This product is warranted by CERONIX to be free of defects in material
and workmanship for a period of two years from the date of purchase.
All parts and labor are free of charge during the warranty period.
This warranty does not cover mechanical breakage due to physical abuse.
It is the customer's responsibility for shipping the defective unit to and from
CERONIX or one of the authorized service centers for repair.
Please attach a note describing the problem.
CERONIX Inc.
13350 New Airport Road
Auburn, CA. 95602-7419
Phone: (530) 886-6400
FAX: (530) 888-1065
WEB: www.ceronix.com
CERONIX shall not be liable for any consequential damages, including
without limitation damages resulting from loss of use.
Ceronix will repair XX93 monitors after the 2 year warranty,
for a minimal charge, plus shipping to and from Ceronix.
®
Recognized under the Component Program of Underwriters Laboratories Inc., the
Canadian Standards Association, and TÜV Product Service.
Compliance to the following Standards:
IEC 60950, CAN/CSA-C22.2 No. 60950-00, ANSI/UL 60950, CAN/CSA-C22.2 No.
1-98, IEC 65:85 + A1:87 + A2:89 + A3:92.
ISO 9001:1994 Certified through TÜV Management Service.
This manual is specifically written to aid the service technician, repairing
CERONIX Models 1493, 1793, 1993, 2093, 2793, and 3693 color monitors.
There are three main sections:
1. General Description.
2. Circuit Description.
3. Repair Setup and Appendix.
Introduction Block
Diagram
Installation
Instructions
Description
BLOCK
Diagram
Schematics
&
Assembly
Drawings
Circuit
Description
Trouble
shooting
Handbook
Appendix
Convergence
Degaussing
P/O Form
PRAs
To understand how the Monitor works, it is best to know what each circuit
does and how each circuit relates to the other circuits. The Block Diagram is
presented in a simplified view and a comprehensive view to accomplish the goal of
understanding the whole unit. Once the general picture is clear, the complexity of
each circuit will be easier to understand.
The Circuit Description is also written in two views, a simplified view and a
detailed view to help give the reader a clear understanding of what each
component does. This understanding is most helpful for the more complex
problems or multiple problems that sometimes occur.
The power supply trouble shooting section describes methods used to power up
various monitor circuits, when there is a fault in the monitor, which disables the
power supply.
The appendix includes; filament voltage test, convergence procedure,
replacement parts purchase order form, degaussing coil attachment specification,
high pot test, wire routing drawing, production assembly drawings (PADs), C, I, J,
& K film resistor arrays and a parts list addendum. The parts list addendum is
used to add new information describing part changes. Tables, suitable for pasting
on these pages, will be published as new variations of the XX93 monitors are
produced.
i
TABLE OF CONTENTS
About This Manual.............................................................................................................
Table of Contents................................................................................................................
This block diagram gives a broad view of the circuit organization of the 1493,
1793, 1993, 2093, 2793, and 3693 monitors. The blocks with the bold outline
represent circuits which provide these monitors with a wide range of
operating conditions without the need for adjustment.
VIDEO
Interface
Blanking
Remote
Controls
VIDEO
Amps.
AUTO BIAS
Vertical Deflection
Horizontal Deflection
Horizontal Size
Control
POWER SUPPLY
CRT
FBT
IB
Fault &
High Temp.
Detection
The video interface circuit can be programmed to accept; +Analog AC or
DC coupled, -Analog, and 4 line TTL. The M. GAIN or contrast control is
located on the remote control board.
The auto bias circuit eliminates the need for the color setup procedure.
This circuit is designed to actively compensate for picture tube drift which
normally causes unbalanced color. The auto bias circuit also adjusts the
CRT gain to compensate for gain loss with age.
The horizontal size control circuit permits the horizontal size to be adjusted
from a remote control board. This circuit is also used to compensate for
pincushion distortion and blooming. Anti-blooming is accomplished by
correcting horizontal size variations which are caused by the additional load
on the flyback transformer under high beam current conditions.
Careful reading of all the information presented in this manual is a good
way to learn how to repair the CERONIX monitor.
1
Installation Instructions For The XX93 Monitors.
1.
A 3 amp slow blow fuse (for the degaussing current) and a 75 VA isolation
transformer are the minimum requirements for using our monitor in a product.
2.
Unpack the monitor.
3.
Install the monitor in the enclosure.
4.
Connect the green/yellow ground wire to the earth ground connection on the enclosure.
This wire is connected to the ground screw, located on the monitor chassis behind the
serial number label.
Refer to the installation instructions supplied
by the system manufacturer for details of
mounting the monitor in the enclosure.
WARNING!
!
Failure to connect this ground wire before applying power is not
allowed, since this condition can produce a shock hazard. The
chassis to mains connector resistance shall not exceed 100mΩ.
Check that the following wires are properly connected;
5.
Green wire from the CRT aquadag braid to the video board.
A.
12 conductor flat cable from the video board to the main board.
B.
Red high voltage wire from the flyback transformer
C.
to the picture tube anode cap.
Yoke cable from the yoke to the main board.
D.
Remote cable from the remote control board to the main board.E.
Note;
6.
Plug in the
seven conductor
video connector.
7.
Plug in the power connector
from the isolation transformer.
Be sure these wires are secured such that they do not touch any metal parts.
PinSignal
0
+12V from monitor.
1
Horizontal sync.
2
Vertical sync.
ISOLATION TRANSFORMER
Mains
Power
3A-T
FUSE
GREEN / YELLOW WIRE
Color
White
Yellow
Purple
75VA
Signal ground.
3
Red video.
4
Green video.
5
Blue video.
6
Gray
Red
Green
Blue
Attached to the
monitor chassis.
Apply power to the monitor and the drive electronics.
8.
Check the focus and, if necessary, adjust the top control on the flyback transformer.
9.
Adjust the controls on the remote control board for proper;
1. Un fusible á fusion lente de 3 amp (pour le courant du champ magnétique d´adjustement) et un
transformateur d´isolation de 75 VA sont le minimum requis pour utiliser nos écrans dans un produit.
2. Déballer l´écran.
3. Installer l´écran dans son carter.
Se référer aux instructions d´installation foumies par le fabriquant
du systéme pour les détails de montage de l´écran dans le carter.
4. Relier le fil de terre vert/jaune á la prise de terre sur le carter. Ce cable est relié á la vis
de terre située sur le chassis de l´écran derriére l´étiquette portant le numéro de série.
ATTENTION!Il n´est pas permis de ne pas relier ce fil de terre avant de mettre le courant, car
!
cette situation pourrait provoquer un choc électrique dangereux.
La résistance du chassis aux pricipales connections ne doit pas depasser 100mΩ.
5. Vérifier que les fils suivants sont correctement reliés:
A. Le fil vert de la tresse du tube cathodique aquadag á la carte video.
B. Le cable plat á 12 conducteurs de la carte vidéo á la carte principale.
C. Le cable rouge haut voltage du retout du transformateur au capuchon de
l´anode du tube cathodique.
D. Le fit de bobinage du bobinage á la carte principale.
E. Le fil de télécommande de la carte de la télécommande á la carte principale.
Note: Soyez sur que ces fils sont connectés en toute sécurité de sorte qu´ils ne
touchent aucune partie métallique.
6. Brancher les
sept fils de la
connection vidéo:
BrocheSignalCouleur
0
+ 12V de l´écran
1
Synchro Horizontale
2
Synchro Verticale
Blanc
Jaune
Violet
3
Signal de terre
4
Rouge vidéo
5
Vert vidéo
6
Bleu vidéo
Gris
Rouge
Vert
Bleu
TRANSFORMATEUR D'ISOLATION
7. Brancher les fils de courant
depuis le transformateur d'isolation:
Courant
Principaux
3A-T
75VA
FUSE
FIL VERT / JAUNE
Attasché au chassis
du moniteur.
8. Amener le courant á l´écran et au disque électronique.
9. Vérifier le foyer, et si nécessaire, régler le contróle sur le retour du transformateur.
10. Effectuer les réglages sur la carte de la commande á distance pour:
La taille du balayage horizontal.
La taille du balayage vertical.
La position du balayage fertical.
La position horizontale de l´image.
L´acquisition vidéo.
11. Pour les instructions de convergence, voir page 100 & 101.
3
Installationsanweisungen für die XX93 Monitore.
1. Ein 3 Ampère-T sicherung (für die degaussing-Strömung) und ein 75 VA Isoliertransformator
ist die Minimum-Forderung für benutzen unseren Monitoren in einem Produkt.
2.
Packen Sie den Monitor aus.
Schließen Sie den Monitor
3.
im Gehause an.
4.
Verbinden Sie den Grüne/Gelben Schutzleiter zum Erdung anschluß auf dem Gehause.
Für Details, Folgen Sie den Installation-Anweisungen,
Vom Lieferanten der Antriebelektronik.
Dieser Draht ist verbunden zur der Erdung-Schraube auf dem Monitor-Chassis, und wird
hinter der Serien-Nummer-Aufschrift gefunden.
Unterlassen dieser Verbindung dieses Erdung-Drahts ist
WARNUNG!
!
gesetze widrig. Der Widerßtand von diesem anschluß biz
zum netzstecker darf 100mΩ nicht überschreiten.
Prüfe daß die folgenden Drähte ordentlich verbunden sind;
5.
Grüne Draht vom CRT aquadag zum Video Schaltpult.A.
B.
C.
D.
12 Leiter-Flachkabel vom Videoschaltpult zum Hauptschaltpult.
Rote hochspannungs Draht vom Flybacktransformator zur der Bildröhrenanode.
Jochkabel vom Joch zum Hauptschaltpult.
E.Fernsteuerung Kabel vom Fernsteuerungschaltpult zum Hauptschaltpult.
Notiz;
Stecken Sie den
6.
7 Leiter-VideoVerbindungsstecker ein.
Seien Sie sicher diese Drähte sind so befestigt daß sie kein Metallteil berühren.
0
+12V Von Monitor.
1
Horizontal sync.
Vertical sync.
2
FarbeSignalLeiter
Weiß
Gelb
Purpur
3
Signal-Erdung.
4
Rotes Video.
Grünes Video.
5
6
Blaues Video.
Grau
Rot
Grün
Blau
ISOLIERTRANSFORMATOR
7.
Stecken Sie den Stecker vom
Isoliertransformator ein.
Schalten Sie den Monitor und die Steuerung an.
8.
Prüfe Sie den Fokus und, wenn notwend, stell en Sie die obere Kontrolle ein auf dem
9.
Netzstrom
Grüne/Gelben Schutzleiter
3A-T
SICHERUNG
75VA
Verbindung ist auf dam
Monitore chassis.
Flybacktransformator.
10.
Stellen Sie die Kontrollen des Fernsteuerungsschaltung ein für richtige
- Horizontal Raster Größe.
- Vertical Raster Größe.
- Vertical Raster Position.
- Horizontal Bild Position.
- Video Kontrast.
Für Konvergenz-Anweisungen, auf seite 100 & 101.
11.
4
CERONIX
XX93 Monitor Electrical Specification.
INPUTS
Standard Video Configurations, available, are:
1.
A. Positive Analog, DC Coupled.
Video
Source
D-A
75Ω
Video
Gnd
.6mA
75Ω
B. Positive Analog, AC Coupled.
Video
Source
D-A
Zo=75Ω
Amp.
Video
Gnd
75Ω
10uA
Clamp
C. Negative Analog.
To Amp.
Monitor
To Amp.
Monitor
Min.Typ.Max
.75V
Video
1.0V
Video
.75V
Video
1.0V
Video
Black level
Saturated color
Black level
Saturated color1.00V1.02V1.04V
Black level
Saturated color
Black level
Saturated color
0.00V0.02V0.04V
0.75V0.77V0.79V
0.00V0.02V0.04V
Blk-.02V
Blk+.73V Blk+.75V Blk+.77V
Blk-.02V Blk+0.00V Blk+.02V
Blk+.98V
Blank
Blk+1.00VBlk+1.02V
Blk+.02V
AC voltages are referenced to the R, G, & B
video input voltage during horizontal sync (Hs).
Blank is the black level voltage during Hs.
Video
Source
D-A
Video
Gnd
To Amp.
IN
R
V
Blk.+.7 V
Monitor
Black levelRed & Green
Blue Black level
Saturated color
D. 4 Line TTL also available.
Black level
Color on
Low intensity
Full intensity
*
R,G,B
Video
Intensity
Gnd
Video
Source
*
No pullup resistor on intensity line.
To Amp.
BIAS
+12V
V
Monitor
B
Note: RS170 and other voltage combinations optional for analog video.
5.4V5.6V5.8V
4.85V5.05V5.25V
.7V.9V1.1V
0V
2.7V3.5V
.2V.5V
6.0V
0V.2V.4V
4.5V4.6V4.8V
5
CERONIX
The Sync signals may be of either polarity and separate or composite.2.
XX93 Monitor Electrical Specification.
Sync
Source
For composite sync, vertical and horizontal
sync lines are connected together.
Hs
Vs
Gnd
1.8K
1.8K
220
Monitor
.15V
Ω,
2 PL
High input voltage
Low input voltage
Horizontal sync pulse
Vertical sync pulse
Horizontal frequencies:
Custom horizontal frequencies from 15KHz
to 39KHz are available upon request.
Vertical frequencies:
3.
The Power to the monitor is to be supplied by a secondary winding of an
isolation transformer.
Min.Max.Min.Max.Min.Max.
H SIZE--------------Horizontal raster size
V SIZE---------------Vertical raster size
V RAS. POS.-----Vertical raster position
H POS-------Horizontal picture position
M GAIN---------------------Master gain
10.1"11.1"11.9" 12.9"
7.3"8.3"8.6"9.6"
0"
1" Right1" Left1" Right 1" Left
0mA.75mA0mA.75mA0mA
Model 2093
.50"
0"
Model 2793Model 3693
.50"
13.4" 14.4"
9.8"10.8"
0"
1" Right 1" Left
.50"
.75mA
Min.Max.Min.Max.Min.Max.
14.9" 15.9"20.4" 21.4"
10.9" 11.9"15.1" 16.1"
0"
1" Right1" Left1" Right1" Left
0mA.75mA0mA
.60"
0"
1.0"
1.5mA
27.4" 28.4"
20.3" 21.3"
0"1.0"
1" Right 1" Left
0mA1.5mA
The board Controls are located on the main PCB:
Focus and G2 on the FBT.
Optional board Controls are: pincushion, video black level, and horizontal hold control.
5.
Image
Environmental
6.
Color Temperature
Horizontal linearity
Vertical linearity
Pincushion
1493
17/19/2093
9300°K9300°K9300°K9300°K
-2%+2%
-2%+2%
-2%+2%
-5%+5%-8%+8%
-5%
-3%
Operating temperature
Storage temperature
Operating humidity
Storage humidity
+5%
+3%
0° C
-8%
-5%
70° C
85° C-20° C
20%80%
10%95%
27933693
Min.Max.Min.Max.Min.Max.Min.Max.
-10% +10%
+8%
+5%
-10%
-8%
+10%
+8%
7
CERONIX
Picture tube
7.
XX93 Monitor Electrical Specification.
1493-CGA/VGA/SVGA
1793-VGA/SVGA
1793-SVGA
1993-VGA/SVGA
Useful diagonal
Useful horizontal
Useful vertical
Useful area
Spacing of dot/line trios
Phosphor Trio Type
Deflection angle
Light transmission
CRT surface
Phosphor
Useful diagonal
Useful horizontal
Useful vertical
Useful area
Inchmm
13.233516.1409
11.128112.9328
8.32119.6245
92.1 in 593 cm124 in804 cm
.0110".28mm.0098".25mm
Dot
16407
12.9328
9.7246
125 in807 cm
22
.0106".27mm
Dot
90°
ApproximatelyApproximately
57%50%
Polished/Curved
P22
2093-CGA2793-CGA
Approximately
53%
Polished/Curved
P22
2093-VGA
Inchmm
18.948026.8679
15.940421.4544
11.930316.1408
189 in 1,224 cm345 in2,220 cm
222 2
18.9480
15.9404
11.9303
189 in1,224 cm
22
InchInchmmmm
Dot
90°90°
AR / Flat
P22
InchInchmmmm
Inchmm
18457
14.4366
10.8274
165 in1,003 cm
22222 2
.0102".26mm
Dot
100°
Approximately
45%
AR / Curved
P22
2793-VGA
Inchmm
26.8679
21.4544
16.1408
345 in
2
2,220 cm
Spacing of dot/line trios
Phosphor Trio Type
Deflection angle
Light transmission
CRT surface
Phosphor
Useful diagonal
Useful horizontal
Useful vertical
Useful area
Spacing of dot/line trios
Phosphor Trio Type
Deflection angle
Light transmission
CRT surface
Phosphor
.0331".84mm.0326".83mm
Line
ApproximatelyApproximately
40%38%
Polished/Curved
P22
2793-VGA
Inchmm
26.6676
21.3541
16.0406
341 in 2,196 cm
22
.0299".76mm
Line / Variable
110°
Approximately
81%
Polished/Flat
P22
.0307".78mm
Line
90°
Approximately
40%
Polished/Curved
P22
3693-CGA
Inchmm
35.5902
28.4721
21.3541
605 in3,901 cm
22
.0394"1mm
Line
111°
Approximately
32%
Polished/Curved
P22
Line
110°90°
Polished/Curved
P22
.0326".83mm
Line
110°
Approximately
38%
Polished/Curved
P22
8
Refer to the block diagram on page 15 (foldout) when reading this description.
A
The Video Interface is designed around a custom IC and will accept DC or AC
coupled positive analog video signals. It can also be used with negative analog
and 4 line TTL. This IC has a built in multiplier circuit for the master gain
control and blanking functions. Resistors are used to protect the IC and to set
the gain. The programmed gain is dependent on the input signal amplitude
except with the TTL mode. Solder jumpers and component substations are used
to program the Video Interface for the type of input signal to be received. The
output of the IC drives the video amplifiers. This drive is a current where 0 mA
is black and 10 mA is a saturated color.
B
The Video Amplifiers are of the push pull type. They are built partly on thick
films and partly on the video PCB. Spreading out the amplifier reduces the
component heat and improves the life of the unit. The bandwidth is 25 MHz with
40Vp-p output. The rise and fall times are 20nS.
C
The Beam Current Feedback circuit directs most of the beam current of each
amplifier to the beam current buffer. The only time this current is measured, by
the auto bias circuit, is during the time of the three faint lines at the top of the
screen and three lines thereafter. The CRT auto bias circuit is designed to adjust
the video amplifier bias voltage such that the beam current of each of the three
guns is set to a specific programmed value.
D
The
current signal into a low impedance voltage. This voltage is applied to the auto
bias IC through a 200 ohm resistor. After the three lines of beam current are
measured, the program pulse from the auto bias IC, produces a voltage drop
across this 200 ohm resistor that equals the amplitude of the beam current
voltage.
9
Beam Current Buffer converts the, high impedance low current, beam
E
The CRT Auto Bias IC is a combination of digital and analog circuitry. The
digital part is a counter and control logic which steps the analog circuits through a
sequence of sample and hold conditions. The analog part uses a transconductance
amplifier to control the voltage on a 10uF capacitor (one per gun). This voltage is
buffered and sent to the video amplifiers as the bias voltage. In monitors without
CRT auto bias, this voltage is adjusted manually using a setup procedure to set
the color balance. With CRT auto bias, the color balance is set during the end of
each vertical blanking time.
The control sequence is:
1.
The cycle starts with a sync pulse from the vertical oscillator (15KHz)
or from the vertical sync delay. 15H later the grid pulse starts.
2.
The grid pulse on G1 causes cathode current which can be seen as the
three faint white lines at the top of the screen. This cathode current is
transmitted by the beam current feedback to the beam current buffer
where it is converted to a voltage and applied to the CRT auto bias
input pin. At this time the CRT auto bias IC outputs a reference
voltage at its input pin which sets the voltage across the coupling
capacitor. This coupling capacitor voltage is directly dependent on
beam current.
After the grid pulse is over, the program pulse matches the voltage
3.
from the beam current buffer. If the voltage from the beam current
buffer, during the grid pulse, is the same as the voltage from the
program pulse, the bias is correct and no bias adjustment is made for
that vertical cycle.
F
The timing of the auto bias IC is synchronized to the vertical oscillator and the
flyback pulses. For horizontal frequencies higher than 15.7KHz a Vertical Sync
Delay may be needed to position the grid pulse, generated 3 gray lines, at the top
of the screen. The need for the delay circuit is dependent on the particular CRT
vertical retrace time.
G
The aging of the picture tube (CRT) not only affects the balance of the cathode
cutoff voltage, which is corrected by the auto bias circuit, but it also affects the
gain of the CRT. The
by sensing any common bias voltage change, from the auto bias circuit, and
adjusts the screen voltage to hold the average bias voltage constant. The lower
adjustment on the flyback transformer which is the screen voltage, is used to set
the auto bright voltage to the center of its range. Therefore, the auto bright
circuits sets up a second control feedback loop to reduce picture variation due to
CRT aging. The auto bright circuit is also used to turn off the beam current when
the monitor power is turned off.
Auto Bright circuit actively corrects for CRT gain changes
10
H
The CRT for the 1493, 1793 and 2093 monitors have a 90° deflection angle. The
1993 incorporates 100° while the 2793 CRT has 110° and the 3693 has 111°
deflection angles. These picture tubes have integral implosion protection and a
EHT of 25KV.
H1
The Vertical Dynamic Focus amplifies the parabolic waveform across the
vertical coupling capacitor from about 3Vp-p to about 200Vp-p, depending on CRT
requirements. This waveform sharpens the top and bottom portion of the raster
on dual focus CRT's.
H2
The
horizontal coupling capacitor, using a transformer to produce 300Vp-p output from
an input that is about 33Vp-p. This waveform is added to the vertical dynamic
waveform and sharpens the right and left sides of the raster.
Blanking is accomplished by setting the gain of the interface IC to zero during
blank time. The Horizontal Blanking pulse is generated by amplifying the flyback
pulse. The Vertical Blanking pulse is started by the vertical oscillator one shot
and ended by the counter in the auto bias IC via the "bias out" pulse. The Master
Gain control, located on the remote PCB, sets the gain of the video signal when
blanking is not active. The Beam Current Limiter circuit, which is designed to
keep the FBT from overloading, will reduce the video gain if the maximum
average beam current is exceeded. Also, the beam current is reduced if the FBT
approaches maximum operating temperature.
The
used to receive sync, one for vertical sync and the other for horizontal sync.
Resistor dividers are used to protect the comparator IC from over voltage damage.
For customers who do not require interlace, an additional vertical sync
stabilization circuit is included. This circuit synchronizes the vertical sync to the
horizontal cycle.
Horizontal Dynamic Focus amplifies the parabolic waveform across the
I
J
Sync Interface can accept separate or composite sync. Two comparators are
K
Vertical Oscillator generates the vertical free running frequency when no
The
vertical sync is present. When sync is applied, the vertical oscillator synchronizes
to the leading edge of the sync pulse.
L
The Vertical Control & Output circuit consists of:
1. One shot.
2. Ramp generator.
3. Vertical drive.
4. Vertical output.
11
The sync pulse from the LA7851 triggers a one shot in the LA7838 which clamps
the vertical ramp generation capacitor to 5V during the first half of vertical
retrace. The ramp generation capacitor then charges via a constant current set by
an external resistor. This resistor is connected to the V SIZE pot, located on the
remote control board, for the vertical size adjustment. The vertical drive is a
differential amplifier which compares the ramp voltage to the yoke return
feedback current. The yoke feedback current and voltage circuits are used to set
the vertical linearity. The vertical Output is a power driver, with thermal
protection, which drives the vertical deflection yoke. It also has a special pump up
circuit which doubles the output voltage during vertical retrace. This voltage
doubler also increases the efficiency of the circuit since the high retrace voltage is
not present across the power driver during the trace time.
M
The
loop to generate the horizontal timing. The H POS. adjustment, on the remote
control board, sets the sync delay time which controls the picture position. The
phase locked loop uses the flyback pulse to generate a sawtooth wave which is
gated with the delayed sync pulse to control the horizontal oscillator.
Horizontal Control incorporates a variable sync delay and a phase locked
N
The Horizontal Driver supplies the high base current necessary to drive the
horizontal output transistor which has a beta as low as three. A transformer is
used to step up the current from the driver circuit and also protects the horizontal
output transistor from a continuous turned on state. A special clamp circuit is
connected to the transformer which reduces the turnoff time of the horizontal
output transistor for reduced power dissipation.
O
The Horizontal Output transistor is mounted to the rear frame which acts as a
heat sink. The collector conducts the 900 volt primary flyback pulses which should
not be measured unless the equipment is specifically designed to withstand this
type of stress. A linear ramp current is produced in the horizontal yoke by the
conduction of the horizontal output transistor (trace time). A fast current reversal
(retrace time) is achieved by the high voltage pulse that follows the turn off of the
horizontal output transistor. This pulse is due to the inductive action of the yoke
and flyback transformer.
P
The main function of the Flyback Transformer (FBT) is to generate a 25,000 volt
(EHT) potential for the anode of the picture tube. This voltage times the beam
current is the power that lights up the phosphor on the face of the picture tube.
At 1.5mA beam current, for the 2793 monitor, the FBT is producing almost 38
watts of high voltage power. The FBT also sources the focus voltage, screen grid
voltage, filament power, and has two more secondaries which are used for control
functions. The FBT has a built in high voltage load resistor which stabilizes the
EHT, for the low beam current condition. This resistor also discharges the EHT,
when the monitor is turned off, which improves the safety of handling the
monitor.
12
Q
The Remote Control PCB houses the:
CONTROL DESCRIPTION CIRCUIT
1. H SIZE ----------- Horizontal raster size --------- Diode modulator
2. V SIZE ----------- Vertical raster size ------------- Vertical control
3. V RAS. POS. --- Vertical raster position ------- DC current to V. yoke
4. H POS ------------ Horizontal picture position -- H. sync delay
5. M GAIN ---------- Master gain ---------------------- Video interface
R
The Horizontal Size Control circuit has four inputs:
# SIGNAL FUNCTION
1. Horizontal size ------------------------------ Horizontal size control
2. Beam current -------------------------------- Blooming control
3. Vertical linear ramp -----------------------
4. Vertical parabolic + V. linear ramp ---
(#4)-(#3)=Vertical parabolic
}
(Pincushion)
The horizontal size control circuit sums the four signals at one node plus the
feedback from the diode modulator to drive a switching mode power driver. The
output of the power driver is then connected to the diode modulator through an
inductor to complete the control loop.
S
The Diode Modulator is a series element of the horizontal tuned circuit. It forms
a node between GND and the normal yoke return circuit. If this node is shorted to
GND, the result is maximum horizontal size. Forward current in the diode
modulator, at the start of retrace, keeps the node voltage clamped to ground until
enough current flows from the horizontal tuned circuit to exceed this forward
current. The horizontal size, therefore, is controlled by controlling the current to
this diode via the horizontal size control circuit.
T
A Voltage Doubler is used in the power supply for two reasons:
13
1. To improve the efficiency of the power supply.
2. To permit 120 volt and 230 volt operation. For the 230 volt
operation the voltage doubler is replaced with a bridge rectifier.
U
XX93 Monitor Block Diagram.
The Switching Regulator is synchronized to the horizontal pulse and drives a power
MOSFET. Unlike most regulators that have a common GND, this power supply has a common
V+ and current is supplied from V- to GND. The MOSFET is connected to V– and signal
ground (GND) through a transformer which is used as an inductor for series switch mode
regulation. An operational amplifier, voltage reference, comparator, and oscillator in the power
supply controller IC are used to accomplished regulation by means of pulse width modulation.
The transformer has two taps on the main winding which are used to generate the +16 volt
and +24 volt supplies. It also has a secondary which is referenced to V- and supplies the power
supply. Since the power supply is generating its own power, a special start up circuit is built
into the power supply controller IC that delays start up until the capacitor which supplies the
IC is charged up enough to furnish the current to start the power supply. This capacitor is
charged with current through a high value resistor from the raw dc supply. This self sustaining
action is why the power supply chirps when an overload or underload occurs. Additional
secondaries to drive the horizontal raster shift circuit and the video amplifiers are also included
in the power transformer.
V
The Load consists primarily of the horizontal flyback circuit. The power supply will not
operate without the load since the voltage that sustains the power supply comes from a
secondary in the power transformer and depends on some primary current to generate
secondary current.
W
A +12V regulator is used to supply current, to all the control circuits in the monitor, with the
exception of the power supply. Many of the control circuits are decoupled from the +12 volt line
with a resistor or diode to minimize noise from common current loops.
X
The Over Voltage Protect circuit is built into the power supply and monitors the flyback
transformer peak pulse voltage. This circuit will turn off the power supply and hold it off if the
EHT exceeds its maximum rated value. Since excessive X-ray output occurs with excessive
EHT, this circuit provides X-ray protection.
Y
The Fault Detector senses beam current and temperature. This circuit will activate the
power supply shutdown circuit if either the maximum temperature is sensed or if the beam
current becomes large enough to threaten the FBT.
Z
The Degaussing circuit is connected across the isolated AC line. A posistor is used to allow a
large current to flow, in the degaussing coil, on power up. This current is then gradually
reduced by the increased temperature of the positive temperature coefficient thermistor in the
posistor. A relay is used to short the degaussing coil after the degaussing operation. This
greatly reduces posistor residual current in the degaussing coil. When repairing a monitor, the
degaussing coil should be unplugged, to avoid possible damage to the degaussing coil shorting
relay.
GAME
VIDEO
RGB
SYNC
V. & H.
VIDEO
3
SYNC
Interface
2
Interface
BLANKING
V retrace
Beam limit
High temp. limit
VERTICAL
J
VERTICAL
s
V
F.B.P.
M. gain
SYNC
DELAY
3
AB
I
F
OSCILLATOR
LA7851
K
LA7851
HORIZONTAL
CONTROL
s
H
H. Pos.
Sync delay
M
V. Size &
V. Ras. Pos.
REMOTE
CONTROLS
(PCB)
ISOLATION
TransformerDOUBLER
(IN GAME)
DEGAUSSING
CIRCUIT
Z
VOLTAGE
Raw DC
320V
+24V
G2≈290V
2 For Dual Focus
On Video Board.
G1≈–20V
VIDEO
AMPS.
Bias
3
3
Bright
3
CRT AUTO
BIAS IC
H. sync (FBP)
V. sync
CA3224E
Auto
Beam
3
Current
Feedback
G
3
Beam current
buffer
Program pulse
Grid pulse
E
VERTICAL
CONTROL &
3
CRT
C
V
DY
DY
H
D
H
EHT≈25KV
Dynamic Focus
used only on Dual
Focus CRTs
Horizontal
Dynamic
Focus
H2
OUTPUT
LA7838
I. V. Feedback
EHTG2
V+
Vertical
Dynamic
Focus
P
L
+
H.H.
Driver
PINCUSHION
HORIZONTAL
Size Control
QR
+52V to +129V
(VIDEO & DEFLECTION)
SWITCHING
REGULATOR
Shutdown
OVER
VOLTAGE
PROTECT
T
V-
-200V
FAULT
DETECTOR
LOAD
Y
Output
NO
DIODE
Modulator
Beam Current
+12V
Regulator
Vertical Deflection
Sync
X
+16V
+24-27V
U
FBP
FBT
S
V
+12V
W
Supply
H1
2
14
15
BB
12V
TC2 GND
+
GND
TC9 iB OFF
16V
CC3
ABA
464Ω
261
258
G
Beam current
Feedback
Beam current
Feedback
Beam current
Feedback
B+G+R=∑
SOCKET BOARD CONNECTOR (TC) 206
TC 6TC 10
0Ω
088
6.8K
099
PN2222
1
2
3
100B
5
0Ω
100A
10
6
1/2
7
LM393
5
+
210
OPEN
077
.039uF
081
1N4937
080
T
U
909Ω
064
227
10
39611
A- BL
+12V
IN
R
G
B5
K
243
218
264
Red Video Amp.
0
Green Video Amp.
Blue Video Amp.
Auto Bias
V
Sync
1
2
3
4
5
6
TC7 Red
TC5 Green
TC 3 Blue
62K
+12
V
098
PN2222
379
200K
CS=.45"
383
Retrace Boost
VERTICAL BLANKING
22K
384
0Ω
CS=.74
389
GND
PN2907A
212
4-7VDC
Hs
4-9Vpp 61,B4
HORIZONTAL
BLANKING
PN2222A (CPQ1322)
2.15K
078
072
GND
FDH400
084
FDH400
086
FDH400
213
16 13
B
INR
R
21141578
A5
J
S
412Ω 105Ω 604Ω
260244245
+12V
P
239
oRo GoGAINM+ ENA
B
BL
Controls XRC5346A
R
225
223
226
7
236235
1N4148
271
278
0Ω
1N4148
270
277
8
0Ω0Ω0Ω
281280283
VC
G
5
GND
GREEN
INPUT
286
288
9
RED
GND
VC
292
3
R
VC
4
INPUT
BB
16
Beam
Current
Buffer
510Ω
006
+12V
6.8K
250
1N4148
253
1
1K
1.8K
248
.047uF
GND
270Ω
093
VIDEO GAIN LINE
604Ω
076
4-7VDC
5-9Vpp
11.5-12.5V
0Ω
228
512
TTL
241
BG
242
VC
BLUE
INPUT
CCDDEEFFGGHHIIJJKKLLMMNNOOPPAA
0Ω
8
211
1/2
LM393
210
4
208
207
0VDC
56Vpp 63,D6
Vs
62,B4
GND
IN
B
A5
L
266
276
GND
B
VERTICAL
6
CCDDEEFFGGHHIIJJKKLLMMNNOOPPAA
VIDEO BOARD
ARC PROTECT
Auto
Bright
6.8K
251
2
2.3-
2.7V
1.8K
3
+
368
1.8K
252
Hs
+12V
GND
0Ω
293
12V
VC
0
4
R
233
231
232
1N4148
268
284
s
V
VC
SYNC
800
2-3VDC
4Vpp 64,C4
4.5-5.3V
5Vpp 16,E5
GND
1.8K
328
1.8K
H
s
HORIZONTAL
VC
SYNC
12
CRT
127V TC8
TC4
1N4007
090
68.1K
085
100uF
+
089
127K
087
100uF
+12V
209
Vs
Vs
+
100uF
267
221
PN2222
274
M & N reverse Hs.
325
270Ω
326
0Ω
270Ω
330
331
TC1
2.15K
272
273275
GND
M
N
M
N
.14-.16V
Product safety note: Components marked by the
Horizontal
RC5
Size
10K
481
When replacing any of these components, be sure to use the parts specified in the parts list.
+12V
GND
RC8
+127V
Vertical
Vertical
Position
RC3
RC
002
Horizontal
Master
RC2
2.15K
062
+16V
+12V
OUTIN
+
100uF
304
12.1K
Hs
329
500Ω
Size
Raster
1K
20K
Position
1K
Gain
Remote Control
490
PCB
0Ω
0Ω
295
067
7812
+
GND
296
56pF
1.8K
3
I1
352
482
RC6
750Ω
486
483
+12V
GND
RC4
220uF
298
7.3VDC
5.5Vpp
RC1
01,D6
RC7
Hs
484
485
Vs
+127V
FBP
GND
+16V
+
MPSA64
D
036
Beam Current
Limiter Circuit.
14
355
13
355
10uF
014
1N4148
018
LM339
1.5-2VDC 60,D6
LM339
+12V
PN2222A
071
75Ω
066
CPQ1322
7.15K
366
1K
012
1K
065
7.15K
+12V
364
PN2222
22K
323
4
5
6
7
270Ω
327
1/4
LM339
+
1/4
LM339
+
3
12
+12V
355
2
1
355
GND
6.8K
321
6.8K
322
+24V
470Ω, 1/2W
Relay
200V.5A
470
468
.093" pin
162A
.047uF
GND
CC
318
159
25Ω@25˚C, 2A
Posistor
158
.093" pins
Degaussing
CC2
Connector
162
100K
HEAT
SINK
378
510Ω
004
0Ω
203
1,000pF
369
100uF
+
376
18Ω
367
1N4007
333
0Ω
202
17
220uF
334
18Ω
063
GND
9
+
1/4
8
11
+
1/4
10
200K
.05VDC
246
7V pp 58,C5
255
PN2222
257
200K
256
33K
247
Inrush Current Limit
CPR0434
Black Wire.
CC1
161
symbol on this schematic have special characteristics important to safety.
LA7838
Vertical
Deflection
+12V
1
Ramp
Reset
One Shot
377
Tr.
234 5678 9 101112 13
5.5-6.4V
3Vpp 21,D5
93.1K
375
28.0K
402
100K
403
+12V
GND
Vs
5.5-6.5V
1.2Vpp 19,D5
11-12.4V
20, D5
201918171614 13
VERTICAL
V+
Horizontal
SYNC INPUT
2.7K
2
5
15.8K
020
CPR0432
100kΩ@25˚C
T
180
15.8K
353
1K
357
3.92K
3.92K
356
Vs,Hs
254
169
I4
12K
7
I2
8.8K22K
I3
GND
H. S. +12V
+6V
I BEAM
7-10VDC
61, C2
FBP
68.1K
15.8K
360
354
2.1-2.4VDC
Hs
4.6Vpp 59,D6
3.3nF
358
2.2nF
150
FR205
148
152
2.2nF
155
FR205
156
3A Fuse
146
145
PC
PC
120VAC
2
INPUT
1
out
Ramp
Gen.
V. size
Reset
out
R/C
Vs
or
VERTICALVERTICAL
± SYNC INPUT
PICTURE
POSITION
8
Hs
IA
I12
Slope
Vs
.01uF
374
VERT.
O/S
4Vpp 02,D6
1nF
351
Ramp
.1uF
410
OSC.
1.2Ω, 1W
Control
50/60Hz
5-6VDC
1.4Vpp 22,E5
1uF
401
385
DELAYED
SYNC O/S
Hs
9
25K
I5350
6,10
-1.4V-2.8V
2.33K
J13J14
91.4K
J1
2SA1371E
1
529
112
0Ω
114A
10.6K
J5
JD
260Ω
+2.9V
J16
JC
130Ω
+1.4V
J15
11K
J2
2
23.2K
106
62K
220uF
143A
250V
0Ω
144
220uF
250V
163
36K
143B
0Ω
114
7
90K
J6
220uF
128
8,14
Vert.
Drive
5.5-6.5V
Vs
1.4Vpp
23,F4
Vs
+25V
Retrace
Booster
Drive
68.1KΩ
393
GND
127K
388
2.2M
365K
362
363
4-6VDC
V
2.8Vpp 18,D5
V. osc.
ADJ.
OSCILLATOR
7.3-8.7V
4Vpp 03,D6
VERTICAL
TR.
-.2VDC
Vs5.5-6.3V
1.5Vpp 04,E6
330pF
11
330pF
45K
I6
1
GND
2.7K
392
1uF
391
127K
361
Vs
OSC. O/S
SAW TOOTH
GENERATOR
Hs7.3-8.7V
6.8K
I13
100K
173
100K
390
.01uF
414
3.8Vpp 17,E5
1.4Vpp 05,E6
6.8nF
348
62K
167A
FBP
GND
+6V
I BEAM
V+
101.6K
JBJA
J18
JE
20
4.67K
220uF
175
BZT03-D160
160Vz
181
100K
113
6
6.5-7.5VDC
1,000pF
110
3
5
88K
J4
4
3.3nF
108
56pF
J3
104
33.2K
J7
3-4VDC
6.8nF
102
41,D1
6.5-7.5VDC
.5-.8VDC
3.4-4.2VDC
.1-.5VDC
9
5.7-6.3VDC
3Vpp
47,D2
56pF
107
1
2
3
4
5
6
7
8
330pF
123
-265V
CAUTION! POWER SUPPLY VOLTAGES REFERENCED FROM V-.
SCOPE GND MUST NOT BE CONNECTED TO GND AND V- AT THE SAME TIME.
! UNPLUG !
DEGAUSSING
COIL BEFORE
WORKING ON
CHASSIS.
Degaussing
Coil
EHT
Red #1 FOCUS
White #2 FOCUS
SCREEN
TC 9
FIL.
TC 11
TC 12
TC 8
TC 1
TC 4
TC 2
TC 6
TC 10
CABLE
ASS.
62K
852
62K
912
15.8K
914
863
03/06/02-E7
CC1
CC2
CC3
0
1
2
3
4
5
6
7
4040
QQRRSS
VVUUTT
WW
YYXXZZ
GREEN
FIL.
XX93 Video Board, Technician's Assembly Drawing.
View is from component side.
PNMLK
3467
805
2907
822
2.2nF,818
0Ω, 820
Glue
2907
827
828
844
1.8K,
848
4937
∆
+
+
GREEN
0Ω, 804
0Ω, 821
0Ω,826
H400
845
H400
1.0uF
858
858
∆
860
860
803
1
2
3
5
6
7
8
9
10
11
13
14
15
825
16
17
205Ω,
18
19
20
846
847
0Ω, 864
809
.1uF
801
.1uF
250V
823
250V
.015uF
824
GREEN
849
0Ω, 861
0Ω, 862
863
123456712
1
2
3
∆
4
924
47nF
2.2nF, 889
BLUE
882
CRT
SOCKET
FOCUS
WHITE WIRE
100K, 876
"C" PRA 917
922
.1uF
47nF
923
1234567891011
2221201918171615141312
1N4007
+
10uF
895
BLUE
11
12
877
1
877
∆
.1uF
921
.1uF
907
10K, CF
.5W
1.8K, 874
0Ω, 918
LM324
9
8
33K, 911
33K, 910
33K, 908
906
1N4007
FIL.
910
8
FOCUS
RED WIRE
873
920
121110
3.3K, 909
0Ω, 904
905
RED
G2
7
6
5
G1
0Ω, 915
13 14
2.2K
.5W
CF
881
.5W
855
872
872
∆
62K, 912
0Ω, 869
1K
CF
BLUE
0Ω, 936
1
2
3
4
940
941
2.2nF,
A64
942
3467
943
0Ω, 947
0Ω, 946
2907
950
1370
951
1.8K,948
1370
954
958
957
957
H400
∆
Model XX93-E7
Model XX93-E7
Video Board
Video Board
∆
937
937
1
938
939
2
3.92K
1.8K,
3
4
5
6
7
0Ω, 944
8
2907
9
945
10
11
Glue
13
14
15
953
16
17
205Ω,
0Ω, 952
18
955
19
20
1.8K,
1nF, 956
964
H400
959
CERONIX
CERONIX
964
0Ω,
.1uF
930
250V
887
H400
.1uF,
1.8K
1.8K,931
888
0.1uF
1N4148
250V
.015uF
885
886
.093"
Pin
963
2907
928
1K, 890
961
12 45678910111213 14 15 16 17 18 19
935
0Ω
932
+
892
∆
18Ω, 879
880
.5W
150Ω, CC
3
926
.1uF
925
47nF
CA3224E, 927
+
10uF
894
0Ω
893
883
883
150Ω, CC
.5W
2.2nF,878
G2
WIRE
150Ω, CC
.5W
875
934
933
10uF
22K,891
2.7K,884
PCB, 800
20
1234567
15.8K,914
.1uF
250V
913
903
250V
1N4007
.015uF
901
900
900
∆
100K, .5W, CF
∆
868
868
+
+
H400
870
330pF,871
RED
811
1
2
3
4
5
6
7
2907
812
8
9
10
11
13
0Ω, 902
14
15
RED
16
899
17
18
19
H400
20
∆
62K, 852
∆
853
∆
854
0Ω, 867
819
Glue
834
205Ω,
835
851
851
856
3467
810
0Ω, 813
2907
832
1370
833
H400
0Ω,807
2.2nF,815
0Ω, 814
1370
837
1.8K,836
1nF, 838
2SC3675
1K, 866
0Ω, 808
.1uF
817
.1uF
816
1.8K,830
1.8K,831
1370
842
H400
H400
841
840
4007
850
∆
857
857
30Ω, 859
0Ω, 865
0Ω, 802
0Ω, 806
1370
1nF, 843
Note:
Common part values marked on drawing.
The values for components marked with
the ∆ (delta) can be found in the master
part list starting on page 45.
Fil. Rtn.
Filament
+127V
Red Input
Auto Bias Vs
0=Ib,Power Down
PNMLK
+12V
Blue Input
Green Input
Auto Bias Active
123456789101112
+16V
Signal Ground
41
XX93 Video Board, Technician's Assembly Drawing.
View is from conductor side.
PNMLK
1
2
3
4
GREEN
803
1
809
2
3
.1uF
801
5
6
7
.1uF
8
250V
9
823
10
11
250V
.015uF
13
14
824
15
16
GREEN
17
18
19
20
849
H400
1.0uF
846
847
858
858
0Ω, 861
0Ω, 862
860
860
∆
863
123456712
0Ω, 864
0Ω, 804
2907
Glue
825
205Ω,
845
4937
∆
0Ω, 802
3467
822
0Ω, 821
0Ω,826
H400
∆
+
+
0Ω, 808
805
0Ω, 820
2907
827
1370
828
1370
844
1.8K,
848
4007
0Ω, 865
0Ω, 806
2.2nF,818
842
1nF, 843
850
30Ω, 859
0Ω,807
.1uF
817
.1uF
816
1.8K,830
1.8K,831
1370
837
H400
H400
841
840
2SC3675
∆
857
857
1K, 866
3467
810
2.2nF,815
2907
0Ω, 814
812
Glue
2907
832
1370
833
1.8K,836
H400
1nF, 838
851
62K, 852
854
100K, .5W, CF
856
0Ω, 867
0Ω, 813
835
853
RED
811
819
834
205Ω,
938
939
1.8K,
0Ω, 944
2907
945
Glue
953
0Ω, 952
205Ω,
1nF, 956
964
3.92K
A64
942
3467
943
2907
950
1370
951
955
1.8K,
H400
959
940
0Ω, 946
1370
954
957
957
∆
941
2.2nF,
0Ω, 947
1.8K,948
958
H400
1
2
3
4
9
8
906
910
8
10K, CF
"C" PRA 917
922
47nF
.1uF
921
1234567891011
.1uF
907
22 21 20 19 18 17 16 15 14 13 12
1N4007
FIL.
11
12
1
.5W
.1uF
923
CA3224E, 927
+
10uF
895
BLUE
877
CRT
SOCKET
877
∆
FOCUS
RED WIRE
100K, 876
924
47nF
2.2nF, 889
BLUE
150Ω, CC
882
WIRE
.1uF
925
G2
150Ω, CC
875
20
1
0Ω, 915
2
3
4
5
6
7
8
9
10
11
13
14
15
16
17
18
19
20
∆
∆
∆
0Ω, 902
RED
∆
868
868
+
+
1234567
15.8K,914
1314
.1uF
903
250V
62K, 912
913
1N4007
250V
.015uF
901
GREEN
899
900
900
870
∆
H400
2.2K
.5W
CF
881
0Ω, 869
1K
.5W
CF
855
330pF,871
H400
920
3.3K, 909
872
872
∆
LM324
12 11 10
33K, 911
33K, 910
33K, 908
0Ω, 904
905
RED
FIL.
G2
7
6
5
G1
RED WIRE
0Ω, 918
1N4007
FOCUS
873
1.8K, 874
3
926
+
10uF
894
893
883
883
.5W
18Ω, 879
PCB, 800
.5W
1245678910111213141516171819
935
47nF
0Ω
932
+
10uF
892
0Ω
∆
2.2nF,878
880
.5W
934
933
150Ω, CC
2907
928
22K,891
.093"
Pin
961
BLUE
0Ω, 936
.1uF,
1.8K
1.8K,931
1K, 890
2.7K,884
∆
937
937
0Ω,
1
2
3
4
.1uF
5
930
6
888
7
8
1N4148
250V
9
0.1uF
10
11
887
13
250V
.015uF
14
15
16
885
17
H400
18
19
886
20
963
CERONIX
CERONIX
Model XX93-E7
Model XX93-E7
Video Board
Video Board
964
PNMLK
123456789101112
+16V
Blue Input
+12V
Green Input
+127V
Signal Ground
Red Input
Auto Bias Active
42
Filament
Auto Bias Vs
Fil. Rtn.
0=Ib,Power Down
Note:
Common part values marked on drawing.
The values for components marked with
the ∆ (delta) can be found in the master
part list starting on page 45.
Safety Critical Components for XX93 Monitors.
PRODUCT SAFETY NOTE:
Components marked by the symbol ! have special characteristics important to safety.
When replacing any of these components, be sure to use the parts specified in the parts
list.
An example of how the critical components are marked in the Master Part List is shown
below. See the Master Part List for specifying critical components.
∆ Bd.# Part No. Bd. Sch. Ref. Description
102 CPC1027 D2HH86,800pF ±5%, 100V, Film!
CAUTION:
CERONIX XX93 Monitors MUST USE AN APPROVED ISOLATION
TRANSFORMER.
The monitor chassis must be connected to earth ground via a common connection
in the system which contains the monitor.
X-RAY NOTE:
X-radiation is produced by electrons colliding with the phosphor and shadow mask at the
front of the picture tube. The X-radiation emanating from the front of the picture tube is
highly reduced due to the shielding affect of the leaded glass face.
It is also produced at the anode bulb contact. The X-radiation emanating from the anode bulb
contact is much higher than from the face due to less shielding.
X-radiation is directly proportional to beam current. It doubles for each 1.3KV increase of
the EHT voltage at the face and also doubles for each 3KV increase of the EHT at the anode
bulb contact.
From this information, it should be noted that when servicing monitor electronics, where the
back of the picture tube is facing the service person, that the beam current should be turned
down to avoid excessive exposure.
Due to the increase in X-Radiation emission with increase of EHT voltage, it is important that
the EHT voltage is checked.
To measure the EHT voltage: Connect the (-) lead of a volt meter to the monitor chassis so
that a reliable connection is made. Connect a high voltage probe to the (+) input of the meter
and at the anode contact of the picture tube.
The EHT should not exceed 26KV at 0 beam current.
43
Sicherheit Kritische Bestandteile für Monitoren XX93.
PRODUKTSICHERHEIT ANMERKUNG:
Bestandteile gekennzeichnet durch das Symbol ! haben Sie die speziellen Eigenschaften,
die zur Sicherheit wichtig sind. Wenn Sie irgendwelche dieser Bestandteile ersetzen, seien
Sie sicher, die Teile zu benutzen, die in der Stückliste spezifiziert werden. Ein Beispiel von,
wie die kritischen Bestandteile in der Vorlagenstückliste gekennzeichnet werden, wird
unten gezeigt. Sehen Sie die Vorlagenstückliste für das Spezifizieren der kritischen
Bestandteile.
∆ Bd. # TeilNr. Bd. Sch. Ref. Beschreibung
102 CPC1027 D2HH86,800pF ±5%, 100V, Film!
VORSICHT:
MONITOREN CERONIX XX93 MÜSSEN EINEN ANERKANNTEN
LOKALISIERUNG TRANSFORMATOR BENUTZEN.
Das Monitorchassis muß an die Masse angeschlossen werden, die über einen
allgemeinen Anschluß im System gerieben wird, das den Monitor enthält.
RöNTGENSTRAHLANMERKUNG:
X-Strahlung wird durch die Elektronen produziert, die mit der Phosphor- und
Schattenschablone an der Frontseite des Abbildung Gefäßes zusammenstoßen. Die
X-Strahlung, die von der Frontseite des Abbildung Gefäßes ausströmt, liegt in hohem Grade
an der Abschirmung beeinflussen vom verbleiten Glasgesicht verringertes. Sie wird auch am
Anode Birne Kontakt produziert. Die X-Strahlung, die vom Anode Birne Kontakt ausströmt,
ist viel höher als vom Gesicht, das zu weniger abschirmen passend ist. X-Strahlung ist direkt
zum Lichtstrahlstrom proportional. Sie verdoppelt für jede Zunahme 1.3KV der
EHT-Spannung am Gesicht und verdoppelt auch für jede Zunahme 3KV des EHT am Anode
Birne Kontakt.
Von diesen Informationen sollte es beachtet werden daß, wenn man Monitorelektronik
instandhält, in der die Rückseite des Abbildung Gefäßes die Service-Person gegenüberstellt, daß
der Lichtstrahlstrom unten gedreht werden sollte, um übermäßige Berührung zu vermeiden.
Wegen der Zunahme der X-Radiationemission mit Zunahme der EHT-Spannung, ist es wichtig,
daß die EHT-Spannung überprüft wird.
Die EHT-Spannung messen: Schließen Sie die (-) Leitung eines Voltmeßinstruments an das
Monitorchassis an, damit eine zuverlässige Beziehung hergestellt wird. Schließen Sie eine
Hochspannungsprüfspitze an den (+) Input des Meßinstruments und am Anode Kontakt des
Abbildung Gefäßes an.
Das EHT sollte nicht 26KV bei 0 Lichtstrahlstrom übersteigen.
44
CERONIX XX93 Monitor Part List 45
r
CPB1614
Main PCB “93” REV. E8
001
CPR0050
A1
J
002
CPS1804
B1
EE2
004
CPR0006
C1
FF1
005
CPR0029
C1
NN5
006
CPD1251
C1
CC1
10mA, 75V Diode, 1N4148
006
CPR0006
C1
CC2
510Ω ±5%, 1/4W, CF
008
CPQ1310
NN5
009
CPR0012
B1
LL7
2.7KΩ ±5%, 1/4W, CF
009
CPR0134
B1
LL7
009
CPR0136
B1
LL7
1.62KΩ ±1%, 1/4W, MF
009
CPR0138
B1
LL7
009
CPR0140
B1
LL7
010
CPC1058
A1
LL7
.1uF ±5%, 50V, Film
011
CPR0018
A1
MM4
012
CPR0009
A1
EE5
014
CPC1101
A2
FF5
015
CPR0050
B2
J
017
CPR0015
B1
NN4
22KΩ ±5%, 1/4W, CF
018
CPD1251
B1
FF5
10mA, 75V Diode, 1N4148
019
CPR0050
C1
NN4
0Ω, Jumper Wire
020
CPR0145
C2
FF5
15.8KΩ ±1%, 1/4W, MF
021
CPR0006
C2
MM3
022
CPR0143
C2
MM3
023
CPR0143
C2
MM4
10.0KΩ ±1%, 1/4W, MF
026
CPC1102
C2
NN4
027
CPR0006
C2
CC2
029
CPR0143
C2
MM5
10.0KΩ ±1%, 1/4W, MF
030
CPR0142
C2
NN7
7.15KΩ ±1%, 1/4W, MF
030
CPR0144
C2
NN7
030
CPR0145
C2
NN7
030
CPR0153
C2
NN7
20.0KΩ ±1%, 1/4W, MF
030
CPR0163
C2
NN7
28.0KΩ ±1%, 1/4W, MF
030
CPR0411
C2
NN7
10K ±20%, 1/5W, White Pot
031
CPR0143
C2
NN5
10.0KΩ ±1%, 1/4W, MF
032
CPR0050
C2J 0Ω, Jumper Wire
033
CPI1405
B2
MM6
034
CPR0144
B2
MM4
12.1KΩ ±1%, 1/4W, MF
035
CPC1102
C1
NN4
036
CPQ1302
A2
FF5
30V, .3A, PNP, D, MPSA64
037
CPR0145
A2
MM4
038
CPR0143
A2
MM6
10.0KΩ ±1%, 1/4W, MF
040
CPR0029
A2
MM6
041
CPR0141
A2
NN7
4.42KΩ ±1%, 1/4W, MF
041
CPR0144
A2
NN7
12.1KΩ ±1%, 1/4W, MF
041
CPR0145
A2
NN7
041
CPR0153
A2
NN7
20.0KΩ ±1%, 1/4W, MF
041
CPR0154
A2
NN7
041
CPR0163
A2
NN7
041
CPR0411
NN7
10K ±20%, 1/5W, White Pot
042
CPR0013
B2
NN7
6.8KΩ ±5%, 1/4W, CF
042
CPR0024
B2
NN7
042
CPR0138
B2
NN7
042
CPR0140
B2
NN7
3.92KΩ ±1%, 1/4W, MF
042
CPR0148
B2
NN7
24.3KΩ ±1%, 1/4W, MF
042
CPR0163
B2
NN7
28.0KΩ ±1%, 1/4W, MF
043
CPR0015
A3
LL8
22KΩ ±5%, 1/4W, CF
A CPA4233, 1493-CGA
B CPA4235, 1493-CGA
C CPA4200, 1493-VGA
D CPA4252, 1493-SVGA
E CPA4243, 1793-VGA
F CPA4244, 1793-VGAX Vertical Deflection Booste
∆ Bd.# Part No. Bd. Sch. Ref. Description A B C D E F G H I J K L M N O P Q R S T U V W X Com. PRICE