Gossen Metrawatt M-BUS Operating Instructions

Protocol Descripton
M-Bus Communication Protocol
For M-Bus Communication Module
3-349-656-03
1/11.11
The Manufacturer reserves the right to modify the specifications in this manual without previous warning. Any copy of this manual, in part or in full, whether by photocopy or by other means, even of electronic nature, without the manufacture giving written authorisation, breaches the terms of copyright and is liable to prosecution.
It is absolutely forbidden to use the device for different uses other than those for which it has been devised for, as inferred to in this manual. When using the features in this device, obey all laws and respect privacy and legitimate rights of others.
EXCEPT TO THE EXTENT PROHIBITED BY APPLICABLE LAW, UNDER NO CIRCUMSTANCES SHALL THE MANUFACTURER BE LIABLE FOR CONSEQUENTIAL DAMAGES SUSTAINED IN CONNECTION WITH SAID PRODUCT AND THE MANUFACTURER NEITHER ASSUMES NOR AUTHORIZES ANY REPRESENTATIVE OR OTHER PERSON TO ASSUME FOR IT ANY OBBLIGATION OR LIABILTY OTHER THAN SUCH AS IS EXPRESSLY SET FORTH HEREIN.
All trademarks in this manual are property of their respective owners.
The information contained in this manual is for information purposes only, is subject to changes without previous warning and cannot be considered binding for the Manufacturer. The Manufacturer assumes no responsabilty for any errors or incoherence possibly contained in this manual.
Printed in Italy.
M-Bus communication protocol
for M-BUS communication module
July edition 2011
INDEX
1. M-Bus interface ............................................................................. 9
1.1 Overview ..........................................................................................................................9
2. Telegram formats .......................................................................... 9
2.1 Telegram fields ...............................................................................................................9
2.1.1 C Field .................................................................................................................................10
2.1.2 A Field .................................................................................................................................10
2.1.3 CI Field ................................................................................................................................10
2.1.4 L Field .................................................................................................................................11
2.1.5 CS Field (Checksum) ...........................................................................................................11
2.2 Active data .....................................................................................................................11
2.2.1 Coding of Active Data Transmitted From Slave to Master: Fixed Data Record Header ......11
2.2.2 Coding of Active Data Transmitted From Slave to Master: Data Records ...........................11
2.2.2.1 DATA INFORMATION BLOCK (DIB) ................................................................................................................12
2.2.2.2 VALUE INFORMATION BLOCK (VIB) ..............................................................................................................12
2.2.2.3 STANDARD VALUE INFORMATION FIELD (VIF) USED ..................................................................................13
2.2.2.4 STANDARD VALUE INFORMATION FIELD EXTENSION (VIFE) USED ............................................................13
2.2.2.5 MANUFACTURER SPECIFIC VALUE INFORMATION FIELD EXTENSION (VIFE) USED ..................................13
3. Communication process ............................................................... 15
3.1 Send / confirm procedure .............................................................................................15
3.1.1 SND_NKE ............................................................................................................................15
3.1.2 SND_UD ..............................................................................................................................15
3.1.2.1 SET PRIMARY ADDRESS ..............................................................................................................................16
3.1.2.2 SET SECONDARY ADDRESS .........................................................................................................................17
3.1.2.3 SET BAUD RATE ...........................................................................................................................................18
3.1.2.4 RESET TOTAL/TARIFF 1/TARIFF 2/ALL ENERGY COUNTERS ......................................................................19
3.1.2.5 RESET PARTIAL ENERGY COUNTERS ..........................................................................................................20
3.1.2.6 START PARTIAL ENERGY COUNTERS ..........................................................................................................22
3.1.2.7 STOP PARTIAL ENERGY COUNTERS ............................................................................................................23
3.1.2.8 SELECT A SLAVE USING SECONDARY ADDRESS .........................................................................................24
3.1.2.9 SET PARAMETERS MASKS ...........................................................................................................................25
3.1.3 REQ_UD2 ............................................................................................................................27
3.1.4 RSP_UD ..............................................................................................................................27
3.1.4.1 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED ACTIVE ENERGY, TOTAL ......................................28
3.1.4.2 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED ACTIVE ENERGY, TOTAL ......................................28
3.1.4.3 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE APPARENT ENERGY, TOTAL .............29
3.1.4.4 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE APPARENT ENERGY, TOTAL .............29
3.1.4.5 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE APPARENT ENERGY, TOTAL ............29
3.1.4.6 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE APPARENT ENERGY, TOTAL............30
3.1.4.7 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE REACTIVE ENERGY, TOTAL ...............30
3.1.4.9 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE REACTIVE ENERGY, TOTAL ..............31
3.1.4.10 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE REACTIVE ENERGY, TOTAL ...........31
3.1.4.11 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED ACTIVE ENERGY, TARIFF 1 ................................32
3.1.4.12 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED ACTIVE ENERGY, TARIFF 1 ................................32
3.1.4.13 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE APPARENT ENERGY, TARIFF 1 .......32
3.1.4.14 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE APPARENT ENERGY, TARIFF 1 .......33
3.1.4.15 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE APPARENT ENERGY, TARIFF 1 ......33
3.1.4.16 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE APPARENT ENERGY, TARIFF 1 .....33
3.1.4.17 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 1 .........34
3.1.4.18 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 1 .........34
3.1.4.19 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 1 .......34
3.1.4.20 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 1 .......35
3.1.4.21 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED ACTIVE ENERGY, TARIFF 2 ................................35
3.1.4.22 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED ACTIVE ENERGY, TARIFF 2 ................................36
3.1.4.23 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE APPARENT ENERGY, TARIFF 2 .......36
3.1.4.24 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE APPARENT ENERGY, TARIFF 2 .......36
3.1.4.25 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE APPARENT ENERGY, TARIFF 2 ......37
3.1.4.26 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE APPARENT ENERGY, TARIFF 2 .....37
3.1.4.27 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 2 .........37
3.1.4.28 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED INDUCTIVE REACTIVE ENERGY, TARIFF 2 .........38
3.1.4.29 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 IMPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 2 .......38
3.1.4.30 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 EXPORTED CAPACITIVE REACTIVE ENERGY, TARIFF 2 .......39
3.1.4.31 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 VOLTAGE ..............................................................................39
3.1.4.32 LINE 12, LINE 23 AND LINE 31 VOLTAGE ...................................................................................................39
3.1.4.33 3-PHASE, PHASE 1, PHASE 2, PHASE 3 AND NEUTRAL CURRENT ...........................................................40
3.1.4.34 FREQUENCY ...............................................................................................................................................40
3.1.4.35 PHASE ORDER ............................................................................................................................................40
3.1.4.36 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 POWER FACTOR ...................................................................40
3.1.4.37 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 ACTIVE POWER ....................................................................41
3.1.4.38 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 APPARENT POWER ..............................................................41
3.1.4.39 3-PHASE, PHASE 1, PHASE 2 AND PHASE 3 REACTIVE POWER ................................................................41
3.1.4.40 3-PHASE IMPORTED AND EXPORTED ACTIVE ENERGY PARTIAL ..............................................................42
3.1.4.41 3-PHASE IMPORTED AND EXPORTED INDUCTIVE APPARENT ENERGY PARTIAL .....................................42
3.1.4.42 3-PHASE IMPORTED AND EXPORTED CAPACITIVE APPARENT ENERGY PARTIAL ...................................42
3.1.4.43 3-PHASE IMPORTED AND EXPORTED INDUCTIVE REACTIVE ENERGY PARTIAL ......................................43
3.1.4.44 3-PHASE IMPORTED AND EXPORTED CAPACITIVE REACTIVE ENERGY PARTIAL .....................................43
3.1.4.45 3-PHASE ACTIVE ENERGY BALANCE .........................................................................................................44
3.1.4.46 3-PHASE INDUCTIVE AND CAPACITIVE APPARENT ENERGY BALANCE ...................................................44
3.1.4.47 3-PHASE INDUCTIVE AND CAPACITIVE REACTIVE ENERGY BALANCE .....................................................44
3.1.4.48 CT VALUE ....................................................................................................................................................45
3.1.4.49 PT VALUE ....................................................................................................................................................45
3.1.4.50 ACTUAL TARIFF ..........................................................................................................................................45
3.1.4.51 SERIAL NUMBER ........................................................................................................................................45
3.1.4.52 MODEL ........................................................................................................................................................45
3.1.4.53 TYPE ...........................................................................................................................................................46
3.1.4.54 ENERGY COUNTER FIRMWARE RELEASE ..................................................................................................46
3.1.4.55 ENERGY COUNTER HARDWARE RELEASE .................................................................................................46
3.1.4.56 PRIMARY OR SECONDARY VALUE ..............................................................................................................47
3.1.4.57 ERROR CODE ..............................................................................................................................................47
3.1.4.58 OUT OF RANGE ...........................................................................................................................................47
3.1.4.59 FABRICATION NUMBER..............................................................................................................................48
3.1.4.60 M-BUS MODULE FIRMWARE RELEASE ......................................................................................................48
3.1.4.61 M-BUS MODULE HARDWARE RELEASE .....................................................................................................48
3.1.4.62 PARTIAL COUNTER STATUS .......................................................................................................................48
3.1.4.63 FSA VALUE .................................................................................................................................................48
ANNEX A .......................................................................................... 49
ANNEX B .......................................................................................... 50
ANNEX C .......................................................................................... 52
M-Bus communication protocol 9
English
1. M-Bus interface
The M-BUS Interface (1 module wide, DIN rail mount) is developed to connect the Energy Counter to M-BUS. The interface receives the measurement data from the Energy Counter using infrared port available on the side of the counter, and gets the power supply from the bus.
1.1 Overview
M-BUS Interface complying with EN13757-2 and EN13757-3• Circuiting by means of drilled two-wires cables• 2 screw clamps on M-BUS Interface• Current consumption of M-BUS Interface: • 4 mA. This corresponds to 3 standard loads. The data transmission speed is selectable between 300, 600, 1200, 2400, 4800, 9600, 115200 and 38400 baud• The default speed is 2400 baud• The default Primary Address is 000•
2. Telegram formats
The telegram formats are three, identified by the first character.
Byte Single character (HEX) Short Telegram (HEX) Long Telegram (HEX)
1 E5 10 68
2 C Field L Field
3 A Field L Field (Ripetition)
4 CS (Checksum) 68
5 16 C Field
6 A Field
7 CI Field
8 - YY Data (0 – 246 Bytes)
YY + 1 CS (Checksum)
YY + 2 16
Table 2.1 – The M-BUS Telegram Formats
Single Character• : This telegram format consists of the single character E5h and is used to acknowledge the telegram received. Short Telegram• : This telegram is identified by the start character 10h and consists of five character. It’s used by the M-BUS Master to command the transmission of data from the M-BUS Slave. Long Telegram• : This telegram is identified by the start character 68h and consists of a variable number of characters, in which are present also the active data. It’s used by the M-BUS Master to transmits commands to the M-BUS Slave, and by the M-BUS Slave to send the read-out Data from the M-BUS Master.
2.1 Telegram fields
The telegram fields (C, A, CI Fields, L and CS) have a fixed length of one byte (8 bit) and serve predetermined effects in the M-BUS communication. The L Field defines the number of bytes of the active data.
10 M-Bus communication protocol
English
2.1.1 C FIELD
The Control Field (C Field) contains information on the direction of the exchange of communication, the success of the actual operation of communication and the proper function of the telegram.
Bit Number 7 6 5 4 3 2 1 0
Master > Slave 0 1 FCB FCV F3 F2 F1 F0
Slave > Master 0 0 ACD DFC F3 F2 F1 F0
Table 2.2 – C Field Bit Division
The Bit Nr 6 is set to 1 if the communication has the direction Master > Slave; viceversa it is set to 0. In the Master > Slave direction, if the frame count bit valid (FCV - Bit Nr 4) is set to 1, then the frame count bit (FCB – Bit Nr 5) has not to be ignored.
The FCB is used to indicate successful transmission procedure. A Master shall toggle the bit after a successful reception of a reply from the Slave. After this, if the Slave answer is multi-telegram, the Slave has to send the next telegram of the multi-telegram answer. If the expected reply is missing, or the reception faults, the master resends the same telegram with the same FCB. The Bits Nr 3 – 0 are the function code of the message. The C Field used here, are:
Telegram Name C Field (BIN) C Field (HEX) Telegram Description
SND_NKE 01000000 40 Short Frame Initialization of the Slave
SND_UD 01x10011 53 / 73 Long Frame Master send data to Slave
REQ_UD2 01x11011 5B / 7B Short Frame Master requests Class 2 Data to Slave
RSP_UD 000x1000 08 / 18 Long Frame Data transfer from Slave to Master
Table 2.3 – C Field of the commands used in this protocol
2.1.2 A FIELD
The Address Field (A Field) is used to address the recipient in the calling direction, and to identify the sender of information in the receiving direction. The size of this field is one byte, and it can assume the value between 0 – 255, divided in this way:
A Field (HEX) Primary Address Remarks
00 0 Default Address Given by Manufacturer
01 – FA 1 – 250 Primary Address Settable
FB, FC 251, 252 Reserved for Future Use
FD 253 Used for Secondary Address Procedures
FE 254 Use to Transmit Information to All Partecipants in the M-BUS System
FF 255 Use to Transmit Information to All Partecipants in the M-BUS System
Table 2.4 – Value of Address Field
Using the address 254 (FEh) every Slave answer with the acknowledging (E5h) or with their primary address. Using the address 255 (FFh) no one Slave replies.
2.1.3 CI FIELD
The Control Information (CI Field) contains information for the receiver of the telegram. The CI Field values used here, are:
CI Field (HEX) Primary Address
51 The telegram contains data for the Slave
52 Selection of the Slave
72 The telegram contains data for the Master
B8 Set Baud Rate to 300 bps
B9 Set Baud Rate to 600 bps
M-Bus communication protocol 11
English
CI Field (HEX) Primary Address
BA Set Baud Rate to 1200 bps
BB Set Baud Rate to 2400 bps
BC Set Baud Rate to 4800 bps
BD Set Baud Rate to 9600 bps
BE Set Baud Rate to 19200 bps
BF Set Baud Rate to 38400 bps
Table 2.5 – Value of CI Field
2.1.4 L FIELD
The Length Field (L Field) defines the number of bytes (expressed in hex value) of the Active Data making up the telegram, plus 3 byte for the C, A and Cl Fields. This field is always transmitted twice in Long Telegrams.
2.1.5 CS FIELD (CHECKSUM)
The Checksum (CS Field) serves to recognize transmission and synchronization faults, and is configured from specific parts of telegram. The checksum is calculated from the arithmetical sum of the data mentioned above plus the Active Data, i.e. from C Field to CS Field (excluded).
2.2 Active data
The Active Data (0 – 246 bytes) in Long Telegrams include the data to be read from the M-BUS Master (Read-Out Data), or Command Information transmitted by the Master to the Slave.
2.2.1 CODING OF ACTIVE DATA TRANSMITTED FROM SLAVE TO MASTER: FIXED DATA RECORD HEADER
Each block of Active Data transmitted by the Slave to the Master starts with the following Fixed Data Record Header (FDH):
Byte Nr. Size (Byte) Value (Hex) Description
1 – 4 4 xx xx xx xx M-BUS Interface Identification Number
5 – 6 2 xx xx Manufacturer’s ID
7 1 xx Version Number of M-BUS Interface Firmware (00 – FF)
8 1 02 Medium: Electricity
9 1 xx Access Number (00 – FF > 00)
10 1 xx
M-BUS Interface Status (00 = Energy Counter Unreachable, 01 = Energy Counter Reachable)
11 – 12 2 0000 Signature (always 0000, i.e. not used)
Table 2.6 – Fixed Data Record Header
The Identification Number is a changeable number by the customer and runs from 00000000 to 99999999. The Access Number has unsigned binary coding, and is incremented (modulo 256) by one after each RSP_UD from the Slave.
2.2.2 CODING OF ACTIVE DATA TRANSMITTED FROM SLAVE TO MASTER: DATA RECORDS
Every Data Record sent by Slave to the Master consist of the following Data Record Header (DRH) :
Data Information Block (DIB) Value Information Block (VIB)
DIF DIFE VIF VIFE Data
1 Byte 0 – 10 Byte(s) 1 Byte 0 – 10 Byte(s) 0 – n Bytes
Table 2.7 – Data Records Structure
12 M-Bus communication protocol
English
2.2.2.1 Data Information Block (DIB)
The Data Information Block (DIB) contains as a minimum one Data Information Field (DIF). This byte can be extended by a further 10 Data Information Field Extension Bytes (DIFE). The coding of DIF for this protocol is:
Bit Name Description
7 Extension Bit
Specifies if a DIFE Byte follows: 0 = No 1 = Yes
6 LSB of Storage Number Always at 0, i.e. not used
5 - 4 Functions Field
Specifies the kind of the value, always at: 00 = Instantaneous Value
3 - 0 Data Field
Length and Coding of Data: 0001: 8 Bit Integer 0010: 16 Bit Integer 0011: 24 Bit Integer 0100: 32 Bit Integer 0110: 48 Bit Integer 0111: 64 Bit Integer 1100: 8 digit BCD 1101: Variable Length
Table 2.8 – Data Information Field Structure
The coding of DIFE for this protocol is:
Bit Name Description
7 Extension Bit
Specifies if a DIFE Byte follows: 0 = No 1 = Yes
6 Unit
Specifies the kind of Energy or Power when Bit 7 is set to 1: 0 = Reactive 1 = Apparent
5 - 4 Tariff
Specifies which tariff the values are related: 00 = Total Value 01 = Tariff 1 02 = Tariff 2
3 - 0 Storage Number Always at 0000
Table 2.9 – Data Information Field Extension Structure
If Bit 7 is set to 0, the following Data Byte are related to Active Energy or Power. So, if the first DIFE is followed by another DIFE (i.e. Bit 7 is set to 1), the following Data Byte are related to Reactive or Apparent Energy or Power, depending on Bit 6 value.
2.2.2.2 Value Information Block (VIB)
The Value Information Block (VIB) contains as a minimum one Value Information Field (VIF). This byte can be extended by a further 10 Value Information Field Extension Bytes (DIFE). The coding of VIF is:
Bit Name Description
7 Extension Bit
Specifies if a VIFE Byte follows: 0 = No 1 = Yes
6 - 0 Value Information
Contains Information on the single Value, such as Unit, Multiplicator, etc…
Table 2.10 – Value Information Field Structure
M-Bus communication protocol 13
English
The coding of VIFE is:
Bit Name Description
7 Extension Bit
Specifies if a VIFE Byte follows: 0 = No 1 = Yes
6 - 0 Value Information
Contains Information on the single Value, such as Unit, Multiplicator, etc…
Table 2.11 – Value Information Field Extension Structure
2.2.2.3 Standard Value Information Field (VIF) Used
VIFE (BIN) VIFE (HEX) Description Unit
10000010 82 Energy 0.1Wh
01111001 79 Set Secondary Address Dimensionless
01111010 7A Set Primary Address Dimensionless
10101000 A8 Power mW
11111101 FD A standard VIFE from extension table follows Dimensionless
11111111 FF A further manufacturer specific VIFE follows Dimensionless
Table 2.12 – Standard Value Information Field Used
2.2.2.4 Standard Value Information Field Extension (VIFE) Used
VIF (BIN) VIF (HEX) Description Unit
00001011 0B Parameter Set Identification Dimensionless
00001100 0C Firmware Version Dimensionless
00001101 0D Hardware Version Dimensionless
11001100 CC Voltage mV
11011001 D9 Current mA
Table 2.13– Standard Value Information Field Extension Used
2.2.2.5 Manufacturer Specific Value Information Field Extension (VIFE) Used
VIFE (BIN) VIFE (HEX) Description Unit
00000000 00 3-Phase 0.1Wh, mV, mA, mW, mVA or mvar
00000001 01 Phase 1 0.1Wh, mV, mA, mW, mVA or mvar
00000010 02 Phase 2 0.1Wh, mV, mA, mW, mVA or mvar
00000011 03 Phase 3 0.1Wh, mV, mA, mW, mVA or mvar
00000100 04 Neutral mA
00000101 05 Line 12 mV
00000110 06 Line 23 mV
00000111 07 Line 31 mV
00010000 10 3-Phase Imported Inductive Energy 0.1VAh or 0.1varh
00010001 11 Phase 1 Imported Inductive Energy 0.1VAh or 0.1varh
00010010 12 Phase 2 Imported Inductive Energy 0.1VAh or 0.1varh
00010011 13 Phase 3 Imported Inductive Energy 0.1VAh or 0.1varh
00100000 20 3-Phase Exported Inductive Energy 0.1VAh or 0.1varh
00010001 21 Phase 1 Exported Inductive Energy 0.1VAh or 0.1varh
00010010 22 Phase 2 Exported Inductive Energy 0.1VAh or 0.1varh
14 M-Bus communication protocol
English
VIFE (BIN) VIFE (HEX) Description Unit
00010011 23 Phase 3 Exported Inductive Energy 0.1VAh or 0.1varh
00100100 24 3-Phase Inductive Energy 0.1VAh or 0.1varh
00110000 30 3-Phase Imported Capacitive Energy 0.1VAh or 0.1varh
00110001 31 Phase 1 Imported Capacitive Energy 0.1VAh or 0.1varh
00110010 32 Phase 2 Imported Capacitive Energy 0.1VAh or 0.1varh
00110011 33 Phase 3 Imported Capacitive Energy 0.1VAh or 0.1varh
01000000 40 3-Phase Exported Capacitive Energy 0.1VAh or 0.1varh
01000001 41 Phase 1 Exported Capacitive Energy 0.1VAh or 0.1varh
01000010 42 Phase 2 Exported Capacitive Energy 0.1VAh or 0.1varh
01000011 43 Phase 3 Exported Capacitive Energy 0.1VAh or 0.1varh
01000100 44 3-Phase Capacitive Energy 0.1VAh or 0.1varh
01010000 50 Frequency mHz
01010001 51 Phase Order Dimensionless
01010010 52 CT Value Dimensionless
01010011 53 PT Value Dimensionless
01010100 54 Actual Tariff Dimensionless
01010101 55 Serial Number Dimensionless
01010110 56 Model Dimensionless
01010111 57 Type Dimensionless
01011000 58 Firmware Release Dimensionless
01011001 59 Hardware Release Dimensionless
01100000 60 Wiring Mode Dimensionless
01100001 61 Primary or Secondary Value Dimensionless
01100010 62 Error Code Dimensionless
01100011 63 Out Of Range Dimensionless
01100100 64 FSA Value A
01110000 70 Reset Counter Dimensionless
01110001 71 Start Counter Dimensionless
01110010 72 Stop Counter Dimensionless
01110011 73 Partial Counter Status Dimensionless
10000000 80 Imported Energy 0.1Wh
10000001 81 Exported Energy 0.1Wh
10000010 82 Partial Dimensionless
10000011 83 Balance Dimensionless
10000100 84 Power Factor Dimensionless
10010000 90 Unit Volt-Ampere * 10
-3
mVA
10010001 91 Unit Volt-Ampere per hour * 10
-1
0.1VAh
10010010 92 Unit Reactive Volt-Ampere * 10
-3
mvar
10010011 93 Unit Reactive Volt-Ampere per hour * 10
-1
0.1varh
10010100 94 Unit Hertz (cycle per second) * 10
-3
MHz
Table 2.14 –Manufacturer Specific Value Information Field Extension Used
If Bit No. 7 in the Specific Value Information Field Extension (VIFE) is set to 1, another VIFE Byte follows. If Bit 7 is set to 0, the first Data Byte follows next.
M-Bus communication protocol 15
English
3. Communication process
The M-BUS module accepts two kinds of transmission:
Send / Confirm > SND / CON
Request / Respond > REQ / RSP
A standard straight communication between M-BUS Master and M-BUS Slave is:
MASTER SLAVE
SND_NKE > E5h
SND_UD > E5h
REQ_UD2 > RSP_UD
3.1 Send / confirm procedure
3.1.1 SND_NKE
This procedure serve to start up after an interruption or beginning of communication. If the Slave was selected for secondary addressing, it will be deselected. The value of the frame count bit FCB is cleared in the Slave, i.e. it expects that the first telegram from a Master with FCV = 1, has the FCB = 1. The Slave confirms a correct reception of the telegram with the single character acknowledge (E5h) or omits the answer if it didn’t receive the telegram correctly. Here follows the structure of SND_NKE command:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 10 Start character - short telegram
2 1 40 C Field
3 1 xx
A Field – Primary Address
00 – FA: Valid Primary Address
FB, FC: Reserved for Future Use
FD: Transmission is by Secondary Address
FE: Transmission to All M-BUS Slave in the System (everyone sends E5h)
FF: Transmission to All M-BUS Slave in the System (no one sends E5h)
4 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 2 > byte 4)
5 1 16 Stop charcater
Table 3.1 – SND_NKE command Structure
Answer of the Slave: E5h
3.1.2 SND_UD
This procedure is used to send user data to the M-BUS Slave. The Slave confirms a correct reception of the telegram with the single character acknowledge (E5h) or omits the answer if it didn’t receive the telegram correctly. Here follows the structure of the SND_UD commands used in this protocol.
16 M-Bus communication protocol
English
3.1.2.1 Set Primary Address
This action enables to set a new Primary Address in the Slave interface. Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 06 L-Field
3 1 06 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 01 DIF: 8 Bit Integer, 1 Byte
9 1 7A VIF: Set Primary Address
10 1 xx
Value: New Primary Address
Valid Range: 00 – FA (0 - 250)
Invalid Range: FB – FF
11 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 10)
12 1 16 Stop character
Table 3.2 – SND_UD command: Set Primary Address Using Primary Address
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 0E L-Field
3 1 0E L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
8 – 15 8
xx xx xx xx
xx xx xx xx
Secondary Address
16 1 01 DIF: 8 Bit Integer, 1 Byte
17 1 7A VIF: Set Primary Address
18 1 xx
Value: New Primary Address
Valid Range: 00 – FA (0 - 250)
Invalid Range: FB – FF
19 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 18)
20 1 16 Stop character
Table 3.3 – SND_UD command: Set Primary Address Using Secondary Address
Answer of the Slave: E5h
M-Bus communication protocol 17
English
3.1.2.2 Set Secondary Address
This action enables to set a new Secondary Address in the Slave interface. The Secondary Address has this structure:
Byte Nr. Size (Byte) Value (HEX) Description
1 – 4 4 xx xx xx xx
Identification Number
Range : 00000000 - 99999999
5 – 6 2 xx xx
Manufacturer ID
Range: 01 – FF, 01 - FF
7 1 xx
Version Number
Range: 01 - FF
8 1 02
Device Type Identification
02: Electricity
Table 3.4 – Secondary Address Structure
Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 09 L-Field
3 1 09 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00-FF = 0-255)
7 1 51 CI-Field
8 1 0C DIF: 8 digits BCD, 4 Byte
9 1 79 VIF: Set Secondary Address
10 1 xx
Value: New Secondary Address digit 7 and 8
Range: 00 - 99
11 1 xx
Value: New Secondary Address digit 5 and 6
Range: 00 – 99
12 1 xx
Value: New Secondary Address digit 3 and 4
Range: 00 – 99
13 1 xx
Value: New Secondary Address digit 1 and 2
Range: 00 - 99
14 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 13)
15 1 16 Stop character
Table 3.5 – SND_UD command: Set Secondary Address Using Primary Address
Here follows the command, using the Secondary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 11 L-Field
3 1 11 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 FD A-Field, Primary Address = 253, i.e. take the secondary address
7 1 51 CI-Field
18 M-Bus communication protocol
English
Byte Nr. Size (Byte) Value (HEX) Description
8 – 15 8
xx xx xx xx
xx xx xx xx
Secondary Address
16 1 0C DIF: 8 digits BCD, 4 Byte
17 1 79 VIF: Set Secondary Address
18 1 xx
Value: New Secondary Address digit 7 and 8 Range: 00 - 99
19 1 xx
Value: New Secondary Address digit 5 and 6 Range: 00 – 99
20 1 xx
Value: New Secondary Address digit 3 and 4 Range: 00 – 99
21 1 xx
Value: New Secondary Address digit 1 and 2 Range: 00 - 99
22 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 21)
23 1 16 Stop character
Table 3.6 – SND_UD command: Set Secondary Address Using Secondary Address
Answer of the Slave: E5h
3.1.2.3 Set Baud Rate
This action allows to change the Baud Rate of the M-BUS Slave. The Slave answers with single character acknowledgement (E5h) in the old baud rate. As soon as the ACK is transmitted, the Slave switches to the new baud rate. To make sure that the Slave has properly changed its baud rate, the Master, within 2 minutes has to send a command to the Slave in the new baud rate. If the Slave doesn’t send the ACK after x retry, the Master has to return to the old baud rate. Here follows the command, using the Primary Address of the Slave:
Byte Nr. Size (Byte) Value (HEX) Description
1 1 68 Start character long query
2 1 03 L-Field
3 1 03 L-Field Ripetition
4 1 68 Start character long query ripetition
5 1 73 C-Field SND_UD
6 1 xx A-Field, Primary Address (00 - FF = 0 - 255)
7 1 xx
CI-Field: Set New Baud Rate B8: Set Baud Rate to 300 baud B9: Set Baud Rate to 600 baud BA: Set Baud Rate to 1200 baud BB: Set Baud Rate to 2400 baud BC: Set Baud Rate to 4800 baud BD: Set Baud Rate to 9600 baud BE: Set Baud Rate to 19200 baud BF: Set Baud Rate to 38400 baud
8 1 xx
CS Checksum, summed from C-Field to Selected Parameter of Parameter Set 19 (byte 5 > byte 7)
9 1 16 Stop character
Table 3.7 – SND_UD command: Set Baud Rate Using Primary Address
Loading...
+ 42 hidden pages