Gigabyte Z490 Aorus Pro AX operation manual

0 (0)

SiC620, SiC620A

www.vishay.com

Vishay Siliconix

 

60 A VRPower® Integrated Power Stage

DESCRIPTION

The SiC620 and SiC620A are integrated power stage solutions optimized for synchronous buck applications to offer high current, high efficiency, and high power density performance. Packaged in Vishay’s proprietary 5 mm x 5 mm MLP package, SiC620 and SiC620A enables voltage regulator designs to deliver up to 60 A continuous current per phase.

The internal power MOSFETs utilizes Vishay’s state-of-the-art Gen IV TrenchFET technology that delivers industry benchmark performance to significantly reduce switching and conduction losses.

The SiC620 and SiC620A incorporates an advanced MOSFET gate driver IC that features high current driving capability, adaptive dead-time control, an integrated bootstrap Schottky diode, a thermal warning (THWn) that alerts the system of excessive junction temperature, and zero current detect to improve light load efficiency. The drivers are also compatible with a wide range of PWM controllers and supports tri-state PWM, 3.3 V (SiC620A) / 5 V (SiC620) PWM logic.

FEATURES

• Thermally enhanced PowerPAK® MLP55-31L package

Vishay’s Gen IV MOSFET technology and a low-side MOSFET with integrated Schottky

diode

Delivers up to 60 A continuous current

95 % peak efficiency

High frequency operation up to 1.5 MHz

Power MOSFETs optimized for 12 V input stage

3.3 V (SiC620A) / 5 V (SiC620) PWM logic with tri-state and hold-off

Zero current detect control for light load efficiency improvement

Low PWM propagation delay (< 20 ns)

Thermal monitor flag

Under voltage lockout for VCIN

Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

APPLICATIONS

• Multi-phase VRDs for CPU, GPU, and memory

TYPICAL APPLICATION DIAGRAM

5 V

V

HG

IN

DRV

 

 

V

BOOT

VCIN

PHASE

 

ZCD_EN#

VSWH

 

DSBL#

PWM

Gate

 

PWM

driver

controller

THWn

C

LG

P

NDG

NDG

VIN

VOUT

Fig. 1 - SiC620 and SiC620A Typical Application Diagram

S14-2385-Rev. E, 08-Dec-14

1

Document Number: 62922

 

For technical questions, contact: powerictechsupport@vishay.com

 

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

www.vishay.com

PINOUT CONFIGURATION

SiC620, SiC620A

Vishay Siliconix

 

BL#DS

THWn

V

P

 

V

V

V

 

 

DRV

NDG

LG

WHS

WHS

WHS

 

 

31

30

29

28

27

26

25

24

 

PWM 1

 

 

 

GL

 

 

23 VSWH

ZCD_EN# 2

 

 

 

 

 

 

 

 

 

 

 

22 VSWH

VCIN

CGND

 

 

 

 

3

 

 

 

 

 

 

21 VSWH

CGND

4

 

 

 

 

 

 

20 V

SWH

BOOT 5

 

 

 

PGND

19 VSWH

GH 6

 

 

 

 

 

 

18 VSWH

PHASE 7

VIN

 

 

 

 

 

17 VSWH

VIN

8

 

 

 

 

 

 

16 VSWH

 

9

10

11

 

12

13

14

15

 

 

V

V

V

 

P

P

P

P

 

 

IN

IN

IN

 

NDG

NDG

NDG

NDG

 

 

33

SWH

SWH

SWH

GL

GND

DRV

THWn

DBL#S

 

 

 

V

V

V

P

V

 

 

 

GL

24

25

26

27

28

29

30

31

 

 

VSWH 23

 

 

GL

 

 

 

 

1

PWM

 

 

 

 

 

 

 

 

 

2

ZCD_EN#

VSWH 22

 

 

 

 

 

32

 

VSWH 21

 

 

 

 

CGND

3

VCIN

V

SWH

20

 

 

 

 

 

 

 

4

CGND

V

SWH

19

 

35

 

 

 

 

 

5

BOOT

 

 

PGND

 

 

 

 

 

 

VSWH 18

 

 

 

 

6

HG

 

 

 

 

 

34

 

VSWH 17

 

 

 

 

 

 

7

PHASE

 

 

 

 

 

VIN

 

VSWH 16

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

VIN

 

 

15

14

13

12

 

11

10

9

 

 

 

 

GND

GND

GND

GND

 

IN

IN

IN

 

 

 

 

 

V

V

V

 

 

 

 

P

P

P

P

 

 

 

 

 

 

 

Top view

Bottom view

 

 

Fig. 2 - SiC620 and SiC620A Pin Configuration

 

 

 

 

PIN CONFIGURATION

 

 

PIN NUMBER

NAME

 

FUNCTION

 

 

 

 

1

PWM

PWM control input

 

 

 

 

 

2

ZCD_EN#

ZCD control. Active low

 

 

 

 

 

3

VCIN

Supply voltage for internal logic circuitry

 

4, 32

CGND

Analog ground for the driver IC

 

5

BOOT

High-side driver bootstrap voltage

 

 

 

 

 

6

GH

High-side gate signal

 

 

 

 

 

7

PHASE

Return path of high-side gate driver

 

 

 

 

8 to 11, 34

VIN

Power stage input voltage. Drain of high-side MOSFET

12 to 15, 28, 35

PGND

Power ground

 

16 to 26

VSWH

Switch node of the power stage

 

27, 33

GL

Low-side gate signal

 

 

 

 

 

29

VDRV

Supply voltage for internal gate driver

 

30

THWn

Thermal warning open drain output

 

 

 

 

 

31

DSBL#

Disable pin. Active low

 

 

 

 

 

ORDERING INFORMATION

PART NUMBER

PACKAGE

 

MARKING CODE

OPTION

 

 

 

 

 

SiC620CD-T1-GE3

PowerPAK MLP55-31L

 

SiC620

5 V PWM optimized

 

 

 

 

 

SiC620ACD-T1-GE3

PowerPAK MLP55-31L

 

SiC620A

3.3 V PWM optimized

 

 

 

 

 

SiC620DB / SiC620ADB

 

 

Reference board

 

 

 

 

 

 

 

 

 

 

 

S14-2385-Rev. E, 08-Dec-14

2

 

Document Number: 62922

For technical questions, contact: powerictechsupport@vishay.com

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SiC620, SiC620A

www.vishay.com

 

 

Vishay Siliconix

 

 

 

 

 

 

 

 

ABSOLUTE MAXIMUM RATINGS

 

 

 

 

ELECTRICAL PARAMETER

CONDITIONS

LIMIT

 

UNIT

 

 

 

 

 

Input Voltage

VIN

-0.3 to +25

 

 

Control Logic Supply Voltage

VCIN

-0.3 to +7

 

 

Drive Supply Voltage

VDRV

-0.3 to +7

 

 

Switch Node (DC voltage)

VSWH

-0.3 to +25

 

 

 

 

 

 

Switch Node (AC voltage) (1)

-7 to +30

 

 

 

 

 

BOOT Voltage (DC voltage)

VBOOT

32

 

V

 

 

 

 

BOOT Voltage (AC voltage) (2)

38

 

 

 

 

 

BOOT to PHASE (DC voltage)

VBOOT-PHASE

-0.3 to +7

 

 

 

 

 

 

BOOT to PHASE (AC voltage) (3)

-0.3 to +8

 

 

 

 

 

All Logic Inputs and Outputs

 

-0.3 to VCIN +0.3

 

(PWM, DSBL#, and THWn)

 

 

 

 

 

 

 

 

 

 

 

Output Current, IOUT(AV) (4)

fS = 300 kHz, VIN = 12 V, VOUT = 1.8 V

60

 

A

fS = 1 MHz, VIN = 12 V, VOUT = 1.8 V

50

 

 

 

 

Max. Operating Junction Temperature

TJ

150

 

 

Ambient Temperature

TA

-40 to +125

 

°C

Storage Temperature

Tstg

-65 to +150

 

 

Electrostatic Discharge Protection

Human body model, JESD22-A114

3000

 

V

 

 

 

Charged device model, JESD22-C101

1000

 

 

 

 

 

 

 

 

 

Notes

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

(1)The specification values indicated “AC” is VSWH to PGND -8 V (< 20 ns, 10 μJ), min. and 30 V (< 50 ns), max.

(2)The specification value indicates “AC voltage” is VBOOT to PGND, 38 V (< 50 ns) max.

(3)The specification value indicates “AC voltage” is VBOOT to VPHASE, 8 V (< 20 ns) max.

(4)Output current rated with testing evaluation board at TA = 25 °C with natural convection cooling. The rating is limited by the peak evaluation board temperature, TJ

RECOMMENDED OPERATING RANGE

ELECTRICAL PARAMETER

MINIMUM

TYPICAL

MAXIMUM

UNIT

 

 

 

 

 

Input Voltage (VIN)

4.5

-

18

 

Drive Supply Voltage (VDRV)

4.5

5

5.5

 

Control Logic Supply Voltage (VCIN)

4.5

5

5.5

V

Switch Node (VSWH, DC voltage)

-

-

18

 

BOOT to PHASE (VBOOT-PHASE, DC voltage)

4

4.5

5.5

 

Thermal Resistance from Junction to Ambient

-

10.6

-

°C/W

 

 

 

 

Thermal Resistance from Junction to Case

-

1.6

-

 

 

 

 

 

 

S14-2385-Rev. E, 08-Dec-14

3

Document Number: 62922

 

For technical questions, contact: powerictechsupport@vishay.com

 

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SiC620, SiC620A

www.vishay.com

 

 

 

Vishay Siliconix

 

 

 

 

 

 

 

 

 

 

 

 

ELECTRICAL SPECIFICATIONS

 

 

 

 

 

(DSBL# = ZCD_EN# = 5 V, VIN = 12 V, VDRV and VCIN = 5 V, TA = 25 °C)

 

 

 

 

PARAMETER

 

SYMBOL

TEST CONDITION

 

LIMITS

 

UNIT

 

 

 

 

 

MIN.

TYP.

MAX.

 

 

 

 

 

 

 

 

 

 

 

 

 

POWER SUPPLY

 

 

 

 

 

 

 

 

 

VDSBL# = 0 V, no switching

-

12

-

 

Control Logic Supply Current

 

IVCIN

VDSBL# = 5 V, no switching, VPWM = FLOAT

-

300

-

μA

 

 

 

VDSBL# = 5 V, fS = 300 kHz, D = 0.1

-

380

-

 

 

 

 

fS = 300 kHz, D = 0.1

-

15

25

mA

Drive Supply Current

 

IVDRV

fS = 1 MHz, D = 0.1

-

50

-

 

 

 

VDSBL# = 0 V, no switching

-

25

-

μA

 

 

 

 

 

 

VDSBL# = 5 V, no switching

-

60

-

 

 

 

 

BOOTSTRAP SUPPLY

 

 

 

 

 

 

Bootstrap Diode Forward Voltage

 

VF

IF = 2 mA

 

 

0.4

V

PWM CONTROL INPUT (SiC620)

 

 

 

 

 

 

Rising Threshold

 

VTH_PWM_R

 

3.4

3.8

4.2

 

Falling Threshold

 

VTH_PWM_F

 

0.72

0.9

1.1

 

Tri-state Voltage

 

VTRI

VPWM = FLOAT

-

2.3

-

V

Tri-state Rising Threshold

 

VTRI_TH_R

 

0.9

1.15

1.38

 

Tri-state Falling Threshold

 

VTRI_TH_F

 

3

3.3

3.6

 

Tri-state Rising Threshold

 

VHYS_TRI_R

 

-

225

-

 

Hysteresis

 

 

 

 

 

 

 

 

 

mV

 

 

 

 

 

 

 

Tri-state Falling Threshold

 

VHYS_TRI_F

 

-

325

-

 

 

 

Hysteresis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PWM Input Current

 

IPWM

VPWM = 5 V

-

-

350

μA

 

VPWM = 0 V

-

-

-350

 

 

 

 

PWM CONTROL INPUT (SiC620A)

 

 

 

 

 

 

Rising Threshold

 

VTH_PWM_R

 

2.2

2.45

2.7

 

Falling Threshold

 

VTH_PWM_F

 

0.72

0.9

1.1

 

Tri-state Voltage

 

VTRI

VPWM = FLOAT

-

1.8

-

V

Tri-state Rising Threshold

 

VTRI_TH_R

 

0.9

1.15

1.38

 

Tri-state Falling Threshold

 

VTRI_TH_F

 

1.95

2.2

2.45

 

Tri-state Rising Threshold

 

VHYS_TRI_R

 

-

250

-

 

Hysteresis

 

 

 

 

 

 

 

 

 

mV

 

 

 

 

 

 

 

Tri-state Falling Threshold

 

VHYS_TRI_F

 

-

300

-

 

 

 

Hysteresis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PWM Input Current

 

IPWM

VPWM = 3.3 V

-

-

225

μA

 

VPWM = 0 V

-

-

-225

 

 

 

 

TIMING SPECIFICATIONS

 

 

 

 

 

 

Tri-State to GH/GL Rising

 

tPD_TRI_R

 

-

30

-

 

Propagation Delay

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tri-state Hold-Off Time

 

tTSHO

 

-

130

-

 

GH - Turn Off Propagation Delay

 

tPD_OFF_GH

 

-

15

-

 

GH - Turn On Propagation Delay

 

tPD_ON_GH

No load, see fig. 4

-

10

-

 

(Dead time rising)

 

 

 

 

 

 

 

 

 

ns

 

 

 

 

 

 

 

GL - Turn Off Propagation Delay

 

tPD_OFF_GL

 

-

12

-

 

 

 

GL - Turn On Propagation Delay

 

tPD_ON_GL

 

-

10

-

 

(Dead time falling)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSBL# Lo to GH/GL Falling

 

tPD_DSBL#_F

Fig. 5

-

15

-

 

Propagation Delay

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PWM Minimum On-Time

 

tPWM_ON_MIN

 

30

-

-

 

S14-2385-Rev. E, 08-Dec-14

4

Document Number: 62922

 

For technical questions, contact: powerictechsupport@vishay.com

 

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

PWM_TH_F

SiC620, SiC620A

www.vishay.com

 

 

 

Vishay Siliconix

 

 

 

 

 

 

 

 

 

 

 

 

ELECTRICAL SPECIFICATIONS

 

 

 

 

 

(DSBL# = ZCD_EN# = 5 V, VIN = 12 V, VDRV and VCIN = 5 V, TA = 25 °C)

 

 

 

 

PARAMETER

 

SYMBOL

TEST CONDITION

 

LIMITS

 

UNIT

 

 

 

 

 

MIN.

TYP.

MAX.

 

 

 

 

 

 

 

 

 

 

 

 

 

DSBL# ZCD_EN# INPUT

 

 

 

 

 

 

DSBL# Logic Input Voltage

 

VIH_DSBL#

Input logic high

2

-

-

 

 

VIL_DSBL#

Input logic low

-

-

0.8

V

 

 

ZCD_EN# Logic Input Voltage

 

VIH_ZCD_EN#

Input logic high

2

-

-

 

 

 

VIL_ZCD_EN#

Input logic low

-

-

0.8

 

 

 

 

PROTECTION

 

 

 

 

 

 

Under Voltage Lockout

 

VUVLO

VCIN rising, on threshold

-

3.7

4.1

V

 

VCIN falling, off threshold

2.7

3.1

-

 

 

 

 

Under Voltage Lockout Hysteresis

 

VUVLO_HYST

 

-

575

-

mV

THWn Flag Set (2)

 

TTHWn_SET

 

-

160

-

 

THWn Flag Clear (2)

 

TTHWn_CLEAR

 

-

135

-

°C

THWn Flag Hysteresis (2)

 

TTHWn_HYST

 

-

25

-

 

THWn Output Low

 

VOL_THWn

ITHWn = 2 mA

-

0.02

-

V

Notes

(1)Typical limits are established by characterization and are not production tested.

(2)Guaranteed by design.

DETAILED OPERATIONAL DESCRIPTION

PWM Input with Tri-state Function

The PWM input receives the PWM control signal from the VR controller IC. The PWM input is designed to be compatible with standard controllers using two state logic (H and L) and advanced controllers that incorporate tri-state logic (H, L and tri-state) on the PWM output. For two state logic, the PWM input operates as follows. When PWM is driven above

VPWM_TH_R the low-side is turned on and the high-side is turned on. When PWM input is driven below V the

high-side is turned OFF and the low-side is turned ON. For tri-state logic, the PWM input operates as previously stated for driving the MOSFETs. However, there is an third state that is entered as the PWM output of tri-state compatible controller enters its high impedance state during shut-down. The high impedance state of the controller’s PWM output allows the SiC620 and SiC620A to pull the PWM input into the tri-state region (see PWM Timing Diagram). If the PWM input stays in this region for the tri-state hold-off period,

tTSHO, both high-side and low-side MOSFETs are turned OFF. This function allows the VR phase to be disabled

without negative output voltage swing caused by inductor ringing and saves a Schottky diode clamp. The PWM and tri-state regions are separated by hysteresis to prevent false triggering. The SiC620A incorporates PWM voltage thresholds that are compatible with 3.3 V logic and the SiC620 thresholds are compatible with 5 V logic.

Disable (DSBL#)

In the low state, the DSBL# pin shuts down the driver IC and disables both high-side and low-side MOSFETs. In this state, standby current is minimized. If DSBL# is left unconnected, an internal pull-down resistor will pull the pin to CGND and shut down the IC.

Diode Emulation Mode (ZCD_EN#)

When ZCD_EN# pin is logic Low and PWM signal switches Low, GL is forced on (after normal BBM time). During this time, it is under control of the ZCD (zero crossing detect) comparator. If, after the internal blanking delay, the inductor current becomes zero, the low-side is turned off. This improves light load efficiency by avoiding discharge of output capacitors. If PWM enters tri-state, then device will go into normal tri-state mode after tri-state delay. The GL output will be turned off regardless of Inductor current, this is an alternative method of improving light load efficiency by reducing switching losses.

Thermal Shutdown Warning (THWn)

The THWn pin is an open drain signal that flags the presence of excessive junction temperature. Connect with a maximum of 20 kΩ, to VCIN. An internal temperature sensor detects the junction temperature. The temperature threshold is 160 °C. When this junction temperature is exceeded the THWn flag is set. When the junction temperature drops below 135 °C the device will clear the THWn signal. The SiC620 and SiC620A do not stop operation when the flag is set. The decision to shutdown must be made by an external thermal control function.

Voltage Input (VIN)

This is the power input to the drain of the high-side power MOSFET. This pin is connected to the high power intermediate BUS rail.

S14-2385-Rev. E, 08-Dec-14

5

Document Number: 62922

 

For technical questions, contact: powerictechsupport@vishay.com

 

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

SiC620, SiC620A

www.vishay.com

Vishay Siliconix

 

Switch Node (VSWH and PHASE)

The switch node, VSWH, is the circuit power stage output. This is the output applied to the power inductor and output filter to deliver the output for the buck converter. The PHASE pin is internally connected to the switch node VSWH. This pin is to be used exclusively as the return pin for the BOOT capacitor. A 20 kΩ resistor is connected between GH and PHASE to provide a discharge path for the HS MOSFET in the event that VCIN goes to zero while VIN is still applied.

Ground Connections (CGND and PGND)

PGND (power ground) should be externally connected to CGND (control signal ground). The layout of the printed circuit board should be such that the inductance separating

CGND and PGND is minimized. Transient differences due to inductance effects between these two pins should not

exceed 0.5 V

Control and Drive Supply Voltage Input (VDRV, VCIN)

VCIN is the bias supply for the gate drive control IC. VDRV is the bias supply for the gate drivers. It is recommended to

separate these pins through a resistor. This creates a low pass filtering effect to avoid coupling of high frequency gate drive noise into the IC.

Bootstrap Circuit (BOOT)

The internal bootstrap diode and an external bootstrap capacitor form a charge pump that supplies voltage to the BOOT pin. An integrated bootstrap diode is incorporated so that only an external capacitor is necessary to complete the bootstrap circuit. Connect a boot strap capacitor with one leg tied to BOOT pin and the other tied to PHASE pin.

Shoot-Through Protection and Adaptive Dead Time

The SiC620 and SiC620A have an internal adaptive logic to avoid shoot through and optimize dead time. The shoot through protection ensures that both high-side and low-side MOSFETs are not turned ON at the same time. The adaptive dead time control operates as follows. The HS and LS gate voltages are monitored to prevent the one turning ON from tuning ON until the other's gate voltage is sufficiently low (< 1 V). Built in delays also ensure that one power MOS is completely OFF, before the other can be turned ON. This feature helps to adjust dead time as gate transitions change with respect to output current and temperature. Change with respect to output current and temperature.

Under Voltage Lockout (UVLO)

During the start up cycle, the UVLO disables the gate drive holding high-side and low-side MOSFET gates low until the supply voltage rail has reached a point at which the logic circuitry can be safely activated. The SiC620, SiC620A also incorporates logic to clamp the gate drive signals to zero when the UVLO falling edge triggers the shutdown of the device. As an added precaution, a 20 kΩ resistor is connected between GH and PHASE to provide a discharge path for the HS MOSFET.

FUNCTIONAL BLOCK DIAGRAM

 

 

 

 

 

 

 

THWn

 

BOOT

GH

VIN

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDRV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermal monitor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

& warning

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCIN

 

 

 

UVLO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DISB#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VCIN

 

 

 

 

 

-

 

 

 

 

 

 

20K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PHASE

 

 

 

 

PWM logic

 

Anti-cross

 

+

Vref = 1 V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GL

 

 

 

 

 

 

 

 

 

 

 

 

 

control &

 

conduction

 

 

 

 

 

 

 

 

 

 

 

 

 

PWM

 

 

 

state

 

 

control

 

-

 

 

 

 

 

 

 

 

 

 

 

VSWH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

machine

 

 

logic

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vref = 1 V

 

 

 

 

 

 

 

 

 

CGND

 

 

 

VSWH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VDRV

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PGND

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ZCD_EN#

 

 

 

 

GL

PGND

 

 

 

 

 

 

 

Fig. 3 - SiC620 and SiC620A Functional Block Diagram

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S14-2385-Rev. E, 08-Dec-14

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

Document Number: 62922

 

 

 

For technical questions, contact: powerictechsupport@vishay.com

 

 

 

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Gigabyte Z490 Aorus Pro AX operation manual

 

 

 

 

 

 

SiC620, SiC620A

 

 

 

 

 

 

 

 

www.vishay.com

 

 

 

Vishay Siliconix

 

 

 

 

 

 

 

 

 

 

 

 

 

DEVICE TRUTH TABLE

 

 

 

 

 

DSBL#

 

ZCD_EN#

PWM

GH

 

GL

 

 

 

 

 

 

 

 

 

Open

 

X

X

L

 

L

 

 

 

 

 

 

 

 

 

L

 

X

X

L

 

L

 

 

 

 

 

 

 

 

 

H

 

L

L

L

 

H, IL > 0 A

 

 

 

L, IL < 0 A

 

 

 

 

 

 

 

 

H

 

L

H

H

 

L

 

 

 

 

 

 

 

 

 

H

 

L

Tri-state

L

 

L

 

 

 

 

 

 

 

 

 

H

 

H

L

L

 

H

 

 

 

 

 

 

 

 

 

H

 

H

H

H

 

L

 

 

 

 

 

 

 

 

 

H

 

H

Tri-state

L

 

L

 

 

 

 

 

 

 

 

PWM TIMING DIAGRAM

VTH_PWM_R

VTH_TRI_F

VTH_TRI_R

VTH_PWM_F

PWM

tPD_OFF_GL

t TSHO

GL

t PD_ON_GL

tPD_TRI_R

tTSHO

tPD_ON_GH

t PD_OFF_GH

 

t PD_TRI_R

GH

Fig. 4 - Definition of PWM Logic and Tri-state

DSBL# PROPAGATION DELAY

PWM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PWM

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSBL#

 

 

 

 

 

 

 

 

 

Disable

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSBL#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GH

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GL

 

 

 

 

 

 

 

 

GL

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

 

 

 

 

 

 

 

 

t

DSBL#Low to GH Falling Propagation Delay

 

DSBL# Low to GL Falling Propagation Delay

Fig. 5 - DSBL# Falling Propagation Delay

S14-2385-Rev. E, 08-Dec-14

7

Document Number: 62922

 

For technical questions, contact: powerictechsupport@vishay.com

 

THIS DOCUMENT IS SUBJECT TO CHANGE WITHOUT NOTICE. THE PRODUCTS DESCRIBED HEREIN AND THIS DOCUMENT ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

Loading...
+ 14 hidden pages