GE 345 Communications Manual

Title page
GE Digital Energy
Multilin
345
Transformer Protection System
Transformer protection and control
SR345 revision: 1.30
Manual P/N: 1601-9099-A1
GE publication code: GEK-113570
Copyright © 2010 GE Multilin
GE Multilin
Canada L6E 1B3
Tel: (905) 294-6222 Fax: (905) 201-2098
Internet: http://www.GEmultilin.com
*1601-xxxx-A3*
Communications Guide
GE Multilin's Quality
Management System is
registered to ISO9001:2000
QMI # 005094
© 2010 GE Multilin Incorporated. All rights reserved.
GE Multilin SR345 Transformer Protection System Communications Guide for revision 1.30.
SR345 Transformer Protection System, EnerVista, EnerVista Launchpad, and EnerVista SR3 Setup, are registered trademarks of GE Multilin Inc.
The contents of this manual are the property of GE Multilin Inc. This documentation is furnished on license and may not be reproduced in whole or in part without the permission of GE Multilin. The content of this manual is for informational use only and is subject to change without notice.
Part number: 1601-9099-A1 (February 2010)
TOC
Table of Contents
Communications interfaces ...................................................................................... 1
RS485 interface............................................................................................................ 2
Electrical Interface ...........................................................................................................................................2
MODBUS Protocol.............................................................................................................................................2
Data Frame Format and Data Rate........................................................................................................ 2
Data Packet Format ....................................................................................................................................... 3
Error Checking................................................................................................................................................... 3
CRC-16 Algorithm............................................................................................................................................ 3
Timing....................................................................................................................................................................4
345 supported functions.............................................................................................................................. 4
DNP protocol settings.....................................................................................................................................5
DNP communication...................................................................................................................................... 5
DNP device profile ........................................................................................................................................... 6
DNP implementation...................................................................................................................................... 8
DNP serial EnerVista Setup........................................................................................................................13
DNP general .....................................................................................................................................................15
IEC 60870-5-103 serial communication............................................................................................. 16
Interoperability ............................................................................................................................................... 16
Physical layer...................................................................................................................................................16
Link layer ........................................................................................................................................................... 17
Application layer ............................................................................................................................................ 17
Transmission mode for application data............................................................................................17
Common address of ASDU........................................................................................................................17
Selection of standard information numbers in monitor direction..........................................17
Selection of standard information numbers in control direction............................................20
Basic application functions.......................................................................................................................20
Miscellaneous..................................................................................................................................................21
Application level............................................................................................................................................. 21
Application functions...................................................................................................................................21
Type identification.........................................................................................................................................21
Function type...................................................................................................................................................22
Information number.....................................................................................................................................22
Data management ....................................................................................................................................... 22
Digital states ....................................................................................................................................................23
Measurands......................................................................................................................................................23
Commands....................................................................................................................................................... 24
103 general settings ....................................................................................................................................25
Ethernet interface .....................................................................................................26
SNTP.....................................................................................................................................................................26
SNTP settings...................................................................................................................................................26
SNTP modes .....................................................................................................................................................26
MODBUS TCP/IP.............................................................................................................................................. 27
Data and control functions.......................................................................................................................27
Exception and error responses...............................................................................................................35
Request response sequence ....................................................................................................................35
CRC .......................................................................................................................................................................36
DNP Ethernet protocol settings .............................................................................................................. 38
DNP communication....................................................................................................................................38
DNP device profile .........................................................................................................................................38
DNP port allocation.......................................................................................................................................41
DNP implementation....................................................................................................................................42
DNP Ethernet EnerVista Setup.................................................................................................................47
DNP general .....................................................................................................................................................49
IEC60870-5-104 protocol .......................................................................................................................... 50
IEC 60870-5-104 interoperability...........................................................................................................50
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE toc–1
IEC 60870-5-104 protocol settings........................................................................................................58
IEC 60870-5-104 point lists.......................................................................................................................58
Summary of Ethernet client connections ...........................................................................................60
IEC 61850 GOOSE communications......................................................................................................62
EnerVista SR3 Setup software structure.............................................................................................62
GOOSE transmission.....................................................................................................................................64
GOOSE Rx...........................................................................................................................................................65
GOOSE Rx status ............................................................................................................................................66
GOOSE Rx headers........................................................................................................................................67
GOOSE receive dataset structure...........................................................................................................68
GOOSE remote inputs..................................................................................................................................69
USB interface..............................................................................................................72
MODBUS Protocol ..........................................................................................................................................72
Data Frame Format and Data Rate......................................................................................................72
Data Packet Format......................................................................................................................................72
Error Checking.................................................................................................................................................73
CRC-16 Algorithm ..........................................................................................................................................73
Timing..................................................................................................................................................................74
345 supported functions............................................................................................................................74
MODBUS memory map.............................................................................................75
Format Codes ...............................................................................................................................................128
MODBUS Functions ................................................................................................ 171
Function Code 03H.....................................................................................................................................171
Function Code 04H.....................................................................................................................................171
Function Code 05H.....................................................................................................................................172
Function Code 06H.....................................................................................................................................173
Function Code 07H.....................................................................................................................................173
Function Code 08H.....................................................................................................................................174
Function Code 10H.....................................................................................................................................175
Error Responses........................................................................................................................................... 175
Force coil commands................................................................................................................................176
Performing Commands Using Function Code 10H.....................................................................177
Using the MODBUS User Map............................................................................... 179
MODBUS User Map.....................................................................................................................................179
TOC
toc–2 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
Digital Energy
Multilin
345 Transformer Protection System
Communications Guide
Communications Guide
Communications interfaces
The 345 has three communications interfaces. These can be used simultaneously:
RS485
•USB
•Ethernet
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–1
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
NOTE
NOTE
RS485 interface
The hardware or electrical interface in the 345 is two-wire RS485. In a two-wire link, data is transmitted and received over the same two wires. Although RS485 two wire communication is bi-directional, the data is never transmitted and received at the same time. This means that the data flow is half duplex.
NOTE:
Electrical Interface
NOTE:
Polarity is important in RS485 communications. The '+' (positive) terminals of every device must be connected together.
The hardware or electrical interface in the 345 is two-wire RS485. In a two-wire link, data is transmitted and received over the same two wires. Although RS485 two wire communication is bi-directional, the data is never transmitted and received at the same time. This means that the data flow is half duplex.
RS485 lines should be connected in a daisy chain configuration with terminating networks installed at each end of the link (i.e. at the master end and at the slave farthest from the master). The terminating network should consist of a 120 W resistor in series with a 1 nF ceramic capacitor when used with Belden 9841 RS485 wire. Shielded wire should always be used to minimize noise. The shield should be connected to all of the 345s as well as the master, then grounded at one location only. This keeps the ground potential at the same level for all of the devices on the serial link.
Polarity is important in RS485 communications. The '+' (positive) terminals of every device must be connected together.
MODBUS Protocol
Data Frame Format
and Data Rate
The 345 implements a subset of the Modicon Modbus RTU serial communication standard. The Modbus protocol is hardware-independent. That is, the physical layer can be any of a variety of standard hardware configurations. This includes USB, RS485, fibre optics, etc. Modbus is a single master / multiple slave type of protocol suitable for a multi-drop configuration.
The 345 is always a Modbus slave. It can not be programmed as a Modbus master. Computers or PLCs are commonly programmed as masters.
Both monitoring and control are possible using read and write register commands. Other commands are supported to provide additional functions.
The Modbus protocol has the following characteristics.
•Address: 1 to 254
Supported Modbus function codes: 3, 4, 5, 6, 7, 8, 10
One data frame of an asynchronous transmission to or from a 345 typically consists of 1 start bit, 8 data bits, and 1 stop bit . This produces a 10 bit data frame. This is important for transmission through modems at high bit rates.
Modbus protocol can be implemented at any standard communication speed. The 345 supports operation at 9600, 19200, 38400, 57600, and 115200 baud.
1–2 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
Data Packet Format A complete request/response sequence consists of the following bytes (transmitted as
separate data frames): Master Request Transmission:
SLAVE ADDRESS: 1 byte FUNCTION CODE: 1 byte DATA: variable number of bytes depending on FUNCTION CODE CRC: 2 bytes
Slave Response Transmission:
SLAVE ADDRESS: 1 byte FUNCTION CODE: 1 byte DATA: variable number of bytes depending on FUNCTION CODE CRC: 2 bytes
SLAVE ADDRESS: This is the first byte of every transmission. This byte represents the user­assigned address of the slave device that is to receive the message sent by the master. Each slave device must be assigned a unique address and only the addressed slave will respond to a transmission that starts with its address. In a master request transmission the SLAVE ADDRESS represents the address of the slave to which the request is being sent. In a slave response transmission the SLAVE ADDRESS represents the address of the slave that is sending the response.
FUNCTION CODE: This is the second byte of every transmission. Modbus defines function codes of 1 to 127.
DATA: This will be a variable number of bytes depending on the FUNCTION CODE. This may be Actual Values, Setpoints, or addresses sent by the master to the slave or by the slave to the master.
CRC: This is a two byte error checking code.
Error Checking The RTU version of Modbus includes a two byte CRC-16 (16 bit cyclic redundancy check)
with every transmission. The CRC-16 algorithm essentially treats the entire data stream (data bits only; start, stop and parity ignored) as one continuous binary number. This number is first shifted left 16 bits and then divided by a characteristic polynomial (11000000000000101B). The 16 bit remainder of the division is appended to the end of the transmission, MSByte first. The resulting message including CRC, when divided by the same polynomial at the receiver will give a zero remainder if no transmission errors have occurred.
If a 345 Modbus slave device receives a transmission in which an error is indicated by the CRC-16 calculation, the slave device will not respond to the transmission. A CRC-16 error indicates than one or more bytes of the transmission were received incorrectly and thus the entire transmission should be ignored in order to avoid the 345 performing any incorrect operation.
The CRC-16 calculation is an industry standard method used for error detection. An algorithm is included here to assist programmers in situations where no standard CRC-16 calculation routines are available.
CRC-16 Algorithm Once the following algorithm is complete, the working register “A” will contain the CRC
value to be transmitted. Note that this algorithm requires the characteristic polynomial to be reverse bit ordered. The MSBit of the characteristic polynomial is dropped since it does not affect the value of the remainder. The following symbols are used in the algorithm:
—>: data transfer A: 16 bit working register AL: low order byte of A AH: high order byte of A CRC: 16 bit CRC-16 value
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–3
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
i, j: loop counters (+): logical exclusive or operator Di: i-th data byte (i = 0 to N-1) G: 16 bit characteristic polynomial = 1010000000000001 with MSbit dropped and bit order
reversed shr(x): shift right (the LSbit of the low order byte of x shifts into a carry flag, a '0' is shifted
into the MSbit of the high order byte of x, all other bits shift right one location The algorithm is:
1. FFFF hex —> A
2. 0 —> i
3. 0 —> j
4. Di (+) AL —> AL
5. j+1 —> j
6. shr(A)
7. is there a carry? No: go to 8. Yes: G (+) A —> A
Timing Data packet synchronization is maintained by timing constraints. The receiving device
345 supported
functions
8. is j = 8? No: go to 5. Yes: go to 9.
9. i+1 —> i
10. is i = N? No: go to 3. Yes: go to 11.
11. A —> CRC
must measure the time between the reception of characters. If 3.5 character times elapse without a new character or completion of the packet, then the communication link must be reset (i.e. all slaves start listening for a new transmission from the master). Thus at 9600 baud a delay of greater than 3.5 x 1 / 9600 x 10 x = x 3.65 x ms will cause the communication link to be reset.
The following functions are supported by the 345:
FUNCTION CODE 03 - Read Setpoints
FUNCTION CODE 04 - Read Actual Values
FUNCTION CODE 05 - Execute Operation
FUNCTION CODE 06 - Store Single Setpoint
FUNCTION CODE 07 - Read Device Status
FUNCTION CODE 08 - Loopback Test
FUNCTION CODE 10 - Store Multiple Setpoints Refer to section 5 of this guide for more details on MODBUS function codes.
1–4 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
S1 DNP GENERAL
DNP ADDRESS
DNP TCP/UDP PORT CHANNEL 1 PORT CHANNEL 2 PORT TME SYNC IIN PER. DNP MSG FRAG SIZE DNP TCP CONN. T/O
S1 DNP
DNP GENERAL DNP UNSOL RESPONSE* DEFAULT VARIATION DNP CLIENT ADDRESS* DNP POINTS LIST
897769.cdr
DNP CLIENT ADDRESS*
CLIENT ADDRESS 1 CLIENT ADDRESS 2 CLIENT ADDRESS 3 CLIENT ADDRESS 4 CLIENT ADDRESS 5
POINT 0
...
POINT 1
POINT 2
POINT 63
S1 DNP POINTS LIST
BINARY INPUTS BINARY OUTPUT ANALOG INPUTS
POINT 0 ENTRY
...
POINT 1 ENTRY
POINT 31 ENTRY
POINT 0 ON
...
POINT 0 OFF
POINT 1 ON POINT 1 OFF
POINT 15 ON POINT 15 OFF
DEFAULT VARIATION
DNP OBJECT 1 DNP OBJECT 2 DNP OBJECT 20 DNP OBJECT 21 DNP OBJECT 22 DNP OBJECT 23 DNP OBJECT 30 DNP OBJECT 32
DNP UNSOL RESPONSE*
FUNCTION
TIMEOUT MAX RETRIES DEST ADDRESS
* Ethernet only
DNP protocol settings
DNP communication The menu structure for the DNP protocol is shown below.
The following path is available using the keypad. For instructions on how to use the keypad, please refer to Chapter 3 - Working with the Keypad.
PATH:
SETPOINTS > RELAY SETUP > COMMUNICATIONS > DNP PROTOCOL > DNP GENERAL
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–5
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
DNP device profile
DNP 3.0 Device Profile
(Also see the IMPLEMENTATION TABLE in the following section)
Vendor Name: General Electric Multilin
Device Name: SR345 Relay
Highest DNP Level Supported:
For Requests: Level 2
For Responses: Level 2
Device Function:
MasterSlave
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP Levels Supported (the complete list is described in the attached table):
Binary Inputs (Object 1)
Binary Input Changes (Object 2)
Binary Outputs (Object 10)
Control Relay Output Block (Object 12)
Binary Counters (Object 20)
Frozen Counters (Object 21)
Counter Change Event (Object 22)
Frozen Counter Event (Object 23)
Analog Inputs (Object 30)
Analog Input Changes (Object 32)
Analog Deadbands (Object 34)
Time and Date (Object 50)
Internal Indications (Object 80)
Maximum Data Link Frame Size (octets): Maximum Application Fragment Size (octets):
Transmitted: 292 Transmitted: configurable up to 2048
Received: 292 Received: 2048
Maximum Data Link Re-tries: Maximum Application Layer Re-tries:
None NoneFixed at 3 ConfigurableConfigurable
Requires Data Link Layer Confirmation:
Never AlwaysSometimesConfigurable
Requires Application Layer Confirmation:
NeverAlways
1–6 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
DNP 3.0 Device Profile
When reporting Event DataWhen sending multi-fragment responses Sometimes Configurable
Timeouts while waiting for:
Data Link Confirm: None Fixed □ Variable □ Configurable Complete Appl. Fragment: None □ Fixed □ Variable □ Configurable Application Confirm: None Fixed at 10 s Variable Configurable Complete Appl. Response: None Fixed at ___ Variable Configurable
Others:
Transmission Delay: No intentional delay
Need Time Interval: Configurable (default = 24 hrs.)
Select/Operate Arm Timeout: 10 s
Binary input change scanning period: 8 times per power system cycle
Analog input change scanning period: 500 ms
Counter change scanning period: 500 ms
Frozen counter event scanning period: 500 ms
Sends/Executes Control Operations:
WRITE Binary Outputs Never □ Always □ Sometimes □Configurable SELECT/OPERATE Never Always
Sometimes Configurable DIRECT OPERATE Never Always Sometimes Configurable DIRECT OPERATE – NO ACK □ Never ⊠ Always Sometimes □ Configurable Count > 1 Never Always □ Sometimes □ Configurable Pulse On □ Never □ Always Sometimes Configurable Pulse Off Never Always Sometimes Configurable Latch On Never Always Sometimes Configurable Latch Off Never Always Sometimes Configurable Queue Never Always Sometimes Configurable Clear Queue Never
Always Sometimes Configurable
Explanation of ‘Sometimes’: Object 12 points are mapped to Virtual Inputs. Both “Pulse On” and “Latch On” operations perform the same function in the 345; that is, the appropriate Virtual Input is put into the “On” state. The On/Off times and Count value are ignored. “Pulse Off” and “Latch Off” operations put the appropriate Virtual Input into the “Off” state.
Reports Binary Input Change Events when no specific variation requested:
Reports time-tagged Binary Input Change Events when no specific variation requested:
Never NeverOnly time-tagged Binary Input Change With Time Only non-time-tagged Binary Input Change With Relative Time Configurable Configurable (attach explanation)
Sends Unsolicited Responses: Sends Static Data in Unsolicited Responses:
Never Never Configurable When Device Restarts Only certain objects When Status Flags ChangeSometimes No other options are permitted.ENABLE/DISABLE unsolicited Function codes
supported
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–7
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
DNP 3.0 Device Profile
Explanation of ‘Sometimes’: It will be disabled for
RS-485 applications, since there is no collision avoidance mechanism. For Ethernet communication it will be available and it can be disabled or enabled with the proper function code.
Default Counter Object/Variation: Counters Roll Over at:
No Counters Reported No Counters Reported Configurable (attach explanation) Configurable (attach explanation)Default Object: 20 16 Bits
Default Variation: 1
Point-by-point list attached Other Value: _____
Point-by-point list attached
Sends Multi-Fragment Responses:
Yes No
DNP implementation Table 1: DNP Implementation
OBJECT REQUEST RESPONSE
OBJECT NO.
1 0 Binary Input (Variation 0
2 0 Binary Input Change
10 0 Binary Output Status
VARIATION NO.
1 Binary Input 1 (read) 22
2 Binary Input with Status 1 (read) 22
1 Binary Input Change
2 Binary Input Change
3 Binary Input Change
DESCRIPTION FUNCTION
is used to request default variation)
(Variation 0 is used to request default variation)
without Time
with Time
with Relative Time
(Variation 0 is used to request default variation)
CODES (DEC)
1 (read) 22 (assign class)
(assign class)
(assign class)
1 (read) 06 (no range, or all)
1 (read) 06 (no range, or all)
1 (read) 06 (no range, or all)
1 (read) 06 (no range, or all)
1 (read) 00, 01(start-stop)
QUALIFIER CODES (HEX)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
07, 08 (limited quantity)
07, 08 (limited quantity)
07, 08 (limited quantity)
07, 08 (limited quantity)
06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
FUNCTION CODES (DEC)
--- ---
129 (response)
129 (response)
--- ---
129 (response) 130 (unsol. resp.)
129 (response) 130 (unsol. resp.)
--- ---
--- ---
QUALIFIER CODES (HEX)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
17, 28 (index)
17, 28 (index)
1–8 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
OBJECT REQUEST RESPONSE
OBJECT NO.
12 1 Control Relay Output
VARIATION NO.
DESCRIPTION FUNCTION
CODES
QUALIFIER CODES (HEX)
(DEC)
2 Binary Output Status 1 (read) 00, 01 (start-stop)
06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
Block
3 (select)4 (operate) 5 (direct op) 6 (dir. op,
00, 01 (start-stop) 07, 08 (limited quantity) 17, 28 (index)
FUNCTION CODES (DEC)
129 (response)
129 (response)
QUALIFIER CODES (HEX)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
echo of request
noack)
20 0 Binary Counter
(Variation 0 is used to request default variation)
1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
--- ---
10 (frz. cl. noack) 22 (assign class)
1 32-Bit Binary Counter 1 (read)7
(freeze) 8 (freeze noack) 9 (freeze clear)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see
Note 2) 10 (frz. cl. noack) 22 (assign class)
2 16-Bit Binary Counter 1 (read) 7
(freeze) 8 (freeze noack) 9 (freeze clear)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
129 (response)
00, 01
(start-stop)
17, 28
(index) (see
Note 2) 10 (frz. cl. noack) 22 (assign class)
5 32-Bit Binary Counter
without Flag
1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
129 (response)
00, 01
(start-stop)
17, 28
(index) (see
Note 2) 10 (frz. cl. noack) 22 (assign class)
6 16-Bit Binary Counter
without Flag
1 (read) 7 (freeze) 8 (freeze noack) 9 (freeze clear)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
129 (response)
00, 01
(start-stop)
17, 28
(index) (see
Note 2) 10 (frz. cl. noack) 22 (assign class)
21 0 Frozen
Counter(Variation 0 is used to request defaultvariation)
1 (read) 22 (assign class)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28
--- ---
(index)
1 32-Bit Frozen Counter 1 (read) 22
(assign class)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
129 (response)
00, 01
(start-stop)
17, 28
(index) (see
Note 2)
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–9
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
OBJECT REQUEST RESPONSE
OBJECT NO.
22 0 Counter Change Event
VARIATION NO.
DESCRIPTION FUNCTION
CODES (DEC)
2 16-Bit Frozen Counter 1 (read) 22
(assign class)
9 32-Bit Frozen Counter
without Flag
1 (read) 22 (assign class)
10 16-Bit Frozen Counter
without Flag
1 (read) 22 (assign class)
1 (read) 06 (no range, or all) (Variation 0 is used to request default
QUALIFIER CODES (HEX)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
07, 08 (limited quantity)
FUNCTION CODES (DEC)
129 (response)
QUALIFIER CODES (HEX)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
--- ---
variation)
1 32-Bit Counter Change
Event
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
23 2 16-Bit Counter Change
Event
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
5 32-Bit Counter Change
Event with Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
6 16-Bit Counter Change
Event with Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
0 Frozen Counter Event
(Variation 0 is used to request default
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
--- ---
variation)
1 32-Bit Frozen Counter
Event
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
2 16-Bit Frozen Counter
Event
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
5 32-Bit Frozen Counter
Event with Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
6 16-Bit Frozen Counter
Event with Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
30 0 Analog Input (Variation
0 is used to request default variation)
1 (read) 22
(assign
class)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited
--- ---
quantity) 17, 28 (index)
1–10 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
OBJECT REQUEST RESPONSE
OBJECT NO.
32 0 Analog Change Event
VARIATION NO.
DESCRIPTION FUNCTION
CODES (DEC)
1 32-Bit Analog Input 1 (read) 22
(assign class)
2 16-Bit Analog Input 1 (read) 22
(assign class)
3 32-Bit Analog Input
without Flag
1 (read) 22 (assign class)
4 16-Bit Analog Input
without Flag
1 (read) 22 (assign class)
1 (read) 06 (no range, or all) (Variation 0 is used to request default
QUALIFIER CODES (HEX)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
00, 01 (start-stop) 06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
07, 08 (limited quantity)
FUNCTION CODES (DEC)
129 (response)
QUALIFIER CODES (HEX)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
--- ---
variation)
1 32-Bit Analog Change
Event without Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
2 16-Bit Analog Change
Event without Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
3 32-Bit Analog Change
Event with Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
4 16-Bit Analog Change
Event with Time
1 (read) 06 (no range, or all)
07, 08 (limited quantity)
129 (response) 130 (unsol.
17, 28 (index)
resp.)
34 0 Analog Input Reporting
Deadband (Variation 0 is used to request defaultvariation)
1 (read) 00, 01 (start-stop)
06 (no range, or all) 07, 08 (limited quantity) 17, 28
--- ---
(index)
1 16-bit Analog Input
Reporting Deadband (default - see Note 1)
1 (read) 00, 01 (start-stop)
06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
2 (write) 00, 01 (start-stop)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
--- --­07, 08 (limited quantity) 17, 28 (index)
2 32-bit Analog Input
Reporting Deadband
1 (read) 00, 01 (start-stop)
06 (no range, or all) 07, 08 (limited quantity) 17, 28 (index)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–11
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
NOTE
OBJECT REQUEST RESPONSE
OBJECT NO.
VARIATION NO.
DESCRIPTION FUNCTION
CODES (DEC)
2 (write) 00, 01 (start-stop)
QUALIFIER CODES (HEX)
FUNCTION CODES (DEC)
QUALIFIER CODES (HEX)
--- --­07, 08 (limited quantity) 17, 28 (index)
50 1 Time and Date (default -
see Note 1)
52 2 Time Delay Fine
(quantity = 1)
60 0 Class 0, 1, 2, and 3 Data 1 (read) 20
1 (read)2 (write)
129 (response)
00, 01 (start-stop) 06 (no range, or all) 07 (limited qty=1) 08 (limited quantity) 17, 28 (index)
129 (response)
00, 01 (start-stop) 17, 28 (index) (see Note 2)
07 (limited quantity) --- ---
06 (no range, or all) --- ---
(enable unsol) 21 (disable unsol) 22 (assign class)
1 Class 0 Data 1 (read) 22
06 (no range, or all) --- ---
(assign class)
2 Class 1 Data 1 (read) 20
(enable unsol)
3 Class 2 Data 21 (disable
06 (no range, or all) 07, 08 (limited quantity)
--- ---
--- ---
unsol)
4 Class 3 Data 22 (assign
--- ---
class)
80 1 Internal Indications 1 (read) 00, 01 (start-stop)
(index =7)
2 (write) (see Note 3)
No Object (function code only) see Note 3
No Object (function code only)
No Object (function code only)
NOTE:
1. A default variation refers to the variation response when variation 0 is requested and/
13 (cold restart)
14 (warm restart)
23 (delay meas.)
00 (start-stop) (index =7)
--- --- ---
--- --- ---
--- --- ---
129 (response)
00, 01 (start-stop)
--- ---
or in class 0, 1, 2, or 3 scans. The default variations for object types 1, 2, 20, 21, 22, 23, 30, and 32 are selected via relay settings. This optimizes the class 0 poll data size.
2. For static (non-change-event) objects, qualifiers 17 or 28 are only responded when a request is sent with qualifiers 17 or 28, respectively. Otherwise, static object requests sent with qualifiers 00, 01, 06, 07, or 08, will be responded with qualifiers 00 or 01 (for changeevent objects, qualifiers 17 or 28 are always responded.)
3. Cold restarts are implemented the same as warm restarts – the 345 is not restarted, but the DNP process is restarted.
1–12 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
DNP serial EnerVista
Setup
The following tables show the settings needed to configure all the DNP 3.0 implementation parameters.
Table 2: RS-485
SETTINGS PARAMETER RANGE FORMAT
RS485 Baud Rate 115200 9600, 19200, 38400, 57600,
115200
RS485 Comm Parity None None, Odd, Even F102
Rear 485 Protocol DNP 3.0 Modbus, IEC60870-5-103, DNP
3.0
F101
F97
In order to activate DNP 3.0 at the RS485 rear port, the setting "Rear 485 Protocol" must be set to DNP 3.0. Once the setting has been changed, the relay must be switched off, then switched on.
Table 3: DNP protocol
SETTINGS PARAMETER RANGE FORMAT
DNP Unsol Resp Function Disabled Disabled ; Enabled F126
DNP Unsol Resp Timeout 5 s 0 to 60 s F1
DNP Unsol Resp Max Retries 10 1 to 255 F1
DNP Unsol Resp Dest Addr 1 0 to 65519 F1
DNP Time Sync IIN Period 1440 min 1 to 10080 min F1
DNP Message Fragment Size 240 30 to 2048 F1
DNP Object 1 Default Variation 2 1 ; 2 F1
DNP Object 2 Default Variation 2 1 ; 2 F1
DNP Object 20 Default Variation 1 1 ; 2 , 5 ; 6 F78
DNP Object 21 Default Variation 1 1 ; 2 ; 9 ; 10 F79
DNP Object 22 Default Variation 1 1 ; 2 , 5 ; 6 F80
DNP Object 23 Default Variation 1 1 ; 2 , 5 ; 6 F81
DNP Object 30 Default Variation 1 1 ; 2 ;3 ; 4 F82
DNP Object 32 Default Variation 1 1 ; 2 ;3 ; 4 F83
DNP TCP Connection Timeout 120 s 10 to 300 s F1
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–13
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
Table 4: DNP point list
SETTINGS PARAMETER RANGE FORMAT
Binary Input Point 0 Entry Select entry
from a list
Operands F134
Binary Input Point 63 Entry Select entry
Analog Input Point 0 Entry Select entry
Analog Input Point 0 Scale Factor 1 0.001 ; 0.01 ; 0.1 ; 1 ; 10 ; 100 ;
Analog Input Point 0 Deadband 30000 0 to 100000000 F9
Analog Input Point 31 Entry Select entry
Analog Input Point 31 Scale Factor
Analog Input Point 31 Deadband 30000 0 to 100000000 F9
Binary Output Point 0 ON Select entry
Binary Output Point 0 OFF Select entry
Binary Output Point 15 ON Select entry
Binary Output Point 15 OFF Select entry
from a list
from a list
from a list
1 0.001 ; 0.01 ; 0.1 ; 1 ; 10 ; 100 ;
from a list
from a list
from a list
from a list
Operands F134
Analog parameters
1000 ; 10000 ; 100000
Analog parameters
1000 ; 10000 ; 100000
Virtual Input 1 to 32 and Force Coils
Virtual Input 1 to 32 and Force Coils
Virtual Input 1 to 32 and Force Coils
Virtual Input 1 to 32 and Force Coils
F85
F85
F86
F86
F86
F86
DNP UNSOL RESPONSE FUNCTION should be “Disabled” for RS485 applications, since there is no collision avoidance mechanism.
The DNP Time Sync IIN Period setting determines how often the Need Time Internal Indication (IIN) bit is set by the 345. Changing this time allows the 345 to indicate that a time synchroniztion command is necessary more or less often
Various settings have been included to configure Default Variation for the Binary Inputs, Counters and Analog Inputs Objects. The default variation refers to the variation response when variation 0 is requested, and/or in class 0, 1, 2, or 3 scans
Up to 64 Binary Inputs and 32 Analog Input entries can be mapped to an item from a list of 345 status events and metered values. Status events correspond to Funcion Code 134B.
Each Analog Input point Deadband and Scale Factor can be set individually instead of setting a general deadband or scale for different metering groups. This will avoid scale and deadband conflicts for different meterings of the same nature.
Up to 16 Binary/Control Outputs can be configured by selecting a Virtual Input or Command from a list of 32 Virtual Inputs and Commands (Force Coils). Some legacy DNP implementations use a mapping of one DNP Binary Output to two physical or virtual control points. In Order to configure Paired Control Points the source for states ON and OFF should be set to different Virtual Inputs or Commands.
The DNP Technical Committee recommends using contiguous point numbers, starting at 0, for each data type, because some DNP3 Master implementations allocate contiguous memory from point 0 to the last number for each data type.
1–14 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
NOTE:
Binary Inputs are inputs to the Master. Binary Outputs are outputs from the Master.
DNP general Default variations for Object 1, 2 , 20 , 21 , 22 , 23 , 30 and Object 32 will be set by settings
and returned for the object in a response when no specific variation is specified in a Master request.
Any change in the state of any binary point causes the generation of an event, and consequently, if configured, an unsolicited response, or it is returned when the Master asks for it. The same behaviour will be seen when an analog value changes by more than its configured deadband limit . There can be up to 3 Masters in total, but only one Serial Master.
The following Default Classes will be fixed for the different blocks of data:
Binary Input Points Default Class = 1 Analog Input Point Default Class = 2 Counters Default Class = 3
Each Data Point Class can be changed by protocol function code 22 in volatile mode. If a restart is performed, the new values will be lost.
DNP Object 34 points can be used to change deadband values from the default for each individual DNP Analog Input point. These new deadbands will be maintained such that in the case of a relay restart, the values are not lost.
Requests for Object 20 (Binary Counters), Object 21 (Frozen Counters), and Object 22 (Counter Change Events) must be accepted.
Function codes “Immediate Freeze”, “Freeze and Clear” etc. are accepted as well.
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–15
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
S1 103 FIRST ASDU
ID TYPE
FUNCTION TYPE INFORMATION NO SCAN TIMEOUT FIRST ANLG ENTRY FIRST ANLG FACTOR FIRST ANLG OFFSET ... NINTH ANLG ENTRY NINTH ANLG FACTOR NINTH ANLG OFFSET
S1 103 GENERAL
SLAVE ADDRESS
SYNCH TIMEOUT
897770.cdr
S1 103 MEASURANDS
FIRST ASDU SECOND ASDU THIRD ASDU
FOURTH ASDU
S1 60870-5-103
GENERAL BINARY INPUTS MEASURANDS
COMMANDS
S1 103 COMMANDS
CMD 0 FUNC TYPE
CMD 0 INFO NO: CMD 0 ON OPER: CMD 0 OFF OPER: ... CMD 15 FUNC TYPE: CMD 15 INFO NO: CMD 15 ON OPER: CMD 15 OFF OPER:
S1 103 FOURTH ASDU
ID TYPE
FUNCTION TYPE INFORMATION NO SCAN TIMEOUT FIRST ANLG ENTRY FIRST ANLG FACTOR FIRST ANLG OFFSET ... NINTH ANLG ENTRY NINTH ANLG FACTOR NINTH ANLG OFFSET
S1 103 B INPUTS
POINT 0
POINT 0 FUNC TYPE POINT 0 INFO NO: ... POINT 63 POINT 63FUNC TYPE POINT 63 INFO NO:
. . . .
IEC 60870-5-103 serial communication
PATH: SETPOINTS > S1 RELAY SETUP > COMMUNICATIONS > IEC61870-5-103
Interoperability
Physical layer
Electrical interface
EIA RS-485
32 Number of loads for one protection equipment
1–16 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
Optical interface
Glass fibre Plastic fibre F-SMA type connector BFOC/2,5 type connector
Transmission speed
? 9600 bits/s? 19200 bits/s
Link layer
There are no choices for the Link Layer.
Application layer
Transmission mode
for application data
Common address of
ASDU
Selection of standard information numbers
in monitor direction
Mode 1 (least significant octet first), is used exclusively in this companion standard.
One COMMON ADDRESS OF ASDU (identical with station address)
More than one COMMON ADDRESS OF ASDU
Table 5: System functions in monitor direction
INF Semantics
<0> End of general interrogation <0> Time synchronization <2> Reset FCB <3> Reset CU <4> Start/restart <5> Power on
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–17
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
Table 6: Status indications in monitor direction
INF Semantics 345 Identifier 345 Data Text
<16> Auto-recloser active <17> Teleprotection active <18> Protection active <19> LED reset <20> Monitor direction blocked <21> Test mode <22> Local parameter setting <23> Characteristic 1 <24> Characteristic 2 <25> Characteristic 3 <26> Characteristic 4 <27> Auxiliary input 1 <28> Auxiliary input 2 <29> Auxiliary input 3 <30> Auxiliary input 4
Table 7: Supervision indications in monitor direction
INF Semantics 345 Identifier 345 Data Text
<32> Measurand supervision I <33> Measurand supervision V <35> Phase sequence supervision <36> Trip circuit supervision <37> I>> back-up operation <38> VT fuse failure <39> Teleprotection disturbed <46> Group warning <47> Group alarm
Table 8: Earth fault indications in monitor direction
INF Semantics 345 Identifier 345 Data Text
INF Semantics 345 Identifier 345 Data Text <48> Earth fault L1 <49> Earth fault L2 <50> Earth fault L3 <51> Earth fault forward, i.e. line <52> Earth fault reverse, i.e. busbar
1–18 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
Table 9: Fault indications in monitor direction
INF Semantics 345 Identifier 345 Data Text
INF Semantics 345 Identifier 345 Data Text <64> Start / pick-up L1 <65> Start / pick-up L2 <66> Start / pick-up L3 <67> Start / pick-up N <68> General trip <69> Trip L1 <70> Trip L2 <71> Trip L3 <72> Trip I>> (back-up operation) <73> Fault location X in ohms <74> Fault forward / line <75> Fault reverse / busbar <76> Teleprotection signal transmitted <77> Teleprotection signal received <78> Zone 1 <79> Zone 2 <80> Zone 3 <81> Zone 4 <82> Zone 5 <83> Zone 6 <84> General start / pick-up <85> Breaker failure <86> Trip measuring system L1 <87> Trip measuring system L2 <88> Trip measuring system L3 <89> Trip measuring system E <90> Trip I> <91> Trip I>> <92> Trip IN> <93> Trip IN>>
Table 10: Auto-reclosure indications in monitor direction
<128> CB ‘on’ by AR <129> CB ‘on’ by long-time AR <130> AR blocked
Table 11: Measurands in monitor direction
<144> Measurand I <145> Measurands I, V <146> Measurands I, V, P, Q <147> Measurands In, Ven <148> Measurands IL123, VL123, P, Q, f
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–19
INF Semantics 345 Identifier 345 Data Text
INF Semantics 345 Identifier 345 Data Text
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
Table 12: Generic functions in monitor direction
INF Semantics
<240> Read headings of all defined groups <241> Read values or attributes of all entries of one group <243> Read directory of a single entry <244> Read value or attribute of a single entry <245> End of general interrogation of generic data <249> Write entry with confirmation <250> Write entry with execution <251> Write entry aborted
Selection of standard information numbers
in control direction
Table 13: System functions in control direction
INF Semantics
<0> Initiation of general interrogation <0> T ime synchronization
Table 14: General commands in control direction
INF Semantics
<16> Auto-recloser on / off <17> Teleprotection on / off <18> Protection on / off <19> LED reset <23> Activate characteristic 1 <24> Activate characteristic 2 <25> Activate characteristic 3 <26> Activate characteristic 4
Table 15: General functions in control direction
INF Semantics
<240> Read headings of all defined groups <241> Read values or attributes of all entries of one group <243> Read directory of a single entry <244> Read value or attribute of a single entry <245> General interrogation of generic data <248> Write entry <249> Write entry with confirmation <250> Write entry with execution <251> Write entry abort
Basic application
functions
1–20 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
Test mode Blocking of monitor direction Disturbance data Generic services Private data
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
Miscellaneous
Measurand Max. MVAL = times rated value
1,2 or 2,4
Current L1 □⊠ Current L2 □⊠ Current L3 □⊠ Voltage L1-E □□ Voltage L2-E □□ Voltage L3-E □□ Active power P □□ Reactive power Q □□ Frequency f □⊠ Voltage L1-L2 □□
Application level
Application functions The unbalanced transmission mode of the protocol is used to avoid the possibility of more
than one protection device attempting to transmit on the channel at the same time, over the RS485 port.
Data is transferred to the primary or control station (master) using the “data acquisition by polling” principle. Cyclically, the master will request class 2 data to the secondary station (slave).
When slave has class 1 data (high priority) pending, the ACD control bit will be set to 1 demanding the master to request for that data.
Periodically, the master may send a General Interrogation in order to update the complete database.
The measurands will be sent to the primary station as a response to class 2 request. A setting (0 to 60 min) is available to configure the desired interval, where 0 means transmission as fast as possible.
The following functions are supported:
Initialization
•General Interrogation
•Synchronization
Commands transmission
Type identification The Type Identification implemented will be:
Information in monitor direction:
Information in control direction:
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–21
TYPE IDENTIFICATION UI8[1..8] <1..255> <1..31>:= definitions of this companion standard(compatible range) <32..255>:= for special use (private range)
<1>:= time-tagged message <3>:= measurands I <5>:= identification <6>:= time synchronization <8>:= general interrogation termination <9>:= measurands II
<6>:= time synchronization <7>:= general interrogation
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
<20>:= general command
Function type FUNCTION TYPE UI8 [1..8] <0..255>
<0..127>:= private range <128..129>:= compatible range <130..143>:= private range <144..145>:= compatible range <146..159>:= private range <160..161>:= compatible range <162..175>:= private range <176..177>:= compatible range <178..191>:= private range <192..193>:= compatible range <194..207>:= private range <208..209>:= compatible range <210..223>:= private range <224..225>:= compatible range <226..239>:= private range <240..241>:= compatible range <242..253>:= private range <254..255>:= compatible range
The 345 relay is identified in this protocol as “overcurrent protection”, so it will use the Function Type <160> for all the digital and analogues points proposed by the standard and mapped in this profile. For the other data supported by the device, the customer will have the capability to use them by setting a number from the private range.
Information number INFORMATION NUMBER := UI8 [1..8] <0..255>
Monitor direction := <0..255>
<0..15>:=system functions <16..31>:= status <32..47>:=supervision <48..63>:=earth fault <64..127>:=short circuit <128..143>:=auto-reclosure <144..159>:=measurands <160..239>:=not used <240..255>:=generic functions
Control direction:=<0..255>
<0..15>:=system functions <16..31>:=general commands <32..239>:=not used <240..255>:=generic functions
Data management
The 345 relay supports a fixed profile and data that is configurable using the EnerVista SR3 Setup program.
The data that can be configured are:
digital states
1–22 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
•measurands
•commands.
Digital states Digital states in the relay may be mapped using the EnerVista SR3 Setup program. By
default, states are mapped to information numbers proposed by the standard, but the user may delete these mappings if desired.
All the mapped information will be sent as a response to a general interrogation like ASDU
1. For the other states, the customer can assign:
1. Information Number <1..255>
2. Function Type <0..255>.
Settings Digital Status Information Number Function Type
Point 1 Entry Select entry from list <0 – 255 > <0 – 255 >
….
.…
Point 64 Entry Select entry from list <0 – 255 > <0 – 255 >
This means that for each digital point 3 settings are required. Example:
Modbus Address Description Value Format
43879 Point 1 Entry Digital Status 0x8242 (Undercurrent Trip) FC134
44223 Point 1 Entry Function Type 160 F1
44224 Point 1 Entry Information Number 144 F1
The “Point Entry Digital Status” reuses the DNP Binary Input 43029, 43030, …
Measurands Some analog points are supported by the 345 relay, with compatible information number
that have been identified in the device profile. For the other measurands, it is possible to use the EnerVista SR3 Setup to select the
desired point and assign the Identification Type (3 or 9), Function Type <0..255>, and Information Number <1..255>.
If the user selects Identification Type 3 (ASDU 3) only four measurands are available for configuration, but if Identif ication Type 9 (ASDU 9) is selected, up to nine measurands can be sent in the IEC103 slave answer. For each measurand, all metering values that the 345 supports, are available in order to be mapped. There are 3 possible configurable ASDUS.
For example, eDataVab is the index in the Modbus Memory Map.
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–23
RS485 INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
Modbus Address Description Value Format
44384 First ASDU Identification Type 3 or 9 F1
44385 First ASDU Function Type <0 – 255 > F1
44386 First ASDU Information Number < 0 – 255 > F1
44387 First ASDU Scan Timeout < 0 – 1000> secs F1
44388 First ASDU First Analog Entry Vab F1
44389 First ASDU First Analog Factor 1 F3
44390 First ASDU First Analog Offset 0 F1
44391 First ASDU Second Analog Entry Ib F1
44392 First ASDU Second Analog Factor 1 F3
44393 First ASDU Second Analog Offset 0 F1
... ... ... ...
44412 First ASDU Ninth Analog Entry Ib F1
44413 First ASDU Ninth Analog Factor 1 F3
... ... ... ...
44443 Second ASDU Ninth Analogue Entry
44444 Second ASDU Ninth Analogue Factor
44445 Second ASDU Ninth Analogue Offset
... ... ... ...
44446 Third ASDU Identification Type
... ... ...
44476 Third ASDU Ninth Analogue Offset
In the measurands configuration screen, with each selected measurement, a Factor and an Offset must be configured.
The Factor is a multiplier factor.
The Offset is an offset factor to be applied to the relay measurement to make the final
The factor and offset parameters allow the user to perform different scaling in the relay measurements. The final measurement sent to the IEC103 master will be: “a*x+b”, where “x” is the relay measurement, “a” is the multiplier factor and “b” is the offset.
The measurands will be sent to the primary station as a response to a class 2 request. There is a Timeout configurable with increments of 100 ms, between 0 and 60 min, in order
to configure the desired interval.
Commands
All the commands and virtual inputs are available to be mapped using the EnerVista Setup program. It is possible to choose the desired command for the ON state and the same or different command for the OFF state.
The user is able to select the Information Number <1..255> and the Function Type <0..255> command mappings, but the Identification Type 20 (General Commands) is fixed.++ There are 32 configurable commands.
In this case it will be necessary to define a new format. For example, FC500:
measurement calculation to be sent to the master
1–24 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
CHAPTER 1: COMMUNICATIONS GUIDE RS485 INTERFACE
Description Value
Virtual Input 1 0
Virtual Input 2 1
...
Virtual Input 32 31
Reset 32
Open 35
Close 36
Modbus Address Description Value Format
Command 1 Function Type <0 – 255 > F1
Command 1 Information Number < 0 – 255 > F1
Command 1 Operation ON 2 FC500
Command 1 Operation OFF 8 FC500
...
Command 16 Function Type <0 – 255 > F1
Command 16 Information Number < 0 – 255 > F1
Command 16 Operation ON 6 FC500
Command 16 Operation OFF 34 FC500
The “Command Operations ON and OFF” reuse the DNP Binary Outputs 43189, 43190, …
103 general settings
Number Value Range
Comms Port COM1 Enum[None,Com1]
Slave Address 1 [0..254]
Synchronization Timeout 30 min [0..1440]min
If Comms Port is set to NONE, the IEC 870-5-103 communication protocol will not be available.
If the user sets a value other than 0 in the Synchronization Timeout setting, when this time expires without receiving a synchronization message, the Invalid bit will be set in the time stamp of a time-tagged message.
It is necessary to configure other port settings: Baud Rate, etc.
345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE 1–25
ETHERNET INTERFACE CHAPTER 1: COMMUNICATIONS GUIDE
Ethernet interface
The Ethernet option for the 345 provides both a 1300 nm optical interface, and a 10/100 auto-negotiating copper interface. To select which interface is active, a MODBUS setpoint (see below) must be modified:
MODBUS Address
40191 BE EthernetConnectionType 0 1 1 FC230 0
Hex Address
Description Min Max Step Function
Code
Factory Default
SNTP
SNTP settings With SNTP, the device can obtain the clock time over an Ethernet network, acting as an
SNTP client to receive time values from an SNTP server. SNTP Port configures the ports that the device uses, so it’s necessary to configure it in all
cases. The relay binds to the first unicast message (see below) received from any server, then
continues operating with the SNTP server in unicast mode. Any further responses from other SNTP servers are ignored. In the unicast mode of operation the chosen time server can go offline, in which case it takes about one minute for the device to signal an SNTP FAIL state and switch again to anycast mode in order to try to find another time server.
SNTP modes Three different modes of SNTP operation are supported. These modes are unicast,
broadcast and anycast. To use SNTP in unicast mode, the SNTP IP Address must be set to the SNTP server IP
address. Once this address is set and the function setting is “UNICAST”, the device attempts to obtain time values from the SNTP server. Since many time values are obtained and averaged, it generally takes 10 seconds until the clock is synchronized with the SNTP server.
It may take up to 30 seconds for the device to signal an SNTP FAIL state if the server is off­line. In this case the main CPU generates an alarm similar to that of the IRIG-B case.
To use SNTP in broadcast mode, set the function setting to “BROADCAST”. The device listens to SNTP messages sent to "all" the broadcast addresses for the subnet .
The device waits up to eighteen minutes (>1024 seconds) to receive an SNTP broadcast message before signaling an SNTP FAIL state.
To use SNTP in anycast mode, set the function setting to “ANYCAST”. Anycast mode is designed for use with a set of cooperating servers whose addresses are not known beforehand by the client. The device sends a request to a multicast group address assigned by IANA for SNTP protocol purposes. This address is 224.0.1.1 and a group of SNTP servers listens to it . Upon receiving such a request, each server sends a unicast response to the SNTP client.
The relay binds to the first unicast message received from any server, then it continues operating with the SNTP server in unicast mode. Any further responses from other SNTP servers are ignored. In the unicast mode of operation, the chosen time server can go offline, in which case it takes about one minute for the device to signal an SNTP FAIL state and to switch again to the anycast mode to try to find another time server.
1–26 345 TRANSFORMER PROTECTION SYSTEM – COMMUNICATIONS GUIDE
Loading...
+ 160 hidden pages