: Measurement of the RF Carrier.........................................................47
Experiment 5: AM Signal Measurement ..................................................................60
Experiment 6: FM signal measurement ...................................................................70
Experiment 7: Using a Spectrum Analyzer in Communication Systems ...................81
Experiment 8: Measurement of communication products .......................................88
Experiment 9: Production Line Applications ...........................................................91
Experiment 10: Mixer ..............................................................................................96
TEST for LEARNING OUTCOMES .............................................. 108
APPENDIX .................................................................................. 117
dBm Conversion Table ..........................................................................................117
The relationship between dB and dBc ...................................................................118
Resistor Values in π-type Resistance Attenuators..................................................119
Resistor Values in T-type Resistance Attenuators ..................................................120
Modulation Index and Sideband Amplitude Comparison Table .............................121
Declaration of Conformity.....................................................................................122
1
GRF-1300A User Manual and Teaching Materials

SAFETY INSTRUCTIONS

This chapter contains important safety instructions that should be followed when operating and storing the GRF-1300A. Read the following before any operation to ensure your safety and to keep the GRF-1300A in the best condition.

Safety Symbols

These safety symbols may appear in this manual or on the instrument.
WARNING
CAUTION
Warning: Identifies conditions or practices that could result in injury or loss of life.
Caution: Identifies conditions or practices that could result in damage to the GRF-1300A or to other objects or property.
DANGER High Voltage
Attention: Refer to the Manual
Protective Conductor Terminal
Earth (Ground) Terminal
Do not dispose electronic equipment as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased.

Safety Guidelines

General Guideline
CAUTION
2
Do not place heavy objects on the device.
Do not place flammable objects on the device.
Avoid severe impact or rough handling that may damage the
device.
Avoid discharges of static electricity on or near the device.
Use only mating connectors, not bare wires, for the terminals.
The device should only be disassembled by a qualified technician.
Safety Instructions
Power Supply
WARNING
Fuse
WARNING
(Measurement categories) EN 61010-1:2010 specifies the measurement categories and their requirements as follows. The device falls under category I.
Measurement category IV is for measurement performed at the source of a low-voltage
installation.
Measurement category III is for measurement performed in a building installation.
Measurement category II is for measurement performed on circuits directly connected
to a low voltage installation.
Measurement category I is for measurements performed on circuits not directly
connected to Mains.
AC Input voltage: 100 ~ 240V AC, 50 ~ 60Hz.
Connect the protective grounding conductor of the AC power cord
to an earth ground to prevent electric shock.
Fuse type: 1A/250V.
Only qualified technicians should replace the fuse.
To ensure fire protection, replace the fuse only with the specified
type and rating.
Disconnect the power cord and all test leads before replacing the
fuse.
Make sure the cause of the fuse blowout is fixed before replacing
the fuse.
Cleaning the GRF-1300A
Operation environment
Disconnect the power cord before cleaning the device.
Use a soft cloth dampened in a solution of mild detergent and
water. Do not spray any liquid into the device.
Do not use chemicals containing harsh products such as benzene,
toluene, xylene, and acetone.
Location: Indoor, no direct sunlight, dust free, almost non-
conductive pollution (Note below) and avoid strong magnetic fields.
Relative Humidity: < 80%
Altitude: < 2000m
Temperature: 0°C to 40°C
(Pollution Degree) EN 61010-1:2010 specifies pollution degrees and their requirements as follows. The device falls under degree 2.
Pollution refers to “addition of foreign matter, solid, liquid, or gaseous (ionized gases), that may produce a reduction of dielectric strength or surface resistivity”.
Pollution degree 1: No pollution or only dry, non-conductive pollution occurs. The
pollution has no influence.
Pollution degree 2: Normally only non-conductive pollution occurs. Occasionally,
however, a temporary conductivity caused by condensation must be expected.
Pollution degree 3: Conductive pollution occurs, or dry, non-conductive pollution
occurs which becomes conductive due to condensation which is expected. In such conditions, equipment is normally protected against exposure to direct sunlight, precipitation, and full wind pressure, but neither temperature nor humidity is controlled.
Storage environment
Location: Indoor
Relative Humidity: < 70%
Temperature: -10°C to 70°C
3
GRF-1300A User Manual and Teaching Materials
Disposal
Do not dispose this device as unsorted municipal waste. Please use a separate collection facility or contact the supplier from which this instrument was purchased. Please make sure discarded electrical waste is properly recycled to reduce environmental impact.

Power cord for the United Kingdom

When using the device in the United Kingdom, make sure the power cord meets the following safety instructions.
NOTE: This lead/appliance must only be wired by competent persons
WARNING: THIS APPLIANCE MUST BE EARTHED IMPORTANT: The wires in this lead are coloured in accordance with the following code: Green/ Yellow: Earth Blue: Neutral Brown: Live (Phase)
As the colours of the wires in main leads may not correspond with the coloured marking identified in your plug/appliance, proceed as follows:
The wire which is coloured Green & Yellow must be connected to the Earth terminal marked with either the letter E, the earth symbol or coloured Green/Green & Yellow.
The wire which is coloured Blue must be connected to the terminal which is marked with the letter N or coloured Blue or Black.
The wire which is coloured Brown must be connected to the terminal marked with the letter L or P or coloured Brown or Red.
If in doubt, consult the instructions provided with the equipment or contact the supplier.
This cable/appliance should be protected by a suitably rated and approved HBC mains fuse: refer to the rating information on the equipment and/or user instructions for details. As a guide, a cable of 0.75mm2 should be protected by a 3A or 5A fuse. Larger conductors would normally require 13A types, depending on the connection method used.
Any exposed wiring from a cable, plug or connection that is engaged in a live socket is extremely hazardous. If a cable or plug is deemed hazardous, turn off the mains power and remove the cable, any fuses and fuse assemblies. All hazardous wiring must be immediately destroyed and replaced in accordance to the above standard.
4
Introduction to the GRF-1300A

ABOUT THIS BOOK

This textbook was developed in conjunction with the GRF­1300A RF & Communication Trainer and the GSP-730 3GHz spectrum analyzer as an RF communications education system. It not only offers detailed examples, but also the practical knowledge necessary for RF measurements, such as spectrum analyzer principals, as well as AM and FM communication systems.
For you to easily understand the contents of this textbook, we have included as many pictures and diagrams as possible to strengthen your comprehension.
This book is divided into a teacher version and two student versions. All experiment results are included in the teacher edition. In addition, chapters with an asterisk (*) indicate additional text for advanced reading not present in the student addition. Students will not be affected by the omission of the additional text. To further help students, the student edition will contain a “Notes” section in these missing areas.
5
GRF-1300A User Manual and Teaching Materials

INTRODUCTION to the GRF-1300A

The GRF-1300A is a well designed training kit capable of producing a 3MHz baseband signal and a carrier signal up to 900MHz. The GRF-1300A is also able to perform AM and FM RF circuit experiments as well. The practical exercises in the training kit meet the needs of most general RF courses. The GRF-1300A consists of three modules, namely: a baseband module, an RF Synthesizer/FM module and an AM module. The baseband module can simulate a baseband signal and includes sine, square or triangle waveforms. Its output frequency and amplitude are adjustable. During experiments the three kinds of waveforms can be arbitrarily switched back and forth to meet the signaling requirements of each of the different experiments.
The RF Synthesizer/FM module is used to generate an adjustable carrier frequency as well as perform frequency modulation. This module covers some of the focus points in the RF circuit theory. This will be highlighted in practical experiments in later chapters. FM waveforms can also be produced by using this module together with the baseband module. The GSP-730 spectrum analyzer can be used to observe the various characteristics of an FM waveform.
The AM module and baseband module can be used together to perform amplitude modulation experiments. The GSP-730 Spectrum Analyzer can be used to observe the various characteristics of an AM waveform.
The mixer can convert the RF signal into an intermediate frequency signal or it can do the opposite and convert the intermediate frequency signal into an RF frequency signal in order to transmit or process the carried message, respectively.
This experiment system can be connected to a computer via the USB interface. The interface can be used to turn individual circuits on or off so that students can perform diagnostic experiments.
6
Students can learn the fundamental aspects of RF theory through a variety of experiments. Understanding RF theory has been made easier by breaking the RF circuits into fundamental
Figure A-1. The GRF-1300A control panel
Introduction to the GRF-1300A
functions. This allows students to see in detail how the theory relates to the practical aspects of the RF circuitry.
This system is a collection of different functions: signal
generation, frequency modulation, amplitude modulation,
communication and other functions. Connecting different modules together can create a number of different RF circuit experiments. Specific experiments will be highlighted in later chapters. The GRF-1300A RF & Communication Trainer is designed to modulate an audio signal with a carrier waveform. The system takes into account the difficulties arising from RF circuit theory and knowledge. It focuses on these theories and sets up experiments to understand the theoretical aspects of RF circuitry – This also has the added benefit of increasing a student’s interest to learn RF circuits.
Figure A-2. Reference platform: GSP­730 Spectrum Analyzer
7
GRF-1300A User Manual and Teaching Materials

Package Contents

This package contains the GRF-1300A unit, RF cable – 3 * 10cm, 1*20cm,RF cable 2* 80cm, a user manual CD, a student book, an antenna, a power cord and so on.
Title Photo No Note
GRF-1300A
RF wire
RF wire
RF wire
Antenna
AC power cord
CD
Adapter
1
3 100mm
1 200mm
2 800mm
2 800-1000MHz
1
100-240V50-60Hz
User manual and
1
software
1 N-SMA Adapter
Student Textbook

Product Specifications and Function

Base Band
RF/FM Analysis
FM
AM
Function Item Spec.
Waveforms Sine, Square, Triangle
Frequency Range
Amplitude
Harmonics Distortion ≤-30dBc
Frequency Accuracy ±0.15MHz
Adjustable Range
Power Range ≥-15dBm Max Frequency Deviation
Peak Difference ≥-18dBm
RF & Communication
1
Trainer
0.1~3MHz (Triangle-0.1~1MHz) Step: 10kHz
1.5Vpp 0.75Vpp into 50Ω
45MHz (870M~920M)
Step: 1MHz
>3MHz
Mixer LO+IF ≥-35dBm
8
Introduction to the GRF-1300A
LO-IF
≥-35dBm
Mixer+modulation ≥-60dBm
Bandpass Filter
Communication

Usage Instructions

Procedure
1. For safety purposes, please connect the unit to the correct AC
power source: 100V~240V, 50-60Hz.
Make sure the ground terminal is properly earthed to prevent electric shock.
2. The power socket and USB port are on the rear panel. The
power switch is on the upper left-hand side of the device.
Frequency Centre:
Bandwidth:±20MHz
2.4GHz
Turn circuits on or off by remote command for the diagnostic experiments.
Figure A-3. Connection diagram between different modules
USB port
AC socket
Power switch
3. When using several modules together at the same time,
connect each module with the appropriate RF cable.
4. The UP and DOWN buttons on the Baseband module can be
9
GRF-1300A User Manual and Teaching Materials
used to adjust the frequency of the baseband signal. The baseband module is adjustable in 10kHz steps.
WAVE Select is used to select three different baseband
waveforms. When the waveform is selected, the corresponding LED light will be lit up.
The Reset button is used to reset the GRF-1300A. When
reset, the GRF-1300A will output a 0.10MHz sine wave baseband signal and a carrier signal with a frequency 880MHz.
The output port is used to output the set baseband signal.
The four-digit display is used to display the frequency of
the output baseband signal.
TP4 (test point 4) is used to used to monitor the output
signal from the output port.
The potentiometer knob is used to adjust the voltage of the
output baseband signal. Turn clockwise to increase the amplitude and turn anticlockwise to decrease its amplitude.
Figure A-4. Baseband module
5. The UP and DOWN buttons on the RF Synthesizer / FM
module can be used to adjust the frequency of the carrier. The carrier can be adjusted in 1MHz steps.
10
Introduction to the GRF-1300A
Figure A-5. RF Synthesizer/FM module
The Four-digit display is used to display the frequency of
the carrier signal.
FM in port and RF / FM Output port are used to receive
the FM signal and output the carrier signal respectively.
TP2, TP3 and TP1 are used to monitor for breaks in the
circuit. For the position of each test point, please see Figure A-7.
Figure A-6. AM module
6. The AM module is used for amplitude modulation. The AM
in port and RF in port are used to input the modulating signal and the carrier signal respectively. The AM output port outputs the amplitude modulated waveform.
The mixer can convert the RF signal into an intermediate frequency signal or it can do the opposite and convert the intermediate frequency signal into an RF frequency signal in order to transmit or process the carried message, respectively.
11
GRF-1300A User Manual and Teaching Materials
Figure A-7. Circuit location of each test point
7. There are five test points (Tp1, Tp2, Tp3, Tp4, Tp5) on the
panel. These five test points are set at different points in the circuit path of the connected modules. Their specific locations are as shown in the Figure below. They are turned on or off by their corresponding relays (B1, B2, B3, B4, B5). An oscilloscope can be used to detect/determine the status of the circuitry at these test points.
T
T
T
P1
B
1
P3
B
3
P4
B
4
T
P2
B
2
8. Install the GRF-1300A driver onto the PC.
Connect the GRF-1300A to the PC. Below are the steps for
installing the software. Add the install software to the install directory. Click next and a window as shown below appears.
12
Introduction to the GRF-1300A
Figure A-8. Software installation
Next, click on the “Continue Anyway” button to continue
the installation until the installation procedure is complete.
Figure A-9. Installation procedure is complete
After the software installation is complete, users can
perform a system error check by sending commands to the GRF-1300A using Hyper Terminal.
13
GRF-1300A User Manual and Teaching Materials
Figure A-10. Operation interface for HyperTerminal
14
Introduction to the GRF-1300A
9. Below is a table listing each instruction and a description of
each function.
Instruction Function
*IDN? Returns the manufacturer, model name and
serial number.
RF? Returns the value on the digital display of the
FM/RF module.
AF?
WAVE? Returns the waveform type on the baseband
Bn? (n is the relay number for the corresponding test point)
WAVE:0 The waveform to sine. WAVE:1 Set the waveform to triangle. WAVE:2 Set the waveform to square. Bn:0 ( ‘n’ is the relay
number. I.e., B1:0) Bn:1 ( ‘n’ is the relay
number. I.e., B3:1) AF:N(N is setting frequency) RF:N(N is setting frequency)
Returns the value on the digital display on baseband module.
module.
Returns the state (open or closed) of the currently selected relay.
Set the relay of corresponding no. to OFF.
Set the relay of corresponding no. to ON.
Set the AF frequency to N.
Set the RF frequency to N.
15
GRF-1300A User Manual and Teaching Materials
OVERVIEW of the TIME and
FREQUENCY DOMAIN

Observation from a different perspective

When a signal is said to be in the time domain, it means that the signal is expressed as a function of time. For example, if we describe a sine wave signal that repeats once each microsecond (μsec, 10-6), it means that the period of the signal is 1 microsecond. Usually we use an oscilloscope to measure these signal characteristics in the time domain. In addition, when we talk about the rise and fall time of a square waveform, we also can observe that in the time domain. Phase delay is also measured in the time domain. Oscilloscopes are well-known electrical signal measurement instruments that perform measurements in the time domain.
1μsec sine wave
However, when we observe a sine wave and a square wave with the same amplitude and period, is there a way to describe the difference between them? Frequency domain measurements just provide a different view point.
First we will explain what frequency domain means. Frequency domain means to observe the frequency composition of a signal. If we add a sine wave signal that has a 1 microsecond period to a spectrum analyzer, we will see an obvious signal on the scale at 1 megahertz (MHz). We know that frequency is the inverse of period. Therefore, a sine wave with a period of microsecond has a frequency of 1MHz. You can measure voltage
Square wave with the same period
16
Overview of the Time and Frequency Domain
from an oscilloscope and power (dBm) from a spectrum analyzer. Voltage and power can be converted from one to the other, so both of them can be used to display the strength of a signal. Here we introduce a basic concept first. Each frequency point in the spectrum represents a sinusoidal wave (could be a sine or cosine) of a single frequency.
What about a square wave? We will now explain how a square waveform and sine waveform are different to each other in the frequency domain. If we input a square wave with a period of 1 microsecond into a spectrum analyzer, its waveform performance (we usually to say its spectrum or frequency distribution) is as follows.
If we compare it with a sine wave spectrum, we can observe that in addition to the point at the1MHz scale, other signal points also appear at higher frequencies and with decreased amplitudes. Therefore it shows that a square wave also includes a combination of signals that are multiples of the frequency baseband in addition to the 1MHz base frequency (fundamental frequency).
We can see a classic relationship between the time domain and frequency domain in the illustration below. A square wave signal in the time domain can be decomposed into multiple basic harmonic waves. The distribution of these harmonic components can be clearly seen in the frequency domain. Frequency domain analysis describes the characteristics of a signal from another viewpoint.
17
GRF-1300A User Manual and Teaching Materials
Time domain Frequency domain
18
Overview of the Time and Frequency Domain
NOTES
19
GRF-1300A User Manual and Teaching Materials
NOTES
20
Overview of the Time and Frequency Domain
NOTES
21
GRF-1300A User Manual and Teaching Materials
NOTES
22
Overview of the Time and Frequency Domain
NOTES
23
GRF-1300A User Manual and Teaching Materials
AN INTRODUCTION to SPECTRUM
ANALYZERS
Spectrum analyzers are one of the most important instruments for RF microwave measurements. Being familiar with spectrum analyzers in general is very important for operating high frequency microwave equipment or for performing communication measurements. In addition, being familiar with the basic operating principals will allow you to quickly understand other related test equipment. In this chapter, we will briefly introduce the basic working principles of the spectrum analyzer. After understanding the basic working principles, you will find that a spectrum analyzer can be a handy tool to use.

Broadband Receiver

The principal function of a spectrum analyzer is to convert the input signal frequency down to a frequency (band) that detection circuitry can handle. For example, a 2.4GHz signal needs to be down-converted to several MHz before the Detection & Display unit can process the signal. Therefore a spectrum analyzer must be able to reduce the frequency band down to several MHz. The first half of a spectrum analyzer is called the radio frequency module and its task is to reduce the input signal frequency. A mixer and a bandpass filter are used to decrease the frequency (they can raise the frequency as well). The mixer is a component with three ports: two inputs and one output. Assume that the two input frequencies on input port are fRF and fLO respectively, and then the output frequency will be f
is made of two signals of different frequencies (fLO- fRF and
IF. fIF
fLO+ f signal is the sum of the input signals and the other is the difference. Determining which of the IF signals that will be used depends on the system and subsequent bandpass filter design. As for why the three ports are named after RF, LO, IF, they are just the conventional terms that are used.
) that appear on the output port at the same time. One
RF
24
Figure B-1. The basic structure of a broadband receiver

Attenuator

An Introduction to Spectrum Analyzers
Mixers
RF Input
Next, we are going to introduce the other basic functional
IF
BPFs
Tunable LOs
Detection & Display
Unit
blocks that a spectrum analyzer is composed of. These blocks are often mentioned when instructed on how to use a spectrum analyzer.
An attenuator on the RF input path can increase the dynamic range of the input signal level or provide more input protection to the spectrum analyzer. Referring to Figure B-2, the attenuator limits the signal level coming to the mixer (RF end) to a certain level. If the input signal is above a reference level, it can cause measurement errors, or cause spurious noise.
Figure B-2. Attenuator
RF Input
Attenuator

Resolution Bandwidth Filter

When the input signal frequency is converted to an IF, a RBW (resolution bandwidth) filter is used to distinguish the signals that are close to each other in frequency. Figure B-3 shows this concept.
Mixers
IF
BPFs
Tunable LOs
Detection & Display
Unit
25
GRF-1300A User Manual and Teaching Materials
p
Figure B-3. Basic structure of a resolution bandwidth filter
Figure B-4. The effect of different RBWs (1)
RF In
ut
Attenuators
Mixers
IF
Tunable LOs
BPFs
RBW Filter
Detection & Display
Unit
Figure B-4 shows how two different RBW filters distinguish between two signals that are close to each other in frequency. The bandwidth of RBW2 is wider that of RBW1.
Signal under test
RBW
Results
RBW1
After passing the narrower RBW1 filter, the components of
RBW2
the two tone signal are clearly distinguished from each other as a result. But in the wider RBW2 filter, the result is not as clear as RBW1. We can predict that if the resolution bandwidth of RBW2 is wider, we could even misinterpret the result as only one signal. This will also happen if these two signals are even closer together in frequency.
Another case is when the amplitude of one signal is much higher than the other; the smaller signal can still be detected using RBW1, but it is obscured if RBW2 is used. Figure B-5 illustrates this difference. This is why these filters are known as resolution bandwidth filters.
26
An Introduction to Spectrum Analyzers
Figure B-5. The effect of different RBWs (2)

Detector

Signal under test
RBW
RBW1
RBW2
Following the RBW filter, the detector detects the power and coverts it to DC voltage via an ADC so that it can be displayed.
Figure B-6. Detector

Video Bandwidth Filter

Figure B-7. VBW filter
However, a filter is employed after the detector to filter out the noise generated by the detector. This is the function of the VBW (video bandwidth) filter as shown in Figure B-7.
27
GRF-1300A User Manual and Teaching Materials
Figure B-8. Different VBWs
Figure B-8 shows how the VBW affects the displayed output. If the signal under test passes through two different VBW filters, in which VBW1 is less than VBW2, we can see that the magnitude of the noise floor of VBW2 is greater than that in VBW1. But notice that the average level of the noise floor remains the same. The VBW filter only averages the noise level; It doesn’t affect the overall amplitude of the signal noise floor.
VBW
Signal under
Results
Noise
VBW1 VBW2
28
An Introduction to Spectrum Analyzers
NOTES
29
GRF-1300A User Manual and Teaching Materials
NOTES
30
An Introduction to Spectrum Analyzers
RF COMMUNICATION and SIGNALS
EXPERIMENTS
In this chapter we will explain the basic operating principals of a spectrum analyzer and introduce the measurement experiments. Prior to this, we will briefly explain how to operate the GW Instek GSP-730 spectrum analyzer. For more detail about its operation, please refer to the GSP-730 user manual.
31
GRF-1300A User Manual and Teaching Materials

Experiment 1: Basic Operation of a Spectrum Analyzer

Relevant information
Experiment equipment
Experiment goals
In addition to the sky, oceans and forests, there is an invisible, intangible, inaudible and complex electromagnetic network in our living environment. This network is intertwined with wireless signals of various frequency bands. Although these signals are invisible and intangible, we can use a spectrum analyzer to understand and analyze these wireless signals.
In this experiment, the GSP-730 spectrum analyzer is used to capture some wireless signals in the environment. This experiment will help students to become familiar with using spectrum analyzers as well as to arouse their curiosity in the field of RF signals.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 Adapter 1 N-SMA 3 Antenna 1 800
To become familiar with how to use the GSP-730 and how to use parameter settings such as frequency, amplitude and markers.
Experiment principles
Spectrum analyzers are mainly used to measure physical quantities such as the frequency and amplitude of a signal. For basic operation, the frequency range must be set first, then the reference level amplitude.
32
RF Communication and Signals Experiments
The Frequency, Amplitude and Span keys as well as the keypad and unit keys.
The figure above is a screen shot from a typical spectrum analyzer display. The horizontal setting is frequency and the vertical axis is amplitude. Therefore a spectrum analyzer is basically used to perform frequency and amplitude-related measurements. We can operate a spectrum analyzer by using the Frequency, Amplitude and other function keys in conjunction with the keypad to control the frequency, amplitude and other related settings.
Experiment contents
Experiment steps
There are two ways to set the frequency. If the frequency of the signal that you want to measure is known, then we can set the frequency using the center frequency and span functions. If we need to measure a frequency range, then we can set the start and stop frequency range.
Connect the antenna to the GSP-730 spectrum analyzer to test the radio waves in the environment.
1. Connect the antenna to the GSP-730 spectrum analyzer.
Measure the strength of a mobile phone’s transmitter signal. Because the frequency band of a mobile phone is between 800MHz - 1900MHz, we will set the frequency range between 800 - 1900MHz.
2. Set the GSP-730 as follows:
z Start frequency: 800MHz, z Stop frequency: 1900MHz
Reference level-30dBm
RBWRBW):Auto
8
Step1
Step2
Frequency
F2
0
1 9
33
GRF-1300A User Manual and Teaching Materials
Step3
Step4
3. Now we should see some signals on the spectrum analyzer
BW
F1 3
F1
0
screen. Identify the three highest peaks and write down their frequency values. The reference level can be used to adjust the strength of the signal.
4. As mobile phones use frequency hopping, we can use the
Peak Hold function to hold the reading of the signal on the display screen. Record the frequency and amplitude of the signal.
Step5
5. Change the span to 5MHz. Set the center frequency to each of
F3
the above three frequency points in sequence so that you can observe each one more accurately. Record these three frequency points in Table 1-1.
Experiment results
Step6
F2
Set the center frequencies to each of the three frequency points
Step7
Testing the wireless signals in the environment is shown in
6.
the picture below.
Antenna
34
RF Communication and Signals Experiments
Frequency: _____Amplitude:_____
Question
Frequency: _____Amplitude:_____
Table 1-1. Frequency and amplitude of mobile phone’s transmitter signal.
In addition to the mobile phone signal, what other wireless signals can be measured in the environment?
35
GRF-1300A User Manual and Teaching Materials

Experiment 2: Measuring a Baseband Waveform

Relevant information
Experiment goals
Relative to oscilloscopes, spectrum analyzers have many outstanding advantages. They are also the primary measurement tool for measuring frequency domain data. Learning how to use a spectrum analyzer is an essential skill that every student must master to gain RF knowledge.
By measuring a baseband signal, this experiment allows students to comprehensively understand how to operate a spectrum analyzer and lays the foundation for subsequent experiments.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730
RF & Communication
2
Trainer
1 GRF-1300A
3 RF wire 1 800mm 4 Adapter 1 N-SMA
1. Measurement and analysis on a basic signal.
2. To understand how to use the GRF-1300A system to output a
baseband signal.
Experiment principles
Experiment contents
Experiment steps
Set the GRF-1300A to output a 1MHz sine waveform and use the GSP-730 to measure its spectrum. The working principle of a spectrum analyzer has been introduced in a previous chapter. We won’t repeat it here.
Set and then measure the spectrum of a 1MHz sine wave. Measure the harmonic ratio at each of the harmonic frequencies.
1. Turn on the GRF-1300A and the GSP-730.
2. Set the GRF-1300A baseband as follows:
Waveform: Sine wave
Frequency: 1MHz.
Turn the amplitude knob clockwise to its end.
Step1
36
RF Communication and Signals Experiments
Step2
UP
Step3
3. Connect the baseband signal from the output port of the GRF-
1300A to the input terminal of the GSP-730 using the RF wire.
4. Set the GSP-730 as follows:
Center frequency: 2.5MHz
Start frequency: 0kHz,
Stop frequency: 5MHz
Reference level: 10dBm
RBW: Auto
Step1
Frequency
F1
2 5
When the first step is done, steps 2 and 3 (below) will have already been automatically set. Students may do steps 2 and 3 here is for reference only.
Step2
Step3
Step4
Step5
5.Utilize the Marker function on the spectrum analyzer to
Frequency
Frequency
BW
F1
F1
0
5
0
determine the harmonic ratio and draw the spectrum in Table 2-
1.
Step6
Peak
Search
37
GRF-1300A User Manual and Teaching Materials
After step 6 is done, make sure the "Delta" marker is used for the next steps and not the "Normal" marker. Set the Delta Marker to the peak point of each harmonic and make a record by drawing a simple sketch of the spectrum in table 2-1.
Step7
Step8
6.A function signal generator can also be used as a signal source
Marker
Marker
1
2
in the above measurement, but be aware that the amplitude of the output signal can’t be too high.
dBm is a power unit that is referenced to 1mW. The
formula for X dBm = 10*log(Px/1mW)
Putting 10 mW into the above formula, we get 10 * log (10/1) = 10 * 1 = 10dBm. Similarly if we input 100 mW into the above formula, X = 10 * log (100mW/1mW) = 10 * 2 = 20dBm.
Because the output voltage of a signal generator is often used expressed as a voltage into a 50 ohm load, you must convert voltage to power. A few common values are listed below:
Experiment results
Converting Voltage to dBm: (into 50 ohm load)
Vpp (V) Vm (V) Vrms (V) P (mW) dBm
10.00 5.00 3.54 250.00 23.98
5.00 2.50 1.77 62.50 17.96
2.00 1.00 0.71 10.00 10.00
1.00 0.50 0.35 2.50 3.98
Converting dBm to Voltage: (into 50 ohm load)
dBm P (mW) Vrms (V) Vm (V) Vpp (V)
20.00 100.00 2.24 3.16 6.32
10.00 10.00 0.71 1.00 2.00
0.00 1.00 0.22 0.32 0.63
-10.00 0.10 0.07 0.10 0.20
If voltage is measured without a load on an oscilloscope, the Vpp and Vm values should be multiplied by 2. For instance, when we get a measured value of 4Vpp into no load, it is the equivalent of 2Vpp into 50 ohms, or 10dBm after conversion.
38
RF Communication and Signals Experiments
The 2nd harmonic ratio is:
Question
Caution
The 3rd harmonic ratio is:
Table 2-1. 1MHz sine wave spectrum test results
1. What is the spectrum of a theoretical sine wave and why is it
different with the actual measured one?
2. What is the frequency domain feature of the analyzed signal?
1. The output power should not exceed the rated input of the
spectrum analyzer, otherwise the spectrum analyzer will be damaged.
2. When using the RF cable to make a connection, be sure to
tighten the connector.
39
GRF-1300A User Manual and Teaching Materials

Experiment 3: Different Baseband Waveforms and their Harmonic Measurement

Relevant information
Experiment equipment
You should already be familiar with electrical signals in general. We have already said that an oscilloscope is used to observe the amplitude of a waveform. In other words, it is used to observe how an electrical signal, X(t), varies over time. However, depending on what we are trying to study, the reason for measuring a signal can also be different. For example, when we analyze amplifiers, filters and mixers, we are no longer interested in measuring a function related to time, but a response function which can be characterized by frequency.
In this experiment, you will find that analyzing a signal in the frequency domain often has a lot of advantages compared to analyzing a signal in the time domain. You will also find that there is a relationship that exists between the time domain and the frequency domain, and will thus gain a better understanding of the theory behind the Fourier series.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 RF & Communication Trainer 1 GRF-1300A 3 Oscilloscope 1 GDS-2204 4 RF wire 1 800mm 5 Adapter 1 N-SMA
Experiment goals
40
1. Measure the harmonic content that is output from the
baseband signal.
2. Use the measurement results to verify the Fourier series
theorem.
3. Understand the internal relationship between the time
domain and the frequency domain in a signal.
4. Use this experiment to become familiar with how to measure
the spectral characteristics of a typical signal, such as the amplitude and frequency.
RF Communication and Signals Experiments
Experiment principles
Experiment contents
Experiment steps
Set the waveform on the GRF-1300A and measure the harmonic spectrum. Switch to a different waveform and measure the harmonic spectrum. Compare the differences. The relationship between the time domain and the frequency domain has already been introduced in chapter 3. We won’t repeat it again here.
We will become familiar with using a spectrum analyzer and how to use the GRF-1300A by analyzing the spectrum of a simple triangle and square wave signal.
1. Turn on the GRF-1300A and the GSP-730.
2. Set the GRF-1300A baseband as follows:
Waveform: triangle
Frequency: 1MHz.
Turn the input amplitude knob clockwise to the end.
Step1
Step2
UP
Step3
3. Connect the baseband signal from the output port on the
GRF-1300A to the input terminal on GSP-730 with the RF cable.
4. Set the GSP-730 as follows:
Center frequency: 15MHz
Start frequency: 0kHz,
Stop frequency: 30MHz, Span: 30MHz
41
GRF-1300A User Manual and Teaching Materials
Reference level: 0dBm
RBW: Auto
Step1
Step2
Step3
Step4
5. Observe the spectrum that appears. Use the Marker function
Amplitude
F1
F1
F1
F1
0
5
on the spectrum analyzer to determine the harmonic ratio and draw the spectrum in Table 3-1.
Step5
After step 4 is done, make sure the "Delta" marker is used for the next steps and not the "Normal" marker. Set the Delta Marker to the peak point of each harmonic and make a record by drawing a simple sketch of the spectrum in table 3-1.
Step
Marker
F3 2
6
Step
Marker
F3 4
7
6. Select the square wave on the GRF-1300A Baseband module.
Do the same spectrum measurements that were performed in the previous steps.
Step8
7. Observe the square wave spectrum that appears on the
spectrum analyzer. Use the marker function to record the harmonic ratio and draw the spectrum in table 3-3. Draw the spectrum of the square wave spectrum as you did previously for the triangle wave. Remember to remove the
delta marker (󰅿-Marker) that was originally used with the
42
triangle wave.
RF Communication and Signals Experiments
Experiment results
Step9
Marker
After the spectrogram on table 3-3 is drawn, measure the harmonic ratio of each harmonic using the following steps:
Step10
Step11
1
2
In accordance to the method that is used above to measure the harmonic ratio, students can try to measure the harmonic ratio of the higher order harmonics.
8. After measuring the spectrum, connect the output port to the
input port of the oscilloscope and measure the time domain waveform of the triangle wave and square wave, and record the results in Table 3-2 and Table 3-4.
1. In the tables below, record the measurement results of the
time domain waveforms and the frequency domain spectrum for both the triangle and square waves.
Tab l e 3- 1. 1MHz triangle wave spectrum test results.
43
GRF-1300A User Manual and Teaching Materials
t
A
t
A
Tab l e 3- 2. Time domain waveform of the 1MHz triangle wave.
Tab l e 3- 3. 1MHz square wave spectrum test results.
(t)
Tab l e 3- 4. Time domain waveform of the 1MHz square wave.
44
(t)
RF Communication and Signals Experiments
Harmonic ratio of the 3rd harmonic (triangle wave)
Harmonic ratio of the 5th harmonic (triangle wave)
2. For the triangle waveform, measure the harmonic ratio of the
3rd and 5th harmonic. For the square waveform, measure the harmonic ratio of the 2nd and 3rd harmonic.
45
Harmonic ratio of
nd
harmonic
the 2 (square wave)
Harmonic ratio of
rd
harmonic
the 3 (square wave)
GRF-1300A User Manual and Teaching Materials
Question
Caution
1. Compare the measurement results from the frequency
domain and the time domain, and consider the relationship to the Fourier series theory.
2. Analyze the difference between the triangle and square wave
spectrum. Write their Fourier series in the form of a trigonometric function. What relationship do you find between each harmonic and each term in the series?
There are different ways to set the center frequency on a spectrum analyzer. Set it according to your needs.
46
RF Communication and Signals Experiments

Experiment 4: Measurement of the RF Carrier

Relevant information
Experiment equipment
In communication systems, RF signals generally use carrier signals. As a low frequency signal cannot be easily transmitted very far over air, the low frequency message (such as voice) must be placed into a higher frequency signal so it can be being transmitted over a distance using an antenna. This high­frequency signal carries the message, and is thus called the carrier. In this experiment we will perform basic measurements on RF signals and measure important parameters such as phase noise and harmonic distortion.
The carrier of this experimental system is generated by a PLL. Phase locked loops are widely used as phase-locked receivers, or for phase-locked frequency modulation and demodulation. They are also often used as a local oscillator for transmitters and receivers. We must learn in detail the working principles of PLL circuits when we study RF circuits. This experiment allows students to comprehend high frequency signals by measuring the carrier frequency spectrum. It also makes students recognize the basic structure of a PLL circuit. In the following experiments, we will further study the locked and unlocked conditions of a phase-locked loop.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 RF & Communication Trainer 3 RF wire 1 800mm 4 Adapter 1 N-SMA
1 GRF-1300A
Experiment goals
Experiment principles
Measure an RF signal from the GRF-1300A RF & Communication Trainer. Also perform measurements on more important parameters such as phase noise and harmonic distortion.
A Phase locked loop (PLL) is a phase error control system. It compares the phase between a reference signal and an output signal to generate a phase error voltage for adjusting the frequency output of the voltage-controlled oscillator – for the purpose of synchronizing the output frequency with the reference signal. Its basic circuit structure is shown in Figure 4-1.
47
Figure 4-1. PLL
f
P
s
P
circuit structure
GRF-1300A User Manual and Teaching Materials
Above: PD is the phase-locked loop phase detector, LF is the loop filter and VCO stands for voltage-controlled oscillator.
The purity of the output signal from the VCO is directly related to the phase noise. The lower the distortion of the output signal, the lower the harmonic components and noise contained in the output signal.
Phase noise is usually specified in dBc/Hz at a given frequency offset value, where dBc is dB in relation to the center frequency. The phase noise of an oscillator is normalized to the noise generated in a bandwidth of 1Hz. The phase noise is usually calculated using the formula below, where fm is the frequency of a single sideband from the carrier and P measured sideband power:
L(fm) = (P
where,
B = 1.2RBW (RBW is the resolution bandwidth)
P0) – log B + 2.5
ssB
is the
ssB
Figure 4-2. Phase noise definition
0
sB
m
As the oscillator is a non-linear component, it will produce higher-harmonic content. Harmonic distortion is also an important factor for RF signals. In general we use a filter to filter this out.
48
RF Communication and Signals Experiments
Experiment contents
Experiment steps
Measure the RF signal spectrum and harmonic distortion.
1. Measure the RF signal spectrum.
2. Measure the harmonic distortion of the RF signal.
3. Measure the phase noise of the RF signal.
1. Turn on the GRF-1300A and GSP-730. Leave the GRF-1300A
in its power-on state.
2. Connect the RF/FM output port on the GRF-1300A to the
input terminal on GSP-730 with the RF cable.
3. Set the GSP-730 as follows:
Span: Full Span
Reference level: 0dBm
RBW: Auto: Auto
Step1
Step2
Step3
BW
F1
F1
4. On the observed spectrum, use the marker function to
measure the amplitude of each frequency point. The Next peak function can be used to find each consecutive peak. Plot the results in table 4-1.
Step4
Step5
F2
5. Draw the results in table 4-1. The harmonic ratio of each the
harmonic can be measured according to the following steps.
Step6
Marker
7 6
Step7
Marker
2 6 4
49
GRF-1300A User Manual and Teaching Materials
Measure the RF phase noise.
For the last two steps, the span is quite large, and may produce some errors. To find the second and third harmonic, you may need to fine-tune the frequency. Record the results in table 4-2.
1. Turn on the GRF-1300A and the GSP-730.
2. Set the GRF-1300A RF Synthesizer/FM as follows:
Carrier frequency: 875MHz
Step1
3. Connect the RF/FM output port on the GRF-1300A to the
input terminal on GSP-730 with the RF cable.
4. Set the GSP-730 as follows:
Center frequency: 875MHz
Span: 1MHz
Reference level: 0dBm
RBW: Auto (default state is 50kHz)
Step1
Step2
Frequency
Span
Step3
Step4
Peak
Step5
Search
5. Record the carrier power. Set the deviation of the carrier
BW
F1
F1
F1
F1
7 5
0
50
frequency fm to a deviation (󰅿󰇜of100kHz. Use the Delta
RF Communication and Signals Experiments
f
marker function on the spectrum analyzer to measure the 󰅿
value.
Step6
Marker
1 0
Record the value, then calculate the phase noise according to the formula, and record the spectrum and measurement results in Table 4-3.
6. Adjust the PLL output frequency to 900MHz, and again
measure the power and phase noise corresponding to the frequency.
Step7
Step8
Step9
UP
Peak
Search
F1
0
Record the carrier power. Set the deviation carrier frequency
to a deviation (󰅿󰇜of100kHz. Use the Delta Marker function on
m
the spectrum analyzer to measure the 󰅿 value.
Step10
Marker
1 0
Record the value, then calculate the phase noise according to the formula, and record the spectrum and measurement results in Table 4-3.
7. Adjust the PLL output frequency to 910MHz, and again
measure the power and phase noise corresponding to the frequency.
Step11
UP
51
GRF-1300A User Manual and Teaching Materials
f
Step12
Step13
F1
1 0
Record the carrier power. Set the deviation carrier frequency
to a deviation (󰅿󰇜of 100kHz. Use the Delta Marker function on
m
the spectrum analyzer to measure the 󰅿 value.
Step1
Marker
F3
0 0
4
Record the value, then calculate the phase noise according to the formula, and record the spectrum and measurement results in Table 4-3.
Experiment results
Tab l e 4- 1. R F Signal Spectrum
1. Measurement of the RF signal spectrum.
2. RF Signal Harmonic measurements
52
Tab l e 4- 2. R F Signal Spectrum
RF Communication and Signals Experiments
2nd Harmonic measurement
3rd Harmonic measurement
53
GRF-1300A User Manual and Teaching Materials
Tab l e 4- 3. Phase Noise measurement results
3. Phase noise measurement results
Carrier
Experiment results
Frequency
875MHz
Carrier frequency:_____ Output power:_____ Phase noise:_____
900MHz
54
Carrier frequency:_____ Output power:_____ Phase noise:_____
910MHz
Carrier frequency:_____ Output power:_____ Phase noise:_____
RF Communication and Signals Experiments
Questions
Caution
1. A PLL circuit is formed by which parts? Explain the function
of each part.
2. What are the advantages of a PLL?
3. Explain the causes of phase noise? How can we improve
phase noise?
Be sure to tighten the connectors when connecting the RF cable.
55
GRF-1300A User Manual and Teaching Materials
NOTES
56
RF Communication and Signals Experiments
NOTES
57
GRF-1300A User Manual and Teaching Materials
NOTES
58
RF Communication and Signals Experiments
NOTES
59
GRF-1300A User Manual and Teaching Materials

Experiment 5: AM Signal Measurement

Relevant information
Experiment equipment
Message signals are usually of a low frequency. In general, these low frequency signals are not appropriate for transmission. Therefore, modulation is required to transmit messages for communication and test systems. Modulation is a signal adjustment method used in signal transmission. It is used to modulate a low frequency signal which carries information with a signal of an appropriate frequency. This is used to solve problems associated with the amplification and transmission of weak signals. The role of modulation in RF communication systems is essential. Not only is modulation used to modulate the original low-frequency signal and its transmission, but it is also used for frequency division multiplexing (FDM). If signals with the same frequency range are transmitted on the same channel at the same time, they can easily interfere with each other, and hence why they are first modulated onto different carriers so that multiple signals can be transmitted simultaneously. These experiments start with amplitude modulation. The spectrum analyzer is used to measure the characteristics of AM signals, which has a great significance for students to master FM as well as AM principles and characteristics.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 RF & Communication Trainer 3 RF wire 2 100mm 4 RF wire 1 800mm 5 Adapter 1 N-SMA
1 GRF-1300A
Experiment goals
Experiment principles
1. Learn the working principals of amplitude modulation.
2. Use the spectrum analyzer to measure the AM characteristics
of an RF signal.
Modulation is the process of moving a low-frequency signal to a high-frequency and then transmitting the high-frequency signal. Generally the low frequency signal carrying the original information is called the modulating signal or baseband signal. The high-frequency signal is known as the carrier signal. After the carrier signal is modulated by the modulating signal, the resultant signal is called the modulated wave. There are three kinds of modulation methods that are used: AM, FM and phase modulation.
60
RF Communication and Signals Experiments
This experiment begins with AM to learn some modulation theory. AM uses the modulating signal to control the amplitude of the high-frequency carrier signal. The modulating signal is used to alter the amplitude of the carrier in proportion to the amplitude of the modulating signal. A high frequency carrier signal that is amplitude modulated is called an AM wave. AM waves are divided into ordinary AM waves, double-sideband AM waves with suppressed carrier transmission and single­sideband AM waves with suppressed carrier transmission.
1. The formula to express the modulated waveform is as follows:
Assuming that the modulating signal is a sine wave of a single frequency (=2πf
)
And
(t) = U
u
cos t = UΩmcos2πf t (5.1)
m
then the carrier signal is
u
(t) = U
c
cosωc t = Ucmcos2πfc t (5.2)
cm
Because the carrier frequency remains unchanged after amplitude modulation and the amplitude of an AM wave is proportional to the modulating signal, therefore, the modulated wave can be expressed as below:
u
AM
(t) = U
(t)cosωc t = Ucm(1+macost) cosωc t (5.3)
AM
To simplify the analysis, we set the initial phase angle of both waveforms to zero. In formula (5.3), m
is known as the degree of
a
AM modulation or the AM modulation index.
am
kU
Namely,
m
=
a
U
cm
Ω
This equation indicates to what degree the carrier amplitude is controlled by the modulating signal. The constant ka is a proportional constant determined by the modulation circuit. The AM modulation index should be less than or equal to 1. When the AM modulation index is greater than 1, it is called over modulation and will distort the modulated signal.
We can see from this that the AM wave also oscillates at a high frequency. Its amplitude varies regularly (envelope changes) and is proportional to the modulating signal. Therefore, the information in a modulating signal is carried in the amplitude of an amplitude modulated wave. The following figure shows how a signal changes from a carrier signal
61
Figure 5-1. A
ω
ω
ω
ω
diagram showing how an unmodulated carrier signal undergoes the process of modulation.
GRF-1300A User Manual and Teaching Materials
(unmodulated state) to an AM wave (modulated state).
Figure 5-2. AM waveform in the time domain and the frequency domain
mU Ω
cmU
t
cmU
t
()AMUt
t
am
Ucm
2
c
Ω
c
am
2
Ucm
2. AM Wave Spectrum
Expand formula (4.3) to get the following formula:
AM cm c a cm c a cm cut U t mU t mU t+ ω+Ω+ ωΩ
( ) cos cos( ) cos( )
11
22
As can be seen here, a
single modulated audio signal consists of three high frequency components. In addition to the carrier, two new frequency components (ωc+) and (ωc - ) are included. One is higher than
ωc, known as the upper sideband, and the other is lower than ωc,
known as the lower sideband. Its spectrum is shown in Figure 5-
3.
62
Figure 5-3.
ω
ω
Spectrum of an AM wave
RF Communication and Signals Experiments
Experiment contents
1/2maU
c ωΩ
cm
U
cm
c
1/2maU
c
cm
From the above analysis, we can understand that amplitude modulation is a process of shifting a low frequency modulating signal into the sideband of a high frequency carrier. Obviously, in AM waves, the carrier does not contain any useful information. Information is only included in the sidebands.
1. Measure the waveform and spectrum of an AM wave.
2. Measure the spectrum of the AM wave with different carrier
frequencies and with modulating signals with different amplitudes.
Experiment steps
1. Turn on the power to the GRF-1300A and GSP-730.
2. Set the GRF-1300A as follows:
Set the GRF-1300A to the default power-on state.
Connect the output port on the Baseband module to the AM
in port on the AM module with an RF cable.
Connect the RF/FM output port on the RF Synthesizer/FM
to the RF in port on the AM module with an RF cable.
Turn the potentiometer clockwise to the end.
3. Connect the AM output port to the input port of the spectrum
analyzer with the 800mm RF cable.
63
GRF-1300A User Manual and Teaching Materials
4. Set up the GSP-730 as follows:
Center frequency:880MHz
Span: 5MHz
Reference level: 0dBm
RBW: Auto
BW
F1 0
F1
0
F1
Step1
Step2
Step3
Step4
5. Use the Marker function to measure the carrier component of the AM wave on the spectrum analyzer and the power of the upper and lower sidebands. Use the oscilloscope to measure the voltage at TP4 in relation to the position of the potentiometer (i.e., the modulating amplitude). Draw the spectrum diagram in Table 5-4.
64
Peak
Step5
Step6
Search
Marker
1
0
6. Turn the potentiometer counterclockwise to the half-way mark. Measure the voltage with the oscilloscope. By changing the output amplitude of the modulating signal, can you observe any change in the spectrum? Record the experiment in Table 5-4.
7. Turn the potentiometer counterclockwise to decrease the output voltage. Measure the voltage with the oscilloscope. Observe any changes in the spectrum of the AM wave and record it in Table 5-4.
RF Communication and Signals Experiments
8. Turn the potentiometer clockwise to the maximum. Adjust the UP button on the Baseband module to adjust the frequency of modulating signal. Do you see any change in the AM wave spectrum? Compare the experiment results with that of the original baseband frequency of 100kHz and record it to Table 5-
5.
Step7
UP
Step8
F3 0
9. Use the UP button on the Baseband module to adjust the frequency of the modulating signal. Do you see any change in the AM wave spectrum? Record the result in Table 5-5.
Step9
Step10
UP
Marker
6
0
10. After completing the experiment steps above, press the Reset button, and then use the UP button on the RF Synthesizer/FM module to change the frequency of the carrier signal. Is there is any change in the AM wave spectrum? Compare the experiment result with that of the original carrier frequency of 880MHz and record it to Table 5-6.
Step11
Reset
Step12
Step13
Step14
UP
Peak
Search
Marker
F3
0
1
11. Use the DOWN button on the RF Synthesizer/FM module to change the frequency of the carrier signal. See if there is any change to the AM wave spectrum and record it Table 5-6.
Step15
Step16
65
GRF-1300A User Manual and Teaching Materials
Experiment results
Tab l e 5- 4. Experiment results: Changing the modulating voltage
1. Changing modulating voltage
Modulating
Experiment results
voltage
Vpp:
Carrier power:_____ Modulation index: :_____Lower sideband
power: :_____
Vpp:
Vpp:
Carrier power: :_____ Modulation index: :_____Lower sideband
power: :_____
66
RF Communication and Signals Experiments
Carrier power: :_____ Modulation index: :_____Lower sideband
power: :_____
Tab l e 5- 5. Experiment results: Changing the modulating signal frequency.
Conclusion:
2. Changing the modulating signal frequency.
Modulating
Experiment results
frequency
100kHz
Carrier power: :_____ Lower sideband power: :_____
300Khz
Carrier power: :_____ Lower sideband power: :_____
67
GRF-1300A User Manual and Teaching Materials
600kHz
Carrier power: :_____ Lower sideband power: :_____
Tab l e 5- 6. Experiment results: Changing the carrier frequency.
Conclusion:
3. Changing the carrier frequency.
Carrier
Experiment results
Frequency
882MHz
68
880MHz
RF Communication and Signals Experiments
Questions
878MHz
Conclusion:
1. If we change the frequency of the modulating wave but keep
the amplitude the same, will the AM wave be affected?
2. If the input cables on the AM modules were switched
(Connect the baseband signal to the "RF in" terminal and connect the carrier signal to the "AM in" terminal.) what will happen and why?
69
GRF-1300A User Manual and Teaching Materials

Experiment 6: FM signal measurement

Relevant information
Experiment equipment
Since frequency modulation is a common type of modulation, it is important to learn the principles and characteristics of FM waves. Compared to AM waves, the amplitude of an FM wave doesn’t carry the modulating signal information. This allows an amplitude limiter to be used to eliminate the magnitude interference before demodulation. The noise power spectral density in an FM wave band is evenly distributed at the input terminal. But due to frequency modulation, it is affected by frequency at the output terminal. Because the bandwidth of a modulated signal is far less than the FM wave bandwidth, it can pass through a low­pass filter to attenuate noise and increase the output signal to noise ratio during demodulation. FM waveforms are advantageous as they utilize power efficiently and have a high degree of fidelity as they rely on the phase of the modulated signal and not the amplitude to carry the baseband signal. The FM circuit in this experiment uses a phase-locked loop. The phase-locked loop circuit principles described earlier can be used to study the application of a phase-locked loop circuit for this section.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 RF & Communication Trainer
1 GRF-1300A 3 RF wire 2 100mm 4 RF wire 1 800mm 5 Adapter 1 N-SMA
Experiment goals
Experiment principles
70
1. Understand the working principals of frequency modulation.
2. Use a spectrum analyzer to measure the FM characteristics of an
FM wave.
3. Master phase-locked loop principals that are used in FM.
1. Time domain analysis.
Frequency modulation is a type of modulation in which the instantaneous frequency deviation of the modulated signal with respect to the frequency of the carrier signal is directly proportional to the instantaneous amplitude of the modulating signal.
Assume that the modulating signal is uΩ(t) = Umcost
Figure 6-1. An FM signal varying to the change of a modulating signal
RF Communication and Signals Experiments
And the carrier signal is
uc(t) = U
cosωc t = Ucmcos2πfc t
cm
An FM signal varying to changes in the modulating signal is shown in Figure 6-1.
u
Ω
t
c
u
t
u
t
In the positive half-period of the modulating signal, the frequency of the modulated signal is higher than the frequency of the carrier signal. At the peak of the positive half-period, the angular frequency of the modulated signal is at its peak.
In the negative half-period of the modulating signal, the frequency of the modulated signal is lower than the frequency of the carrier signal, and its angular frequency is at its lowest. The angular frequency ω of an FM wave changes in response to changes in the modulation signal.
Then ω=ωc +Δωcost
In this formula, ω
is the angular frequency of the carrier wave, Δω
c
71
GRF-1300A User Manual and Teaching Materials
f
Δ
Ω
Ω
ω
ω
ω
Ω
is the offset of the angular frequency determined by the modulating signal U
The general expression for the FM signal:
t
() cos[ () ]
ut U t k u tdtΩ+ +
UtkUtdtΩ+ Ω+
+ Ω+
Ut t
cm c f
cm c f m
cos[ cos ]
cm c
t
0
fm
kU
0
Ω
ϕ
0
0
ϕ
0cos[ sin( ) ]
ϕ
Ω
Assume that,
M
f
Ω
==
ω
mm
kU
Ω
In this formula, Mf is called the FM index, Δωm is called the maximum angular frequency deviation, its value is proportional to the amplitude of the modulating signal.
2. Frequency domain analysis
Expressed by the time domain FM wave
fm
kU
( ) cos[ sin( ) 0]
ut U t t
cm c
=+Ω+ϕ
ω
Ω
=+Ω+ϕ
0cos[ sin( ) ]cm c fUtmt
Let the initial phase angle be 0 and expand as follows:
( ) [cos cos( sin ) sin sin( sin )]cm c f c fut U t m t t m t
+Ω
ω
When mf <<1, cos(mf sin t) 1 sin(mf sin t)≈ (mf sin t)
Then we get,
=+ +Ω)+ tΩ
() cos sin sincm c f cm cut U t mU t t
=+ Ω
fcm fcm
Ut t
cm c c c
cos cos( cos( )
mU mU
ωω ω
22
ω
We can see when mf <<1, the FM wave spectrum is composed of the carrier, (ωc+) frequency component and (ωc - ) frequency component.
When mf >>1
+ Ω+ Ω+
02 4cos( sin ) ( ) 2 ( )cos 2 2 ( )cos 4 ......fff fmtJmJm tJm tΩ=
13 5sin( sin ) 2 ( )sin 2 ( )cos3 2 ( )sin5 ......fff fmtJm tJm tJm t
+
In this formula, J
) is called an n-order Bessel function of the
n(mf
first kind.
There are an infinite number of frequency components in FM waves, and they are distributed symmetrically around the center of
72
RF Communication and Signals Experiments
f
f
f
carrier frequency. The amplitude of each component depends on the Bessel functions.
Theoretically, FM bandwidth is infinite, but the energy of an FM signal is mainly concentrated near the carrier frequency. The sidebands of the FM signal only contain a small amplitude component and are generally ignored in practice by engineers. Provided that the amplitude at the sidebands is negligible, less than 10%, we can get the FM wave band as follows:
B=2(mf +1)F From above analysis
Because
Therefore B=2(Δ F + F )
When Δ F >>F, it is wide band modulation, mf >>1, B 2Δ F
When Δ F <<F, it is narrow band modulation,
mf <<1, B ≈ 2 F
The amplitude of the sideband components in an FM signal is related to the frequency modulation index. This can be seen in the comparison table in the appendix. Below we have a few examples of the absolute magnitudes of the sidebands for signals with a modulation index of 0.5, 2.41 and 5.
0.5
m
=0.5
m
=2.41 m=5
The FM circuit in the GRF-1300A uses a phase-locked loop. Using a PLL circuit for FM modulation not only solves the center frequency stability problems in direct FM modulation but also the narrow FM range limitations when using a crystal oscillator.
The spectrum of the modulating signal must be outside the of
73
Figure 6-2. GRF-1300A FM principle
GRF-1300A User Manual and Teaching Materials
low-pass filter passband to achieve a phase-locked FM wave.
When the center frequency of the VCO is locked on to a stable high frequency, it allows the VCO to shift in frequency when the modulating signal is varied.
Experiment contents
Experiment steps
Measure the FM wave spectrum.
1.
2. Observe how the amplitude of the modulating signal affects the
FM wave frequency deviation.
3. Observe how the frequency of the modulating signal affects the
FM wave frequency deviation.
1. Turn on the GRF-1300A and GSP-730.
2. Set the GRF-1300A as follows:
Under the default state (the state from power-up), turn the
potentiometer to the minimum position.
Connect the output port on the Baseband module to the FM in
port on the RF Synthesizer/FM module with an RF cable.
Connect the RF/FM output port to the RF input port on the
spectrum analyzer with an RF cable.
3. Set the GSP-730 as follows:
Center frequency:880MHz
Span: 50MHz
Reference level: 0dBm
RBW: Auto
74
RF Communication and Signals Experiments
Step1
Step2
Step3
F1
F1
F1
8 0
5
0
Step4
4. Use the Marker function on the spectrum analyzer and measure
F1
the carrier position at this time.
Step5
5. Turn the potentiometer clockwise to an arbitrary position.
Measure the voltage with an oscilloscope. Does the FM wave spectrum change after the output amplitude of the modulating signal has changed? Follow the steps below to measure the frequency deviation and record it in Table 6-2.
Step6
Marker
6. Turn the potentiometer clockwise again to a different position.
Measure the voltage with an oscilloscope. Does the spectrum of the FM wave change when the output amplitude of modulating signal changes? Follow the steps below to measure the frequency deviation and record it in Table 6-2.
Step7
7. Adjust the potentiometer to the maximum position. Repeat the
above steps and record the results in Table 6-2.
Step8
8. After the completing the experiment steps above, see if there is
any change to the spectrum of the FM wave when the UP button on the baseband module is used to change the frequency of the modulating signal. Compare this to the original 100kHz baseband signal and record it to Table 6-3.
Step9
UP
9. Change the modulating signal frequency to 600KHz. Observe the
change in the spectrum of the FM wave and record the results in Table 6-3.
75
GRF-1300A User Manual and Teaching Materials
Step10
UP
10.Change the modulating signal frequency to 1MHz. Observe the change in the spectrum of the FM wave and record the results in Table 6-3.
Step11
UP
11.After the completing the experiment steps above, press the Reset button, and minimize the amplitude of the modulating signal in order to view the FM spectrum within a span of 50MHz. Then use the DOWN button on the RF Synthesizer/FM module to change the frequency of the carrier signal. See if there is any change in FM wave spectrum. Compare this result to the original carrier frequency of 880MHz and record it in Table 6-4.
Step12
Step13
12.Adjust the carrier frequency again. See if there is any change on FM wave spectrum and record it to Table 6-4.
Step14
UP
76
RF Communication and Signals Experiments
Experiment results
Tab l e 6- 2. Experimental Results: Changing the amplitude of the modulating signal
1. Changing the amplitude of the modulating signal.
Modulatin
Experiment result
g voltage
Vpp:
Frequency deviation: FM index:
Vpp:
Frequency deviation: FM index:
Vpp:
77
GRF-1300A User Manual and Teaching Materials
Frequency deviation: FM index:
Tab l e 6- 3. Experimental results: Changing the frequency of the FM signal
Conclusio n
2. Changing the frequency of an FM signal.
Modulating
Experimental result
frequency
100Khz
300Khz
600kHz
78
RF Communication and Signals Experiments
1MHz
Conclusion
3. Changing the carrier frequency
Tab l e 6- 4. Experimental results: Changing the carrier frequency
Carrier frequency
875MHz
Experimental result
880MHz
79
GRF-1300A User Manual and Teaching Materials
890MHz
Question
Conclusion
4. Draw a table to record the time domain waveform of the AM
wave that is measured by the oscilloscope.
1. For FM waves, if we keep the modulation signal amplitude
constant and double the modulation signal frequency, how will the frequency deviation and bandwidth change in the modulated signal?
2. Calculate the FM index of the modulation circuit through the
measured data obtained from the spectrum analyzer.
80
RF Communication and Signals Experiments

Experiment 7: Using a Spectrum Analyzer in Communication Systems

Relevant information
Experiment equipment
ACPR and OCBW are important parameters in the measurement of RF modulated signals. It is very important to master using a spectrum analyzer to measure ACPR and OCBW. We must know how to utilize a spectrum analyzer to measure the RF parameters that are frequently used and to lay the foundation for future use. ACPR is the ratio of the amount of power leaked to an adjacent channel from the main channel. OCBW is the occupied bandwidth that contains a specific percentage of the total integrated power of the channel. At present, third generation mobile communication systems (3G) are becoming ubiquitous, while some countries and companies are looking to develop fourth generation mobile communication systems (4G). This experiment, therefore, has a high practical value for the measurement of CDMA RF power and related fields.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 RF & Communication Trainer 1 GRF-1300A 3 RF wire 2 100mm 4 RF wire 1 800mm 5 Adapter 1 N-SMA
Experiment goal
1. To understand ACPR measurement principles and to perform
actual ACPR measurements.
2. Understand OCBW measurement principles and to perform
actual OCBW measurements.
81
GRF-1300A User Manual and Teaching Materials
f
f
+
f
fB+
f
fB+
+
p
A
p
Experiment principles
Figure 7-1. RF power amplifier input and output
1. ACPR Measurement
ACPR (Adjacent Channel Power Ratio) is the ratio of the amount of power leaked to an adjacent channel from the main channel. It represents how much power from the transmitter leaks into the transmission band of other channels. The adjacent channel usually refers to the closest adjacent channels near the transmission channel, other channels can also be selected, depending on the measurement requirements.
When two signals with similar frequencies are input into an RF power amplifier, there are not only two output signals, but also the inter-modulation signals (input signal 1 ± input signal 2). A typical input and output frequency spectrum is shown in Figure 7-1.
Figure 7-2. Definition of ACPR
输入信号
0
3fB
0
B
B
0
0
0 3
carrier
CPR
adj
bandwidth
channel space
0
3fB
0fB
0
0
0
3fB
82
RF Communication and Signals Experiments
In accordance with the definition of ACPR (Figure 7-2), we know that ACPR =10 log (P
adj
/P
carrier
).
When using a spectrum analyzer to measure ACPR, first you need to select the appropriate settings for the span and the resolution bandwidth (RBW). The span needs to be greater than the measurement bandwidth. The RBW should be equal to approximately 1% of the measurement bandwidth. Because the sweep time of the spectrum analyzer is inversely proportional to the square of the RBW, the RBW settings should be considered.
The RBW should not more than 4% of the measured channel bandwidth. Otherwise, the RBW will too wide and will obscure the original spectrum of channel. The RBW settings on the GSP­730 have a number of set ranges, therefore it fine to set the RBW to Auto mode.
2. OCBW-measurement
OCBW measurement is for measuring the bandwidth that the channel occupies for a specified amount of power. This is used to measure the occupied bandwidth as a percentage of the channel power for a specified amount of power. Commonly used parameters for the measurements are: channel bandwidth, channel spacing and OCBW %.
Experiment contents
Experiment steps
1. Measure the ACPR from the FM signal produced by the GRF-
1300A.
2. Measure the OCBW from the FM signal produced by the GRF-
1300A.
1. Turn on the GRF-1300A and GSP-730.
2. Set up the GRF-1300A as follows:
Set the GRF to the power-on default state.
Use the RF wire to connect the baseband output to the FM
in port on the RF synthesizer/FM module.
Connect the output terminal on the RF/FM module to the
input terminal on the spectrum analyzer with the RF cable.
83
GRF-1300A User Manual and Teaching Materials
3. Set up the GSP-730 as follows:
Center frequency:880MHz
Span: 10MHz
Reference level: -10dBm
RBW: Auto
BW
F1
F1
F1
F1
1
Step1
Step2
Step3
Step4
4. Adjust the FM frequency deviation to 1MHz (2MHz in total)
0
0
1
with the amplitude knob.
2MHz
ACPR measurement
84
5. Measure the ACPR and OCBW after these settings are
performed.
Step1
Step2
Meas
F1
F2
RF Communication and Signals Experiments
Set the bandwidth of the main channel to 2MHz.
OCBW measurement
Step3
F2
Set the main channel space to 5MHz.
Step4
F3
F1
Set the bandwidth of the 1st adjacent channel 0.8MHz.
Step5
F2
Set the offset of the 1st adjacent channel to 2MHz.
Step6
F3
Set the bandwidth of the 2nd adjacent channel to
0.5MHz.
Step7
Set the offset of the 2nd adjacent channel to 4MHz.
Increase the frequency deviation to 2MHz (4MHz in total) using the amplitude knob. Measure the ACPR again and record the results to table 7-1.
Step1
Meas
F3
Experiment results
Step2
F1
Set the bandwidth of the channel that you will measure to 2MHz.
Step3
F2
Set the span of the main channel space to 10MHz.
Step4
The OCBW is default at 90%.
Record the measurement data in Table 7-2
Step5 Adjust the frequency deviation of FM wave by
adjusting the potentiometer of GRF-1300A. Measure the OCBW again and record the results to table 7-2.
Record the measurement data in Table 7-2
1. ACPR measurement results
85
1MHz frequency deviation results
2MHz frequency deviation results
GRF-1300A User Manual and Teaching Materials
Table 7-1. ACPR measurement results
Test
Lower ACPR1 Upper ACPR1 Lower ACPR2 Upper ACPR2
No.
1 2 3 4
Average
2. OCBW measurement results
Item
86
1MHz frequency deviation results
2MHz frequency deviation results
RF Communication and Signals Experiments
Table 7-2. OCBW measurement results
OCBW%:_________
Test No. CH Power OCBW Average
1 2 3 4 5
Questions
Caution
Describe the definition for ACPR?
Taking multiple measurements and the getting average value is required for ACPR and OCBW measurements. Using the Average function cannot be used as it uses a logarithmic method to calculate the average.
87
GRF-1300A User Manual and Teaching Materials

Experiment 8: Measurement of communication products

Relevant information
Experiment equipment
The computer mouse has experienced nearly four decades of evolution and development since its inception in 1968. With the popularity of consumer oriented computers over the past decade, the mouse has seen tremendous progress. From the early mechanical wheel mouse to the current mainstream optical mouse or the high-end laser mouse, each evolution of the mouse has been more enjoyable to use each time. In addition, the demand for better work environments has made the wireless mouse very popular. Wireless technology, depending on the frequency band and its purpose, is divided into different categories such as Bluetooth, Wi-Fi (IEEE 802.11), Infrared (IrDA), ZigBee (IEEE 802.15.4) and so on. But for the current mainstream wireless mouse, there are three different categories: 27Mhz, 2.4G and Bluetooth. This experiment actually performs measurements on actual communication products (a wireless mouse in this case). After performing this experiment you should have a good understanding of the spectrum analyzer and the measurement methods used. This experiment will help to consolidate your RF knowledge and to strengthen your practical spectrum analyzer skills.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 2.4G wireless mouse 1 3 Antenna 1 4 Adapter 1 N-SMA
Experiment goals
88
1. Use the spectrum analyzer to measure some parameters from
common every-day electronic communication products.
2. Learn how a wireless mouse works.
RF Communication and Signals Experiments
Experiment principles
In this experiment we will use a 2.4G wireless mouse. It
uses the so-called 2.4G frequency band. The advantage of the
2.4G band over the 27MHz band is that the 27MHz band has a shorter transmission distance and is prone to interference from other devices. We call it 2.4G because it operates in the 2.4GHz frequency band. In most countries, this frequency band is license-free.
The principle of the wireless mouse is actually very simple. It mainly uses digital radio technology to provide adequate bandwidth for communications equipment over a short distance. It is ideal for peripheral equipment such as mice and keyboards. The working principles behind a wireless mouse and that of a traditional mouse are the same. The only difference is that the X & Y position, as well each button press is transmitted wirelessly via a transmitter. The wireless receiver then passes this information to the host after decoding the signal. The driver then tells the operating system to convert the signal to mouse actions.
Experiment contents
Experiment steps
Measure the frequency and power of the signal that is transmitted from a wireless mouse.
1. Connect the antenna to the input port of the spectrum
analyzer.
2. Set up the GSP-730 as follows:
Center frequency: 2.4GHz
Span: 200MHz
Reference level: -20dBm
RBW: Auto
Step1
Step2
Step3
Step4
BW
F1
F1
F1
F1
2 0
4
2
3. Turn the wireless mouse on.
Step5
Step6
Peak
Search
89
GRF-1300A User Manual and Teaching Materials
4. A connection diagram is shown below.
5. A blue tooth device or wireless network card can also be used
in the same way to create a signal to measure.
Experiment results
Question
Caution
90
Transmitting frequency: _____ Transmitted signal power: _____
What are the advantages for a wireless mouse to operate in the
2.4 G bandwidth?
Use the Peak Hold function on the spectrum analyzer to capture the signal emitted from the wireless mouse. It is not easy to dynamically measure the signal.
RF Communication and Signals Experiments

Experiment 9: Production Line Applications

Relevant information
Experiment equipment
Experiment goals
A spectrum analyzer can be used in Pass/Fail testing of RF communication products. Testing can be done either manually with a stand-alone instrument or via remote control using a PC. When using remote control, the spectrum analyzer parameter settings and test results can be returned remotely. This saves a lot of time and can improve the efficiency of a production line. In this experiment, we will imagine that the GRF-1300A is in a production line environment. We will use the limit line function to perform a simple test to see if a product has passed the test and return the test results using remote commands.
Item Equipment Quantity Note
1 Spectrum analyzer 1 GSP-730 2 RF & Communication Trainer 3 RF wire 1 800mm/100mm 4 Adapter 1 N-SMA
1. Learn how to edit the pass/fail limit lines and understand how
to perform pass/fail testing.
2. Use remote commands to read back test data from the
spectrum analyzer.
1 GRF-1300A
Experiment principles
1. Limt line editing and Pass/Fail testing.
The upper and lower limit lines apply throughout the entire frequency span. The limit lines can be used to detect if the signal amplitude is above or below a set amplitude level. The judgment of the pass/fail test is shown on the bottom of the screen.
To create a limit line, edit the ten points in the lower Limit Line Editing Table, shown below.
91
GRF-1300A User Manual and Teaching Materials
Set the amplitude and frequency of each point. Use the arrow
keys to move the cursor to each of the different points. Use the same method is used to edit both the upper and lower limit lines. Pass/Fail testing can be started after setting the limit lines.
2. Use the remote commands to read back test results.
Manually setting the spectrum analyzer for testing can be time-consuming. Here we will use remote commands to set various parameters on the spectrum analyzer remotely. We will briefly explain some of these commands below.
Frequency Commands
meas:freq:cen? Return the center frequency in kHz.
meas:freq:cen Sets the center frequency, for
example:
meas:freq:cen_100_mhz
meas:freq:st? Returns the start frequency in kHz.
meas:freq:st Sets the start frequency, for example:
meas:freq:st_100_mhz
meas:freq:stp? Returns the stop frequency in kHz.
meas:freq:stp Sets the stop frequency, for example:
meas:freq:stp_100_mhz
Span Commands
meas:span Sets the frequency span settings, for
meas:span? Returns the frequency span settings.
example:
meas:span:10_mhz
meas:span:full Sets the span to Full Span mode.
Amplitude Commands
meas:refl:unit? Returns the reference level unit.
meas:refl:unit Sets the reference level unit.
Parameters: 1(dBm), 2(dBmV), 3(dBuV)
meas:refl? Returns the reference level in dBm.
meas:refl Sets the reference level in dBm. For
example: meas:refl:-30
92
RF Communication and Signals Experiments
Experiment contents
Experiment steps
Limit line Commands
meas:lmtline:on Turns the limit lines on.
Parameters: 0(low limit line), 1(high limit line)
meas:lmtline:off Turns the limit lines off.
Parameters: 0(low limit line), 1(high limit line)
meas:lmtline:pas
Turns pass/fail testing on.
sfail_on
1. Set the upper and lower limit lines to perform a pass/fail test
on the signal from the GRF-1300A.
2. Use remote commands to remotely setup the spectrum
analyzer.
1. Turn on the GRF-1300A and GSP-730.
2. Set the GRF-1300A to the power-on default state.
3. Connect the RF wire from the output port on the baseband
module to the FM in port on the RF Synthesizer/FM module.
4. Set up the GSP-730 as follows:
Center frequency: 880MHz
Span: 50MHz
Reference level: 0dBm
RBW: Auto
BW
F1
F1
F1
F1
Step1
Step2
Step3
Step4
5. Limit line Pass/Fail test.
8 0
0
93
GRF-1300A User Manual and Teaching Materials
Experiment results
Step5
Step6
F1 F2
F3
Below the display, you can set the magnitude and frequency of each point. Move the cursor to select a point and edit it with the number pad and unit keys. Press F6 to return to the previous
menu.
Step7
F1
6. According to the procedures above, students can set the limit
lines.
7. Adjust the amplitude knob on the GRF-1300A. Observe the
Pass/Fail test results and record the results to table 9-1.
8. The same functionality can be achieved by sending remote
commands from a PC using HyperTerminal.
Table 9-1. Results for adjusting the position of the amplitude knob.
5MHz frequency deviation test results.
94
RF Communication and Signals Experiments
10MHz frequency deviation test results.
95
GRF-1300A User Manual and Teaching Materials
f
L
f

Experiment 10: Mixer

Relevant information
Experiment Equipment
In experiment 5 and 6 we introduced how the signal is modulated onto a carrier. However, what are the other processes that need to be performed on the modulated signal before it can be transmitted?
One thing called a frequency mixer is very import in this process. The main function of a frequency mixer is to perform frequency conversion; The mixer can convert the RF signal into an intermediate frequency signal or it can do the opposite and convert the intermediate frequency signal into an RF frequency signal in order to transmit or process the carried message, respectively. The goal of this experiment is to observe how a mixer will shift the frequency spectrum of a signal from a spectrum point of view and to understand the principles of the mixer.
Item Equipment Quantity Note
1 Spectrum Analyzer 1 GSP-730
RF & Communication
2
Trainer
1 GRF-1300A
3 USB Signal Generator 1 USG-LF44 4 RF cable 2 100mm 5 RF cable 1 200mm 6 RF cable 1 800mm 7 Adapter 1 N-SMA
Experiment goals
Experiment principals
1. To understand the working principles of the mixer.
2. To observe frequency shift by analyzing the frequency spectrum
with a spectrum analyzer.
3. To measure mixer parameters such as conversion gain and port
isolation.
1. Introduction to the concept of mixing
The mixer is used for frequency conversion. Mixing is also known as conversion. Mixing is used to convert a modulated signal with
a carrier frequency frequency
for processing at the next circuit. This process is
c
to a modulated signal with the carrier the
called frequency shifting (shifting of the frequency spectrum). Frequency conversion by the mixer needs to maintain the modulation from the modulated carrier unchanged~ so it still carries information and has no distortion.
The basic function of a mixer is to maintain the modulation of the
96
RF Communication and Signals Experiments
f
L
f
f
f
L
f
f
L
f
f
f
=
f
f
fLf
x
xy
L
f
f
ff±
s
ω
ω
=
ω
+
ω
Figure 10-1 Th mixer circuit
modulated signal constant, only to increase (up-conversion) o decrease (down conversion) the carrier frequency. From the spectrum point of view, the essence of mixing is to linearly mov the spectrum of the modulated signal along the frequency ax Therefore, a mixer circuit must be composed of a non-linear device with a mult
iplicative function as well as band-pass filters,
as shown in 10-1.
e
c
I
()sut
frequency oscillation frequency
c
and the local oscillator signal
, as shown in figure 10-2. According to t multiplication of trigonometric functions, the multi licatio the inputs r ults addition ees e r
ILC
.I.e.,
ff=+
in th and diff ence of
||ILC
and
ff
, where
()Lut
with the
p n of
I
is called the intermediate frequency. The mixing frequency signal with the carrier frequency
()
iut
.
I
is called the intermediate frequency signal
c
and
r
e
is.
er The mixer multiplies the modulated signal with carri
he
Figure 10-2
Mixer sign diagram
al
||
()
s
ut
()
L
ut
c
LC
y
||
LC
f
C
f+
local oscillation sige nal is
t sig is Say the modulated inpu nal)
()Lut
()sut () cos(
()ut
cos( )LLLV t
scut V t
=
th
then the
product becomes
SL
( ) cos( ) cos( ) [cos( ) cos( ) ]
==++
ISLc L cL Lc
ut VV t t t t
ωω ωω ωω
VV
2
Passing through a band-pass filter and removing one of th
Lc
cL
ω
frequency components ( frequency conversion. the new carrier frequency is
Generally
or
ω
) completes the
called the IF signal.
e
The spectrum of
the calculated result above is shown in the
97
GRF-1300A User Manual and Teaching Materials
L
ω
ω
+
L
ω
=
ω
diagram below.
Down
conversion
c
ω
We can see from the spectrum shift in the chart above that the mixing frequency signal is the addition and subtraction of the input signal and the LO signal. As the frequency mixing dev generally a non-linear device, it is obvious that a non-linea combination of frequency distortion and interference will inevitably occur in the mixing process. The harmonic componen of the LO signal and the input signal will also be input into t frequency mixer as well, therefore, the output will hav positive and negative components for each harmonic.
Up
conversion
cL
ω
e the
ice is
r
ts
he
In a wireless transceiver circuit, the front-end small-signal low noise amplifier (LNA) and the IF amplifier (IFA) has far less non­linear frequency distortion than that produced by the freq mixer. Therefore the combined non-linear distortion and frequency interference in the wireless receiver circuit is m generated by the frequency mixer circuit. The non-linear characteristics of the frequency mixer for engineering is commonly expressed by the following expansion formula:
01 2 3
++ + +
In the formula u is the total signal that is added to the input end of the frequency mixer. Say the composition of u is
=+ +
23
...ia auau au
ωω
uency
ainly
3112 23cos cos cosuu tu tu t
98
Loading...