General Electric Company reserves the right, subject to any
regulatory and contractual approval if required, to make changes in
specifications and features shown herein, or discontinue the product
described at any time without notice or obligation.
Contact your GE Representative for the most current information
and a copy of the terms and conditions
http://www.gehealthcare.com/lifesciences
GE Healthcare UK Limited.
Amersham Place, Little Chalfont,
Buckinghamshire, HP7 9NA UK
3
2. Handling
2.1. Safety warnings
and precautions
Warning: For research use
only. Not recommended
or intended for diagnosis
of disease in humans or
animals. Do not use internally
or externally in humans or
animals.
Caution: For use with
radioactive material.
This product is to be used with
radioactive material. Please
follow the manufacturer’s
instructions relating to the
handling, use, storage and
disposal of such material.
All chemicals should be
considered as potentially
hazardous. We therefore
recommend that this product is
handled only by those persons
who have been trained in
laboratory techniques and
that it is used in accordance
with the principles of good
laboratory practice. Wear
suitable protective clothing
such as laboratory overalls,
safety glasses and gloves.
Care should be taken to avoid
contact with skin or eyes. In
the case of contact with skin
or eyes, wash immediately
with water. See material safety
data sheet(s) and/or safety
statement(s) for specific advice.
2.2. Storage and
stability
Upon receipt of these
systems components should
be stored at -15°C to -30°C.
The components are stable
for at least 3 months when
stored under recommended
conditions.
2.3. Quality control
The Megaprime DNA labelling
systems are tested by our
quality control group to ensure
an incorporation rate greater
than 55% after 10 minutes at
37°C.
The performance of RPN
1604/1605 is tested with
the standard DNA provided
4
using 17 pmol/25 ng DNA of
[α–32P] labelled nucleotides,
specific activity 3000 Ci/mmol
(codes PB 10204-7) and
RPN 1606/1607 are tested
using 17 pmol/25 ng DNA of
32
P]dCTP, 3000 Ci/mmol
[α–
(code PB 10205). Incorporations
greater than 55% are achieved
after 10 minutes incubation
at 37°C, as assayed by thinlayer chromatography on PEI
cellulose in 1.25 M KH2PO4.
PH3.4.
In addition components of the
kits are checked for identity by
HPLC and the DNA solutions
for concentration by UV
spectrophotometry.
5
3. System components
Magaprime DNA RPN1604 RPN1605 RPN1606 RPN1607
labelling
Primer solution: 150 µl 300 µl 150 µl 300 µl
Random nonamer
primers in an
aqueous solution
Labelling buffer; – – 300 µl 600 µl
dATP, dGTP and
dTTP in Tris/HCl
pH7.5,
2-mercaptoethanol
and MgCl
Reaction buffer: 150 µl 300 µl – –
A 10x concentrated
buffer containing
Tris/HCl pH7.5,
2-mercaptoethanol
and MgCl
2
2
6
Magaprime DNA RPN1604 RPN1605 RPN1606 RPN1607
labelling
Enzyme solution; 60 µl 120 µl 60 µl 120 µl
1 unit/µl DNA
polymerase 1 Klenow
fragment (cloned in
100 mM potassium
phosphate pH6.5,
10 mM 2-mercaptoethanol and
50% glycerol
Standard DNA 25 µl 50 µl 25 µl 50 µl
solution; 5 ng/µl
Hind III digested
lambda DNA in
10 mM Tris/HCl
pH 8.0, 1 mM
EDTA
Carrier DNA 1.25 ml 2.5 ml 1.25 ml 2.5 ml
solution; 500ng/ml
sonicated herring
sperm DNA in
10 mM Tris/HCl
pH 8.0, 1 mM
EDTA
7
3.1. Megaprime DNA labelling systems
30 standard labelling reactions –
for use with any radioactive nucleotide RPN 1604
60 standard labelling reactions –
for use with any radioactive nucleotide RPN 1605
30 standard labelling reactions –
for use with radioactively labelled dCTP RPN 1606
60 standard labelling reactions –
for use with radioactively labelled dCTP RPN 1607
8
4. Introduction
Feinbereg and Vogelstein (1,2) introduced the use of random
sequence hexancleotides to prime DNA synthesis on denatured
template DNA at numerous sites along its length. The primertemplate complex is a substrate for the ‘Klenow’ fragment of DNA
polymerase 1. By substituting a radiolabelled nucleotide for a nonradioactive equivalent in the reaction mixture newly synthesized
DNA is made radioactive (see Figure 1). The absence of the 5’–3’
exonuclease activity associated with DNA polymerase 1 ensures
that labelled nucleotides incorporated by the polymerase are not
subsequently removed as monophosphates. Very small amount of
input DNA can be labelled, enabling very high specific activity DNA
probes to be produced with relatively small quantities of added
nucleotides. These radioactive labelled fragments can then be used
as sensitive hybridization probes for a wide range of filter based
applications (3-6).
Previous protocols for the random primer labelling of DNA have
required reaction times of at least 30 minutes. GE Healthcare’s
Magaprime DNA labelling system allows the labelling of template
DNA to the same high specific activity but at a greatly accelerated
rate. Probes of specific activity 1.9x10
the majority of DNA substrates, using the standard protocol, after
10 minutes incubation at 37°C. This rapid labelling is achieved by
the use of nonamer primers rather than the conventional hexamers
(Figure 1). Nonamers allow for more efficient priming from the
template DNA at 37°C, resulting in fast and efficient labelling of the
DNA. A new alternative protocol has further reduced the variability
in labelling which can occur with DNA template from a variety
of sources. Both the standard Megaprime protocol and the new
protocol are given as options in this booklet. The labelling of DNA in
low melting point agarose takes only 15–30 minutes in contrast to
conventional systems where overnight incubation are necessary.
9
dpm/µg can be produced with
9
Random sequence
monamers
Unabelled dNTPs
Labelled dNTP
‘Klenow’ polymerase
Linear dsDNA
Denature in presence
of monamer primers
Add Multiprime DNA
reaction buffer
Add labelled dNTP
and ‘Klenow’ DNA
polymerase. Incubate
10
Denature to release
labelled probe and add
directly to hybridization
Figure 1. Preparation of labelled probes using GE Healthcare’s megaprime DNA labelling systems.
5. Megaprime DNA labelling protocols
The Megaprime systems allow DNA from a variety of sources
to be labelled in vitro to high specific activity with 32P and other
radionuclides. The specific activity of the probes generated by these
systems will vary according to the specific activity of the labelled
dNTP used.
The standard Megaprime protocol is presented, together with a new
protocol which reduces the variation in labelling efficiency that can
occur with DNA template from a variety of sources.
–32
The protocols given here are for use with 17 pmol[α
specific activity 3000 Ci/mmol. For alternative reaction conditions
refer to page 20.
DNA prepared by standard minilysate methods may be used in
either protocol. DNA solutions which are too dilute to be used
directly should be concentrated by ethanol precipitation followed by
redissolution in an appropriate volume of water or 10 mM Tris/HCl,
pH 8.0, 1 mM EDTA. DNA in restriction enzyme buffers may be added
directly to the reaction. The reaction can also be performed with
DNA in agarose gel slices (see note 3 and Appendix 1).
5.1. Standard Megaprime protocol
Protocol
1. Dissolve the DNA to be
labelled to a concentration
of 2.5–25 ng/µl in either
distilled water of 10 mM
Tris/HCl, pH8.0, 1 mM EDTA
(TE buffer).
Notes
1. If desired, the labelling
efficiency of a DNA sample
can be compared with that
of the standard DNA
supplied with the kit. In
this case 5 µl of standard
DNA should be used.
P]dNTP,
11
Protocol
2. Place the required tubes from
the Megaprime system, with
the exception of the enzyme,
at room temperature to
thaw. Leave the enzyme at
-15°C to -30°C until required,
and return immediately after
use.
3. Place 25 ng of template DNA
into a microcentrifuge tube
and to it add 5 µl of primers
and the appropriate volume
of water to give a total
volume of 50 µl in the final
Megaprime reaction.
Denature by heating to
95–100°C for 5 minutes
in a boiling water bath.
4. Spin briefly in a microcentrifuge
to bring the contents to the
bottom of the tube.
5. Keeping the tube at room
temperature, add the
nucleotides and reaction
buffer (RPN 1604/5) or the
labelling buffer (RPN 1606/7)
followed by the radiolabelled
dNTP(s) and enzyme as
follows:
Notes
3. When labelling DNA in low
melting point agarose, first
place the tube containing the
stock DNA in a boiling water
bath for 30 seconds to melt
the agarose before removing
the required volume. The
volume of low melting point
agarose DNA should not
exceed 25 µl in a 50 µl reaction.
5. The reaction volume may be
scaled up or down if more or
less than 25 ng of DNA is to
be labelled.
12
Protocol
Component RPN1604/5 RPN1606/7
Labelling 10 µl
buffer
Unlabelled 4 µl of each –
dNTPs omitting
those to be
used as
label
Reaction 5 µl –
buffer
Radiolabelled
(dNTP) 5 µl 5 µl (dCTP)
Enzyme 2 µl 2 µl
Notes
6. Mix gently by pipetting up
and down and cap the tube.
Spin for a few seconds in a
microcentrifuge to bring the
contents to the bottom of the
tube.
7. Incubate at 37°C for 10
minutes
6. Avoid vigorous mixing of the
reaction mixture as this can
cause severe loss of enzyme
activity.
7. Purified DNA can be labelled
to high specific activity in
10 minutes at 37°C but, if
desired, can be labelled for
up to 1 hour at this
temperature. When labelling
DNA in low melting point
agarose, longer incubation
of 15–30 minutes at 37°C are
required for optimum
labelling. Longer incubation
13
Loading...
+ 29 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.