Gossen Metrawatt M-BUS Operating Instructions

Protocol Descripton
M-Bus Communication Protocol
For M-Bus Communication Module
3-349-656-03
1/11.11
The Manufacturer reserves the right to modify the specifications in this manual without previous warning. Any copy of this manual, in part or in full, whether by photocopy or by other means, even of electronic nature, without the manufacture giving written authorisation, breaches the terms of copyright and is liable to prosecution.
It is absolutely forbidden to use the device for different uses other than those for which it has been devised for, as inferred to in this manual. When using the features in this device, obey all laws and respect privacy and legitimate rights of others.
EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, UNDER NO CIRCUMSTANCES SHALL THE MANUFACTURER BE LIABLE FOR CONSEQUENTIAL DAMAGES SUSTAINED IN CONNECTION WITH SAID PRODUCT AND THE MANUFACTURER NEITHER ASSUMES NOR AUTHORIZES ANY REPRESENTATIVE OR OTHER PERSON TO ASSUME FOR IT ANY OBBLIGATION OR LIABILTY OTHER THAN SUCH AS IS EXPRESSLY SET FORTH HEREIN.
All trademarks in this manual are property of their respective owners.
The information contained in this manual is for information purposes only, is subject to changes without previous warning and cannot be considered binding for the Manufacturer. The Manufacturer assumes no responsabilty for any errors or incoherence possibly contained in this manual.
Printed in Italy.
M-Bus communication protocol
for M-BUS communication module
July edition 2011
INDEX
1. M-Bus interface ............................................................................. 9
1.1 Overview ..........................................................................................................................9
2. Telegram formats .......................................................................... 9
2.1 Telegram fields ...............................................................................................................9
2.1.1 C Field .................................................................................................................................10
2.1.2 A Field .................................................................................................................................10
2.1.3 CI Field ................................................................................................................................10
2.1.4 L Field .................................................................................................................................11
2.1.5 CS Field (Checksum) ...........................................................................................................11
2.2 Active data .....................................................................................................................11
2.2.1 Coding of Active Data Transmitted From Slave to Master: Fixed Data Record Header ......11
2.2.2 Coding of Active Data Transmitted From Slave to Master: Data Records ...........................11
2.2.2.1 DATA INFORMATION BLOCK (DIB) ................................................................................................................12
2.2.2.2 VALUE INFORMATION BLOCK (VIB) ..............................................................................................................12
2.2.2.3 STANDARD VALUE INFORMATION FIELD (VIF) USED ..................................................................................13
2.2.2.4 STANDARD VALUE INFORMATION FIELD EXTENSION (VIFE) USED ............................................................13
2.2.2.5 MANUFACTURER SPECIFIC VALUE INFORMATION FIELD EXTENSION (VIFE) USED ..................................13
3. Communication process ............................................................... 15
3.1 Send / confirm procedure .............................................................................................15
3.1.1 SND_NKE ............................................................................................................................15
3.1.2 SND_UD ..............................................................................................................................15
3.1.2.1 SET PRIMARY ADDRESS ..............................................................................................................................16
3.1.2.2 SET SECONDARY ADDRESS .........................................................................................................................17
3.1.2.3 SET BAUD RATE ...........................................................................................................................................18
3.1.2.4 RESET TOTAL/TARIFF 1/TARIFF 2/ALL ENERGY COUNTERS ......................................................................19
3.1.2.5 RESET PARTIAL ENERGY COUNTERS ..........................................................................................................20
3.1.2.6 START PARTIAL ENERGY COUNTERS ..........................................................................................................22
3.1.2.7 STOP PARTIAL ENERGY COUNTERS ............................................................................................................23
3.1.2.8 SELECT A SLAVE USING SECONDARY ADDRESS .........................................................................................24
3.1.2.9 SET PARAMETERS MASKS ...........................................................................................................................25
3.1.3 REQ_UD2 ............................................................................................................................27
3.1.4 RSP_UD ..............................................................................................................................27
3.1.4.1 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED ACTIVE ENERGY, TOTAL ......................................28
3.1.4.2 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED ACTIVE ENERGY, TOTAL ......................................28
3.1.4.3 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE APPARENT ENERGY, TOTAL .............29
3.1.4.4 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE APPARENT ENERGY, TOTAL .............29
3.1.4.5 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE APPARENT ENERGY, TOTAL ............29
3.1.4.6 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE APPARENT ENERGY, TOTAL............30
3.1.4.7 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE REACTIVE ENERGY, TOTAL ...............30
3.1.4.9 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE REACTIVE ENERGY, TOTAL ..............31
3.1.4.10 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE REACTIVE ENERGY, TOTAL ...........31
3.1.4.11 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED ACTIVE ENERGY, TARIFF 1 ................................32
3.1.4.12 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED ACTIVE ENERGY, TARIFF 1 ................................32
3.1.4.13 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE APPARENT ENERGY, TARIFF 1 .......32
3.1.4.14 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE APPARENT ENERGY, TARIFF 1 .......33
3.1.4.15 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE APPARENT ENERGY, TARIFF 1 ......33
3.1.4.16 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE APPARENT ENERGY, TARIFF 1 .....33
3.1.4.17 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 1 .........34
3.1.4.18 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 1 .........34
3.1.4.19 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 1 .......34
3.1.4.20 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 1 .......35
3.1.4.21 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED ACTIVE ENERGY, TARIFF 2 ................................35
3.1.4.22 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED ACTIVE ENERGY, TARIFF 2 ................................36
3.1.4.23 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE APPARENT ENERGY, TARIFF 2 .......36
3.1.4.24 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE APPARENT ENERGY, TARIFF 2 .......36
3.1.4.25 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE APPARENT ENERGY, TARIFF 2 ......37
3.1.4.26 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE APPARENT ENERGY, TARIFF 2 .....37
3.1.4.27 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 2 .........37
3.1.4.28 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 2 .........38
3.1.4.29 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 2 .......38
3.1.4.30 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 2 .......39
3.1.4.31 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 VOLTAGE ..............................................................................39
3.1.4.32 LINE 12, LINE 23 AND LINE 31 VOLTAGE ...................................................................................................39
3.1.4.33 3-PHASE, PHASE 1, PHASE 2, PHASE 3 AND NEUTRAL CURRENT ...........................................................40
3.1.4.34 FREQUENCY ...............................................................................................................................................40
3.1.4.35 PHASE ORDER ............................................................................................................................................40
3.1.4.36 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 POWER FACTOR ...................................................................40
3.1.4.37 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 ACTIVE POWER ....................................................................41
3.1.4.38 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 APPARENT POWER ..............................................................41
3.1.4.39 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 REACTIVE POWER ................................................................41
3.1.4.40 3-PHASE IMPORTED AND EXPORTED ACTIVE ENERGY PARTIAL ..............................................................42
3.1.4.41 3-PHASE IMPORTED AND EXPORTED INDUCTIVE APPARENT ENERGY PARTIAL .....................................42
3.1.4.42 3-PHASE IMPORTED AND EXPORTED CAPACITIVE APPARENT ENERGY PARTIAL ...................................42
3.1.4.43 3-PHASE IMPORTED AND EXPORTED INDUCTIVE REACTIVE ENERGY PARTIAL ......................................43
3.1.4.44 3-PHASE IMPORTED AND EXPORTED CAPACITIVE REACTIVE ENERGY PARTIAL .....................................43
3.1.4.45 3-PHASE ACTIVE ENERGY BALANCE .........................................................................................................44
3.1.4.46 3-PHASE INDUCTIVE AND CAPACITIVE APPARENT ENERGY BALANCE ...................................................44
3.1.4.47 3-PHASE INDUCTIVE AND CAPACITIVE REACTIVE ENERGY BALANCE .....................................................44
3.1.4.48 CT VALUE ....................................................................................................................................................45
3.1.4.49 PT VALUE ....................................................................................................................................................45
3.1.4.50 ACTUAL TARIFF ..........................................................................................................................................45
3.1.4.51 SERIAL NUMBER ........................................................................................................................................45
3.1.4.52 MODEL ........................................................................................................................................................45
3.1.4.53 TYPE ...........................................................................................................................................................46
3.1.4.54 ENERGY COUNTER FIRMWARE RELEASE ..................................................................................................46
3.1.4.55 ENERGY COUNTER HARDWARE RELEASE .................................................................................................46
3.1.4.56 PRIMARY OR SECONDARY VALUE ..............................................................................................................47
3.1.4.57 ERROR CODE ..............................................................................................................................................47
3.1.4.58 OUT OF RANGE ...........................................................................................................................................47
3.1.4.59 FABRICATION NUMBER..............................................................................................................................48
3.1.4.60 M-BUS MODULE FIRMWARE RELEASE ......................................................................................................48
3.1.4.61 M-BUS MODULE HARDWARE RELEASE .....................................................................................................48
3.1.4.62 PARTIAL COUNTER STATUS .......................................................................................................................48
3.1.4.63 FSA VALUE .................................................................................................................................................48
ANNEX A .......................................................................................... 49
ANNEX B .......................................................................................... 50
ANNEX C .......................................................................................... 52
M-Bus communication protocol 9
English
1. M-Bus interface
The M-BUS Interface (1 module wide, DIN rail mount) is developed to connect the Energy Counter to M-BUS. The interface receives the measurement data from the Energy Counter using infrared port available on the side of the counter, and gets the power supply from the bus.
1.1 Overview
M-BUS Interface complying with EN13757-2 and EN13757-3• Circuiting by means of drilled two-wires cables• 2 screw clamps on M-BUS Interface• Current consumption of M-BUS Interface: • 4 mA. This corresponds to 3 standard loads. The data transmission speed is selectable between 300, 600, 1200, 2400, 4800, 9600, 115200 and 38400 baud• The default speed is 2400 baud• The default Primary Address is 000•
2. Telegram formats
The telegram formats are three, identified by the first character.
Byte Single character (HEX) Short Telegram (HEX) Long Telegram (HEX)
1 E5 10 68
2 C Field L Field
3 A Field L Field (Ripetition)
4 CS (Checksum) 68
5 16 C Field
6 A Field
7 CI Field
8 - YY Data (0 – 246 Bytes)
YY + 1 CS (Checksum)
YY + 2 16
Table 2.1 – The M-BUS Telegram Formats
Single Character• : This telegram format consists of the single character E5h and is used to acknowledge the telegram received. Short Telegram• : This telegram is identified by the start character 10h and consists of five character. It’s used by the M-BUS Master to command the transmission of data from the M-BUS Slave. Long Telegram• : This telegram is identified by the start character 68h and consists of a variable number of characters, in which are present also the active data. It’s used by the M-BUS Master to transmits commands to the M-BUS Slave, and by the M-BUS Slave to send the read-out Data from the M-BUS Master.
2.1 Telegram fields
The telegram fields (C, A, CI Fields, L and CS) have a fixed length of one byte (8 bit) and serve predetermined effects in the M-BUS communication. The L Field defines the number of bytes of the active data.
10 M-Bus communication protocol
English
2.1.1 C FIELD
The Control Field (C Field) contains information on the direction of the exchange of communication, the success of the actual operation of communication and the proper function of the telegram.
Bit Number 7 6 5 4 3 2 1 0
Master > Slave 0 1 FCB FCV F3 F2 F1 F0
Slave > Master 0 0 ACD DFC F3 F2 F1 F0
Table 2.2 – C Field Bit Division
The Bit Nr 6 is set to 1 if the communication has the direction Master > Slave; viceversa it is set to 0. In the Master > Slave direction, if the frame count bit valid (FCV - Bit Nr 4) is set to 1, then the frame count bit (FCB – Bit Nr 5) has not to be ignored.
The FCB is used to indicate successful transmission procedure. A Master shall toggle the bit after a successful reception of a reply from the Slave. After this, if the Slave answer is multi-telegram, the Slave has to send the next telegram of the multi-telegram answer. If the expected reply is missing, or the reception faults, the master resends the same telegram with the same FCB. The Bits Nr 3 – 0 are the function code of the message. The C Field used here, are:
Telegram Name C Field (BIN) C Field (HEX) Telegram Description
SND_NKE 01000000 40 Short Frame Initialization of the Slave
SND_UD 01x10011 53 / 73 Long Frame Master send data to Slave
REQ_UD2 01x11011 5B / 7B Short Frame Master requests Class 2 Data to Slave
RSP_UD 000x1000 08 / 18 Long Frame Data transfer from Slave to Master
Table 2.3 – C Field of the commands used in this protocol
2.1.2 A FIELD
The Address Field (A Field) is used to address the recipient in the calling direction, and to identify the sender of information in the receiving direction. The size of this field is one byte, and it can assume the value between 0 – 255, divided in this way:
A Field (HEX) Primary Address Remarks
00 0 Default Address Given by Manufacturer
01 – FA 1 – 250 Primary Address Settable
FB, FC 251, 252 Reserved for Future Use
FD 253 Used for Secondary Address Procedures
FE 254 Use to Transmit Information to All Partecipants in the M-BUS System
FF 255 Use to Transmit Information to All Partecipants in the M-BUS System
Table 2.4 – Value of Address Field
Using the address 254 (FEh) every Slave answer with the acknowledging (E5h) or with their primary address. Using the address 255 (FFh) no one Slave replies.
2.1.3 CI FIELD
The Control Information (CI Field) contains information for the receiver of the telegram. The CI Field values used here, are:
CI Field (HEX) Primary Address
51 The telegram contains data for the Slave
52 Selection of the Slave
72 The telegram contains data for the Master
B8 Set Baud Rate to 300 bps
B9 Set Baud Rate to 600 bps
M-Bus communication protocol 11
English
CI Field (HEX) Primary Address
BA Set Baud Rate to 1200 bps
BB Set Baud Rate to 2400 bps
BC Set Baud Rate to 4800 bps
BD Set Baud Rate to 9600 bps
BE Set Baud Rate to 19200 bps
BF Set Baud Rate to 38400 bps
Table 2.5 – Value of CI Field
2.1.4 L FIELD
The Length Field (L Field) defines the number of bytes (expressed in hex value) of the Active Data making up the telegram, plus 3 byte for the C, A and Cl Fields. This field is always transmitted twice in Long Telegrams.
2.1.5 CS FIELD (CHECKSUM)
The Checksum (CS Field) serves to recognize transmission and synchronization faults, and is configured from specific parts of telegram. The checksum is calculated from the arithmetical sum of the data mentioned above plus the Active Data, i.e. from C Field to CS Field (excluded).
2.2 Active data
The Active Data (0 – 246 bytes) in Long Telegrams include the data to be read from the M-BUS Master (Read-Out Data), or Command Information transmitted by the Master to the Slave.
2.2.1 CODING OF ACTIVE DATA TRANSMITTED FROM SLAVE TO MASTER: FIXED DATA RECORD HEADER
Each block of Active Data transmitted by the Slave to the Master starts with the following Fixed Data Record Header (FDH):
Byte Nr. Size (Byte) Value (Hex) Description
1 – 4 4 xx xx xx xx M-BUS Interface Identification Number
5 – 6 2 xx xx Manufacturer’s ID
7 1 xx Version Number of M-BUS Interface Firmware (00 – FF)
8 1 02 Medium: Electricity
9 1 xx Access Number (00 – FF > 00)
10 1 xx
M-BUS Interface Status (00 = Energy Counter Unreachable, 01 = Energy Counter Reachable)
11 – 12 2 0000 Signature (always 0000, i.e. not used)
Table 2.6 – Fixed Data Record Header
The Identification Number is a changeable number by the customer and runs from 00000000 to 99999999. The Access Number has unsigned binary coding, and is incremented (modulo 256) by one after each RSP_UD from the Slave.
2.2.2 CODING OF ACTIVE DATA TRANSMITTED FROM SLAVE TO MASTER: DATA RECORDS
Every Data Record sent by Slave to the Master consist of the following Data Record Header (DRH) :
Data Information Block (DIB) Value Information Block (VIB)
DIF DIFE VIF VIFE Data
1 Byte 0 – 10 Byte(s) 1 Byte 0 – 10 Byte(s) 0 – n Bytes
Table 2.7 – Data Records Structure
12 M-Bus communication protocol
English
2.2.2.1 Data Information Block (DIB)
The Data Information Block (DIB) contains as a minimum one Data Information Field (DIF). This byte can be extended by a further 10 Data Information Field Extension Bytes (DIFE). The coding of DIF for this protocol is:
Bit Name Description
7 Extension Bit
Specifies if a DIFE Byte follows: 0 = No 1 = Yes
6 LSB of Storage Number Always at 0, i.e. not used
5 - 4 Functions Field
Specifies the kind of the value, always at: 00 = Instantaneous Value
3 - 0 Data Field
Length and Coding of Data: 0001: 8 Bit Integer 0010: 16 Bit Integer 0011: 24 Bit Integer 0100: 32 Bit Integer 0110: 48 Bit Integer 0111: 64 Bit Integer 1100: 8 digit BCD 1101: Variable Length
Table 2.8 – Data Information Field Structure
The coding of DIFE for this protocol is:
Bit Name Description
7 Extension Bit
Specifies if a DIFE Byte follows: 0 = No 1 = Yes
6 Unit
Specifies the kind of Energy or Power when Bit 7 is set to 1: 0 = Reactive 1 = Apparent
5 - 4 Tariff
Specifies which tariff the values are related: 00 = Total Value 01 = Tariff 1 02 = Tariff 2
3 - 0 Storage Number Always at 0000
Table 2.9 – Data Information Field Extension Structure
If Bit 7 is set to 0, the following Data Byte are related to Active Energy or Power. So, if the first DIFE is followed by another DIFE (i.e. Bit 7 is set to 1), the following Data Byte are related to Reactive or Apparent Energy or Power, depending on Bit 6 value.
2.2.2.2 Value Information Block (VIB)
The Value Information Block (VIB) contains as a minimum one Value Information Field (VIF). This byte can be extended by a further 10 Value Information Field Extension Bytes (DIFE). The coding of VIF is:
Bit Name Description
7 Extension Bit
Specifies if a VIFE Byte follows: 0 = No 1 = Yes
6 - 0 Value Information
Contains Information on the single Value, such as Unit, Multiplicator, etc…
Table 2.10 – Value Information Field Structure
M-Bus communication protocol 13
English
The coding of VIFE is:
Bit Name Description
7 Extension Bit
Specifies if a VIFE Byte follows: 0 = No 1 = Yes
6 - 0 Value Information
Contains Information on the single Value, such as Unit, Multiplicator, etc…
Table 2.11 – Value Information Field Extension Structure
2.2.2.3 Standard Value Information Field (VIF) Used
VIFE (BIN) VIFE (HEX) Description Unit
10000010 82 Energy 0.1Wh
01111001 79 Set Secondary Address Dimensionless
01111010 7A Set Primary Address Dimensionless
10101000 A8 Power mW
11111101 FD A standard VIFE from extension table follows Dimensionless
11111111 FF A further manufacturer specific VIFE follows Dimensionless
Table 2.12 – Standard Value Information Field Used
2.2.2.4 Standard Value Information Field Extension (VIFE) Used
VIF (BIN) VIF (HEX) Description Unit
00001011 0B Parameter Set Identification Dimensionless
00001100 0C Firmware Version Dimensionless
00001101 0D Hardware Version Dimensionless
11001100 CC Voltage mV
11011001 D9 Current mA
Table 2.13– Standard Value Information Field Extension Used
2.2.2.5 Manufacturer Specific Value Information Field Extension (VIFE) Used
VIFE (BIN) VIFE (HEX) Description Unit
00000000 00 3-Phase 0.1Wh, mV, mA, mW, mVA or mvar
00000001 01 Phase 1 0.1Wh, mV, mA, mW, mVA or mvar
00000010 02 Phase 2 0.1Wh, mV, mA, mW, mVA or mvar
00000011 03 Phase 3 0.1Wh, mV, mA, mW, mVA or mvar
00000100 04 Neutral mA
00000101 05 Line 12 mV
00000110 06 Line 23 mV
00000111 07 Line 31 mV
00010000 10 3-Phase Imported Inductive Energy 0.1VAh or 0.1varh
00010001 11 Phase 1 Imported Inductive Energy 0.1VAh or 0.1varh
00010010 12 Phase 2 Imported Inductive Energy 0.1VAh or 0.1varh
00010011 13 Phase 3 Imported Inductive Energy 0.1VAh or 0.1varh
00100000 20 3-Phase Exported Inductive Energy 0.1VAh or 0.1varh
00010001 21 Phase 1 Exported Inductive Energy 0.1VAh or 0.1varh
00010010 22 Phase 2 Exported Inductive Energy 0.1VAh or 0.1varh
14 M-Bus communication protocol
English
VIFE (BIN) VIFE (HEX) Description Unit
00010011 23 Phase 3 Exported Inductive Energy 0.1VAh or 0.1varh
00100100 24 3-Phase Inductive Energy 0.1VAh or 0.1varh
00110000 30 3-Phase Imported Capacitive Energy 0.1VAh or 0.1varh
00110001 31 Phase 1 Imported Capacitive Energy 0.1VAh or 0.1varh
00110010 32 Phase 2 Imported Capacitive Energy 0.1VAh or 0.1varh
00110011 33 Phase 3 Imported Capacitive Energy 0.1VAh or 0.1varh
01000000 40 3-Phase Exported Capacitive Energy 0.1VAh or 0.1varh
01000001 41 Phase 1 Exported Capacitive Energy 0.1VAh or 0.1varh
01000010 42 Phase 2 Exported Capacitive Energy 0.1VAh or 0.1varh
01000011 43 Phase 3 Exported Capacitive Energy 0.1VAh or 0.1varh
01000100 44 3-Phase Capacitive Energy 0.1VAh or 0.1varh
01010000 50 Frequency mHz
01010001 51 Phase Order Dimensionless
01010010 52 CT Value Dimensionless
01010011 53 PT Value Dimensionless
01010100 54 Actual Tariff Dimensionless
01010101 55 Serial Number Dimensionless
01010110 56 Model Dimensionless
01010111 57 Type Dimensionless
01011000 58 Firmware Release Dimensionless
01011001 59 Hardware Release Dimensionless
01100000 60 Wiring Mode Dimensionless
01100001 61 Primary or Secondary Value Dimensionless
01100010 62 Error Code Dimensionless
01100011 63 Out Of Range Dimensionless
01100100 64 FSA Value A
01110000 70 Reset Counter Dimensionless
01110001 71 Start Counter Dimensionless
01110010 72 Stop Counter Dimensionless
01110011 73 Partial Counter Status Dimensionless
10000000 80 Imported Energy 0.1Wh
10000001 81 Exported Energy 0.1Wh
10000010 82 Partial Dimensionless
10000011 83 Balance Dimensionless
10000100 84 Power Factor Dimensionless
10010000 90 Unit Volt-Ampere * 10
-3
mVA
10010001 91 Unit Volt-Ampere per hour * 10
-1
0.1VAh
10010010 92 Unit Reactive Volt-Ampere * 10
-3
mvar
10010011 93 Unit Reactive Volt-Ampere per hour * 10
-1
0.1varh
10010100 94 Unit Hertz (cycle per second) * 10
-3
MHz
Table 2.14 –Manufacturer Specific Value Information Field Extension Used
If Bit No. 7 in the Specific Value Information Field Extension (VIFE) is set to 1, another VIFE Byte follows. If Bit 7 is set to 0, the first Data Byte follows next.
M-Bus communication protocol 15
English
3. Communication process
The M-BUS module accepts two kinds of transmission:
Send / Confirm > SND / CON
Request / Respond > REQ / RSP
A standard straight communication between M-BUS Master and M-BUS Slave is:
MASTER SLAVE
SND_NKE > E5h
SND_UD > E5h
REQ_UD2 > RSP_UD
3.1 Send / confirm procedure
3.1.1 SND_NKE
This procedure serve to start up after an interruption or beginning of communication. If the Slave was selected for secondary addressing, it will be deselected. The value of the frame count bit FCB is cleared in the Slave, i.e. it expects that the first telegram from a Master with FCV = 1, has the FCB = 1. The Slave confirms a correct reception of the telegram with the single character acknowledge (E5h) or omits the answer if it didn’t receive the telegram correctly. Here follows the structure of SND_NKE command:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 10 Start character - short telegram
2 1 40 C Field
3 1 xx
A Field – Primary Address
00 – FA: Valid Primary Address
FB, FC: Reserved for Future Use
FD: Transmission is by Secondary Address
FE: Transmission to All M-BUS Slave in the System (everyone sends E5h)
FF: Transmission to All M-BUS Slave in the System (no one sends E5h)
4 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 2 > byte 4)
5 1 16 Stop charcater
Table 3.1 – SND_NKE command Structure
Answer of the Slave: E5h
3.1.2 SND_UD
This procedure is used to send user data to the M-BUS Slave. The Slave confirms a correct reception of the telegram with the single character acknowledge (E5h) or omits the answer if it didn’t receive the telegram correctly. Here follows the structure of the SND_UD commands used in this protocol.
16 M-Bus communication protocol
English
3.1.2.1 Set Primary Address
This action enables to set a new Primary Address in the Slave interface. Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 06 L-Field
3 1 06 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 01 DIF: 8 Bit Integer, 1 Byte
9 1 7A VIF: Set Primary Address
10 1 xx
Value: New Primary Address
Valid Range: 00 – FA (0 - 250)
Invalid Range: FB – FF
11 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 10)
12 1 16 Stop character
Table 3.2 – SND_UD command: Set Primary Address Using Primary Address
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 0E L-Field
3 1 0E L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx
xx xx xx xx
Secondary Address
16 1 01 DIF: 8 Bit Integer, 1 Byte
17 1 7A VIF: Set Primary Address
18 1 xx
Value: New Primary Address
Valid Range: 00 – FA (0 - 250)
Invalid Range: FB – FF
19 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 18)
20 1 16 Stop character
Table 3.3 – SND_UD command: Set Primary Address Using Secondary Address
Answer of the Slave: E5h
M-Bus communication protocol 17
English
3.1.2.2 Set Secondary Address
This action enables to set a new Secondary Address in the Slave interface. The Secondary Address has this structure:
Byte Nr. Size (Byte) Value (HEX) Description
1 – 4 4 xx xx xx xx
Identification Number
Range : 00000000 - 99999999
5 – 6 2 xx xx
Manufacturer ID
Range: 01 – FF, 01 - FF
7 1 xx
Version Number
Range: 01 - FF
8 1 02
Device Type Identification
02: Electricity
Table 3.4 – Secondary Address Structure
Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 09 L-Field
3 1 09 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 0C DIF: 8 digits BCD, 4 Byte
9 1 79 VIF: Set Secondary Address
10 1 xx
Value: New Secondary Address digit 7 and 8
Range: 00 - 99
11 1 xx
Value: New Secondary Address digit 5 and 6
Range: 00 – 99
12 1 xx
Value: New Secondary Address digit 3 and 4
Range: 00 – 99
13 1 xx
Value: New Secondary Address digit 1 and 2
Range: 00 - 99
14 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 13)
15 1 16 Stop character
Table 3.5 – SND_UD command: Set Secondary Address Using Primary Address
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 11 L-Field
3 1 11 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
18 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
8 – 15 8
xx xx xx xx
xx xx xx xx
Secondary Address
16 1 0C DIF: 8 digits BCD, 4 Byte
17 1 79 VIF: Set Secondary Address
18 1 xx
Value: New Secondary Address digit 7 and 8 Range: 00 - 99
19 1 xx
Value: New Secondary Address digit 5 and 6 Range: 00 – 99
20 1 xx
Value: New Secondary Address digit 3 and 4 Range: 00 – 99
21 1 xx
Value: New Secondary Address digit 1 and 2 Range: 00 - 99
22 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 21)
23 1 16 Stop character
Table 3.6 – SND_UD command: Set Secondary Address Using Secondary Address
Answer of the Slave: E5h
3.1.2.3 Set Baud Rate
This action allows to change the Baud Rate of the M-BUS Slave. The Slave answers with single character acknowledgement (E5h) in the old baud rate. As soon as the ACK is transmitted, the Slave switches to the new baud rate. To make sure that the Slave has properly changed its baud rate, the Master, within 2 minutes has to send a command to the Slave in the new baud rate. If the Slave doesn’t send the ACK after x retry, the Master has to return to the old baud rate. Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 03 L-Field
3 1 03 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00 - FF = 0 - 255)
7 1 xx
CI-Field: Set New Baud Rate B8: Set Baud Rate to 300 baud B9: Set Baud Rate to 600 baud BA: Set Baud Rate to 1200 baud BB: Set Baud Rate to 2400 baud BC: Set Baud Rate to 4800 baud BD: Set Baud Rate to 9600 baud BE: Set Baud Rate to 19200 baud BF: Set Baud Rate to 38400 baud
8 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 7)
9 1 16 Stop character
Table 3.7 – SND_UD command: Set Baud Rate Using Primary Address
M-Bus communication protocol 19
English
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 0B L-Field
3 1 0B L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 xx
CI-Field: Set New Baud Rate B8: Set Baud Rate to 300 baud B9: Set Baud Rate to 600 baud BA: Set Baud Rate to 1200 baud BB: Set Baud Rate to 2400 baud BC: Set Baud Rate to 4800 baud BD: Set Baud Rate to 9600 baud BE: Set Baud Rate to 19200 baud BF: Set Baud Rate to 38400 baud
8 – 15 8
xx xx xx xx
xx xx xx xx
Secondary Address
16 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 15)
17 1 16 Stop character
Table 3.8 – SND_UD command: Set Baud Rate Using Secondary Address
Answer of the Slave: E5h
3.1.2.4 Reset Total/Tariff 1/Tariff 2/All Energy Counters
This action is permitted only if the Energy Counters is “NO MID” or “yes reset” type. Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 07 L-Field
3 1 07 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 01 DIF: 8 Bit Integer, 1 Byte
9 1 FF VIF followed by manufacturer specific VIFE
10 1 70 manufacturer specific VIFE: Reset Counter
11 1 xx
Value: Kind of Energy Counters 00: Reset Total Energy Counters 01: Reset Tariff 1 Energy Counters 02: Reset Tariff 2 Energy Counters 03: Reset ALL Energy Counters
12 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 11)
13 1 16 Stop character
Table 3.9 – SND_UD command: Reset Active Energy Counters Using Primary Address
20 M-Bus communication protocol
English
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 0F L-Field
3 1 0F L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx xx xx xx xx
Secondary Address
16 1 01 DIF: 8 Bit Integer, 1 Byte
17 1 FF VIF followed by manufacturer specific VIFE
18 1 70 Manufacturer specific VIFE: Reset Counter
19 1 xx
Value: Kind of Energy Counters 00: Reset Total Energy Counters 01: Reset Tariff 1 Energy Counters 02: Reset Tariff 2 Energy Counters 03: Reset ALL Energy Counters
20 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 19)
21 1 16 Stop character
Table 3.10 – SND_UD command: Reset Active Energy Counters Using Secondary Address
Answer of the Slave: E5h
3.1.2.5 Reset Partial Energy Counters
Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 09 L-Field
3 1 09 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 01 DIF: 8 Bit Integer, 1 Byte
9 1 FF VIF followed by manufacturer specific VIFE
10 1 82 VIFE: Partial Counters
11 1 FF VIFE followed by 3E specific VIFE
12 1 70 Manufacturer specific VIFE: Reset Counter
M-Bus communication protocol 21
English
Byte Nr. Size (Byte) Value (HEX) Description
13 1 xx
Value: Kind of Energy 00: Imported Active Energy 01: Exported Active Energy 02: Imported Inductive Apparent Energy 03: Exported Inductive Apparent Energy 04: Imported Capacitive Apparent Energy 05: Exported Capacitive Apparent Energy 06: Imported Inductive Reactive Energy 07: Exported Inductive Reactive Energy 08: Imported Capacitive Reactive Energy 09: Exported Capacitive Reactive Energy 0A: ALL partial counters
14 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 13)
15 1 16 Stop character
Table 3.11 – SND_UD command: Reset Partial Energy Counter Using Primary Address
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 11 L-Field
3 1 11 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx
xx xx xx xx
Secondary Address UD (See the relative paragraph)
16 1 01 DIF: 8 Bit Integer, 1 Byte
17 1 FF VIF followed by manufacturer specific VIFE
18 1 82 VIFE: Partial Counters
19 1 FF VIFE followed by manufacturer specific VIFE
20 1 70 VIFE: Reset Counters
21 1 xx
Value: Kind of Energy 00: Imported Active Energy 01: Exported Active Energy 02: Imported Inductive Apparent Energy 03: Exported Inductive Apparent Energy 04: Imported Capacitive Apparent Energy 05: Exported Capacitive Apparent Energy 06: Imported Inductive Reactive Energy 07: Exported Inductive Reactive Energy 08: Imported Capacitive Reactive Energy 09: Exported Capacitive Reactive Energy 0A: ALL partial counters
22 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 21)
23 1 16 Stop character
Table 3.12 – SND_UD command: Reset Partial Energy Counter Using Secondary Address
Answer of the Slave: E5h
22 M-Bus communication protocol
English
3.1.2.6 Start Partial Energy Counters
Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 09 L-Field
3 1 09 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 01 DIF: 8 Bit Integer, 1 Byte
9 1 FF VIF followed by manufacturer specific VIFE
10 1 82 VIFE: Partial Counters
11 1 FF VIFE followed by 3E specific VIFE
12 1 71 Manufacturer specific VIFE: Start Counter
13 1 xx
Value: Kind of Energy 00: Imported Active Energy 01: Exported Active Energy 02: Imported Inductive Apparent Energy 03: Exported Inductive Apparent Energy 04: Imported Capacitive Apparent Energy 05: Exported Capacitive Apparent Energy 06: Imported Inductive Reactive Energy 07: Exported Inductive Reactive Energy 08: Imported Capacitive Reactive Energy 09: Exported Capacitive Reactive Energy 0A: ALL partial counters
14 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 13)
15 1 16 Stop character
Table 3.13 – SND_UD command: Start Partial Energy Counter Using Primary Address
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 11 L-Field
3 1 11 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx xx xx xx xx
Secondary Address UD (See the relative paragraph)
16 1 01 DIF: 8 Bit Integer, 1 Byte
17 1 FF VIF followed by manufacturer specific VIFE
18 1 82 VIFE: Partial Counters
19 1 FF VIFE followed by manufacturer specific VIFE
20 1 71 VIFE: Start Counters
M-Bus communication protocol 23
English
Byte Nr. Size (Byte) Value (HEX) Description
21 1 xx
Value: Kind of Energy 00: Imported Active Energy 01: Exported Active Energy 02: Imported Inductive Apparent Energy 03: Exported Inductive Apparent Energy 04: Imported Capacitive Apparent Energy 05: Exported Capacitive Apparent Energy 06: Imported Inductive Reactive Energy 07: Exported Inductive Reactive Energy 08: Imported Capacitive Reactive Energy 09: Exported Capacitive Reactive Energy 0A: ALL partial counters
22 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 21)
23 1 16 Stop character
Table 3.14 – SND_UD command: Start Partial Energy Counter Using Secondary Address
Answer of the Slave: E5h
3.1.2.7 Stop Partial Energy Counters
Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 09 L-Field
3 1 09 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 01 DIF: 8 Bit Integer, 1 Byte
9 1 FF VIF followed by manufacturer specific VIFE
10 1 82 VIFE: Partial Counters
11 1 FF VIFE followed by 3E specific VIFE
12 1 72 Manufacturer specific VIFE: Stop Counter
13 1 xx
Value: Kind of Energy 00: Imported Active Energy 01: Exported Active Energy 02: Imported Inductive Apparent Energy 03: Exported Inductive Apparent Energy 04: Imported Capacitive Apparent Energy 05: Exported Capacitive Apparent Energy 06: Imported Inductive Reactive Energy 07: Exported Inductive Reactive Energy 08: Imported Capacitive Reactive Energy 09: Exported Capacitive Reactive Energy 0A: ALL partial counters
14 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 13)
15 1 16 Stop character
Table 3.15 – SND_UD command: Stop Partial Energy Counter Using Primary Address
24 M-Bus communication protocol
English
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 11 L-Field
3 1 11 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx xx xx xx xx
Secondary Address UD (See the relative paragraph)
16 1 01 DIF: 8 Bit Integer, 1 Byte
17 1 FF VIF followed by manufacturer specific VIFE
18 1 82 VIFE: Partial Counters
19 1 FF VIFE followed by manufacturer specific VIFE
20 1 72 VIFE: Stop Counters
21 1 xx
Value: Kind of Energy 00: Imported Active Energy 01: Exported Active Energy 02: Imported Inductive Apparent Energy 03: Exported Inductive Apparent Energy 04: Imported Capacitive Apparent Energy 05: Exported Capacitive Apparent Energy 06: Imported Inductive Reactive Energy 07: Exported Inductive Reactive Energy 08: Imported Capacitive Reactive Energy 09: Exported Capacitive Reactive Energy 0A: ALL partial counters
22 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 21)
23 1 16 Stop character
Table 3.16 – SND_UD command: Stop Partial Energy Counter Using Secondary Address
Answer of the Slave: E5h
3.1.2.8 Select a Slave Using Secondary Address
Here follows the command to select a Slave by Secondary Address:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 0B L-Field
3 1 0B L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 52 CI-Field
8 – 15 8
xx xx xx xx xx xx xx xx
Secondary Address UD (See the relative paragraph)
M-Bus communication protocol 25
English
Byte Nr. Size (Byte) Value (HEX) Description
16 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 15)
17 1 16 Stop character
Table 3.17 – SND_UD command: Select a slave Using Secondary Address
Answer of the Slave: E5h
3.1.2.9 Set Parameters Masks
This action allows to select the data to read-out from the Slave. It can be possible read-out all data, choose the desired data or choose a default mask that include various kind of data.
READ-OUT ALL DATA
Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 04 L-Field
3 1 04 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 7F DIF: Global Readout Request
9 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 8)
10 1 16 Stop character
Table 3.18 – SND_UD command: Set Read-Out All Data Parameter Mask Using Primary Address
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 0C L-Field
3 1 0C L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx xx xx xx xx
Secondary Address
16 1 7F DIF: Global Readout Request
17 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 16)
18 1 16 Stop character
Table 3.19 – SND_UD command: Set Read-Out All Data Parameter Mask Using Secondary Address
Answer of the Slave: E5h
26 M-Bus communication protocol
English
READ-OUT DESIRED DATA
Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long telegram
2 1 0E L-Field
3 1 0E L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 07 DIF: 64 Bit Integer, 8 Byte
9 1 FD VIF: Followed by a standard VIFE
10 1 0B VIFE: Parameter Set Identification
11 1 “PS0” Selected Parameter of Parameter Set 0
12 1 “PS1” Selected Parameter of Parameter Set 1
13 1 “PS2” Selected Parameter of Parameter Set 2
14 1 “PS3” Selected Parameter of Parameter Set 3
15 1 “PS4” Selected Parameter of Parameter Set 4
16 1 “PS5” Selected Parameter of Parameter Set 5
17 1 “PS6” Selected Parameter of Parameter Set 6
18 1 “PS7” Selected Parameter of Parameter Set 7
19 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 18)
20 1 16 Stop character
Table 3.20 – SND_UD command: Set Read-Out Desired Data Parameter Mask Using Primary Address
To set the Parameter Set to all M-BUS interface in the system is necessary use the primary address 255d (FFh) in the A-Field. In this case the M-BUS interface in the M-BUS system will not send an acknowledgement (no E5 will be sent by the M-BUS interfaces)
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long telegram
2 1 27 L-Field
3 1 27 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx xx xx xx xx
Secondary Address (See the relative paragraph)
16 1 07 DIF: 64 Bit Integer, 8 Byte
17 1 FD VIF: Followed by a standard VIFE
18 1 0B VIFE: Parameter Set Identification
19 1 “PS0” Selected Parameter of Parameter Set 0
20 1 “PS1” Selected Parameter of Parameter Set 1
21 1 “PS2” Selected Parameter of Parameter Set 2
22 1 “PS3” Selected Parameter of Parameter Set 3
23 1 “PS4” Selected Parameter of Parameter Set 4
24 1 “PS5” Selected Parameter of Parameter Set 5
25 1 “PS6” Selected Parameter of Parameter Set 6
M-Bus communication protocol 27
English
Byte Nr. Size (Byte) Value (HEX) Description
26 1 “PS7” Selected Parameter of Parameter Set 7
27 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 26)
28 1 16 Stop character
Table 3.21 – SND_UD command: Set Read-Out Desired Data Parameter Mask Using Secondary Address
Answer of the Slave: E5h
The Parameter Set and the default mask are stored in EC_Parameters.xls (M-BUS Parameter Set and M-BUS worksheets). See the Annex B for an example of a mask.
3.1.3 REQ_UD2
This procedure is used by the M-BUS Master to receive data to the M-BUS Slave. The Slave confirms a correct reception of the telegram with the RSP_UD answer or omits the answer if it didn’t receive the telegram correctly. The Slave sends the data requested by SND_UD command. Here follows the structure of the REQ_UD2 command:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 10 Start character short telegram
2 1 7B / 5B C-Field , Transmit Read-Out Data
3 1 xx
A Field – Primary Address 00 – FA: Valid Primary Address FB, FC: Reserved for Future Use FE: Transmission to All M-BUS Slave in the System (everyone
sends E5h) FF: Transmission to All M-BUS Slave in the System (no one sends
E5h) Out of Range: FD: Transmission is by Secondary Address
4 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 2 > byte 3)
5 1 16 Stop character
Table 3.22 – REQ_UD2 command
Answer of the Slave: RSP_UD
3.1.4 RSP_UD
This procedure is used by the M-BUS Slave to send the requested data to the M-BUS Master. The behavior of the multi-frame answer is explained in Annex A. Here follows the structure of the RSP_UD telegram:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long telegram
2 1 xx L-Field
3 1 xx L-Field Ripetition
4 1 68 Start character long telegram ripetition
5 1 08 /18 C-Field RSP_UD
6 1 xx A-Field, Primary Address (00 - FA = 0 - 250)
7 1 72 CI-Field
8 – 11 4 xx xx xx xx M-BUS Interface Identification Number
12 – 13 2 xx xx Manufacturer’s Mark
28 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
14 1 xx Version Number of M-BUS Interface Firmware (00 – FF)
15 1 02 Medium: Electricity
16 1 xx Access Number (00 – FF > 00)
17 1 xx M-BUS Interface Status (see error flags par.)
18 – 19 2 0000 Signature (always 0000, i.e. not used)
20 – YY 0 – EA xx…xx Read-out Data Parametrised (see the following paragraphs)
YY + 1 1 0F / 1F DIF: 0F = no more data; 1F = other data to send
YY + 2 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte YY + 1)
YY + 3 1 16 Stop character
Table 3.23 – RSP_UD command
Here follows every possible Read-Out data, included in 20 – YY bytes of the RSP_UD table.
3.1.4.1 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 00 DIFE: Total
YY + 2 1 82 VIF: Energy, 0.1Wh; Followed by VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 80 VIFE: Imported Energy; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Total
Table 3.24 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Total
3.1.4.2 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 00 DIFE: Total
YY + 2 1 82 VIF: Energy, 0.1Wh; Followed by VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 81 VIFE: Exported Energy; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Total
Table 3.24 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Total
M-Bus communication protocol 29
English
3.1.4.3 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 – YY + 11 1 1x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Inductive 1: Phase 1 Imported Inductive 2: Phase 2 Imported Inductive 3: Phase 3 Imported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Total
Table 3.25 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Total
3.1.4.4 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 2x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Inductive 1: Phase 1 Exported Inductive 2: Phase 2 Exported Inductive 3: Phase 3 Exported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Total
Table 3.26 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Total
3.1.4.5 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 3x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Capacitive 1: Phase 1 Imported Capacitive 2: Phase 2 Imported Capacitive 3: Phase 3 Imported Capacitive
30 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Total
Table 3.27 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Total
3.1.4.6 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 4x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Capacitive 1: Phase 1 Exported Capacitive 2: Phase 2 Exported Capacitive 3: Phase 3 Exported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Total
Table 3.28 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Total
3.1.4.7 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 1x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Inductive 1: Phase 1 Imported Inductive 2: Phase 2 Imported Inductive 3: Phase 3 Imported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Total
Table 3.29 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Total
3.1.4.8. 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
M-Bus communication protocol 31
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 6 1 2x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Inductive 1: Phase 1 Exported Inductive 2: Phase 2 Exported Inductive 3: Phase 3 Exported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Total
Table 3.30 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Total
3.1.4.9 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 3x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Capacitive 1: Phase 1 Imported Capacitive 2: Phase 2 Imported Capacitive 3: Phase 3 Imported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Total
Table 3.31 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Total
3.1.4.10 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Total
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 4x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Capacitive 1: Phase 1 Exported Capacitive 2: Phase 2 Exported Capacitive 3: Phase 3 Exported Capacitive
YY + 7– YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Total
Table 3.32 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Total
32 M-Bus communication protocol
English
3.1.4.11 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 10 DIFE: Tariff 1
YY + 2 1 82 VIF: Energy, 0.1Wh; Followed by VIFE
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 80 VIFE: Imported Energy; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Tariff 1
Table 3.33 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Tariff 1
3.1.4.12 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 10 DIFE: Tariff 1
YY + 2 1 82 VIF: Energy, 0.1Wh; Followed by VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 81 VIFE: Exported Energy; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Tariff 1
Table 3.34 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Tariff 1
3.1.4.13 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 – YY + 11 1 1x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Inductive 1: Phase 1 Imported Inductive 2: Phase 2 Imported Inductive 3: Phase 3 Imported Inductive
M-Bus communication protocol 33
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Tariff 1
Table 3.35 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Tariff 1
3.1.4.14 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 2x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Inductive 1: Phase 1 Exported Inductive 2: Phase 2 Exported Inductive 3: Phase 3 Exported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Tariff 1
Table 3.36 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Tariff 1
3.1.4.15 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 3x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Capacitive 1: Phase 1 Imported Capacitive 2: Phase 2 Imported Capacitive 3: Phase 3 Imported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Tariff 1
Table 3.37 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Tariff 1
3.1.4.16 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
34 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 6 1 4x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Capacitive 1: Phase 1 Exported Capacitive 2: Phase 2 Exported Capacitive 3: Phase 3 Exported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Tariff 1
Table 3.38 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Tariff 1
3.1.4.17 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 1x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Inductive 1: Phase 1 Imported Inductive 2: Phase 2 Imported Inductive 3: Phase 3 Imported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Tariff 1
Table 3.39 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Tariff 1
3.1.4.18 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 2x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Inductive 1: Phase 1 Exported Inductive 2: Phase 2 Exported Inductive 3: Phase 3 Exported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Tariff 1
Table 3.40 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Tariff 1
3.1.4.19 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
M-Bus communication protocol 35
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 3x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Capacitive 1: Phase 1 Imported Capacitive 2: Phase 2 Imported Capacitive 3: Phase 3 Imported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Tariff 1
Table 3.41 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Tariff 1
3.1.4.20 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Tariff 1
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 90 DIFE: Tariff 1; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 4x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Capacitive 1: Phase 1 Exported Capacitive 2: Phase 2 Exported Capacitive 3: Phase 3 Exported Capacitive
YY + 7– YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Tariff 1
Table 3.42 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Tariff 1
3.1.4.21 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 20 DIFE: Tariff 2
YY + 2 1 82 VIF: Active Energy, 0.1Wh; Followed by VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 80 VIFE: Imported Energy; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Tariff 2
Table 3.43 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Active Energy, Tariff 2
36 M-Bus communication protocol
English
3.1.4.22 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 20 DIFE: Tariff 2
YY + 2 1 82 VIF: Active Energy, 0.1Wh; Followed by VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 81 VIFE: Exported Energy; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Tariff 2
Table 3.44 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Active Energy, Tariff 2
3.1.4.23 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 1x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Inductive 1: Phase 1 Imported Inductive 2: Phase 2 Imported Inductive 3: Phase 3 Imported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Tariff 2
Table 3.45 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Apparent Energy, Tariff 2
3.1.4.24 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 2x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Inductive 1: Phase 1 Exported Inductive 2: Phase 2 Exported Inductive 3: Phase 3 Exported Inductive
M-Bus communication protocol 37
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Tariff 2
Table 3.46 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Apparent Energy, Tariff 2
3.1.4.25 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 3x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Capacitive 1: Phase 1 Imported Capacitive 2: Phase 2 Imported Capacitive 3: Phase 3 Imported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Tariff 2
Table 3.47 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Apparent Energy, Tariff 2
3.1.4.26 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 4x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Capacitive 1: Phase 1 Exported Capacitive 2: Phase 2 Exported Capacitive 3: Phase 3 Exported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Tariff 2
Table 3.48 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Apparent Energy, Tariff 2
3.1.4.27 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
38 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 6 1 1x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Inductive 1: Phase 1 Imported Inductive 2: Phase 2 Imported Inductive 3: Phase 3 Imported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Tariff 2
Table 3.49 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Inductive Reactive Energy, Tariff 2
3.1.4.28 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 2x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Inductive 1: Phase 1 Exported Inductive 2: Phase 2 Exported Inductive 3: Phase 3 Exported Inductive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Tariff 2
Table 3.50 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Inductive Reactive Energy, Tariff 2
3.1.4.29 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93
MANUFACTURER specific VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 3x
MANUFACTURER specific VIFE: 0: 3-Phase Imported Capacitive 1: Phase 1 Imported Capacitive 2: Phase 2 Imported Capacitive 3: Phase 3 Imported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Tariff 2
Table 3.51 – 3-Phase, Phase 1, Phase 2 and Phase 3 Imported Capacitive Reactive Energy, Tariff 2
M-Bus communication protocol 39
English
3.1.4.30 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Tariff 2
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 A0 DIFE: Tariff 2; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93
MANUFACTURER specific VIFE: Reactive Energy,0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 4x
MANUFACTURER specific VIFE: 0: 3-Phase Exported Capacitive 1: Phase 1 Exported Capacitive 2: Phase 2 Exported Capacitive 3: Phase 3 Exported Capacitive
YY + 7 – YY + 12 6 xx xx xx xx xx xx
Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Tariff 2
Table 3.52 – 3-Phase, Phase 1, Phase 2 and Phase 3 Exported Capacitive Reactive Energy, Tariff 2
3.1.4.31 3-Phase, Phase 1, Phase 2 and Phase 3 Voltage
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 03 DIF – 24 Bit Integer, 3 Byte
YY + 1 1 FD VIF: Followed by a standard VIFE
YY + 2 1 CC VIFE: Instant Voltage (mV) followed by a VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 5 – YY + 7 3 xx xx xx Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Voltage
Table 3.53 – 3-Phase, Phase 1, Phase 2 and Phase 3 Voltage
3.1.4.32 Line 12, Line 23 and Line 31 Voltage
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 03 DIF – 24 Bit Integer, 3 Byte
YY + 1 1 FD VIF: Followed by a standard VIFE
YY + 2 1 CC VIFE: Instant Voltage (mV) followed by a VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 5 – YY + 7 3 xx xx xx Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Voltage
Table 3.54 – Line 12. Line 23 and Line 31 Voltage
40 M-Bus communication protocol
English
3.1.4.33 3-Phase, Phase 1, Phase 2, Phase 3 and Neutral Current
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 04 DIF – 32 Bit Integer, 4 Byte
YY + 1 1 FD VIF: Followed by a standard VIFE
YY + 2 1 D9 VIFE: Current (mA) followed by a VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3 4: Neutral
YY + 5 – YY + 7 4 xx xx xx xx Value: 3-Phase, Phase 1, Phase 2, Phase 3 and Nuetral Current
Table 3.55 – 3-Phase, Phase 1, Phase 2, Phase 3 and Neutral Current
3.1.4.34 Frequency
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 94 MANUFACTURER specific VIFE: mHz
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 4 1 50 MANUFACTURER specific VIFE: Frequency (mHz)
YY + 5 – YY + 6 2 xx xx Value: Frequency
Table 3.56 – Frequency
3.1.4.35 Phase Order
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 01 DIF – 8 Bit Integer, 1 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 51 MANUFACTURER specific VIFE: Phase Order
YY + 3 1 xx
Value: Phase Order 00: No Phase Order 7B: 123 84: 132
Table 3.57 – Phase Order
3.1.4.36 3-Phase, Phase 1, Phase 2 and Phase 3 Power Factor
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 84 MANUFACTURER specific VIFE: Power Factor; Followed by VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
M-Bus communication protocol 41
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 4 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 5 – YY + 6 2 xx xx Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Power Factor
Table 3.58 – 3-Phase, Phase 1, Phase 2 and Phase 3 Power Factor
3.1.4.37 3-Phase, Phase 1, Phase 2 and Phase 3 Active Power
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 06 DIF – 48 Bit Integer, 6 Byte
YY + 1 1 A8 VIF: Active Power, mW; Followed by VIFE
YY + 2 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 3 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 4 – YY + 9 6 xx xx xx xx xx xx Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Active Power
Table 3.59 – 3-Phase, Phase 1, Phase 2 and Phase 3 Active Power
3.1.4.38 3-Phase, Phase 1, Phase 2 and Phase 3 Apparent Power
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Power
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 90 VIFE: Apparent Power, mVa; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Apparent Power
Table 3.60 – 3-Phase, Phase 1, Phase 2 and Phase 3 Apparent Power
3.1.4.39 3-Phase, Phase 1, Phase 2 and Phase 3 Reactive Power
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Power
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 92 VIFE: Reactive Power, mvar; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
42 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 6 1 0x
MANUFACTURER specific VIFE: 0: 3-Phase 1: Phase 1 2: Phase 2 3: Phase 3
YY + 7 – YY + 12 6 xx xx xx xx xx xx Value: 3-Phase, Phase 1, Phase 2 and Phase 3 Reactive Power
Table 3.61 – 3-Phase, Phase 1, Phase 2 and Phase 3 Reactive Power
3.1.4.40 3-Phase Imported and Exported Active Energy Partial
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 06 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 82 VIF: Active Energy, 0.1Wh; Followed by VIFE
YY + 2 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 3 1 8x
MANUFACTURER specific VIFE: 0: Imported Energy 1: Exported Energy Followed by VIFE
YY + 4 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 5 1 82 MANUFACTURER specific VIFE: Partial; Followed by VIFE
YY + 6 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 7 1 00 MANUFACTURER specific VIFE: 3-Phase
YY + 8 – YY + 13 6 xx xx xx xx xx xx Value: 3-Phase Imported and Exported Active Energy Partial
Table 3.62 – 3-Phase Imported and Exported Active Energy Partial
3.1.4.41 3-Phase Imported and Exported Inductive Apparent Energy Partial
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 82 MANUFACTURER specific VIFE: Partial; Followed by VIFE
YY + 7 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 8 1 x0
MANUFACTURER specific VIFE: 1: 3-Phase Imported Inductive 2: 3-Phase Exported Inductive
YY + 9 – YY + 14 6 xx xx xx xx xx xx
Value: 3-Phase Imported and Exported Inductive Apparent Energy Partial
Table 3.63 – 3-Phase Imported and Exported Inductive Apparent Energy Partial
3.1.4.42 3-Phase Imported and Exported Capacitive Apparent Energy Partial
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
M-Bus communication protocol 43
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 82 MANUFACTURER specific VIFE: Partial; Followed by VIFE
YY + 7 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 8 1 x0
MANUFACTURER specific VIFE: 3: 3-Phase Imported Capacitive 4: 3-Phase Exported Capacitive
YY + 9 – YY + 14 6 xx xx xx xx xx xx
Value: 3-Phase Imported and Exported Capacitive Apparent Energy Partial
Table 3.64 – 3-Phase Imported and Exported Capacitive Apparent Energy Partial
3.1.4.43 3-Phase Imported and Exported Inductive Reactive Energy Partial
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 82 MANUFACTURER specific VIFE: Partial; Followed by VIFE
YY + 7 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 8 1 x0
MANUFACTURER specific VIFE: 1: 3-Phase Imported Inductive 2: 3-Phase Exported Inductive
YY + 9 – YY + 14 6 xx xx xx xx xx xx
Value: 3-Phase Imported and Exported Inductive Reactive Energy Partial
Table 3.65 – 3-Phase Imported and Exported Inductive Reactive Energy Partial
3.1.4.44 3-Phase Imported and Exported Capacitive Reactive Energy Partial
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 82 MANUFACTURER specific VIFE: Partial; Followed by VIFE
YY + 7 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 8 1 x0
MANUFACTURER specific VIFE: 3: 3-Phase Imported Inductive 4: 3-Phase Exported Inductive
YY + 9 – YY + 14 6 xx xx xx xx xx xx
Value: 3-Phase Imported and Exported Capacitive Reactive Energy Partial
Table 3.66 – 3-Phase Imported and Exported Capacitive Reactive Energy Partial
44 M-Bus communication protocol
English
3.1.4.45 3-Phase Active Energy Balance
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 06 DIF – 48 Bit Integer, 6 Byte
YY + 1 1 82 VIF: Active Energy, 0.1Wh; Followed by VIFE
YY + 2 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 3 1 83 MANUFACTURER specific VIFE: Balance; Followed by VIFE
YY + 4 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 7 1 00 MANUFACTURER specific VIFE: 3-Phase
YY + 8 – YY + 13 6 xx xx xx xx xx xx Value: 3-Phase Active Energy Balance
Table 3.67 – 3-Phase Active Energy Balance
3.1.4.46 3-Phase Inductive and Capacitive Apparent Energy Balance
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 40 DIFE: Apparent Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 91 VIFE: Apparent Energy, 0.1VAh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 83 MANUFACTURER specific VIFE: Balance; Followed by VIFE
YY + 7 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 8 1 x4
MANUFACTURER specific VIFE: 2: 3-Phase Inductive 4: 3-Phase Capacitive
YY + 9 – YY + 14 6 xx xx xx xx xx xx Value: 3-Phase Inductive and Capacitive Apparent Energy Balance
Table 3.68 – 3-Phase Inductive and Capacitive Apparent Energy Balance
3.1.4.47 3-Phase Inductive and Capacitive Reactive Energy Balance
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 86 DIF – 48 Bit Integer, 6 Byte; Followed by DIFE
YY + 1 1 80 DIFE: Total; Followed by DIFE
YY + 2 1 00 DIFE: Reactive Value
YY + 3 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 4 1 93 VIFE: Reactive Energy, 0.1varh; Followed by VIFE
YY + 5 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 6 1 83 MANUFACTURER specific VIFE: Balance; Followed by VIFE
YY + 7 1 FF VIFE followed by MANUFACTURER specific VIFE
YY + 8 1 x4
MANUFACTURER specific VIFE: 2: 3-Phase Inductive 4: 3-Phase Capacitive
YY + 9 – YY + 14 6 xx xx xx xx xx xx Value: 3-Phase Inductive and Capacitive Reactive Energy Balance
Table 3.69 – 3-Phase Inductive and Capacitive Reactive Energy Balance
M-Bus communication protocol 45
English
3.1.4.48 CT Value
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 52 MANUFACTURER specific VIFE: CT Value
YY + 3 – YY + 4 2 xx xx Value: CT Value
Table 3.70 – CT Value
3.1.4.49 PT Value
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 03 DIF – 24 Bit Integer, 2 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 53 MANUFACTURER specific VIFE: PT Value
YY + 3 – YY + 5 3 xx xx xx Value: PT Value
Table 3.71 – PT Value
3.1.4.50 Actual Tariff
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 01 DIF – 8 Bit Integer, 1 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 54 MANUFACTURER specific VIFE: Actual Tariff
YY + 3 1 xx
Value: Tariff 01: Tariff 1 02: Tariff 2
Table 3.72 – Actual Tariff
3.1.4.51 Serial Number
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 0D DIF – Variable Length
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 55 MANUFACTURER specific VIFE: Serial Number
YY + 3 – YY + 13 1 0A
Value: Serial Number First Byte is LVAR: i.e. 10 ASCII char follows
YY + 4 – YY + 13 10
xx xx xx xx xx xx xx xx xx xx
Value: Serial Number (ASCII char), transmitted “Least significant byte first”
Table 3.73 – Serial Number
3.1.4.52 Model
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 01 DIF – 8 Bit Integer, 1 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 56 MANUFACTURER specific VIFE: Model
46 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 3 1 xx
Value: Model 01 = 46P, 3Phase,4Wire,6||1Amp,Connection with PT 02 = 46U, 3Phase,4Wire,6||1Amp,USA 03 = 46E, 3Phase,4Wire,6||1Amp,Europe 04 = 36P, 3Phase,3Wire,6||1Amp,Connection with PT 05 = 36U, 3Phase,3Wire,6||1Amp,USA 06 = 36E, 3Phase,3Wire,6||1Amp,Europe 07 = 48U, 3Phase,4Wire,80Amp,USA 08 = 48E, 3Phase,4Wire,80Amp,Europe 09 = 38U, 3Phase,3Wire,80Amp,USA 10 = 38E, 3Phase,3Wire,80Amp,Europe 11 = 18U, 1Phase,80Amp,USA 12 = 18E, 1Phase,80Amp,Europe
Table 3.73 – Model
3.1.4.53 Type
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 01 DIF – 8 Bit Integer, 1 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 57 MANUFACTURER specific VIFE: Type
YY + 3 1 xx
Value: Type 00: no MID, yes reset 01: no MID, no reset 02: MID
Table 3.73 – Type
3.1.4.54 Energy Counter Firmware Release
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 58 MANUFACTURER specific VIFE: Firmware EC Release
YY + 3 – YY + 4 2 xx xx Value: Firmware EC Release, e.g. xx.xx
Table 3.74 – Energy Counter Firmware Release
3.1.4.55 Energy Counter Hardware Release
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 59 MANUFACTURER specific VIFE: Hardware EC Release
YY + 3 – YY + 4 2 xx xx Value: Hardware EC Release, e.g. xx.xx
Table 3.75 – Energy Counter Hardware Release
M-Bus communication protocol 47
English
3.1.4.56 Primary or Secondary Value
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 01 DIF – 8 Bit Integer, 1 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 61 MANUFACTURER specific VIFE: Primary or Secondary Value
YY + 3 1 xx
Value: Primary or Secondary Value 00: Primary Values 01: Secondary Values
Table 3.76 – Primary or Secondary Value
3.1.4.57 Error Code
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 01 DIF – 8 Bit Integer, 1 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 62 MANUFACTURER specific VIFE: Error Code Value
YY + 3 1 xx
Value: Error Code 00: No Error 01: Phase Sequence Error 02: Memory Error
Table 3.77 – Error Code
3.1.4.58 Out Of Range
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 06 DIF – 68 Bit Integer, 6 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 63 MANUFACTURER specific VIFE: Out Of Range Value
YY + 3 1 xx
Value: Out Of Range Frequency 00: No Out of Range 01: Frequency Out of Range
YY + 4 – YY + 5 2 xx xx
Value: Out Of Range Low/High Phase Current 1 byte: 00 > FF – LORI2|LORI1|LORISYS|HORIN|HORI3|
HORI2|HORI1|HORISYS 2 byte: 00 > 03 – res| res| res| res| res| res|LORIN|LORI3
YY + 6 1 xx
Value: Out of Range Low/High Line Voltage 00 > 3F – res|res|LORVL23| LORVL13| LORVL12| HORVL23|
HORVL13| HORVL12|
YY + 7 1 xx
Value: Out of Range Low/High Phase Voltage 00 > FF – LORV3N|LORV2N|LORV1N|LORVSYS|
HORV3N|HORV2N|HORV1N|HORVSYS|
YY + 8 1 00 Empty Byte
Table 3.78 – Out Of Range
48 M-Bus communication protocol
English
3.1.4.59 Fabrication Number
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 0C DIF – 8 digit BCD, 4 Byte
YY + 1 1 78 VIF: Fabrication No
YY + 2 – YY 5 4 xx xx xx xx Value: Fabrication Number
Table 3.79 –Fabrication Number
3.1.4.60 M-BUS Module Firmware Release
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FD VIF: Followed by a standard VIFE
YY + 2 1 0C VIFE: Version
YY + 3 – YY 4 2 xx xx Value: Firmware Version Release
Table 3.80 – M-BUS Module Firmware Release
3.1.4.61 M-BUS Module Hardware Release
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FD VIF: Followed by a standard VIFE
YY + 2 1 0D VIFE: Hardware Version
YY + 3 – YY 4 2 xx xx Value: Hardware Version Release
Table 3.81 – M-BUS Module Hardware Release
3.1.4.62 Partial Counter Status
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 02 DIF – 16 Bit Integer, 2 Byte
YY + 1 1 FF VIF followed by MANUFACTURER specific VIFE
YY + 2 1 73 MANUFACTURER specific VIFE: Partial Counters Status
YY + 3 – YY + 4 2 xx xx
Value: Out Of Range Low/High Phase Current 1 byte: -kvarhSYS-L-PAR |+kvarhSYS-L-PAR | -kVAhSYS-C-
PAR | +kVAhSYS-C-PAR | -kVAhSYS-L-PAR | +kVAhSYS-L-PAR |
-kWhSYS-PAR | +kWhSYS-PAR 2 byte: res| res| res| res| res| res| -kvarhSYS-C-PAR | +kvarhSYS-
C-PAR
Table 3.82 – Partial Counter Status
3.1.4.63 FSA Value
Byte Nr. Size (Byte) Value (HEX) Description
YY 1 01 DIF – 8 Bit Integer, 1 Byte
YY + 1 1 FD VIF: Followed by a standard VIFE
YY + 2 1 DC VIFE: Current (A) followed by a VIFE
YY + 3 1 FF VIFE followed by MANUFACTURER specific VIFE
M-Bus communication protocol 49
English
Byte Nr. Size (Byte) Value (HEX) Description
YY + 5 1 xx
Value: FSA Value 00: 1 A 01: 5 A 02: 80 A
Table 3.83 – FSA Value
ANNEX A
In case of single-frame RSP_UD answer from the Slave, the communication process is the following:
MASTER SLAVE
SND_NKE > E5h
SND_UD > E5h
REQ_UD2 with C Field = 7Bh > RSP_UD with C Field = 08h DIF = 0Fh as last data block i.e. FCB = 1 & FCV = 1
This means that, if the FCB is handled (i.e. FCV = 1), when the RSP_UD answer has a single-frame of data, the Slave has to send a RSP_UD answer with the last data block egual to 0F.
In case of multi-frame RSP_UD answer from the Slave (for example 2 frames), the communication process is the following:
MASTER SLAVE
SND_NKE > E5h
SND_UD > E5h
REQ_UD2 with C Field = 7Bh > RSP_UD with C Field = 18h i.e. DFC = 1 DIF = 1Fh as last data block i.e. FCB = 1 & FCV = 1
REQ_UD2 with C Field = 5B > RSP_UD with C Field = 08 i.e. DFC = 0 DIF = 0Fh as last data block i.e. FCB = 0 & FCV = 1
This means that, if the FCB is handled (i.e. FCV = 1), when the RSP_UD answer has a single-frame of data, the Slave has to send a RSP_UD answer with the last data block egual to 0F.
50 M-Bus communication protocol
English
ANNEX B
Here follows the bit division of every Parameter Set byte:
Bit
Nr.
Bit Value Measure Unit Bit
Parameter
Set
1 From Bit 39 To Bit 50 - Reactive (0b) or Apparent (1b) - xxxx xxx1b
PS0
2 From Bit 51 To Bit 64 - Reactive (0b) or Apparent (1b) - xxxx xx1xb
3 All Apparent and Reactive Energy Tariff 1 0.1varh & 0.1VAh xxxx x1xxb
4 All Apparent and Reactive Energy Total 0.1varh & 0.1VAh xxxx 1xxxb
5 All Apparent and Reactive Energy Balance 0.1varh & 0.1VAh xxx1 xxxxb
6 All Apparent and Reactive Energy Partial 0.1varh & 0.1VAh xx1x xxxxb
7 All Apparent and Reactive Energy Tariff 2 0.1varh & 0.1VAh x1xx xxxxb
8 Phase 1, 2, 3, Sys Active Power mW 1xxx xxxxb
9 Phase 1, 2, 3, Sys Apparent Power mVA xxxx xxx1b
PS1
10 Phase 1, 2, 3, Sys Reactive Power mvar xxxx xx1xb
11 Phase 1, 2, 3, Sys Voltage mV xxxx x1xxb
12 Line 12, 23, 31 Voltage mV xxxx 1xxxb
13 Phase 1, 2, 3, N, Sys Current mA xxx1 xxxxb
14 Phase 1, 2, 3, Sys Power Factor - xx1x xxxxb
15 Frequency mHz x1xx xxxxb
16 Phase Order - 1xxx xxxxb
17 Actual Tariff - xxxx xxx1b
PS2
18 CT Value, FSA Value - xxxx xx1xb
19 Pri/Sec Value - xxxx x1xxb
20 Error Code - xxxx 1xxxb
21 Out Of Range - xxx1 xxxxb
22 Partial Counter Status - xx1x xxxxb
23 Serial Number, FW Release EC, HW Version EC, Model, Type - x1xx xxxxb
24
FW Release, HW Version and Fabrication Number of M-BUS Module
- 1xxx xxxxb
25 Phase 1, 2, 3 Imported Active Energy Total 0.1Wh xxxx xxx1b
PS3
26 3-Phase Imported Active Energy Total 0.1Wh xxxx xx1xb
27 Phase 1, 2, 3 Exported Active Energy Total 0.1Wh xxxx x1xxb
28 3-Phase Exported Active Energy Total 0.1Wh xxxx 1xxxb
29 Phase 1, 2, 3 Imported Active Energy Tariff 1 0.1Wh xxx1 xxxxb
30 3-Phase Imported Active Energy Tariff 1 0.1Wh xx1x xxxxb
31 Phase 1, 2, 3 Exported Active Energy Tariff 1 0.1Wh x1xx xxxxb
32 3-Phase Exported Active Energy Tariff 1 0.1Wh 1xxx xxxxb
33 Phase 1, 2, 3 Imported Active Energy Tariff 2 0.1Wh xxxx xxx1b
PS4
34 3-Phase Imported Active Energy Tariff 2 0.1Wh xxxx xx1xb
35 Phase 1, 2, 3 Exported Active Energy Tariff 2 0.1Wh xxxx x1xxb
36 3-Phase Exported Active Energy Tariff 2 0.1Wh xxxx 1xxxb
37 All Active Energy Balance 0.1Wh xxx1 xxxxb
38 All Active Energy Partial 0.1Wh xx1x xxxxb
39
Phase 1, 2, 3 Imported Inductive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh x1xx xxxxb
40
3-Phase Imported Inductive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh 1xxx xxxxb
M-Bus communication protocol 51
English
Bit Nr.
Bit Value Measure Unit Bit
Parameter
Set
41
Phase 1, 2, 3 Exported Inductive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh xxxx xxx1b
PS5
42
3-Phase Exported Inductive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh xxxx xx1xb
43
Phase 1, 2, 3 Imported Inductive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh xxxx x1xxb
44
3-Phase Imported Inductive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh xxxx 1xxxb
45
Phase 1, 2, 3 Exported Inductive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh xxx1 xxxxb
46
3-Phase Exported Inductive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh xx1x xxxxb
47
Phase 1, 2, 3 Imported Inductive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh x1xx xxxxb
48
3-Phase Imported Inductive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh 1xxx xxxxb
49
Phase 1, 2, 3 Exported Inductive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh xxxx xxx1b
PS6
50
3-Phase Exported Inductive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh xxxx xx1xb
51
Phase 1, 2, 3 Imported Capacitive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh xxxx x1xxb
52
3-Phase Imported Capacitive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh xxxx 1xxxb
53
Phase 1, 2, 3 Exported Capacitive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh xxx1 xxxxb
54
3-Phase Exported Capacitive Energy Total (Reactive or Apparent)
0.1varh/0.1VAh xx1x xxxxb
55
Phase 1, 2, 3 Imported Capacitive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh x1xx xxxxb
56
3-Phase Imported Capacitive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh 1xxx xxxxb
57
Phase 1, 2, 3 Exported Capacitive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh xxxx xxx1b
PS7
58
3-Phase Exported Capacitive Energy Tariff 1 (Reactive or Apparent)
0.1varh/0.1VAh xxxx xx1xb
59
Phase 1, 2, 3 Imported Capacitive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh xxxx x1xxb
60
3-Phase Imported Capacitive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh xxxx 1xxxb
61
Phase 1, 2, 3 Exported Capacitive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh xxx1 xxxxb
62
3-Phase Exported Capacitive Energy Tariff 2 (Reactive or Apparent)
0.1varh/0.1VAh xx1x xxxxb
63 All Energy Balance (Reactive or Apparent) 0.1varh/0.1VAh x1xx xxxxb
64 All Energy Partial (Reactive or Apparent) 0.1varh/0.1VAh 1xxx xxxxb
Table B1 –Bit Division of Every Parameter Set Byte
52 M-Bus communication protocol
English
ANNEX C
Here follows the structure of every default mask.
- Setting the Profile DEFAULT mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 00000000 00
From Bit 39 to Bit 50 Reactive Values has to be taken
From Bit 51 to Bit 64 Reactive Values has to be taken
PS1 00000000 00 No One Value
PS2 00011111 1F
Actual Tariff CT Value, FSA Value Pri/Sec Value Error Code Out Of range
PS3 10100000 A0
3-Phase Imported Active Energy Tariff 1 3-Phase Exported Active Energy Tariff 1
PS4 00001010 0A
3-Phase Imported Active Energy Tariff 2 3-Phase Exported Active Energy Tariff 2
PS5 10101000 A8
3-Phase Imported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Exported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Imported Inductive Energy Tariff 2 (Reactive from PS0 bit 0)
PS6 10000010 82
3-Phase Exported Inductive Energy Tariff 2 (Reactive from PS0 bit 0) 3-Phase Imported Capacitive Energy Tariff 1 (Reactive from PS0 bit 1)
PS7 00101010 2A
3-Phase Exported Capacitive Energy Tariff 1 (Reactive from PS0 bit 1) 3-Phase Imported Capacitive Energy Tariff 2 (Reactive from PS0 bit 1) 3-Phase Exported Capacitive Energy Tariff 2 (Reactive from PS0 bit 1)
Table C1 – Default Mask Profile
And so the Profile Default mask in HEX will be:
00 00 1F A0 0A A8 82 2A
- Setting the Profile ENERGY T1 e T2 mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 00000000 00
From Bit 39 to Bit 50 Reactive Values has to be taken From Bit 51 to Bit 64 Reactive Values has to be taken
PS1 00000000 00 No one value
PS2 00011000 18
Error Code Out Of range
PS3 11111111 FF
Phase 1, 2, 3 Imported Active Energy Total 3-Phase Imported Active Energy Total Phase 1, 2, 3 Exported Active Energy Total 3-Phase Exported Active Energy Total Phase 1, 2, 3 Imported Active Energy Tariff 1 3-Phase Imported Active Energy Tariff 1 Phase 1, 2, 3 Exported Active Energy Tariff 1 3-Phase Exported Active Energy Tariff 1
M-Bus communication protocol 53
English
Parameter
Set
Value (BIN) Value (HEX) Description
PS4 11001111 CF
Phase 1, 2, 3 Imported Active Energy Tariff 2 3-Phase Imported Active Energy Tariff 2 Phase 1, 2, 3 Exported Active Energy Tariff 2 3-Phase Exported Active Energy Tariff 2 Phase 1, 2, 3 Imported Inductive Energy Total (Reactive from PS0 bit 0) 3-Phase Imported Inductive Energy Total (Reactive from PS0 bit 0)
PS5 11111111 FF
Phase 1, 2, 3 Exported Inductive Energy Total (Reactive from PS0 bit 0) 3-Phase Exported Inductive Energy Total (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Imported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) Phase 1, 2, 3 Exported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Exported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Inductive Energy Tariff 2 (Reactive from PS0 bit 0) 3-Phase Imported Inductive Energy Tariff 2 (Reactive from PS0 bit 0)
PS6 11111111 FF
Phase 1, 2, 3 Exported Inductive Energy Tariff 2 (Reactive from PS0 bit 0) 3-Phase Exported Inductive Energy Tariff 2 (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Capacitive Energy Total (Reactive from PS0 bit 0) 3-Phase Imported Capacitive Energy Total (Reactive from PS0 bit 0) Phase 1, 2, 3 Exported Capacitive Energy Total (Reactive from PS0 bit 0) 3-Phase Exported Capacitive Energy Total (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Capacitive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Imported Capacitive Energy Tariff 1 (Reactive from PS0 bit 0)
PS7 00111111 3F
Phase 1, 2, 3 Exported Capacitive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Exported Capacitive Energy Tariff 1 (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Capacitive Energy Tariff 2(Reactive from PS0 bit 0) 3-Phase Imported Capacitive Energy Tariff 2 (Reactive from PS0 bit 0) Phase 1, 2, 3 Exported Capacitive Energy Tariff 2 (Reactive from PS0 bit 0) 3-Phase Exported Capacitive Energy Tariff 2 (Reactive from PS0 bit 0)
Table C2 – Energy T1 & T2 Mask Profile
And so the Profile Energy T1 e T2 mask in HEX will be:
00 00 18 FF CF FF FF 3F
- Setting the Profile TARIFF 1 mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 00000100 04 All Apparent and Reactive Energy Tariff 1
PS1 00000000 00 No one value
PS2 00011000 18
Error Code Out Of range
PS3 11110000 F0
Phase 1, 2, 3 Imported Active Energy Tariff 1 3-Phase Imported Active Energy Tariff 1 Phase 1, 2, 3 Exported Active Energy Tariff 1 3-Phase Exported Active Energy Tariff 1
PS4 00000000 00 No one value
PS5 00000000 00 No one value
PS6 00000000 00 No one value
PS7 00000000 00 No one value
Table C3 – Tariff 1 Mask Profile
54 M-Bus communication protocol
English
And so the Profile Tariff 1 mask in HEX will be:
04 00 18 F0 00 00 00 00
- Setting the Profile TARIFF 2 mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 01000000 40 All Apparent and Reactive Energy Tariff 2
PS1 00000000 00 No one value
PS2 00011000 18
Error Code Out Of range
PS3 00000000 00 No one value
PS4 00001111 0F
Phase 1, 2, 3 Imported Active Energy Tariff 2 3-Phase Imported Active Energy Tariff 2 Phase 1, 2, 3 Exported Active Energy Tariff 2 3-Phase Exported Active Energy Tariff 2
PS5 00000000 00 No one value
PS6 00000000 00 No one value
PS7 00000000 00 No one value
Table C4 – Tariff 2 Mask Profile
And so the Profile Tariff 2 mask in HEX will be:
40 00 18 00 F0 00 00 00
- Setting the Profile TOTAL ENERGY mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 00001000 08 All Apparent and Reactive Energy Total
PS1 00000000 00 No one value
PS2 00011000 18
Error Code Out Of range
PS3 00001111 0F
Phase 1, 2, 3 Imported Active Energy Total 3-Phase Imported Active Energy Total Phase 1, 2, 3 Exported Active Energy Total 3-Phase Exported Active Energy Total
PS4 00000000 00 No one value
PS5 00000000 00 No one value
PS6 00000000 00 No one value
PS7 00000000 00 No one value
Table C5 – Total Energy Mask Profile
And so the Profile Total Energy mask in HEX will be:
08 00 18 0F 00 00 00 00
- Setting the Profile REAL TIME mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 10010000 90
All Apparent and Reactive Energy Balance Phase 1, 2, 3 Active Power
M-Bus communication protocol 55
English
Parameter
Set
Value (BIN) Value (HEX) Description
PS1 11111111 FF
Phase 1, 2, 3 Apparent Power Phase 1, 2, 3 Reactive Power Phase 1, 2, 3, Sys Voltage Line 12, 23, 31 Voltage Phase 1, 2, 3, N, Sys Current Phase 1, 2, 3, Sys Power Factor Frequency Phase Order
PS2 11011111 DF
Actual Tariff CT Value, FSA Value Pri/Sec Value Error Code Out Of range Serial Number, FW Release EC, HW Version EC, Model, Type FW Release and HW Version M-BUS Module
PS3 00000000 00 No one value
PS4 00010000 10 All Active Energy Balance
PS5 00000000 00 No one value
PS6 00000000 00 No one value
PS7 00000000 00 No one value
Table C6 – Real Time Mask Profile
And so the Profile Real Time mask in HEX will be:
90 FF DF 00 10 00 00 00
- Setting the Profile PARTIAL mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 00100000 20 All Apparent and Reactive Energy Partial
PS1 00000000 00 No one value
PS2 00111000 38
Error Code Out Of range Partial Counters Status
PS3 00000000 00 No one value
PS4 00100000 20 All Active Energy Partial
PS5 00000000 00 No one value
PS6 00000000 00 No one value
PS7 00000000 00 No one value
Table C7 – Partial Mask Profile
And so the Profile Partial mask in HEX will be:
20 00 38 00 20 00 00 00
56 M-Bus communication protocol
English
- Setting the Profile ACTIVE mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 10000000 80 Phase 1, 2, 3 Active Power
PS1 01000000 40 Frequency
PS2 00011000 18
Error Code Out Of range
PS3 11111111 FF
Phase 1, 2, 3 Imported Active Energy Total 3-Phase Imported Active Energy Total Phase 1, 2, 3 Exported Active Energy Total 3-Phase Exported Active Energy Total Phase 1, 2, 3 Imported Active Energy Tariff 1 3-Phase Imported Active Energy Tariff 1 Phase 1, 2, 3 Exported Active Energy Tariff 1 3-Phase Exported Active Energy Tariff 1
PS4 00011111 1F
Phase 1, 2, 3 Imported Active Energy Tariff 2 3-Phase Imported Active Energy Tariff 2 Phase 1, 2, 3 Exported Active Energy Tariff 2 3-Phase Exported Active Energy Tariff 2 All Active Energy Balance
PS5 00000000 00 No one value
PS6 00000000 00 No one value
PS7 00000000 00 No one value
Table C8 – Active Mask Profile
And so the Profile Active mask in HEX will be:
80 40 18 FF 1F 00 00 00
- Setting the Profile REACTIVE mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 00000000 00
From Bit 39 to Bit 50 Reactive Values has to be taken From Bit 51 to Bit 64 Reactive Values has to be taken
PS1 01000010 42
Phase 1, 2, 3 Reactive Power Frequency
PS2 00011000 18
Error Code Out Of range
PS3 00000000 00 No one value
PS4 11000000 C0
Phase 1, 2, 3 Imported Inductive Energy Total (Reactive from PS0 bit 0) 3-Phase Imported Inductive Energy Total (Reactive from PS0 bit 0)
PS5 11111111 FF
Phase 1, 2, 3 Exported Inductive Energy Total (Reactive from PS0 bit 0) 3-Phase Exported Inductive Energy Total (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Imported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) Phase 1, 2, 3 Exported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) 3-Phase Exported Inductive Energy Tariff 1 (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Inductive Energy Tariff 2 (Reactive from PS0 bit 0) 3-Phase Imported Inductive Energy Tariff 2 (Reactive from PS0 bit 0)
M-Bus communication protocol 57
English
Parameter
Set
Value (BIN) Value (HEX) Description
PS6 11111111 FF
Phase 1, 2, 3 Exported Inductive Energy Tariff 2 (Reactive from PS0 bit 0) 3-Phase Exported Inductive Energy Tariff 2 (Reactive from PS0 bit 0) Phase 1, 2, 3 Imported Capacitive Energy Total (Reactive from PS0 bit 1) 3-Phase Imported Capacitive Energy Total (Reactive from PS0 bit 1) Phase 1, 2, 3 Exported Capacitive Energy Total (Reactive from PS0 bit 1) 3-Phase Exported Capacitive Energy Total (Reactive from PS0 bit 1) Phase 1, 2, 3 Imported Capacitive Energy Tariff 1 (Reactive from PS0 bit 1) 3-Phase Imported Capacitive Energy Tariff 1 (Reactive from PS0 bit 1)
PS7 01111111 7F
Phase 1, 2, 3 Exported Capacitive Energy Tariff 1 (Reactive from PS0 bit 1) 3-Phase Exported Capacitive Energy Tariff 1 (Reactive from PS0 bit 1) Phase 1, 2, 3 Imported Capacitive Energy Tariff 2 (Reactive from PS0 bit 1) 3-Phase Imported Capacitive Energy Tariff 2 (Reactive from PS0 bit 1) Phase 1, 2, 3 Exported Capacitive Energy Tariff 2 (Reactive from PS0 bit 1) 3-Phase Exported Capacitive Energy Tariff 2 (Reactive from PS0 bit 1) All Energy Balance (Reactive from PS0 bit 1)
Table C9 – Reactive Mask Profile
And so the Profile Reactive mask in HEX will be:
00 42 18 00 C0 FF FF 7F
- Setting the Profile APPARENT mask:
Parameter
Set
Value (BIN) Value (HEX) Description
PS0 00000011 03
From Bit 39 to Bit 50 Apparent Values has to be taken From Bit 51 to Bit 64 Apparent Values has to be taken
PS1 01000001 41
Phase 1, 2, 3 Apparent Power Frequency
PS2 00011000 18
Error Code Out Of range
PS3 00000000 00 No one value
PS4 11000000 C0
Phase 1, 2, 3 Imported Inductive Energy Total (Apparent from PS0 bit 0) 3-Phase Imported Inductive Energy Total (Apparent from PS0 bit 0)
PS5 11111111 FF
Phase 1, 2, 3 Exported Inductive Energy Total (Apparent from PS0 bit 0) 3-Phase Exported Inductive Energy Total (Apparent from PS0 bit 0) Phase 1, 2, 3 Imported Inductive Energy Tariff 1 (Apparent from PS0 bit 0) 3-Phase Imported Inductive Energy Tariff 1 (Apparent from PS0 bit 0) Phase 1, 2, 3 Exported Inductive Energy Tariff 1 (Apparent from PS0 bit 0) 3-Phase Exported Inductive Energy Tariff 1 (Apparent from PS0 bit 0) Phase 1, 2, 3 Imported Inductive Energy Tariff 2 (Apparent from PS0 bit 0) 3-Phase Imported Inductive Energy Tariff 2 (Apparent from PS0 bit 0)
PS6 11111111 FF
Phase 1, 2, 3 Exported Inductive Energy Tariff 2 (Apparent from PS0 bit 0) 3-Phase Exported Inductive Energy Tariff 2 (Apparent from PS0 bit 0) Phase 1, 2, 3 Imported Capacitive Energy Total (Apparent from PS0 bit 1) 3-Phase Imported Capacitive Energy Total (Apparent from PS0 bit 1) Phase 1, 2, 3 Exported Capacitive Energy Total (Apparent from PS0 bit 1) 3-Phase Exported Capacitive Energy Total (Apparent from PS0 bit 1) Phase 1, 2, 3 Imported Capacitive Energy Tariff 1 (Apparent from PS0 bit 1) 3-Phase Imported Capacitive Energy Tariff 1 (Apparent from PS0 bit 1)
58 M-Bus communication protocol
English
Parameter
Set
Value (BIN) Value (HEX) Description
PS7 01111111 7F
Phase 1, 2, 3 Exported Capacitive Energy Tariff 1 (Apparent from PS0 bit 1) 3-Phase Exported Capacitive Energy Tariff 1 (Apparent from PS0 bit 1) Phase 1, 2, 3 Imported Capacitive Energy Tariff 2 (Apparent from PS0 bit 1) 3-Phase Imported Capacitive Energy Tariff 2 (Apparent from PS0 bit 1) Phase 1, 2, 3 Exported Capacitive Energy Tariff 2 (Apparent from PS0 bit 1) 3-Phase Exported Capacitive Energy Tariff 2 (Apparent from PS0 bit 1) All Energy Balance (Apparent from PS0 bit 1)
Table C10 – Apparent Mask Profile
And so the Profile Apparent mask in HEX will be:
03 41 18 00 C0 FF FF 7F
M-Bus communication protocol 59
English
Edited in Germany Subject to change without notice • A pdf version is available on the Internet
GMC-I Messtechnik GmbH Südwestpark 15 90449 Nürnberg •
Germany
Phone +49 911 8602-111 Telefax +49 911 8602-777 E-Mail info@gossenmetrawatt.com www.gossenmetrawatt.com
Loading...