Electrical InterfaceThe hardware or electrical interface is one of the following: one of two 2-wire RS485
ports from the rear terminal connector or the RS232 from the front panel connector.
In a 2-wire RS485 link, data flow is bidirectional. Data flow is half-duplex for both
the RS485 and the RS232 ports. That is, data is never transmitted and received at
the same time. RS485 lines should be connected in a daisy chain configuration
(avoid star connections) with a terminating network installed at each end of the link,
i.e. at the master end and at the slave farthest from the master. The terminating
network should consist of a 120 Ω resistor in series with a 1 nF ceramic capacitor
when used with Belden 9841 RS485 wire. The value of the terminating resistors
should be equal to the characteristic impedance of the line. This is approximately
120 Ω for standard #22 AWG twisted pair wire. Shielded wire should always be used
to minimize noise. Polarity is important in RS485 communications. Each '+' terminal
of every 489 must be connected together for the system to operate. Refer to the
489 Instruction Manual for correct serial port wiring.
489
Modbus RTU
Description
Data Frame Format and
Data Rate
GE Multilin
The 489 implements a subset of the AEG Modicon Modbus RTU serial communication
standard. Many popular programmable controllers support this protocol directly with
a suitable interface card allowing direct connection of relays. Although the Modbus
protocol is hardware independent, the 489 interfaces include two 2-wire RS485
ports and one RS232 port. Modbus is a single master, multiple slave protocol
suitable for a multi-drop configuration as provided by RS485 hardware. In this
configuration up to 32 slaves can be daisy-chained together on a single
communication channel.
The 489 is always a slave; it cannot be programmed as a master. Computers or
PLCs are commonly programmed as masters. The Modbus protocol exists in two
versions: Remote Terminal Unit (RTU, binary) and ASCII. Only the RTU version is
supported by the 489. Monitoring, programming, and control functions are
performed with read/write register commands.
One data frame of an asynchronous transmission to or from a 489 is default to 1
start bit, 8 data bits, and 1 stop bit. This produces a 10-bit data frame. This is
important for transmission through modems at high bit rates (11 bit data frames are
not supported by Hayes modems at bit rates of greater than 300 bps). The parity bit
is optional as odd or even. If it is programmed as odd or even, the data frame
consists of 1 start bit, 8 data bits, 1 parity bit, and 1 stop bit.
Modbus protocol can be implemented at any standard communication speed. The
489 RS485 ports support operation at 1200, 2400, 4800, 9600, and 19200 baud.
The front panel RS232 baud rate is fixed at 9600 baud.
http://www.GEindustrial.com/multilin
1
Modbus Protocol489
Communications Guide
Data Packet FormatA complete request/response sequence consists of the following bytes (transmitted
as separate data frames):
1. A Master Query Message consisting of: a 1-byte Slave Address, a 1-byte Func-tion Code, a variable number of Data Bytes depending on the Function Code,
and a 2-byte CRC code.
2. A Slave Response Message consisting of: a 1-byte Slave Address, a 1-byte
Function Code, a variable number of Data Bytes depending on the Function
Code, and a 2-byte CRC code.
The terms Slave Address, Function Code, Data Bytes, and CRC are explained below:
•SLAVE ADDRESS: This is the first byte of every transmission. This byte
represents the user-assigned address of the slave device that is to receive the
message sent by the master. Each slave device must be assigned a unique
address and only the addressed slave will respond to a transmission that starts
with its address. In a master request transmission the Slave Address represents
the address of the slave to which the request is being sent. In a slave response
transmission the Slave Address represents the address of the slave that is
sending the response. The RS232 port ignores the slave address, so it will
respond regardless of the value in the message. Note: A master transmission
with a Slave Address of 0 indicates a broadcast command. Broadcast commands
can be used for specific functions.
•FUNCTION CODE: This is the second byte of every transmission. Modbus
defines function codes of 1 to 127. The 489 implements some of these
functions. In a master request transmission the Function Code tells the slave
what action to perform. In a slave response transmission if the Function Code
sent from the slave is the same as the Function Code sent from the master
indicating the slave performed the function as requested. If the high order bit of
the Function Code sent from the slave is a 1 (i.e. if the Function Code is greater
than 127) then the slave did not perform the function as requested and is
sending an error or exception response.
•DATA BYTES: This is a variable number of bytes depending on the Function
Code. These may be actual values, setpoints, or addresses sent by the master
to the slave or vice-versa. Data is sent MSByte first followed by the LSByte.
•CRC: This is a two byte error checking code. CRC is sent LSByte first followed
by the MSByte. The RTU version of Modbus includes a two byte CRC-16 (16-bit
cyclic redundancy check) with every transmission. The CRC-16 algorithm
essentially treats the entire data stream (data bits only; start, stop and parity
ignored) as one continuous binary number. This number is first shifted left 16
bits and then divided by a characteristic polynomial (11000000000000101B).
The 16-bit remainder of the division is appended to the end of the transmission,
LSByte first. The resulting message including CRC, when divided by the same
polynomial at the receiver will give a zero remainder if no transmission errors
have occurred.
If a 489 Modbus slave device receives a transmission in which an error is indicated
by the CRC-16 calculation, the slave device will not respond to the transmission. A
CRC-16 error indicates than one or more bytes of the transmission were received
incorrectly and thus the entire transmission should be ignored in order to avoid the
489 performing any incorrect operation. The CRC-16 calculation is an industry
standard method used for error detection. An algorithm is included here to assist
programmers in situations where no standard CRC-16 calculation routines are
available.
2
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Functions
Communications Guide
CRC-16 AlgorithmOnce the following algorithm is complete, the working register “A” will contain the
CRC value to be transmitted. Note that this algorithm requires the characteristic
polynomial to be reverse bit ordered. The MSbit of the characteristic polynomial is
dropped since it does not affect the value of the remainder.
The symbols used in the algorithm are shown below:
-->data transfer
A
; A
; A
low
CRC16 bit CRC-16 result
i, jloop counters
(+)logical EXCLUSIVE-OR operator
Ntotal number of data bytes
D
i
G16 bit characteristic polynomial = 1010000000000001 (binary)
shr (x)right shift operator (the LSbit of x is shifted into a carry flag, a '0' is
The CRC algorithm is shown below:
1. FFFF (hex) --> A
2. 0 --> i
3. 0 --> j
4. D
(+) A
i
5. j + 1 --> j
6. shr (A)
7. Is there a carry? No: go to step 8.
8. Is j = 8?No: go to 5.; Yes: continue.
9. i + 1 --> i
10. Is i = N?No: go to 3.; Yes: continue.
11. A --> CRC
16-bit working register; low and high order bytes of A (the 16-bit
high
working register)
i-th data byte (i = 0 to N – 1)
with MSbit dropped and bit order reversed
shifted into the MSbit of x, all other bits are shifted right one
location)
--> A
low
low
Yes: G (+) A --> A and continue.
489
TimingData packet synchronization is maintained by timing constraints. The receiving
device must measure the time between the reception of characters. If three and one
half character times elapse without a new character or completion of the packet,
then the communication link must be reset (i.e. all slaves start listening for a new
transmission from the master). Thus at 9600 baud a delay of greater than 3.5 × 1/
9600 × 10 = 3.65 ms will cause the communication link to be reset.
Modbus Functions
Supported FunctionsThe following functions are supported by the 489:
•Function Codes 03 and 04: Read Setpoints and Actual Values
•Function Code 05: Execute Operation
•Function Code 06: Store Single Setpoint
•Function Code 07: Read Device Status
•Function Code 08: Loopback Test
•Function Code 16: Store Multiple Setpoints
A detailed explanation of how the 489 implements these function codes is shown in
the following sections.
GE Multilin
http://www.GEindustrial.com/multilin
3
Communications Guide
Modbus Functions489
Function Codes 03/04:
Read Setpoints / Actual
Value s
Modbus implementation: Read Input and Holding Registers
489 Implementation: Read Setpoints and Actual Values
For the 489 Modbus implementation, these commands are used to read any setpoint
(‘holding registers’) or actual value (‘input registers’). Holding and input registers
are 16-bit (two byte) values transmitted high order byte first. Thus all 489 setpoints
and actual values are sent as two bytes. The maximum of 125 registers can be read
in one transmission. Function codes 03 and 04 are configured to read setpoints or
actual values interchangeably since some PLCs do not support both function codes.
The slave response to these function codes is the slave address, function code, a
count of the number of data bytes to follow, the data itself and the CRC. Each data
item is sent as a two byte number with the high order byte sent first. The CRC is
sent as a two byte number with the low order byte sent first.
Message Format and Example:
Request slave 11 to respond with 2 registers starting at address 0235. For this
example, the register data in these addresses is:
AddressData
02350064
0236000A
Master TransmissionBytesExampleDescription
Slave Address10Bmessage for slave 11
Function Code103read register values
Data Starting Address202 32data starting at 0235h
Number of Setpoints200 022 registers = 4 bytes total
CRC (low, high)2D5 17computed CRC error code
Slave ResponseBytesExampleDescription
Slave Address10Bmessage from slave 11
Function Code103read register values
Byte Count1042 registers = 4 bytes total
Data #1 (high, low)200 64value in address 0235h
Data #2 (high, low)200 0Avalue in address 0236h
CRC (low, high)2EB 91computed CRC error code
4
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Functions
Communications Guide
489
Function Code 05:
Execute Operation
Modbus Implementation: Force Single Coil
489 Implementation: Execute Operation
This function code allows the master to request specific 489 command operations.
The command numbers listed in the Commands area of the memory map
correspond to operation code for function code 05. The operation commands can
also be initiated by writing to the Commands area of the memory map using
function code 16. Refer to Section Function Code 16: Store Multiple Setpoints on
page –7 for complete details.
Modbus Implementation: Preset Single Register
489 Implementation: Store Single Setpoint
This command allows the master to store a single setpoint into the 489 memory.
The slave response to this function code is to echo the entire master transmission.
Message Format and Example:
Request slave 11 to store the value 01F4 in Setpoint address 1180. After the
transmission in this example is complete, Setpoints address 1180 will contain the
value 01F4.
Master TransmissionBytesExampleDescription
Slave Address10Bmessage for slave 11
Function Code106store single setpoint
Data Starting Address211 80setpoint address 1180h
Data201 F4data for address 1180h
CRC (low, high)28D A3computed CRC error code
Slave ResponseBytesExampleDescription
Slave Address10Bmessage from slave 11
Function Code106store single setpoint
Data Starting Address211 80setpoint address 1180h
Data201 F4data for address 1180h
CRC (low, high)28D A3computed CRC error code
GE Multilin
http://www.GEindustrial.com/multilin
5
Communications Guide
Modbus Functions489
Function Code 07: Read
Device Status
Modbus Implementation: Read Exception Status
489 Implementation: Read Device Status
This function reads the selected device status. A short message length allows for
rapid reading of status. The returned status byte has individual bits set to 1 or 0
depending on the slave device status. The 489 general status byte is shown below:
Note that if status is neither stopped or running, the generator is starting.
Message Format and Example:
Request status from slave 11.
Master TransmissionBytesExampleDescription
Slave Address10Bmessage for slave 11
Function Code107read device status
CRC (low, high)247 42computed CRC error code
Slave ResponseBytesExampleDescription
Slave Address10Bmessage from slave 11
Function Code107read device status
Device Status159status = 01011001b
CRC (low, high)2C2 08computed CRC error code
Function Code 08:
Loopback Test
Modbus Implementation: Loopback Test
489 Implementation: Loopback Test
This function is used to test the integrity of the communication link. The 489 will
echo the request.
Message Format and Example:
Loopback test from slave 11.
Master TransmissionBytesExampleDescription
Slave Address10Bmessage for slave 11
Function Code108loopback test
Diagnostic Code200 00must be 0000h
Data200 00must be 0000h
CRC (low, high)2E0 A1computed CRC error code
Slave ResponseBytesExampleDescription
Slave Address10Bmessage from slave 11
Function Code108loopback test
Diagnostic Code200 00must be 0000h
Data200 00must be 0000h
CRC (low, high)2E0 A1computed CRC error code
6
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Functions
Communications Guide
489
Function Code 16: Store
Multiple Setpoints
Modbus Implementation: Preset Multiple Registers
489 Implementation: Store Multiple Setpoints
This function code allows multiple Setpoints to be stored into the 489 memory.
Modbus “registers” are 16-bit (two byte) values transmitted high order byte first.
Thus all 489 setpoints are sent as two bytes. The maximum number of Setpoints
that can be stored in one transmission is dependent on the slave device. Modbus
allows up to a maximum of 60 holding registers to be stored. The 489 response to
this function code is to echo the slave address, function code, starting address, the
number of Setpoints stored, and the CRC.
Message Format and Example:
Request slave 11 to store the value 01F4 to Setpoint address 1180 and the value
0001 to setpoint address 1181. After the transmission in this example is complete,
489 slave 11 will have the following setpoints information stored:
AddressData
118001F4
11810001
Master TransmissionBytesExampleDescription
Slave Address10Bmessage for slave 11
Function Code110store setpoints
Data Starting Address211 80data starting at 1180h
Number of Setpoints200 022 setpoints = 4 bytes total
Byte Count1042 registers = 4 bytes
Data 1201 F4data for address 1180h
Data 2200 01data for address 1181h
CRC (low, high)29B 89computed CRC error code
Slave ResponseBytesExampleDescription
Slave Address10Bmessage from slave 11
Function Code110store multiple setpoints
Data Starting Address211 80data starting at 1180h
Number of Setpoints200 022 setpoints (4 bytes total)
CRC (low, high)245 B6computed CRC error code
GE Multilin
http://www.GEindustrial.com/multilin
7
Communications Guide
Modbus Functions489
Function Code 16:
Performing Commands
Some PLCs may not support execution of commands using function code 5 but do
support storing multiple setpoints using function code 16. To perform this operation
using function code 16 (10h), a certain sequence of commands must be written at
the same time to the 489. The sequence consists of: Command Function register,
Command operation register and Command Data (if required). The Command
Function register must be written with the value of 5 indicating an execute operation
is requested. The Command Operation register must then be written with a valid
command operation number from the list of commands shown in the memory map.
The Command Data registers must be written with valid data if the command
operation requires data. The selected command will execute immediately upon
receipt of a valid transmission.
Message Format and Example:
Perform a 489 RESET (operation code 1).
Master TransmissionBytesExampleDescription
Slave Address10Bmessage for slave 11
Function Code110store setpoints
Data Starting Address200 80setpoint address 0080h
Number of Setpoints200 022 setpoints = 4 bytes total
Byte Count1042 registers = 4 bytes
Command Function200 05data for address 0080h
Command Function200 01data for address 0081h
CRC (low, high)20B D6computed CRC error code
Slave ResponseBytesExampleDescription
Slave Address10Bmessage from slave 11
Function Code110store multiple setpoints
Data Starting Address200 80setpoint address 0080h
Number of Setpoints200 022 setpoints (4 bytes total)
CRC (low, high)240 8Acomputed CRC error code
Error ResponsesWhen a 489 detects an error other than a CRC error, a response will be sent to the
master. The MSbit of the Function Code byte will be set to 1 (i.e. the function code
sent from the slave will be equal to the function code sent from the master plus
128). The following byte will be an exception code indicating the type of error that
occurred.
Transmissions received from the master with CRC errors will be ignored by the 489.
The slave response to an error (other than CRC error) will be:
•SLAVE ADDRESS: 1 byte
•FUNCTION CODE: 1 byte (with MSbit set to 1)
•EXCEPTION CODE: 1 byte
•CRC: 2 bytes
The 489 implements the following exception response codes.
01: ILLEGAL FUNCTION
The function code transmitted is not one of the functions supported by the 489.
02: ILLEGAL DATA ADDRESS
The address referenced in the data field transmitted by the master is not an
allowable address for the 489.
03: ILLEGAL DATA VALUE
The value referenced in the data field transmitted by the master is not within range
for the selected data address.
8
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
489
Modbus Memory Map
Memory Map
Information
NOTE
User-Definable
Memory Map Area
The data stored in the 489 is grouped as Setpoints and Actual Values. Setpoints can
be read and written by a master computer. Actual Values are read only. All Setpoints
and Actual Values are stored as two byte values. That is, each register address is
the address of a two-byte value. Addresses are listed in hexadecimal. Data values
(Setpoint ranges, increments, and factory values) are in decimal.
Many Modbus communications drivers add 40001d to the actual address of the
register addresses. For example: if address 0h was to be read, 40001d would be the
address required by the Modbus communications driver; if address 320h (800d) was
to be read, 40801d would be the address required by the Modbus communications
driver.
The 489 contains a User Definable area in the memory map. This area allows
remapping of the addresses of all Actual Values and Setpoints registers. The User
Definable area has two sections:
1. A Register Index area (memory map addresses 0180h to 01FCh) that contains
125 Actual Values or Setpoints register addresses.
2. A Register area (memory map addresses 0100h to 017Ch) that contains the
data at the addresses in the Register Index.
Register data that is separated in the rest of the memory map may be remapped to
adjacent register addresses in the User Definable Registers area. This is
accomplished by writing to register addresses in the User Definable Register Index
area. This allows for improved throughput of data and can eliminate the need for
multiple read command sequences.
For example, if the values of Average Phase Current (register addresses 0412h and
0413h) and Hottest Stator RTD Temperature (register address 04A0h) are required
to be read from an 489, their addresses may be remapped as follows:
1. Write 0412h to address 0180h (User Definable Register Index 0000) using func-
tion code 06 or 16.
2. Write 0413h to address 0181h (User Definable Register Index 0001) using func-
tion code 06 or 16.
(Average Phase Current is a double register number)
3. Write 04A0h to address 0182h (User Definable Register Index 0001) using func-
tion code 06 or 16.
A read (function code 03 or 04) of registers 0100h (User Definable Register 0000)
and 0101h (User Definable Register 0001) will return the Average Phase Current
and register 0102h (User Definable Register 0002) will return the Hottest Stator
RTD Temperature.
Event RecorderThe 489 event recorder data starts at address 3000h. Address 3003h is the ID
number of the event of interest (a high number representing the latest event and a
low number representing the oldest event). Event numbers start at zero each time
the event record is cleared, and count upwards. To retrieve event 1, write ‘1’ to the
Event Record Selector (3003h) and read the data from 3004h to 30E7h. To retrieve
event 2, write ‘2’ to the Event Record Selector (3003h) and read the data from
3004h to 30E7h. All 40 events may be retrieved in this manner. The time and date
stamp of each event may be used to ensure that all events have been retrieved in
order without new events corrupting the sequence of events (event 0 should be less
recent than event 1, event 1 should be less recent than event 2, etc.).
If more than 40 events have been recorded since the last time the event record was
cleared, the earliest events will not be accessible. For example, if 100 events have
been recorded (i.e., the total events since last clear in register 3002h is 100),
events 60 through 99 may be retrieved. Writing any other value to the event record
selector (register 3003h) will result in an “invalid data value” error.
GE Multilin
http://www.GEindustrial.com/multilin
9
Modbus Memory Map489
Communications Guide
Each communications port can individually select the ID number of the event of
interest by writing address 3003h. This way the front port, rear port and auxiliary
port can read different events from the event recorder simultaneously.
Waveform CaptureThe 489 stores up to 64 cycles of A/D samples in a waveform capture buffer each
time a trip occurs. The waveform capture buffer is time and date stamped and may
therefore be correlated to a trip in the event record. To access the waveform capture
memory, select the channel of interest by writing the number to the Waveform
Capture Channel Selector (30F5h). Then read the waveform capture data from
address 3100h-31BFh, and read the date, time and line frequency from addresses
30F0h-30F4h.
Each communications port can individually select a Waveform Channel Selector of
interest by writing address 30F5h. This way the front port, rear port and auxiliary
port can read different Waveform Channels simultaneously.
The channel selector must be one of the following values:
VALUESELECTED A/D SAMPLESSCALE FACTOR
0Phase A line current500 counts equals 1 × CT primary
1Phase B line current500 counts equals 1 × CT primary
2Phase C line current500 counts equals 1 × CT primary
3Neutral-End phase A current500 counts equals 1 × CT primary
4Neutral-End phase B current500 counts equals 1 × CT primary
5Neutral-End phase C current500 counts equals 1 × CT primary
6Ground current500 counts equals 1 × CT primary
7Phase A to neutral voltage2500 counts equals 120 secondary volts
8Phase B to neutral voltage2500 counts equals 120 secondary volts
9Phase C to neutral voltage2500 counts equals 120 secondary volts
or 1A for 50:0.025
Dual SetpointsEach communications port can individually select an Edit Setpoint Group of interest
by writing address 1342h. This way the front port, rear port and auxiliary port can
read and alter different setpoints simultaneously.
Passcode OperationEach communications port can individually set the Passcode Access by writing
address 88h with the correct Passcode. This way the front port, rear port and
auxiliary port have individual access to the setpoints. Reading address 0203h,
COMMUNICATIONS SETPOINT ACCESS register, provides the user with the current state
of access for the given port. A value of 1 read from this register indicates that the
user has full access rights to changing setpoints from the given port.
10
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
489 Memory MapThe 489 memory map is shown in the following table.
Table 1: 489 Memory Map (Sheet 1 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
PRODUCT ID
0000GE Multilin Product Device CodeN/AN/AN/AF132
0001Product Hardware Revision1 to 261N/AF15N/A
0002Product Software RevisionN/AN/AN/AF16N/A
0003Product Modification Number0 to 9991N/AF1N/A
0010Boot Program RevisionN/AN/AN/AF16N/A
0011Boot Program Modification Number0 to 9991N/AF1N/A
MODEL ID
0040Order Code0 to 161N/AF22N/A
0050489 Revision121N/AF22N/A
0060489 Boot Revision121N/AF22N/A
COMMANDS
0080Command Function Code (always 5)5N/AN/AF1N/A
0081Command Operation Code0 to 655351N/AF1N/A
0088Communications Port Passcode0 to 999999991N/AF120
00F0Time (Broadcast)N/AN/AN/AF24N/A
00F2Date (Broadcast)N/AN/AN/AF18N/A
USER_MAP / USER MAP VALUES
0100User Map Value #1 of 125...5N/AN/AF1N/A
017CUser Map Value #125 of 1255N/AN/AF1N/A
USER_MAP / USER MAP ADDRESSES
0180User Map Address #1 of 125...0 to 3FFF1hexF10
01FCUser Map Address #125 of 1250 to 3FFF1hexF10
STATUS / GENERATOR STATUS
0200Generator Status0 to 41–F1331
0201Generator Thermal Capacity Used0 to 1001%F10
0202Estimated Trip Time On Overload0 to 65535
0203Communications Setpoint Access0 to 1N/AN/AF126N/A
STATUS / SYSTEM STATUS
0210General Status0 to 655351N/AF1400
0211Output Relay Status0 to 631N/AF1410
0212Active Setpoint Group0 to 11N/AF1180
STATUS / LAST TRIP DATA
0220Cause of Last Trip0 to 1391–F1340
0221Time of Last TripN/AN/AN/AF19N/A
0223Date of Last TripN/AN/AN/AF18N/A
0225Tachometer Pretrip0 to 72001RPMF10
0226Phase A Pre-Trip Current0 to 9999991AmpsF120
0228Phase B Pre-Trip Current0 to 9999991AmpsF120
022APhase C Pre-Trip Current0 to 9999991AmpsF120
022CPhase A Pre-Trip Differential Current0 to 9999991AmpsF120
022EPhase B Pre-Trip Differential Current0 to 9999991AmpsF120
0230Phase C Pre-Trip Differential Current0 to 9999991AmpsF120
0232Negative Sequence Current Pretrip0 to 20001% FLAF10
0233Ground Current Pretrip0 to 200000001AF140
0235Pre-Trip A-B Voltage0 to 500001VoltsF10
0236Pre-Trip B-C Voltage0 to 500001VoltsF10
0237Pre-Trip C-A Voltage0 to 500001VoltsF10
0238Frequency Pretrip0 to 120001HzF30
023BReal Power (MW) Pretrip–2000000 to 20000001MWF130
1, 2, 3 See Table footnotes on page 39
1
1sF12 –1
489
GE Multilin
http://www.GEindustrial.com/multilin
11
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 2 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
023D Reactive Power Mvar Pretrip–2000000 to 20000001MvarF130
023FApparent Power MVA Pretrip0 to 20000001MVAF130
0241Last Trip Data Stator RTD1 to 121–F11
0242Hottest Stator RTD Temperature–50 to 2501°CF40
0243Last Trip Data Bearing RTD1 to 121–F11
0244Hottest Bearing RTD Temperature–50 to 2501°CF40
0245Last Trip Data Other RTD1 to 121–F11
0246Hottest Other RTD Temperature–50 to 2501°CF40
0247Last Trip Data Ambient RTD1 to 121–F11
0248Hottest Ambient RTD Temperature–50 to 2501°CF40
0249Analog Input 1 Pretrip–50000 to 500001UnitsF120
024BAnalog Input 2 Pretrip–50000 to 500001UnitsF120
024D Analog Input 3 Pretrip–50000 to 500001UnitsF120
024FAnalog Input 4 Pretrip–50000 to 500001UnitsF120
025CHottest Stator RTD Temperature–50 to 2501°FF40
025D Hottest Bearing RTD Temperature–50 to 2501°FF40
025EHottest Other RTD Temperature–50 to 2501°FF40
025FHottest Ambient RTD Temperature–50 to 2501°FF40
0260Neutral Voltage Fundamental Pretrip0 to 2500001VoltsF100
0262Neutral Voltage 3rd Harmonic Pretrip0 to 2500001VoltsF100
0264Pre-Trip Vab/Iab0 to 655351ohms sF20
0265Pre-Trip Vab/Iab Angle0 to 3591°F10
STATUS / TRIP PICKUPS
0280Input A Pickup0 to 41–F1230
0281Input B Pickup0 to 41–F1230
0282Input C Pickup0 to 41–F1230
0283Input D Pickup0 to 41–F1230
0284Input E Pickup0 to 41–F1230
0285Input F Pickup0 to 41–F1230
0286Input G Pickup0 to 41–F1230
0287Sequential Trip Pickup0 to 41–F1230
0288Field-Breaker Discrepancy Pickup0 to 41–F1230
0289Tachometer Pickup0 to 41–F1230
028AOffline Overcurrent Pickup0 to 41–F1230
028BInadvertent Energization Pickup0 to 41–F1230
028CPhase Overcurrent Pickup0 to 41–F1230
028D Negative Sequence Overcurrent Pickup0 to 41–F1230
028EGround Overcurrent Pickup0 to 41–F1230
028FPhase Differential Pickup0 to 41–F1230
0290Undervoltage Pickup0 to 41–F1230
0291Overvoltage Pickup0 to 41–F1230
0292Volts/Hertz Pickup0 to 41–F1230
0293Phase Reversal Pickup0 to 41–F1230
0294Underfrequency Pickup0 to 41–F1230
0295Overfrequency Pickup0 to 41–F1230
0296Neutral Overvoltage (Fundamental) Pickup0 to 41–F1230
0297Neutral Undervoltage (3rd Harmonic) Pickup0 to 41–F1230
0298Reactive Power Pickup0 to 41–F1230
0299Reverse Power Pickup0 to 41–F1230
029ALow Forward Power Pickup0 to 41–F1230
029BThermal Model Pickup0 to 41–F1230
029CRTD #1 Pickup0 to 41–F1230
029D RTD #2 Pickup0 to 41–F1230
1, 2, 3 See Table footnotes on page 39
12
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 3 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
029ERTD #3 Pickup0 to 41–F1230
029FRTD #4 Pickup0 to 41–F1230
02A0RTD #5 Pickup0 to 41–F1230
02A1RTD #6 Pickup0 to 41–F1230
02A2RTD #7 Pickup0 to 41–F1230
02A3RTD #8 Pickup0 to 41–F1230
02A4RTD #9 Pickup0 to 41–F1230
02A5RTD #10 Pickup0 to 41–F1230
02A6RTD #11 Pickup0 to 41–F1230
02A7RTD #12 Pickup0 to 41–F1230
02A8Analog Input 1 Pickup0 to 41–F1230
02A9Analog Input 2 Pickup0 to 41–F1230
02AAAnalog Input 3 Pickup0 to 41–F1230
02ABAnalog Input 4 Pickup0 to 41–F1230
02AC Loss Of Excitation 1 Pickup0 to 41–F1230
02AD Loss Of Excitation 2 Pickup0 to 41–F1230
02AEGround Directional Pickup0 to 41–F1230
02AFHigh-Set Phase Overcurrent Pickup0 to 41–F1230
02B0Distance Zone 1 Pickup0 to 41–F1230
02B1Distance Zone 2 Pickup0 to 41–F1230
STATUS / ALARM PICKUPS
0300Input A Pickup0 to 41–F1230
0301Input B Pickup0 to 41–F1230
0302Input C Pickup0 to 41–F1230
0303Input D Pickup0 to 41–F1230
0304Input E Pickup0 to 41–F1230
0305Input F Pickup0 to 41–F1230
0306Input G Pickup0 to 41–F1230
0307Tachometer Pickup0 to 41–F1230
0308Overcurrent Pickup0 to 41–F1230
0309Negative Sequence Overcurrent Pickup0 to 41–F1230
030AGround Overcurrent Pickup0 to 41–F1230
030BUndervoltage Pickup0 to 41–F1230
030COvervoltage Pickup0 to 41–F1230
030D Volts/Hertz Pickup0 to 41–F1230
030EUnderfrequency Pickup0 to 41–F1230
030FOverfrequency Pickup0 to 41–F1230
0310Neutral Overvoltage (Fundamental) Pickup0 to 41–F1230
0311Neutral Undervoltage (3rd harmonic) Pickup0 to 41–F1230
0312Reactive Power Pickup0 to 41–F1230
0313Reverse Power Pickup0 to 41–F1230
0314Low Forward Power Pickup0 to 41–F1230
0315RTD #1 Pickup0 to 41–F1230
0316RTD #2 Pickup0 to 41–F1230
0317RTD #3 Pickup0 to 41–F1230
0318RTD #4 Pickup0 to 41–F1230
0319RTD #5 Pickup0 to 41–F1230
031ARTD #6 Pickup0 to 41–F1230
031BRTD #7 Pickup0 to 41–F1230
031CRTD #8 Pickup0 to 41–F1230
031D RTD #9 Pickup0 to 41–F1230
031ERTD #10 Pickup0 to 41–F1230
031FRTD #11 Pickup0 to 41–F1230
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
13
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 4 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
0320RTD #12 Pickup0 to 41–F1230
0321Open Sensor Pickup0 to 41–F1230
0322Short/Low Temperature Pickup0 to 41–F1230
0323Thermal Model Pickup0 to 41–F1230
0324Trip Counter Pickup0 to 41–F1230
0325Breaker Failure Pickup0 to 41–F1230
0326Trip Coil Monitor Pickup0 to 41–F1230
0327VT Fuse Failure Pickup0 to 41–F1230
0328Current Demand Pickup0 to 41–F1230
0329MW Demand Pickup0 to 41–F1230
032AMvar Demand Pickup0 to 41–F1230
032BMVA Demand Pickup0 to 41–F1230
032CAnalog Input 1 Pickup0 to 41–F1230
032D Analog Input 2 Pickup0 to 41–F1230
032EAnalog Input 3 Pickup0 to 41–F1230
032FAnalog Input 4 Pickup0 to 41–F1230
0330Not Programmed Pickup0 to 41–F1230
0331Simulation Mode Pickup0 to 41–F1230
0332Output Relays Forced Pickup0 to 41–F1230
0333Analog Output Forced Pickup0 to 41–F1230
0334Test Switch Shorted Pickup0 to 41–F1230
0335Ground Directional Pickup0 to 41–F1230
0336IRIG-B Alarm Pickup0 to 41–F1230
0337Generator Running Hour Pickup0 to 41–F1230
STATUS / DIGITAL INPUTS
0380Access Switch State0 to 11–F2070
0381Breaker Status Switch State0 to 11–F2070
0382Assignable Digital Input 1 State0 to 11–F2070
0383Assignable Digital Input 2 State0 to 11–F2070
0384Assignable Digital Input 3 State0 to 11–F2070
0385Assignable Digital Input 4 State0 to 11–F2070
0386Assignable Digital Input 5 State0 to 11–F2070
0387Assignable Digital Input 6 State0 to 11–F2070
0388Assignable Digital Input 7 State0 to 11–F2070
0389Trip Coil Supervision0 to 11–F1320
STATUS / REAL TIME CLOCK
03FCDate (Read-only)N/AN/AN/AF18N/A
03FETime (Read-only)N/AN/AN/AF19N/A
METERING DATA / CURRENT METERING
0400Phase A Output Current0 to 9999991AmpsF120
0402Phase B Output Current0 to 9999991AmpsF120
0404Phase C Output Current0 to 9999991AmpsF120
0406Phase A Neutral-Side Current0 to 9999991AmpsF120
0408Phase B Neutral-Side Current0 to 9999991AmpsF120
040APhase C Neutral-Side Current0 to 9999991AmpsF120
040CPhase A Differential Current0 to 9999991AmpsF120
040EPhase B Differential Current0 to 9999991AmpsF120
0410Phase C Differential Current0 to 9999991AmpsF120
0412Average Phase Current0 to 9999991AmpsF120
0414Generator Load0 to 20001% FLAF10
0415Negative Sequence Current0 to 20001% FLAF10
0416Ground Current0 to 100001AmpsF140
0420Phase A Current Angle0 to 3591°F10
1, 2, 3 See Table footnotes on page 39
14
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 5 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
0421Phase B Current Angle0 to 3591°F10
0422Phase C Current Angle0 to 3591°F10
0423Phase A Neutral-Side Angle0 to 3591°F10
0424Phase B Neutral-Side Angle0 to 3591°F10
0425Phase C Neutral-Side Angle0 to 3591°F10
0426Phase A Differential Angle0 to 3591°F10
0427Phase B Differential Angle0 to 3591°F10
0428Phase C Differential Angle0 to 3591°F10
0429Ground Current Angle0 to 3591°F10
METERING DATA / VOLTAGE METERING
0440Phase A-B Voltage0 to 500001VoltsF10
0441Phase B-C Voltage0 to 500001VoltsF10
0442Phase C-A Voltage0 to 500001VoltsF10
0443Average Line Voltage0 to 500001VoltsF10
0444Phase A-N Voltage0 to 500001VoltsF10
0445Phase B-N Voltage0 to 500001VoltsF10
0446Phase C-N Voltage0 to 500001VoltsF10
0447Average Phase Voltage0 to 500001VoltsF10
0448Per Unit Measurement Of V/Hz
0449Frequency500 to 90001HzF30
044ANeutral Voltage Fund0 to 2500001VoltsF100
044CNeutral Voltage 3rd Harmonic0 to 2500001VoltsF100
044ENeutral Voltage Vp3 3rd Harmonic0 to 2500001VoltsF100
0450Vab/Iab0 to 655351ohmsF20
0451Vab/Iab Angle0 to 3591°F10
0460Line A-B Voltage Angle0 to 3591°F10
0461Line B-C Voltage Angle0 to 3591°F10
0462Line C-A Voltage Angle0 to 3591°F10
0463Phase A-N Voltage Angle0 to 3591°F10
0464Phase B-N Voltage Angle0 to 3591°F10
0465Phase C-N Voltage Angle0 to 3591°F10
0466Neutral Voltage Angle0 to 3591–F10
METERING DATA / POWER METERING
0480Power Factor–100 to 1001–F60
0481Real Power–2000000 to 20000001MWF130
0483Reactive Power–2000000 to 20000001MvarF130
0485Apparent Power–2000000 to 2000001MVAF130
0487Positive Watthours0 to 40000000001MWhF130
0489Positive Varhours0 to 40000000001MvarhF130
048BNegative Varhours0 to 40000000001MvarhF130
METERING DATA / TEMPERATURE
04A0Hottest Stator RTD1 to 121–F10
04A1Hottest Stator RTD Temperature–52 to 2501°CF4–52
04A2RTD #1 Temperature–52 to 2511°CF4–52
04A3RTD #2 Temperature–52 to 2511°CF4–52
04A4RTD #3 Temperature–52 to 2511°CF4–52
04A5RTD #4 Temperature–52 to 2511°CF4–52
04A6RTD #5 Temperature–52 to 2511°CF4–52
04A7RTD #6 Temperature–52 to 2511°CF4–52
04A8RTD #7 Temperature–52 to 2511°CF4–52
04A9RTD #8 Temperature–52 to 2511°CF4–52
04AARTD #9 Temperature–52 to 2511°CF4–52
04ABRTD #10 Temperature–52 to 2511°CF4–52
1, 2, 3 See Table footnotes on page 39
2
0 to 2001–F30
489
GE Multilin
http://www.GEindustrial.com/multilin
15
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 6 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
04AC RTD #11 Temperature–52 to 2511°CF4–52
04AD RTD #12 Temperature–52 to 2511°CF4–52
04C0Hottest Stator RTD Temperature–52 to 2501°FF4–52
04C1RTD #1 Temperature–52 to 2511°FF4–52
04C2RTD #2 Temperature–52 to 2511°FF4–52
04C3RTD #3 Temperature–52 to 2511°FF4–52
04C4RTD #4 Temperature–52 to 2511°FF4–52
04C5RTD #5 Temperature–52 to 2511°FF4–52
04C6RTD #6 Temperature–52 to 2511°FF4–52
04C7RTD #7 Temperature–52 to 2511°FF4–52
04C8RTD #8 Temperature–52 to 2511°FF4–52
04C9RTD #9 Temperature–52 to 2511°FF4–52
04CARTD #10 Temperature–52 to 2511°FF4–52
04CB RTD #11 Temperature–52 to 2511°FF4–52
04CC RTD #12 Temperature–52 to 2511°FF4–52
METERING DATA / DEMAND METERING
04E0Current Demand0 to 10000001AmpsF120
04E2MW Demand0 to 20000001MWF130
04E4Mvar Demand0 to 20000001MvarF130
04E6MVA Demand0 to 20000001MVAF130
04E8Peak Current Demand0 to 10000001AmpsF120
04EAPeak MW Demand0 to 20000001MWF130
04ECPeak Mvar Demand0 to 20000001MvarF130
04EEPeak MVA Demand0 to 20000001MVAF130
METERING DATA / ANALOG INPUTS
0500Analog Input 1–50000 to 500001UnitsF120
0502Analog Input 2–50000 to 500001UnitsF120
0504Analog Input 3–50000 to 500001UnitsF120
0506Analog Input 4–50000 to 500001UnitsF120
METERING DATA / SPEED
0520Tachometer0 to 72001RPMF10
LEARNED DATA / PARAMETER AVERAGES
0600Average Generator Load0 to 20001%FLAF10
0601Average Negative Sequence Current0 to 20001%FLAF10
0602Average Phase-Phase Voltage0 to 500001VF10
0603Reserved–––––
0604Reserved–––––
LEARNED DATA / RTD MAXIMUMS
0620RTD #1 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0621RTD #2 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0622RTD #3 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0623RTD #4 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0624RTD #5 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0625RTD #6 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0626RTD #7 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0627RTD #8 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0628RTD #9 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0629RTD #10 Maximum Temperature (Celsius)–52 to 2511°CF4–52
062ARTD #11 Maximum Temperature (Celsius)–52 to 2511°CF4–52
062BRTD #12 Maximum Temperature (Celsius)–52 to 2511°CF4–52
0640RTD #1 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0641RTD #2 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0642RTD #3 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
1, 2, 3 See Table footnotes on page 39
16
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 7 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
0643RTD #4 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0644RTD #5 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0645RTD #6 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0646RTD #7 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0647RTD #8 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0648RTD #9 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
0649RTD #10 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
064ARTD #11 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
064BRTD #12 Maximum Temperature (Fahrenheit)–52 to 2511°FF4–52
LEARNED DATA / ANALOG IN MIN/MAX
0700Analog Input 1 Minimum–50000 to 500001UnitsF120
0702Analog Input 1 Maximum–50000 to 500001UnitsF120
0704Analog Input 2 Minimum–50000 to 500001UnitsF120
0706Analog Input 2 Maximum–50000 to 500001UnitsF120
0708Analog Input 3 Minimum–50000 to 500001UnitsF120
070AAnalog Input 3 Maximum–50000 to 500001UnitsF120
070CAnalog Input 4 Minimum–50000 to 500001UnitsF120
070EAnalog Input 4 Maximum–50000 to 500001UnitsF120
MAINTENANCE / TRIP COUNTERS
077FTrip Counters Last Cleared (Date)N/AN/AN/AF18N/A
0781Total Number of Trips0 to 500001–F10
0782Digital Input Trips0 to 500001–F10
0783Sequential Trips0 to 500001–F10
0784Field-Breaker Discrepancy Trips0 to 500001–F10
0785Tachometer Trips0 to 500001–F10
0786Offline Overcurrent Trips0 to 500001–F10
0787Phase Overcurrent Trips0 to 500001–F10
0788Negative Sequence Overcurrent Trips0 to 500001–F10
0789Ground Overcurrent Trips0 to 500001–F10
078APhase Differential Trips0 to 500001–F10
078BUndervoltage Trips0 to 500001–F10
078COvervoltage Trips0 to 500001–F10
078D Volts/Hertz Trips0 to 500001–F10
078EPhase Reversal Trips0 to 500001–F10
078FUnderfrequency Trips0 to 500001–F10
0790Overfrequency Trips0 to 500001–F10
0791Neutral Overvoltage (Fundamental) Trips0 to 500001–F10
0792Neutral Undervoltage (3rd Harmonic) Trips0 to 500001–F10
0793Reactive Power Trips0 to 500001–F10
0794Reverse Power Trips0 to 500001–F10
0795Low Forward Power Trips0 to 500001–F10
0796Stator RTD Trips0 to 500001–F10
0797Bearing RTD Trips0 to 500001–F10
0798Other RTD Trips0 to 500001–F10
0799Ambient RTD Trips0 to 500001–F10
079AThermal Model Trips0 to 500001–F10
079BInadvertent Energization Trips0 to 500001–F10
079CAnalog Input 1 Trips0 to 500001–F10
079D Analog Input 2 Trips0 to 500001–F10
079EAnalog Input 3 Trips0 to 500001–F10
079FAnalog Input 4 Trips0 to 500001–F10
MAINTENANCE / GENERAL COUNTERS
07A0Number Of Breaker Operations0 to 500001–F10
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
17
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 8 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
07A1Number Of Thermal Resets0 to 500001–F10
MAINTENANCE / TRIP COUNTERS
07A2Loss Of Excitation 1 Trips0 to 500001–F10
07A3Loss Of Excitation 2 Trips0 to 500001–F10
07A4Ground Directional Trips0 to 500001–F10
07A5High-Set Phase Overcurrent Trips0 to 500001–F10
07A6Distance Zone 1 Trips0 to 500001–F10
07A7Distance Zone 2 Trips0 to 500001–F10
MAINTENANCE / TIMERS
07E0Generator Hours Online0 to 10000001hF120
PRODUCT INFO. / 489 MODEL INFO.
0800Order Code0 to 655351N/AF136N/A
0801489 Serial Number3000000 to 99999991–F123000000
PRODUCT INFO. / CALIBRATION INFO.
0810Original Calibration DateN/AN/AN/AF18N/A
0812Last Calibration DateN/AN/AN/AF18N/A
489 SETUP / PREFERENCES
1000Default Message Cycle Time5 to 1005sF220
1001Default Message Timeout10 to 9001sF1300
1003Parameter Averages Calculation Period1 to 901minF115
1004Temperature Display0 to 11–F1000
1005Waveform Trigger Position1 to 1001%F125
1006Passcode (Write Only)0 to 999999991N/AF120
1008Encrypted Passcode (Read Only)N/AN/AN/AF12N/A
100AWaveform Memory Buffer1 to 161–F18
489 SETUP / SERIAL PORTS
1010Slave Address1 to 2541–F1254
1011Computer RS485 Baud Rate0 to 51–F1014
1012Computer RS485 Parity0 to 21–F1020
1013Auxiliary RS485 Baud Rate0 to 51–F1014
1014Auxiliary RS485 Parity0 to 21–F1020
1015Port Used For DNP0 to 31–F2160
1016DNP Slave Address0 to 2551–F1255
1017DNP Turnaround Time0 to 10010msF110
489 SETUP / REAL TIME CLOCK
1030DateN/AN/AN/AF18N/A
1032TimeN/AN/AN/AF19N/A
1034IRIG-B Type0 to 21–F2200
489 SETUP / MESSAGE SCRATCHPAD
1060Scratchpad0 to 401–F22_
1080Scratchpad0 to 401–F22_
10A0Scratchpad0 to 401–F22_
10C0Scratchpad0 to 401–F22_
10E0Scratchpad0 to 401–F22_
489 SETUP / CLEAR DATA
1130Clear Last Trip Data0 to 11–F1030
1131Clear Mwh And Mvarh Meters0 to 11–F1030
1132Clear Peak Demand Data0 to 11–F1030
1133Clear RTD Maximums0 to 11–F1030
1134Clear Analog Inputs Minimums/Maximums0 to 11–F1030
1135Clear Trip Counters0 to 11–F1030
1136Clear Event Record0 to 11–F1030
1137Clear Generator Information0 to 11–F1030
1, 2, 3 See Table footnotes on page 39
18
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 9 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
1138Clear Breaker Information0 to 11–F1030
SYSTEM SETUP / CURRENT SENSING
1180Phase CT Primary10 to 500011AmpsF150001
1181Ground CT0 to 31–F1040
1182Ground CT Ratio10 to 100001: 1 / :5F1100
SYSTEM SETUP / VOLTAGE SENSING
11A0VT Connection Type0 to 21–F1060
11A1Voltage Transformer Ratio100 to 300001: 1F3500
11A2Neutral VT Ratio100 to 240001: 1F3500
11A3Neutral Voltage Transformer0 to 11–F1030
SYSTEM SETUP / GEN. PARAMETERS
11C0Generator Rated MVA50 to 20000011MVAF132000001
11C2Generator Rated Power Factor5 to 1001–F3100
11C3Generator Voltage Phase-Phase100 to 300011VF130001
11C4Generator Nominal Frequency0 to 31HzF1070
11C5Generator Phase Sequence0 to 21–F1240
SYSTEM SETUP / SERIAL START/STOP
11E0Serial Start/Stop Initiation0 to 11–F1050
11E1Startup Initiation Relays (2-5)1 to 41–F500
11E2Shutdown Initiation Relays (1-4)0 to 31–F500
11E3Serial Start/Stop Events0 to 11–F1050
DIGITAL INPUTS / BREAKER STATUS
1200Breaker Status0 to 11–F2091
DIGITAL INPUTS / GENERAL INPUT A
1210Assign Digital Input0 to 71–F2100
1211Asserted Digital Input State0 to 11–F1310
1212Input Name0 to 121–F22_
1218Block Input From Online0 to 50001sF10
1219General Input A Control0 to 11–F1050
121APulsed Control Relay Dwell Time0 to 2501sF20
121BAssign Control Relays (1-5)0 to 41–F500
121CGeneral Input A Control Events0 to 11–F1050
121D General Input A Alarm0 to 21–F1150
121EAssign Alarm Relays (2-5)1 to 41–F5016
121FGeneral Input A Alarm Delay1 to 500001sF250
1220General Input A Alarm Events0 to 11–F1050
1221General Input A Trip0 to 21–F1150
1222Assign Trip Relays (1-4)0 to 31–F501
1223General Input A Trip Delay1 to 500001sF250
DIGITAL INPUTS / GENERAL INPUT B
1230Assign Digital Input0 to 71–F2100
1231Asserted Digital Input State0 to 11–F1310
1232Input Name0 to 121–F22_
1238Block Input From Online0 to 50001sF10
1239General Input B Control0 to 11–F1050
123APulsed Control Relay Dwell Time0 to 2501sF20
123BAssign Control Relays (1-5)0 to 41–F500
123CGeneral Input B Control Events0 to 11–F1050
123D General Input B Alarm0 to 21–F1150
123EAssign Alarm Relays (2-5)1 to 41–F5016
123FGeneral Input B Alarm Delay1 to 500001sF250
1240General Input B Alarm Events0 to 11–F1050
1241General Input B Trip0 to 21–F1150
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
19
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 10 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
1242Assign Trip Relays (1-4)0 to 31–F501
1243General Input B Trip Delay1 to 500001sF250
DIGITAL INPUTS / GENERAL INPUT C
1250Assign Digital Input0 to 71–F2100
1251Asserted Digital Input State0 to 11–F1310
1252Input Name0 to 121–F22_
1258Block Input From Online0 to 50001sF10
1259General Input C Control0 to 11–F1050
125APulsed Control Relay Dwell Time0 to 2501sF20
125BAssign Control Relays (1-5)0 to 41–F500
125CGeneral Input C Control Events0 to 11–F1050
125D General Input C Alarm0 to 21–F1150
125EAssign Alarm Relays (2-5)1 to 41–F5016
125FGeneral Input C Alarm Delay1 to 500001sF250
1260General Input C Alarm Events0 to 11–F1050
1261General Input C Trip0 to 21–F1150
1262Assign Trip Relays (1-4)0 to 31–F501
1263General Input C Trip Delay1 to 500001sF250
DIGITAL INPUTS / GENERAL INPUT D
1270Assign Digital Input0 to 71–F2100
1271Asserted Digital Input State0 to 11–F1310
1272Input Name0 to 121–F22_
1278Block Input From Online0 to 50001sF10
1279General Input D Control0 to 11–F1050
127APulsed Control Relay Dwell Time0 to 2501sF20
127BAssign Control Relays (1-5)0 to 41–F500
127CGeneral Input D Control Events0 to 11–F1050
127D General Input D Alarm0 to 21–F1150
127EAssign Alarm Relays (2-5)1 to 41–F5016
127FGeneral Input D Alarm Delay1 to 500001sF250
1280General Input D Alarm Events0 to 11–F1050
1281General Input D Trip0 to 21–F1150
1282Assign Trip Relays (1-4)0 to 31–F501
1283General Input D Trip Delay1 to 500001sF250
DIGITAL INPUTS / GENERAL INPUT E
1290Assign Digital Input0 to 71–F2100
1291Asserted Digital Input State0 to 11–F1310
1292Input Name0 to 121–F22_
1298Block Input From Online0 to 50001sF10
1299General Input E Control0 to 11–F1050
129APulsed Control Relay Dwell Time0 to 2501sF20
129BAssign Control Relays (1-5)0 to 41–F500
129CGeneral Input E Control Events0 to 11–F1050
129D General Input E Alarm0 to 21–F1150
129EAssign Alarm Relays (2-5)1 to 41–F5016
129FGeneral Input E Alarm Delay1 to 500001sF250
12A0General Input E Alarm Events0 to 11–F1050
12A1General Input E Trip0 to 21–F1150
12A2Assign Trip Relays (1-4)0 to 31–F501
12A3General Input E Trip Delay1 to 500001sF250
DIGITAL INPUTS / GENERAL INPUT F
12B0Assign Digital Input0 to 71–F2100
12B1Asserted Digital Input State0 to 11–F1310
1, 2, 3 See Table footnotes on page 39
20
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 11 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
12B2Input Name0 to 121–F22_
12B8Block Input From Online0 to 50001sF10
12B9General Input F Control0 to 11–F1050
12BAPulsed Control Relay Dwell Time0 to 2501sF20
12BBAssign Control Relays (1-5)0 to 41–F500
12BC General Input F Control Events0 to 11–F1050
12BD General Input F Alarm0 to 21–F1150
12BEAssign Alarm Relays (2-5)1 to 41–F5016
12BFGeneral Input F Alarm Delay1 to 500001sF250
12C0General Input F Alarm Events0 to 11–F1050
12C1General Input F Trip0 to 21–F1150
12C2Assign Trip Relays (1-4)0 to 31–F501
12C3General Input F Trip Delay1 to 500001sF250
DIGITAL INPUTS / GENERAL INPUT G
12D0 Assign Digital Input0 to 71–F2100
12D1 Asserted Digital Input State0 to 11–F1310
12D2 Input Name0 to 121–F22_
12D8 Block Input From Online0 to 50001sF10
12D9 General Input G Control0 to 11–F1050
12DA Pulsed Control Relay Dwell Time0 to 2501sF20
12DB Assign Control Relays (1-5)0 to 41–F500
12DC General Input G Control Events0 to 11–F1050
12DD General Input G Alarm0 to 21–F1150
12DE Assign Alarm Relays (2-5)1 to 41–F5016
12DFGeneral Input G Alarm Delay1 to 500001sF250
12E0General Input G Alarm Events0 to 11–F1050
12E1General Input G Trip0 to 21–F1150
12E2Assign Trip Relays (1-4)0 to 31–F501
12E3General Input G Trip Delay1 to 500001sF250
DIGITAL INPUTS / REMOTE RESET
1300Assign Digital Input0 to 71–F2100
DIGITAL INPUTS / TEST INPUT
1310Assign Digital Input0 to 71–F2100
DIGITAL INPUTS / THERMAL RESET
1320Assign Digital Input0 to 71–F2100
DIGITAL INPUTS / DUAL SETPOINTS
1340Assign Digital Input0 to 71–F2100
1341Active Setpoint Group0 to 11–F1180
1342Edit Setpoint Group0 to 11–F1180
DIGITAL INPUTS / SEQUENTIAL TRIP
1360Assign Digital Input0 to 71–F2100
1361Sequential Trip Type0 to 11–F2060
1362Assign Trip Relays (1-4)0 to 31–F501
1363Sequential Trip Level2 to 991× Rated MWF145
1365Sequential Trip Delay2 to 12001sF210
DIGITAL INPUTS / FIELD-BREAKER DISCREPANCY
1380Assign Digital Input0 to 71–F2100
1381Field Status Contact0 to 11–F1090
1382Assign Trip Relays (1-4)0 to 31–F501
1383Field-Breaker Discrepancy Trip Delay1 to 50001sF210
DIGITAL INPUTS / TACHOMETER
13A0Assign Digital Input0 to 71–F2100
13A1Rated Speed100 to 36001RPMF13600
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
21
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 12 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
13A2Tachometer Alarm0 to 21–F1150
13A3Assign Alarm Relays (2-5)1 to 41–F5016
13A4Tachometer Alarm Speed101 to 1751%RatedF1110
13A5Tachometer Alarm Delay1 to 2501sF11
13A6Tachometer Alarm Events0 to 11–F1050
13A7Tachometer Trip0 to 21–F1150
13A8Assign Trip Relays (1-4)0 to 31–F501
13A9Tachometer Trip Speed101 to 1751%RatedF1110
13AATachometer Trip Delay1 to 2501sF11
DIGITAL INPUTS / WAVEFORM CAPTURE
13C0Assign Digital Input0 to 71–F2100
DIGITAL INPUTS / GROUND SWITCH STATUS
13D0 Assign Digital Input0 to 71–F2100
13D1 Ground Switch Contact0 to 11–F1090
OUTPUT RELAYS / RELAY RESET MODE
14001 Trip0 to 11–F1170
14012 Auxiliary0 to 11–F1170
14023 Auxiliary0 to 11–F1170
14034 Auxiliary0 to 11–F1170
14045 Alarm0 to 11–F1170
14056 Service0 to 11–F1170
CURRENT ELEMENTS / OVERCURRENT ALARM
1500Overcurrent Alarm0 to 21–F1150
1501Assign Alarm Relays (2-5)1 to 41–F5016
1502Overcurrent Alarm Level10 to 1501× FLAF3101
1503Overcurrent Alarm Delay1 to 25001sF21
1504Overcurrent Alarm Events0 to 11–F1050
CURRENT ELEMENTS / OFFLINE OVERCURRENT
1520Offline Overcurrent Trip0 to 21–F1150
1521Assign Trip Relays (1-4)0 to 31–F501
1522Offline Overcurrent Pickup5 to 1001× CTF35
1523Offline Overcurrent Trip Delay3 to 991CyclesF15
CURRENT ELEMENTS / INADVERTENT ENERGIZATION
1540Inadvertent Energize Trip0 to 21–F1150
1541Assign Trip Relays (1-4)0 to 31–F501
1542Arming Signal0 to 11–F2020
1543Inadvertent Energize O/c Pickup5 to 3001× CTF35
1544Inadvertent Energize Pickup50 to 991× Rated VF350
CURRENT ELEMENTS / PHASE OVERCURRENT
1600Phase Overcurrent Trip0 to 21–F1150
1601Assign Trip Relays (1-4)0 to 31–F501
1602Enable Voltage Restraint0 to 11–F1030
1603Phase Overcurrent Pickup15 to 20001× CTF31000
1604Curve Shape0 to 131–F1280
1605FlexCurve™ Trip Time at 1.03 × PU0 to 655351msF165535
1606FlexCurve™ Trip Time at 1.05 × PU0 to 655351msF165535
1607FlexCurve™ Trip Time at 1.10 × PU0 to 655351msF165535
1608FlexCurve™ Trip Time at 1.20 × PU0 to 655351msF165535
1609FlexCurve™ Trip Time at 1.30 × PU0 to 655351msF165535
160AFlexCurve™ Trip Time at 1.40 × PU0 to 655351msF165535
160BFlexCurve™ Trip Time at 1.50 × PU0 to 655351msF165535
160CFlexCurve™ Trip Time at 1.60 × PU0 to 655351msF165535
160D FlexCurve™ Trip Time at 1.70 × PU0 to 655351msF165535
1, 2, 3 See Table footnotes on page 39
22
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 13 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
160EFlexCurve™ Trip Time at 1.80 × PU0 to 655351msF165535
160FFlexCurve™ Trip Time at 1.90 × PU0 to 655351msF165535
1610FlexCurve™ Trip Time at 2.00 × PU0 to 655351msF165535
1611FlexCurve™ Trip Time at 2.10 × PU0 to 655351msF165535
1612FlexCurve™ Trip Time at 2.20 × PU0 to 655351msF165535
1613FlexCurve™ Trip Time at 2.30 × PU0 to 655351msF165535
1614FlexCurve™ Trip Time at 2.40 × PU0 to 655351msF165535
1615FlexCurve™ Trip Time at 2.50 × PU0 to 655351msF165535
1616FlexCurve™ Trip Time at 2.60 × PU0 to 655351msF165535
1617FlexCurve™ Trip Time at 2.70 × PU0 to 655351msF165535
1618FlexCurve™ Trip Time at 2.80 × PU0 to 655351msF165535
1619FlexCurve™ Trip Time at 2.90 × PU0 to 655351msF165535
161AFlexCurve™ Trip Time at 3.00 × PU0 to 655351msF165535
161BFlexCurve™ Trip Time at 3.10 × PU0 to 655351msF165535
161CFlexCurve™ Trip Time at 3.20 × PU0 to 655351msF165535
161D FlexCurve™ Trip Time at 3.30 × PU0 to 655351msF165535
161EFlexCurve™ Trip Time at 3.40 × PU0 to 655351msF165535
161FFlexCurve™ Trip Time at 3.50 × PU0 to 655351msF165535
1620FlexCurve™ Trip Time at 3.60 × PU0 to 655351msF165535
1621FlexCurve™ Trip Time at 3.70 × PU0 to 655351msF165535
1622FlexCurve™ Trip Time at 3.80 × PU0 to 655351msF165535
1623FlexCurve™ Trip Time at 3.90 × PU0 to 655351msF165535
1624FlexCurve™ Trip Time at 4.00 × PU0 to 655351msF165535
1625FlexCurve™ Trip Time at 4.10 × PU0 to 655351msF165535
1626FlexCurve™ Trip Time at 4.20 × PU0 to 655351msF165535
1627FlexCurve™ Trip Time at 4.30 × PU0 to 655351msF165535
1628FlexCurve™ Trip Time at 4.40 × PU0 to 655351msF165535
1629FlexCurve™ Trip Time at 4.50 × PU0 to 655351msF165535
162AFlexCurve™ Trip Time at 4.60 × PU0 to 655351msF165535
162BFlexCurve™ Trip Time at 4.70 × PU0 to 655351msF165535
162CFlexCurve™ Trip Time at 4.80 × PU0 to 655351msF165535
162D FlexCurve™ Trip Time at 4.90 × PU0 to 655351msF165535
162EFlexCurve™ Trip Time at 5.00 × PU0 to 655351msF165535
162FFlexCurve™ Trip Time at 5.10 × PU0 to 655351msF165535
1630FlexCurve™ Trip Time at 5.20 × PU0 to 655351msF165535
1631FlexCurve™ Trip Time at 5.30 × PU0 to 655351msF165535
1632FlexCurve™ Trip Time at 5.40 × PU0 to 655351msF165535
1633FlexCurve™ Trip Time at 5.50 × PU0 to 655351msF165535
1634FlexCurve™ Trip Time at 5.60 × PU0 to 655351msF165535
1635FlexCurve™ Trip Time at 5.70 × PU0 to 655351msF165535
1636FlexCurve™ Trip Time at 5.80 × PU0 to 655351msF165535
1637FlexCurve™ Trip Time at 5.90 × PU0 to 655351msF165535
1638FlexCurve™ Trip Time at 6.00 × PU0 to 655351msF165535
1639FlexCurve™ Trip Time at 6.50 × PU0 to 655351msF165535
163AFlexCurve™ Trip Time at 7.00 × PU0 to 655351msF165535
163BFlexCurve™ Trip Time at 7.50 × PU0 to 655351msF165535
163CFlexCurve™ Trip Time at 8.00 × PU0 to 655351msF165535
163D FlexCurve™ Trip Time at 8.50 × PU0 to 655351msF165535
163EFlexCurve™ Trip Time at 9.00 × PU0 to 655351msF165535
163FFlexCurve™ Trip Time at 9.50 × PU0 to 655351msF165535
1640FlexCurve™ Trip Time at 10.0 × PU0 to 655351msF165535
1641FlexCurve™ Trip Time at 10.5 × PU0 to 655351msF165535
1642FlexCurve™ Trip Time at 11.0 × PU0 to 655351msF165535
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
23
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 14 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
1643FlexCurve™ Trip Time at 11.5 × PU0 to 655351msF165535
1644FlexCurve™ Trip Time at 12.0 × PU0 to 655351msF165535
1645FlexCurve™ Trip Time at 12.5 × PU0 to 655351msF165535
1646FlexCurve™ Trip Time at 13.0 × PU0 to 655351msF165535
1647FlexCurve™ Trip Time at 13.5 × PU0 to 655351msF165535
1648FlexCurve™ Trip Time at 14.0 × PU0 to 655351msF165535
1649FlexCurve™ Trip Time at 14.5 × PU0 to 655351msF165535
164AFlexCurve™ Trip Time at 15.0 × PU0 to 655351msF165535
164BFlexCurve™ Trip Time at 15.5 × PU0 to 655351msF165535
164CFlexCurve™ Trip Time at 16.0 × PU0 to 655351msF165535
164D FlexCurve™ Trip Time at 16.5 × PU0 to 655351msF165535
164EFlexCurve™ Trip Time at 17.0 × PU0 to 655351msF165535
164FFlexCurve™ Trip Time at 17.5 × PU0 to 655351msF165535
1650FlexCurve™ Trip Time at 18.0 × PU0 to 655351msF165535
1651FlexCurve™ Trip Time at 18.5 × PU0 to 655351msF165535
1652FlexCurve™ Trip Time at 19.0 × PU0 to 655351msF165535
1653FlexCurve™ Trip Time at 19.5 × PU0 to 655351msF165535
1654FlexCurve™ Trip Time at 20.0 × PU0 to 655351msF165535
1655Overcurrent Curve Multiplier0 to 1000001–F14100
1657Overcurrent Curve Reset0 to 11–F2010
1658Voltage Lower Limit10 to 601%F110
CURRENT ELEMENTS / NEGATIVE SEQUENCE
1700Negative Sequence Alarm0 to 21–F1150
1701Assign Alarm Relays (2-5)1 to 41–F5016
1702Negative Sequence Alarm Pickup3 to 1001%FLAF13
1703Negative Sequence Alarm Delay1 to 10001sF250
1704Negative Sequence Alarm Events0 to 11–F1050
1705Negative Sequence Overcurrent Trip0 to 21–F1150
1706Assign Trip Relays (1-4)0 to 31–F501
1707Negative Sequence Overcurrent Trip Pickup3 to 1001%FLAF18
1708Negative Sequence Overcurrent Constant K1 to 1001–F11
1709Negative Sequence Overcurrent Maximum Time10 to 10001sF11000
170ANegative Sequence Overcurrent Reset Rate0 to 99991sF22270
CURRENT ELEMENTS / GROUND O/C
1720Ground Overcurrent Alarm0 to 21–F1150
1721Assign Alarm Relays (2-5)1 to 41–F5016
1722Ground Overcurrent Alarm Pickup5 to 20001× CTF320
1723Ground Overcurrent Alarm Delay0 to 1001CyclesF10
1724Ground Overcurrent Alarm Events0 to 11–F1050
1725Ground Overcurrent Trip0 to 21–F1150
1726Assign Trip Relays (1-4)0 to 31–F501
1727Ground Overcurrent Trip Pickup5 to 20001× CTF320
1728Curve Shape0 to 131–F1280
1729FlexCurve™ Trip Time at 1.03 × PU0 to 655351msF165535
172AFlexCurve™ Trip Time at 1.05 × PU0 to 655351msF165535
172BFlexCurve™ Trip Time at 1.10 × PU0 to 655351msF165535
172CFlexCurve™ Trip Time at 1.20 × PU0 to 655351msF165535
172D FlexCurve™ Trip Time at 1.30 × PU0 to 655351msF165535
172EFlexCurve™ Trip Time at 1.40 × PU0 to 655351msF165535
172FFlexCurve™ Trip Time at 1.50 × PU0 to 655351msF165535
1730FlexCurve™ Trip Time at 1.60 × PU0 to 655351msF165535
1731FlexCurve™ Trip Time at 1.70 × PU0 to 655351msF165535
1732FlexCurve™ Trip Time at 1.80 × PU0 to 655351msF165535
1, 2, 3 See Table footnotes on page 39
24
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 15 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
1733FlexCurve™ Trip Time at 1.90 × PU0 to 655351msF165535
1734FlexCurve™ Trip Time at 2.00 × PU0 to 655351msF165535
1735FlexCurve™ Trip Time at 2.10 × PU0 to 655351msF165535
1736FlexCurve™ Trip Time at 2.20 × PU0 to 655351msF165535
1737FlexCurve™ Trip Time at 2.30 × PU0 to 655351msF165535
1738FlexCurve™ Trip Time at 2.40 × PU0 to 655351msF165535
1739FlexCurve™ Trip Time at 2.50 × PU0 to 655351msF165535
173AFlexCurve™ Trip Time at 2.60 × PU0 to 655351msF165535
173BFlexCurve™ Trip Time at 2.70 × PU0 to 655351msF165535
173CFlexCurve™ Trip Time at 2.80 × PU0 to 655351msF165535
173D FlexCurve™ Trip Time at 2.90 × PU0 to 655351msF165535
173EFlexCurve™ Trip Time at 3.00 × PU0 to 655351msF165535
173FFlexCurve™ Trip Time at 3.10 × PU0 to 655351msF165535
1740FlexCurve™ Trip Time at 3.20 × PU0 to 655351msF165535
1741FlexCurve™ Trip Time at 3.30 × PU0 to 655351msF165535
1742FlexCurve™ Trip Time at 3.40 × PU0 to 655351msF165535
1743FlexCurve™ Trip Time at 3.50 × PU0 to 655351msF165535
1744FlexCurve™ Trip Time at 3.60 × PU0 to 655351msF165535
1745FlexCurve™ Trip Time at 3.70 × PU0 to 655351msF165535
1746FlexCurve™ Trip Time at 3.80 × PU0 to 655351msF165535
1747FlexCurve™ Trip Time at 3.90 × PU0 to 655351msF165535
1748FlexCurve™ Trip Time at 4.00 × PU0 to 655351msF165535
1749FlexCurve™ Trip Time at 4.10 × PU0 to 655351msF165535
174AFlexCurve™ Trip Time at 4.20 × PU0 to 655351msF165535
174BFlexCurve™ Trip Time at 4.30 × PU0 to 655351msF165535
174CFlexCurve™ Trip Time at 4.40 × PU0 to 655351msF165535
174D FlexCurve™ Trip Time at 4.50 × PU0 to 655351msF165535
174EFlexCurve™ Trip Time at 4.60 × PU0 to 655351msF165535
174FFlexCurve™ Trip Time at 4.70 × PU0 to 655351msF165535
1750FlexCurve™ Trip Time at 4.80 × PU0 to 655351msF165535
1751FlexCurve™ Trip Time at 4.90 × PU0 to 655351msF165535
1752FlexCurve™ Trip Time at 5.00 × PU0 to 655351msF165535
1753FlexCurve™ Trip Time at 5.10 × PU0 to 655351msF165535
1754FlexCurve™ Trip Time at 5.20 × PU0 to 655351msF165535
1755FlexCurve™ Trip Time at 5.30 × PU0 to 655351msF165535
1756FlexCurve™ Trip Time at 5.40 × PU0 to 655351msF165535
1757FlexCurve™ Trip Time at 5.50 × PU0 to 655351msF165535
1758FlexCurve™ Trip Time at 5.60 × PU0 to 655351msF165535
1759FlexCurve™ Trip Time at 5.70 × PU0 to 655351msF165535
175AFlexCurve™ Trip Time at 5.80 × PU0 to 655351msF165535
175BFlexCurve™ Trip Time at 5.90 × PU0 to 655351msF165535
175CFlexCurve™ Trip Time at 6.00 × PU0 to 655351msF165535
175D FlexCurve™ Trip Time at 6.50 × PU0 to 655351msF165535
175EFlexCurve™ Trip Time at 7.00 × PU0 to 655351msF165535
175FFlexCurve™ Trip Time at 7.50 × PU0 to 655351msF165535
1760FlexCurve™ Trip Time at 8.00 × PU0 to 655351msF165535
1761FlexCurve™ Trip Time at 8.50 × PU0 to 655351msF165535
1762FlexCurve™ Trip Time at 9.00 × PU0 to 655351msF165535
1763FlexCurve™ Trip Time at 9.50 × PU0 to 655351msF165535
1764FlexCurve™ Trip Time at 10.0 × PU0 to 655351msF165535
1765FlexCurve™ Trip Time at 10.5 × PU0 to 655351msF165535
1766FlexCurve™ Trip Time at 11.0 × PU0 to 655351msF165535
1767FlexCurve™ Trip Time at 11.5 × PU0 to 655351msF165535
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
25
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 16 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
1768FlexCurve™ Trip Time at 12.0 × PU0 to 655351msF165535
1769FlexCurve™ Trip Time at 12.5 × PU0 to 655351msF165535
176AFlexCurve™ Trip Time at 13.0 × PU0 to 655351msF165535
176BFlexCurve™ Trip Time at 13.5 × PU0 to 655351msF165535
176CFlexCurve™ Trip Time at 14.0 × PU0 to 655351msF165535
176D FlexCurve™ Trip Time at 14.5 × PU0 to 655351msF165535
176EFlexCurve™ Trip Time at 15.0 × PU0 to 655351msF165535
176FFlexCurve™ Trip Time at 15.5 × PU0 to 655351msF165535
1770FlexCurve™ Trip Time at 16.0 × PU0 to 655351msF165535
1771FlexCurve™ Trip Time at 16.5 × PU0 to 655351msF165535
1772FlexCurve™ Trip Time at 17.0 × PU0 to 655351msF165535
1773FlexCurve™ Trip Time at 17.5 × PU0 to 655351msF165535
1774FlexCurve™ Trip Time at 18.0 × PU0 to 655351msF165535
1775FlexCurve™ Trip Time at 18.5 × PU0 to 655351msF165535
1776FlexCurve™ Trip Time at 19.0 × PU0 to 655351msF165535
1777FlexCurve™ Trip Time at 19.5 × PU0 to 655351msF165535
1778FlexCurve™ Trip Time at 20.0 × PU0 to 655351msF165535
1779Overcurrent Curve Multiplier0 to 1000001–F14100
177BOvercurrent Curve Reset0 to 11–F2010
CURRENT ELEMENTS / PHASE DIFFERENTIAL
17E0Phase Differential Trip0 to 21–F1150
17E1Assign Trip Relays (1-4)0 to 31–F501
17E2Differential Trip Minimum Pickup5 to 1001× CTF310
17E3Differential Trip Slope 11 to 1001%F110
17E4Differential Trip Slope 21 to 1001%F120
17E5Differential Trip Delay0 to 1001cyclesF10
CURRENT ELEMENTS / GROUND DIRECTIONAL
1800Supervise With Digital Input0 to 11–F1031
1801Ground Directional MTA0 to 31–F2170
1802Ground Directional Alarm0 to 21–F1150
1803Assign Alarm Relays (2-5)1 to 41–F5016
1804Ground Directional Alarm Pickup5 to 20001× CTF35
1805Ground Directional Alarm Delay1 to 12001sF230
1806Ground Directional Alarm Events0 to 11–F1050
1807Ground Directional Trip0 to 21–F1150
1808Assign Trip Relays (1-4)0 to 31–F501
1809Ground Directional Trip Pickup5 to 20001× CTF35
180AGround Directional Trip Delay1 to 12001sF230
CURRENT ELEMENTS / HIGH-SET PHASE OVERCURRENT
1830High-Set Phase Overcurrent Trip0 to 21–F1150
1831Assign Trip Relays (1-4)0 to 31–F501
1832High-Set Phase Overcurrent Pickup15 to 20001× CTF3500
1833High-Set Phase Overcurrent Delay0 to 100001sF3100
VOLTAGE ELEMENTS / UNDERVOLTAGE
2000Undervoltage Alarm0 to 21–F1150
2001Assign Alarm Relays (2-5)1 to 41–F5016
2002Undervoltage Alarm Pickup50 to 991× RatedF385
2003Undervoltage Alarm Delay2 to 12001sF230
2004Undervoltage Alarm Events0 to 11–F1050
2005Undervoltage Trip0 to 21–F1150
2006Assign Trip Relays (1-4)0 to 31–F501
2007Undervoltage Trip Pickup50 to 991× RatedF380
2008Undervoltage Trip Delay2 to 1001sF210
1, 2, 3 See Table footnotes on page 39
26
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 17 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2009Undervoltage Curve Reset Rate0 to 99991sF214
200AUndervoltage Curve Element0 to 11–F2080
VOLTAGE ELEMENTS / OVERVOLTAGE
2020Overvoltage Alarm0 to 21–F1150
2021Assign Alarm Relays (2-5)1 to 41–F5016
2022Overvoltage Alarm Pickup101 to 1501× RatedF3115
2023Overvoltage Alarm Delay1 to 12001sF230
2024Overvoltage Alarm Events0 to 11–F1050
2025Overvoltage Trip0 to 21–F1150
2026Assign Trip Relays (1-4)0 to 31–F501
2027Overvoltage Trip Pickup101 to 1501× RatedF3120
2028Overvoltage Trip Delay1 to 1001sF210
2029Overvoltage Curve Reset Rate0 to 99991sF214
202AOvervoltage Curve Element0 to 11–F2080
VOLTAGE ELEMENTS / VOLTS/HERTZ
2040Volts/Hertz Alarm0 to 21–F1150
2041Assign Alarm Relays (2-5)1 to 41–F5016
2042Volts/Hertz Alarm Pickup50 to 1991× NominalF3100
2043Volts/Hertz Alarm Delay1 to 15001sF230
2044Volts/Hertz Alarm Events0 to 11–F1050
2045Volts/Hertz Trip0 to 21–F1150
2046Assign Trip Relays (1-4)0 to 31–F501
2047Volts/Hertz Trip Pickup50 to 1991× NominalF3100
2048Volts/Hertz Trip Delay1 to 15001sF210
2049Volts/Hertz Curve Reset Rate0 to 99991sF214
204AVolts/Hertz Trip Element0 to 31–F2110
VOLTAGE ELEMENTS / PHASE REVERSAL
2060Phase Reversal Trip0 to 21–F1150
2061Assign Trip Relays (1-4)0 to 31–F501
VOLTAGE ELEMENTS / UNDERFREQUENCY
2080Block Underfrequency From Online0 to 51sF11
2081Voltage Level Cutoff50 to 991× RatedF350
2082Underfrequency Alarm0 to 21–F1150
2083Assign Alarm Relays (2-5)1 to 41–F5016
2084Underfrequency Alarm Level2000 to 60001HzF35950
2085Underfrequency Alarm Delay1 to 500001sF250
2086Underfrequency Alarm Events0 to 11–F1050
2087Underfrequency Trip0 to 21–F1150
2088Assign Trip Relays (1-4)0 to 31–F501
2089Underfrequency Trip Level 12000 to 60001HzF35950
208AUnderfrequency Trip Delay 11 to 500001sF2600
208BUnderfrequency Trip Level 22000 to 60001HzF35800
208CUnderfrequency Trip Delay 21 to 500001sF2300
VOLTAGE ELEMENTS / OVERFREQUENCY
20A0Block Overfrequency From Online0 to 51sF11
20A1Voltage Level Cutoff50 to 991× RatedF350
20A2Overfrequency Alarm0 to 21–F1150
20A3Assign Alarm Relays (2-5)1 to 41–F5016
20A4Overfrequency Alarm Level2501 to 70001HzF36050
20A5Overfrequency Alarm Delay1 to 500001sF250
20A6Overfrequency Alarm Events0 to 11–F1050
20A7Overfrequency Trip0 to 21–F1150
20A8Assign Trip Relays (1-4)0 to 31–F501
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
27
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 18 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
20A9Overfrequency Trip Level 12501 to 70001HzF36050
20AAOverfrequency Trip Delay 11 to 500001sF2600
20ABOverfrequency Trip Level 22501 to 70001HzF36200
20AC Overfrequency Trip Delay 21 to 500001sF2300
VOLTAGE ELEMENTS / NEUTRAL OVERVOLTAGE (FUNDAMENTAL)
20C0Neutral Overvoltage Alarm0 to 21–F1150
20C1Assign Alarm Relays (2-5)1 to 41–F5016
20C2Neutral Overvoltage Alarm Level20 to 10001Vsec.F230
20C3Neutral Overvoltage Alarm Delay1 to 12001sF210
20C4Neutral Overvoltage Alarm Events0 to 11–F1050
20C5Neutral Overvoltage Trip0 to 21–F1150
20C6Assign Trip Relays (1-4)0 to 31–F501
20C7Neutral Overvoltage Trip Level20 to 10001VF250
20C8Neutral Overvoltage Trip Delay1 to 12001sF210
20C9Supervise With Digital Input0 to 11–F1030
20CANeutral Overvoltage Curve Reset Rate0 to 99991sF20
20CBNeutral Overvoltage Trip Element0 to 11–F2081
VOLTAGE ELEMENTS / NEUTRAL UNDERVOLTAGE (3rd HARMONIC)
20E0Low Power Blocking Level2 to 991× Rated MWF145
20E2Low Voltage Blocking Level50 to 1001× RatedF375
20E3Neutral Undervoltage Alarm0 to 21–F1150
20E4Assign Alarm Relays (2-5)1 to 41–F5016
20E5Neutral Undervoltage Alarm Level5 to 2001VF25
20E6Neutral Undervoltage Alarm Delay5 to 1201sF130
20E7Neutral Undervoltage Alarm Events0 to 11–F1050
20E8Neutral Undervoltage Trip0 to 21–F1150
20E9Assign Trip Relays (1-4)0 to 31–F501
20EANeutral Undervoltage Trip Level5 to 2001VF210
20EBNeutral Undervoltage Trip Delay5 to 1201sF130
VOLTAGE ELEMENTS / LOSS OF EXCITATION
2100Enable Voltage Supervision0 to 11–F1030
2101Voltage Level70 to 1001× ratedF370
2102Circle 1 Trip0 to 21–F1150
2103Assign Circle 1 Trip Relays (1-4)0 to 31–F501
2104Circle 1 Diameter25 to 30001Ω sF2250
2105Circle 1 Offset10 to 30001Ω sF2 25
2106Circle 1 Trip Delay1 to 1001sF250
2107Circle 2 Trip0 to 21–F1150
2108Assign Circle 2 Trip Relays (1-4)0 to 31–F501
2109Circle 2 Diameter25 to 30001Ω sF2350
210ACircle 2 Offset10 to 30001Ω sF2 25
210BCircle 2 Trip Delay1 to 1001sF250
VOLTAGE ELEMENTS / DISTANCE ELEMENT
2130Step Up Transformer Setup0 to 11–F2190
2131Fuse Failure Supervision0 to 11–F1050
2132Zone 1 Trip0 to 21–F1150
2133Assign Zone 1 Trip Relays (1-4)0 to 31–F501
2134Zone 1 Reach1 to 50001Ω sF2100
2135Zone 1 Angle50 to 851°F175
2136Zone 1 Trip Delay0 to 15001sF24
2137Zone 2 Trip0 to 21–F1150
2138Assign Zone 2 Trip Relays (1-4)0 to 31–F501
2139Zone 2 Reach1 to 50001Ω sF2100
1, 2, 3 See Table footnotes on page 39
28
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 19 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
213AZone 2 Angle50 to 851°F175
213BZone 2 Trip Delay0 to 15001sF220
POWER ELEMENTS / REACTIVE POWER
2200Block Mvar Element From Online0 to 50001sF11
2201Reactive Power Alarm0 to 21–F1150
2202Assign Alarm Relays (2-5)1 to 41–F5016
2203Positive Mvar Alarm Level
2205Negative Mvar Alarm Level
2207Negative Mvar Alarm Delay2 to 12001sF210
2208Reactive Power Alarm Events0 to 11–F1050
2209Reactive Power Trip0 to 21–F1150
220AAssign Trip Relays (1-4)0 to 31–F501
220BPositive Mvar Trip Level
220D Negative Mvar Trip Level
220FNegative Mvar Trip Delay2 to 12001sF210
2210Positive Mvar Trip Delay2 to 12001sF2200
2211Positive Mvar Alarm Delay2 to 12001sF2100
POWER ELEMENTS / REVERSE POWER
2240Block Reverse Power From Online0 to 50001sF11
2241Reverse Power Alarm0 to 21–F1150
2242Assign Alarm Relays (2-5)1 to 41–F5016
2243Reverse Power Alarm Level2 to 991× RatedF145
2245Reverse Power Alarm Delay2 to 12001sF2100
2246Reverse Power Alarm Events0 to 11–F1050
2247Reverse Power Trip0 to 21–F1150
2248Assign Trip Relays (1-4)0 to 31–F501
2249Reverse Power Trip Level2 to 991× RatedF145
224BReverse Power Trip Delay2 to 12001sF2200
POWER ELEMENTS / LOW FORWARD POWER
2280Block Low Forward Power From Online0 to 150001sF10
2281Low Forward Power Alarm0 to 21–F1150
2282Assign Alarm Relays (2-5)1 to 41–F5016
2283Low Forward Power Alarm Level2 to 991× Rated MWF145
2285Low Forward Power Alarm Delay2 to 12001sF2100
2286Low Forward Power Alarm Events0 to 11–F1050
2287Low Forward Power Trip0 to 21–F1150
2288Assign Trip Relays (1-4)0 to 31–F501
2289Low Forward Power Trip Level2 to 991× Rated MWF145
228BLow Forward Power Trip Delay2 to 12001sF2200
RTD TEMPERATURE / RTD TYPES
2400Stator RTD Type0 to 31–F1200
2401Bearing RTD Type0 to 31–F1200
2402Ambient RTD Type0 to 31–F1200
2403Other RTD Type0 to 31–F1200
RTD TEMPERATURE / RTD #1
2420RTD #1 Application0 to 41–F1211
2421RTD #1 Alarm0 to 21–F1150
2422Assign Alarm Relays (2-5)1 to 41–F5016
2423RTD #1 Alarm Temperature1 to 2501°CF1130
2424RTD #1 Alarm Events0 to 11–F1050
2425RTD #1 Trip0 to 21–F1150
2426RTD #1 Trip Voting1 to 121–F1221
2427Assign Trip Relays (1-4)0 to 31–F501
1, 2, 3 See Table footnotes on page 39
3
3
3
3
2 to 2011x ratedF1485
2 to 2011x ratedF1485
2 to 2011MvarF1480
2 to 2011MvarF1480
489
GE Multilin
http://www.GEindustrial.com/multilin
29
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 20 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2428RTD #1 Trip Temperature1 to 2501°CF1155
2429RTD #1 Name0 to 81–F22_
RTD TEMPERATURE / RTD #2
2460RTD #2 Application0 to 41–F1211
2461RTD #2 Alarm0 to 21–F1150
2462Assign Alarm Relays (2-5)1 to 41–F5016
2463RTD #2 Alarm Temperature1 to 2501°CF1130
2464RTD #2 Alarm Events0 to 11–F1050
2465RTD #2 Trip0 to 21–F1150
2466RTD #2 Trip Voting1 to 121–F1222
2467Assign Trip Relays (1-4)0 to 31–F501
2468RTD #2 Trip Temperature1 to 2501°CF1155
2469RTD #2 Name0 to 81–F22_
RTD TEMPERATURE / RTD #3
24A0RTD #3 Application0 to 41–F1211
24A1RTD #3 Alarm0 to 21–F1150
24A2Assign Alarm Relays (2-5)1 to 41–F5016
24A3RTD #3 Alarm Temperature1 to 2501°CF1130
24A4RTD #3 Alarm Events0 to 11–F1050
24A5RTD #3 Trip0 to 21–F1150
24A6RTD #3 Trip Voting1 to 121–F1223
24A7Assign Trip Relays (1-4)0 to 31–F501
24A8RTD #3 Trip Temperature1 to 2501°CF1155
24A9RTD #3 Name0 to 81–F22_
RTD TEMPERATURE / RTD #4
24E0RTD #4 Application0 to 41–F1211
24E1RTD #4 Alarm0 to 21–F1150
24E2Assign Alarm Relays (2-5)1 to 41–F5016
24E3RTD #4 Alarm Temperature1 to 2501°CF1130
24E4RTD #4 Alarm Events0 to 11–F1050
24E5RTD #4 Trip0 to 21–F1150
24E6RTD #4 Trip Voting1 to 121–F1224
24E7Assign Trip Relays (1-4)0 to 31–F501
24E8RTD #4 Trip Temperature1 to 2501°CF1155
24E9RTD #4 Name0 to 81–F22_
RTD TEMPERATURE / RTD #5
2520RTD #5 Application0 to 41–F1211
2521RTD #5 Alarm0 to 21–F1150
2522Assign Alarm Relays (2-5)1 to 41–F5016
2523RTD #5 Alarm Temperature1 to 2501°CF1130
2524RTD #5 Alarm Events0 to 11–F1050
2525RTD #5 Trip0 to 21–F1150
2526RTD #5 Trip Voting1 to 121–F1225
2527Assign Trip Relays (1-4)0 to 31–F501
2528RTD #5 Trip Temperature1 to 2501°CF1155
2529RTD #5 Name0 to 81–F22_
RTD TEMPERATURE / RTD #6
2560RTD #6 Application0 to 41–F1211
2561RTD #6 Alarm0 to 21–F1150
2562Assign Alarm Relays (2-5)1 to 41–F5016
2563RTD #6 Alarm Temperature1 to 2501°CF1130
2564RTD #6 Alarm Events0 to 11–F1050
2565RTD #6 Trip0 to 21–F1150
1, 2, 3 See Table footnotes on page 39
30
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 21 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2566RTD #6 Trip Voting1 to 121–F1226
2567Assign Trip Relays (1-4)0 to 31–F501
2568RTD #6 Trip Temperature1 to 2501°CF1155
2569RTD #6 Name0 to 81–F22_
RTD TEMPERATURE / RTD #7
25A0RTD #7 Application0 to 41–F1212
25A1RTD #7 Alarm0 to 21–F1150
25A2Assign Alarm Relays (2-5)1 to 41–F5016
25A3RTD #7 Alarm Temperature1 to 2501°CF180
25A4RTD #7 Alarm Events0 to 11–F1050
25A5RTD #7 Trip0 to 21–F1150
25A6RTD #7 Trip Voting1 to 121–F1227
25A7Assign Trip Relays (1-4)0 to 31–F501
25A8RTD #7 Trip Temperature1 to 2501°CF190
25A9RTD #7 Name0 to 81–F22_
RTD TEMPERATURE / RTD #8
25E0RTD #8 Application0 to 41–F1212
25E1RTD #8 Alarm0 to 21–F1150
25E2Assign Alarm Relays (2-5)1 to 41–F5016
25E3RTD #8 Alarm Temperature1 to 2501°CF180
25E4RTD #8 Alarm Events0 to 11–F1050
25E5RTD #8 Trip0 to 21–F1150
25E6RTD #8 Trip Voting1 to 121–F1228
25E7Assign Trip Relays (1-4)0 to 31–F501
25E8RTD #8 Trip Temperature1 to 2501°CF190
25E9RTD #8 Name0 to 81–F22_
RTD TEMPERATURE / RTD #9
2620RTD #9 Application0 to 41–F1212
2621RTD #9 Alarm0 to 21–F1150
2622Assign Alarm Relays (2-5)1 to 41–F5016
2623RTD #9 Alarm Temperature1 to 2501°CF180
2624RTD #9 Alarm Events0 to 11–F1050
2625RTD #9 Trip0 to 21–F1150
2626RTD #9 Trip Voting1 to 121–F1229
2627Assign Trip Relays (1-4)0 to 31–F501
2628RTD #9 Trip Temperature1 to 2501°CF190
2629RTD #9 Name0 to 81–F22_
RTD TEMPERATURE / RTD #10
2660RTD #10 Application0 to 41–F1212
2661RTD #10 Alarm0 to 21–F1150
2662Assign Alarm Relays (2-5)1 to 41–F5016
2663RTD #10 Alarm Temperature1 to 2501°CF180
2664RTD #10 Alarm Events0 to 11–F1050
2665RTD #10 Trip0 to 21–F1150
2666RTD #10 Trip Voting1 to 121–F12210
2667Assign Trip Relays (1-4)0 to 31–F501
2668RTD #10 Trip Temperature1 to 2501°CF190
2669RTD #10 Name0 to 81–F22_
RTD TEMPERATURE / RTD #11
26A0RTD #11 Application0 to 41–F1214
26A1RTD #11 Alarm0 to 21–F1150
26A2Assign Alarm Relays (2-5)1 to 41–F5016
26A3RTD #11 Alarm Temperature1 to 2501°CF180
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
31
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 22 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
26A4RTD #11 Alarm Events0 to 11–F1050
26A5RTD #11 Trip0 to 21–F1150
26A6RTD #11 Trip Voting1 to 121–F12211
26A7Assign Trip Relays (1-4)0 to 31–F501
26A8RTD #11 Trip Temperature1 to 2501°CF190
26A9RTD #11 Name0 to 81–F22_
RTD TEMPERATURE / RTD #12
26E0RTD #12 Application0 to 41–F1213
26E1RTD #12 Alarm0 to 21–F1150
26E2Assign Alarm Relays (2-5)1 to 41–F5016
26E3RTD #12 Alarm Temperature1 to 2501°CF160
26E4RTD #12 Alarm Events0 to 11–F1050
26E5RTD #12 Trip0 to 21–F1150
26E6RTD #12 Trip Voting1 to 121–F12212
26E7Assign Trip Relays (1-4)0 to 31–F501
26E8RTD #12 Trip Temperature1 to 2501°CF180
26E9RTD #12 Name0 to 81–F22_
RTD TEMPERATURE / OPEN RTD SENSOR
2720Open RTD Sensor Alarm0 to 21–F1150
2721Assign Alarm Relays (2-5)1 to 41–F5016
2722Open RTD Sensor Alarm Events0 to 11–F1050
RTD TEMPERATURE / RTD SHORT/LOW TEMPERATURE
2740RTD Short/Low Temperature Alarm0 to 21–F1150
2741Assign Alarm Relays (2-5)1 to 41–F5016
2742RTD Short/Low Temperature Alarm Events0 to 11–F1050
THERMAL MODEL / MODEL SETUP
2800Enable Thermal Model0 to 11–F1030
2801Overload Pickup Level101 to 1251× FLAF3101
2802Unbalance Bias K Factor0 to 121–F10
2803Cool Time Constant Online0 to 5001minF115
2804Cool Time Constant Offline0 to 5001minF130
2805Hot/Cold Safe Stall Ratio1 to 1001–F3100
2806Enable RTD Biasing0 to 11–F1030
2807RTD Bias Minimum0 to 2501°CF140
2808RTD Bias Center Point0 to 2501°CF1130
2809RTD Bias Maximum0 to 2501°CF1155
280ASelect Curve Style0 to 21–F1420
280BStandard Overload Curve Number1 to 151–F14
280CTime to Trip at 1.01 × FLA5 to 9999991sF105
280ETime to Trip at 1.05 × FLA5 to 9999991sF105
2810Time to Trip at 1.10 × FLA5 to 9999991sF105
2812Time to Trip at 1.20 × FLA5 to 9999991sF105
2814Time to Trip at 1.30 × FLA5 to 9999991sF105
2816Time to Trip at 1.40 × FLA5 to 9999991sF105
2818Time to Trip at 1.50 × FLA5 to 9999991sF105
281ATime to Trip at 1.75 × FLA5 to 9999991sF105
281CTime to Trip at 2.00 × FLA5 to 9999991sF105
281ETime to Trip at 2.25 × FLA5 to 9999991sF105
2820Time to Trip at 2.50 × FLA5 to 9999991sF105
2822Time to Trip at 2.75 × FLA5 to 9999991sF105
2824Time to Trip at 3.00 × FLA5 to 9999991sF105
2826Time to Trip at 3.25 × FLA5 to 9999991sF105
2828Time to Trip at 3.50 × FLA5 to 9999991sF105
1, 2, 3 See Table footnotes on page 39
32
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 23 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
282ATime to Trip at 3.75 × FLA5 to 9999991sF105
282CTime to Trip at 4.00 × FLA5 to 9999991sF105
282ETime to Trip at 4.25 × FLA5 to 9999991sF105
2830Time to Trip at 4.50 × FLA5 to 9999991sF105
2832Time to Trip at 4.75 × FLA5 to 9999991sF105
2834Time to Trip at 5.00 × FLA5 to 9999991sF105
2836Time to Trip at 5.50 × FLA5 to 9999991sF105
2838Time to Trip at 6.00 × FLA5 to 9999991sF105
283ATime to Trip at 6.50 × FLA5 to 9999991sF105
283CTime to Trip at 7.00 × FLA5 to 9999991sF105
283ETime to Trip at 7.50 × FLA5 to 9999991sF105
2840Time to Trip at 8.00 × FLA5 to 9999991sF105
2842Time to Trip at 10.0 × FLA5 to 9999991sF105
2844Time to Trip at 15.0 × FLA5 to 9999991sF105
2846Time to Trip at 20.0 × FLA5 to 9999991sF105
2848Minimum Allowable Voltage70 to 951%F180
2849Stall Current at Minimum Voltage200 to 15001× FLAF3480
284ASafe Stall Time at Minimum Voltage5 to 99991sF2200
284BAcceleration Intersect at Minimum Voltage200 to 15001× FLAF3380
284CStall Current at 100% Voltage200 to 15001× FLAF3600
284D Safe Stall Time at 100% Voltage5 to 99991sF2100
284EAcceleration Intersect at 100% Voltage200 to 15001× FLAF3500
THERMAL MODEL / THERMAL ELEMENTS
2900Thermal Model Alarm0 to 21–F1150
2901Assign Alarm Relays (2-5)1 to 41–F5016
2902Thermal Alarm Level10 to 1001%UsedF175
2903Thermal Model Alarm Events0 to 11–F1050
2904Thermal Model Trip0 to 21–F1150
2905Assign Trip Relays (1-4)0 to 31–F501
MONITORING / TRIP COUNTER
2A00Trip Counter Alarm0 to 21–F1150
2A01Assign Alarm Relays (2-5)1 to 41–F5016
2A02Trip Counter Alarm Level1 to 500001TripsF125
2A03Trip Counter Alarm Events0 to 11–F1050
MONITORING / BREAKER FAILURE
2A20Breaker Failure Alarm0 to 21–F1150
2A21Assign Alarm Relays (2-5)1 to 41–F5016
2A22Breaker Failure Level5 to 20001× CTF3100
2A23Breaker Failure Delay10 to 100010msF1100
2A24Breaker Failure Alarm Events0 to 11–F1050
MONITORING / TRIP COIL MONITOR
2A30Trip Coil Monitor Alarm0 to 21–F1150
2A31Assign Alarm Relays (2-5)1 to 41–F5016
2A32Trip Coil Monitor Alarm Events0 to 11–F1050
MONITORING / VT FUSE FAILURE
2A50VT Fuse Failure Alarm0 to 21–F1150
2A51Assign Alarm Relays (2-5)1 to 41–F5016
2A52VT Fuse Failure Alarm Events0 to 11–F1050
MONITORING / CURRENT DEMAND
2A60Current Demand Period5 to 901minF115
2A61Current Demand Alarm0 to 21AF1150
2A62Assign Alarm Relays (2-5)1 to 41AF5016
2A63Current Demand Limit10 to 20001× FLAF14125
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
33
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 24 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2A65Current Demand Alarm Events0 to 11AF1050
MONITORING / MW DEMAND
2A70MW Demand Period5 to 901minF115
2A71MW Demand Alarm0 to 21–F1150
2A72Assign Alarm Relays (2-5)1 to 41–F5016
2A73MW Demand Limit10 to 2001× RatedF14125
2A75MW Demand Alarm Events0 to 11–F1050
MONITORING / Mvar DEMAND
2A80Mvar Demand Period5 to 901minF115
2A81Mvar Demand Alarm0 to 21–F1150
2A82Assign Alarm Relays (2-5)1 to 41–F5016
2A83Mvar Demand Limit10 to 2001× RatedF14125
2A85Mvar Demand Alarm Events0 to 11–F1050
MONITORING / MVA DEMAND
2A90MVA Demand Period5 to 901minF115
2A91MVA Demand Alarm0 to 21–F1150
2A92Assign Alarm Relays (2-5)1 to 41–F5016
2A93MVA Demand Limit10 to 2001× RatedF14125
2A95MVA Demand Alarm Events0 to 11–F1050
MONITORING / PULSE OUTPUT
2AB0Positive kWh Pulse Output Relays (2-5)1 to 41–F500
2AB1Positive kWh Pulse Output Interval1 to 500001–F110
2AB2Positive kvarh Pulse Output Relays (2-5)1 to 41–F500
2AB3Positive kvarh Pulse Output Interval1 to 500001–F110
2AB4Negative kvarh Pulse Output Relays (2-5)1 to 41–F500
2AB5Negative kvarh Pulse Output Interval1 to 500001–F110
2AB6Pulse Width200 to 10001–F1200
MONITORING / RUNNING HOUR SETUP
2AC0 Initial Generator Running Hours0 to 9999991hF120
2AC2 Generator Running Hour Alarm0 to 21–F1150
2AC3 Assign Alarm Relays (2-5)1 to 41–F5016
2AC4 Generator Running Hour Limit1 to 10000001hF121000
2AC6 Reserved
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 1
2B00Analog Output 10 to 421–F1270
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 2
2B01Analog Output 20 to 421–F1270
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 3
2B02Analog Output 30 to 421–F1270
ANALOG INPUT/OUTPUT / ANALOG OUTPUT 4
2B03Analog Output 40 to 421–F1270
ANALOG INPUT/OUTPUT / ANALOG OUTPUTS
2B04Ia Output Current Minimum0 to 20001× FLAF30
2B05Ia Output Current Maximum0 to 20001× FLAF3125
2B06Ib Output Current Minimum0 to 20001× FLAF30
2B07Ib Output Current Maximum0 to 20001× FLAF3125
2B08Ic Output Current Minimum0 to 20001× FLAF30
2B09Ic Output Current Maximum0 to 20001× FLAF3125
2B0AAverage Output Current Minimum0 to 20001× FLAF30
2B0BAverage Output Current Maximum0 to 20001× FLAF3125
2B0C Negative Sequence Current Minimum0 to 20001%FLAF10
2B0D Negative Sequence Current Maximum0 to 20001%FLAF1100
2B0EAveraged Generator Load Minimum0 to 20001× FLAF30
1, 2, 3 See Table footnotes on page 39
34
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 25 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2B0FAveraged Generator Load Maximum0 to 20001× FLAF3125
2B10Hottest Stator RTD Minimum–50 to 2501°CF40
2B11Hottest Stator RTD Maximum–50 to 2501°CF4200
2B12Hottest Bearing RTD Minimum–50 to 2501°CF40
2B13Hottest Bearing RTD Maximum–50 to 2501°CF4200
2B14Ambient RTD Minimum–50 to 2501°CF40
2B15Ambient RTD Maximum–50 to 2501°CF470
2B16RTD #1 Minimum–50 to 2501°CF40
2B17RTD #1 Maximum–50 to 2501°CF4200
2B18RTD #2 Minimum–50 to 2501°CF40
2B19RTD #2 Maximum–50 to 2501°CF4200
2B1ARTD #3 Minimum–50 to 2501°CF40
2B1BRTD #3 Maximum–50 to 2501°CF4200
2B1C RTD #4 Minimum–50 to 2501°CF40
2B1D RTD #4 Maximum–50 to 2501°CF4200
2B1ERTD #5 Minimum–50 to 2501°CF40
2B1FRTD #5 Maximum–50 to 2501°CF4200
2B20RTD #6 Minimum–50 to 2501°CF40
2B21RTD #6 Maximum–50 to 2501°CF4200
2B22RTD #7 Minimum–50 to 2501°CF40
2B23RTD #7 Maximum–50 to 2501°CF4200
2B24RTD #8 Minimum–50 to 2501°CF40
2B25RTD #8 Maximum–50 to 2501°CF4200
2B26RTD #9 Minimum–50 to 2501°CF40
2B27RTD #9 Maximum–50 to 2501°CF4200
2B28RTD #10 Minimum–50 to 2501°CF40
2B29RTD #10 Maximum–50 to 2501°CF4200
2B2ARTD #11 Minimum–50 to 2501°CF40
2B2BRTD #11 Maximum–50 to 2501°CF4200
2B2C RTD #12 Minimum–50 to 2501°CF40
2B2D RTD #12 Maximum–50 to 2501°CF4200
2B2EAB Voltage Minimum0 to 1501× RatedF30
2B2FAB Voltage Maximum0 to 1501× RatedF3125
2B30BC Voltage Minimum0 to 1501× RatedF30
2B31BC Voltage Maximum0 to 1501× RatedF3125
2B32CA Voltage Minimum0 to 1501× RatedF30
2B33CA Voltage Maximum0 to 1501× RatedF3125
2B34Average Voltage Minimum0 to 1501× RatedF30
2B35Average Voltage Maximum0 to 1501× RatedF3125
2B36Volts/Hertz Minimum0 to 2001× RatedF30
2B37Volts/Hertz Maximum0 to 2001× RatedF3150
2B38Frequency Minimum0 to 90001HzF35900
2B39Frequency Maximum0 to 90001HzF36100
2B3C Power Factor Minimum–99 to 1001–F680
2B3D Power Factor Maximum–99 to 1001–F6–80
2B3EReactive Power Minimum–200 to 2001× RatedF60
2B3FReactive Power Maximum–200 to 2001× RatedF6125
2B40Real Power (MW) Minimum–200 to 2001× RatedF60
2B41Real Power (MW) Maximum–200 to 2001× RatedF6125
2B42Apparent Power Minimum0 to 2001× RatedF30
2B43Apparent Power Maximum0 to 2001× RatedF3125
2B44Analog Input 1 Minimum–50000 to 500001UnitsF120
2B46Analog Input 1 Maximum–50000 to 500001UnitsF1250000
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
35
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 26 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2B48Analog Input 2 Minimum–50000 to 500001UnitsF120
2B4AAnalog Input 2 Maximum–50000 to 500001UnitsF1250000
2B4C Analog Input 3 Minimum–50000 to 500001UnitsF120
2B4EAnalog Input 3 Maximum–50000 to 500001UnitsF1250000
2B50Analog Input 4 Minimum–50000 to 500001UnitsF120
2B52Analog Input 4 Maximum–50000 to 500001UnitsF1250000
2B54Tachometer Minimum0 to 72001RPMF13500
2B55Tachometer Maximum0 to 72001RPMF13700
2B56Thermal Capacity Used Minimum0 to 1001%F10
2B57Thermal Capacity Used Maximum0 to 1001%F1100
2B58Neutral Voltage Third Harmonic Minimum0 to 2500001VoltsF100
2B5ANeutral Voltage Third Harmonic Maximum0 to 2500001VoltsF10450
2B5C Current Demand Minimum0 to 20001× FLAF30
2B5D Current Demand Maximum0 to 20001× FLAF3125
2B5EMvar Demand Minimum0 to 2001× RatedF30
2B5FMvar Demand Maximum0 to 2001× RatedF3125
2B60MW Demand Minimum0 to 2001× RatedF30
2B61MW Demand Maximum0 to 2001× RatedF3125
2B62MVA Demand Minimum0 to 2001× RatedF30
2B63MVA Demand Maximum0 to 2001× RatedF3125
ANALOG INPUT/OUTPUT / ANALOG INPUT 1
2C00Analog Input 10 to 31–F1290
2C05Analog Input 1 Units0 to 61–F22_
2C08Analog Input 1 Minimum–50000 to 500001UnitsF120
2C0AAnalog Input 1 Maximum–50000 to 500001UnitsF12100
2C0C Block Analog Input 1 From Online0 to 50001sF10
2C0D Analog Input 1 Alarm0 to 21–F1150
2C0EAssign Alarm Relays (2-5)1 to 41–F5016
2C0FAnalog Input 1 Alarm Level–50000 to 500001UnitsF1210
2C11Analog Input 1 Alarm Pickup0 to 11–F1300
2C12Analog Input 1 Alarm Delay1 to 30001sF21
2C13Analog Input 1 Alarm Events0 to 11–F1050
2C14Analog Input 1 Trip0 to 21–F1150
2C15Assign Trip Relays (1-4)0 to 31–F501
2C16Analog Input 1 Trip Level–50000 to 500001UnitsF1220
2C18Analog Input 1 Trip Pickup0 to 11–F1300
2C19Analog Input 1 Trip Delay1 to 30001sF21
2C1AAnalog Input 1 Name0 to 121–F22_
ANALOG INPUT/OUTPUT / ANALOG INPUT 2
2C40Analog Input 20 to 31–F1290
2C45Analog Input 2 Units0 to 61–F22_
2C48Analog Input 2 Minimum–50000 to 500001UnitsF120
2C4AAnalog Input 2 Maximum–50000 to 500001UnitsF12100
2C4C Block Analog Input 2 From Online0 to 50001sF10
2C4D Analog Input 2 Alarm0 to 21–F1150
2C4EAssign Alarm Relays (2-5)1 to 41–F5016
2C4FAnalog Input 2 Alarm Level–50000 to 500001UnitsF1210
2C51Analog Input 2 Alarm Pickup0 to 11–F1300
2C52Analog Input 2 Alarm Delay1 to 30001sF21
2C53Analog Input 2 Alarm Events0 to 11–F1050
2C54Analog Input 2 Trip0 to 21–F1150
2C55Assign Trip Relays (1-4)0 to 31–F501
2C56Analog Input 2 Trip Level–50000 to 500001UnitsF1220
1, 2, 3 See Table footnotes on page 39
36
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 27 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2C58Analog Input 2 Trip Pickup0 to 11–F1300
2C59Analog Input 2 Trip Delay1 to 30001sF21
2C5AAnalog Input 2 Name0 to 121–F22_
ANALOG INPUT/OUTPUT / ANALOG INPUT 3
2C80Analog Input 30 to 31–F1290
2C85Analog Input 3 Units0 to 61–F22_
2C88Analog Input 3 Minimum–50000 to 500001UnitsF120
2C8AAnalog Input 3 Maximum–50000 to 500001UnitsF12100
2C8C Block Analog Input 3 From Online0 to 50001sF10
2C8D Analog Input 3 Alarm0 to 21–F1150
2C8EAssign Alarm Relays (2-5)1 to 41–F5016
2C8FAnalog Input 3 Alarm Level–50000 to 500001UnitsF1210
2C91Analog Input 3 Alarm Pickup0 to 11–F1300
2C92Analog Input 3 Alarm Delay1 to 30001sF21
2C93Analog Input 3 Alarm Events0 to 11–F1050
2C94Analog Input 3 Trip0 to 21–F1150
2C95Assign Trip Relays (1-4)0 to 31–F501
2C96Analog Input 3 Trip Level–50000 to 500001UnitsF1220
2C98Analog Input 3 Trip Pickup0 to 11–F1300
2C99Analog Input 3 Trip Delay1 to 30001sF21
2C9AAnalog Input 3 Name0 to 121–F22_
ANALOG INPUT/OUTPUT / ANALOG INPUT 4
2CC0 Analog Input 40 to 31–F1290
2CC5 Analog Input 4 Units0 to 61–F22_
2CC8 Analog Input 4 Minimum–50000 to 500001UnitsF120
2CCA Analog Input 4 Maximum–50000 to 500001UnitsF12100
2CCC Block Analog Input 4 From Online0 to 50001sF10
2CCD Analog Input 4 Alarm0 to 21–F1150
2CCE Assign Alarm Relays (2-5)1 to 41–F5016
2CCFAnalog Input 4 Alarm Level–50000 to 500001UnitsF1210
2CD1 Analog Input 4 Alarm Pickup0 to 11–F1300
2CD2 Analog Input 4 Alarm Delay1 to 30001sF21
2CD3 Analog Input 4 Alarm Events0 to 11–F1050
2CD4 Analog Input 4 Trip0 to 21–F1150
2CD5 Assign Trip Relays (1-4)0 to 31–F501
2CD6 Analog Input 4 Trip Level–50000 to 500001UnitsF1220
2CD8 Analog Input 4 Trip Pickup0 to 11–F1300
2CD9 Analog Input 4 Trip Delay1 to 30001sF21
2CDA Analog Input 4 Name0 to 121–F22_
489 TESTING / SIMULATION MODE
2D00 Simulation Mode0 to 31–F1380
2D01 Pre-fault To Fault Time Delay0 to 3001sF115
489 TESTING / PRE-FAULT SETUP
2D20 Pre-Fault Iphase Output0 to 20001× CTF30
2D21 Pre-Fault Voltages Phase-N0 to 1501× RatedF3100
2D22 Pre-Fault Current Lags Voltage0 to 3591°F10
2D23 Pre-Fault Iphase Neutral0 to 20001× CTF30
2D24 Pre-Fault Current Ground0 to 20001× CTF30
2D25 Pre-Fault Voltage Neutral0 to 10001VoltsF20
2D26 Pre-Fault Stator RTD Temp–50 to 2501°CF440
2D27 Pre-Fault Bearing RTD Temp–50 to 2501°CF440
2D28 Pre-Fault Other RTD Temp–50 to 2501°CF440
2D29 Pre-Fault Ambient RTD Temp–50 to 2501°CF440
1, 2, 3 See Table footnotes on page 39
489
GE Multilin
http://www.GEindustrial.com/multilin
37
Modbus Memory Map489
Communications Guide
Table 1: 489 Memory Map (Sheet 28 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
2D2A Pre-Fault System Frequency50 to 9001HzF2600
2D2B Pre-Fault Analog Input 10 to 1001%F10
2D2C Pre-Fault Analog Input 20 to 1001%F10
2D2D Pre-Fault Analog Input 30 to 1001%F10
2D2E Pre-Fault Analog Input 40 to 1001%F10
2D4C Pre-Fault Stator RTD Temp–50 to 2501°FF440
2D4D Pre-Fault Bearing RTD Temp–50 to 2501°FF440
2D4E Pre-Fault Other RTD Temp–50 to 2501°FF440
2D4FPre-Fault Ambient RTD Temp–50 to 2501°FF440
489 TESTING / FAULT SETUP
2D80 Fault Iphase Output0 to 20001× CTF30
2D81 Fault Voltages Phase-N0 to 1501× RatedF3100
2D82 Fault Current Lags Voltage0 to 3591°F10
2D83 Fault Iphase Neutral0 to 20001× CTF30
2D84 Fault Current Ground0 to 20001× CTF30
2D85 Fault Voltage Neutral0 to 10001VoltsF20
2D86 Fault Stator RTD Temp–50 to 2501°CF440
2D87 Fault Bearing RTD Temp–50 to 2501°CF440
2D88 Fault Other RTD Temp–50 to 2501°CF440
2D89 Fault Ambient RTD Temp–50 to 2501°CF440
2D8A Fault System Frequency50 to 9001HzF2600
2D8B Fault Analog Input 10 to 1001%F10
2D8C Fault Analog Input 20 to 1001%F10
2D8D Fault Analog Input 30 to 1001%F10
2D8E Fault Analog Input 40 to 1001%F10
2DBC Fault Stator RTD Temp–50 to 2501°FF440
2DBD Fault Bearing RTD Temp–50 to 2501°FF440
2DBE Fault Other RTD Temp–50 to 2501°FF440
2DBF Fault Ambient RTD Temp–50 to 2501°FF440
489 TESTING / TEST OUTPUT RELAYS
2DE0 Force Operation Of Relays0 to 81–F1390
489 TESTING / TEST ANALOG OUTPUT
2DF0Force Analog Outputs Function0 to 11–F1260
2DF1Analog Output 1 Forced Value0 to 1001%F10
2DF2Analog Output 2 Forced Value0 to 1001%F10
2DF3Analog Output 3 Forced Value0 to 1001%F10
2DF4Analog Output 4 Forced Value0 to 1001%F10
EVENT RECORDER / GENERAL
3000Event Recorder Last Reset Date (2 Words)N/AN/AN/AF18N/A
3002Total Number Of Events Since Last Clear0 to 655351N/AF1N/A
3003Event Record Selector0 to 655351–F10
EVENT RECORDER / SELECTED EVENT
3004Cause Of Event0 to 1391–F1340
3005Time Of Event (2 Words)N/AN/AN/AF19N/A
3007Date Of Event (2 Words)N/AN/AN/AF18N/A
3009Tachometer0 to 72001RPMF10
300APhase A Current0 to 9999991AmpsF120
300CPhase B Current0 to 9999991AmpsF120
300EPhase C Current0 to 9999991AmpsF120
3010Phase A Differential Current0 to 9999991AmpsF120
3012Phase B Differential Current0 to 9999991AmpsF120
3014Phase C Differential Current0 to 9999991AmpsF120
3016Neg. Seq. Current0 to 20001%FLAF10
1, 2, 3 See Table footnotes on page 39
38
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map
Communications Guide
Table 1: 489 Memory Map (Sheet 29 of 29)
ADDR NAMERANGESTEPUNITSFORMATDEFAULT
3017Ground Current0 to 200000001AF140
3019A-B Voltage0 to 500001VoltsF10
301AB-C Voltage0 to 500001VoltsF10
301BC-A Voltage0 to 500001VoltsF10
301CFrequency0 to 120001HzF30
301D Active Group0 to 11–F10
301FReal Power (MW)–2000000 to 20000001MWF130
3021Reactive Power Mvar–2000000 to 20000001MarF130
3023Apparent Power MVA0 to 20000001MVAF130
3025Hottest Stator RTD Number1 to 121–F11
3026Hottest Stator RTD Temperature–50 to 2501°CF40
3027Hottest Bearing RTD Number1 to 121–F11
3028Hottest Bearing RTD Temperature–50 to 2501°CF40
3029Hottest Other RTD Number1 to 121–F11
302AHottest Other RTD Temperature–50 to 2501°CF40
302BHottest Ambient RTD Number1 to 121–F11
302CHottest Ambient RTD Temperature–50 to 2501°CF40
302D Analog Input 1–50000 to 500001UnitsF120
302FAnalog Input 2–50000 to 500001UnitsF120
3031Analog Input 3–50000 to 500001UnitsF120
3033Analog Input 4–50000 to 500001UnitsF120
3035Phase A Neutral Current0 to 9999991AmpsF120
3037Phase B Neutral Current0 to 9999991AmpsF120
3039Phase C Neutral Current0 to 9999991AmpsF120
30E0Hottest Stator RTD Temperature–50 to 2501°FF40
30E1Hottest Bearing RTD Temperature–50 to 2501°FF40
30E2Hottest Other RTD Temperature–50 to 2501°FF40
30E3Hottest Ambient RTD Temperature–50 to 2501°FF40
30E5Neutral Voltage (Fundamental)0 to 2500001VoltsF100
30E7Neutral Voltage (3rd Harmonic)0 to 2500001VoltsF100
30E9Vab/Iab0 to 655351ohms sF10
30EAVab/Iab Angle0 to 3591°F10
WAVEFORM MEMORY SETUP
30F0Waveform Memory Trigger DateN/AN/AN/AF18N/A
30F2Waveform Memory Trigger TimeN/AN/AN/AF19N/A
30F4Frequency During Trace Acquisition0 to 120001HzF30
30F5Waveform Memory Channel Selector (Holding Register)0 to 91N/AF2140
30F6Waveform Trigger Selector1 to 655351N/AF10
30F7Waveform Trigger Cause (Read-only)0 to 1391N/AF1340
30F8Number of Samples per Waveform Capture1 to 7681N/AF1168
30F9Number of Waveform Captures Taken0 to 655351N/AF10
WAVEFORM MEMORY SAMPLES
3100First Waveform Memory Sample–32767 to 327671N/AF40
3400Last Waveform Memory Sample–32767 to 327671N/AF40
1, 2, 3 See Table footnotes on page 39
1.A Value of 65535 indicates ‘Never’
2.A value of 0xFFFF indicates “no measurable value”.
3.Maximum value turns feature ‘Off’
489
GE Multilin
http://www.GEindustrial.com/multilin
39
489
Communications Guide
Modbus Memory Map
Memory Map Data
Formats
The data formats used in the Modbus memory map are shown below.
Example: Feb. 20, 1996 stored as
34867148 (i.e. 1st word: 0214, 2nd
word 07CC)
F1932 bitsTIME (HH:MM:SS:hh)
1st byteHours (0 to 23)
2nd byteMinutes (0 to 59)
3rd byteSeconds (0 to 59)
4th byteHundreds of seconds (0
Example: 2:05pm stored as
235208704 (i.e. 1st word: 0E05, 2nd
word 0000)
F2032 bits2’s COMPLEMENT
1st 16 bits High Order Word of Long
2nd 16 bits Low Order Word of Long
Note: -1 means “Never”
F2216 bitsTWO 8-BIT
MSBFirst Character
LSBSecond Character
Example: String ‘AB’ stored as 4142
hex.
F2432 bitsTIME FORMAT FOR
st
byteHours (0 to 23)
1
nd
byteMinutes (0 to 59)
2
rd
& 4th
3
bytes
Example: 1:15:48:572 stored as
17808828 (i.e., 1
word BDBC)
1 = A
2 = B
26 = Z
Major Revision Number
0 to 9 in steps of 1
Minor Revision Number
(two BCD digits)
00 to 99 in steps of 1
Year (1995 to 2094)
to 99)
SIGNED LONG VALUE
Valu e
Valu e
CHARACTERS
PACKED INTO 16-BIT
UNSIGNED
BROADCAST
Milliseconds (0 to 59999)
Note: Clock resolution
limited to 0.01 sec
st
word 010F, 2nd
40
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map489
Communications Guide
Table 2: Data Formats (Sheet 3 of 12)
CODE TYPEDEFINITION
F100 Unsigned
16 bit
integer
0Celsius
1Fahrenheit
FC101 Unsigned
16 bit
integer
0300 baud
11200 baud
22400 baud
34800 baud
49600 baud
519200 baud
F102 Unsigned
16 bit
integer
0None
1Odd
2Even
F103 Unsigned
16 bit
integer
0No
1Yes
F104 Unsigned
16 bit
integer
0None
11 A Secondary
250/0.025 Ground CT
35 A Secondary
F105 Unsigned
16 bit
integer
0Off
1On
F106 Unsigned
16 bit
integer
0None
1Open Delta
2Wye
F107 Unsigned
16 bit
integer
0----
160 Hz
250 Hz
325 Hz
F109 Unsigned
16 bit
integer
0Auxiliary A
1Auxiliary B
F115 Unsigned
16 bit
integer
0Off
1Latched
2Unlatched
TEMPEATURE DISPLAY
UNITS
RS 485 BAUD RATE
RS 485 PARITY
NO/YES SELECTION
GROUND CT TYPE
OFF/ON SELECTION
VOLTAGE
TRANSFORMER
CONNECTION TYPE
NOMINAL FREQUENCY
STARTER STATUS
SWITCH
ALARM / TRIP TYPE
SELECTION
Table 2: Data Formats (Sheet 4 of 12)
CODE TYPEDEFINITION
F117 Unsigned
16 bit
integer
0All Resets
1Remote Reset Only
2Keypad Reset Only
F118 Unsigned
16 bit
integer
0Group 1
1Group 2
F120 Unsigned
16 bit
integer
0100 Ohm Platinum
1120 Ohm Nickel
2100 Ohm Nickel
310 Ohm Copper
F121 Unsigned
16 bit
integer
0None
1Stator
2Bearing
3Ambient
4Other
F122 Unsigned
16 bit
integer
1RTD #1
2RTD #2
3RTD #3
4RTD #4
5RTD #5
6RTD #6
7RTD #7
8RTD #8
9RTD #9
10RTD #10
11RTD #11
12RTD #12
F123 Unsigned
16 bit
integer
0Not Enabled
1Inactive
2Timing Out
3Active Trip
4Latched Trip
F124 Unsigned
16 bit
integer
0----
1ABC
2ACB
F126 Unsigned
16 bit
0Disabled
1Enabled
RESET MODE
SETPOINT GROUP
RTD TYPE
RTD APPLICATION
RTD VOTING
SELECTION
ALARM/TRIP STATUS
PHASE ROTATION
SELECTION
DISABLED / ENABLED
SELECTION
GE Multilin
http://www.GEindustrial.com/multilin
41
489
Communications Guide
Modbus Memory Map
Table 2: Data Formats (Sheet 5 of 12)
CODE TYPEDEFINITION
F127 Unsigned
16 bit
integer
0None
1IA Output Current
2IB Output Current
3IC Output Current
4Average Output Current
5Negative Sequence
6Average Generator Load
7Hottest Stator RTD
8Hottest Bearing RTD
9Ambient RTD
10RTD #1
11RTD #2
12RTD #3
13RTD #4
14RTD #5
15RTD #6
16RTD #7
17RTD #8
18RTD #9
19RTD #10
20RTD #11
21RTD #12
22AB Voltage
23BC Voltage
24CA Voltage
25Average Voltage
26Volts/Hertz
27Frequency
28Third Harmonic Neutral
29Power Factor
30Reactive Power (Mvar)
31Real Power (MW)
32Apparent Power (MVA)
33Analog Input 1
34Analog Input 2
35Analog Input 3
36Analog Input 4
37Tachometer
38Thermal Capacity Used
39Current Demand
40Mvar Demand
41MW Demand
42MVA Demand
F128 Unsigned
16 bit
integer
0ANSI Extremely Inverse
1ANSI Very Inverse
2ANSI Normally Inverse
3ANSI Moderately Inverse
4IEC Curve A (BS142)
ANALOG OUTPUT
PARAMETER
SELECTION
Current
Voltage
OVERCURRENT CURVE
STYLE SELECTION
Table 2: Data Formats (Sheet 6 of 12)
CODE TYPEDEFINITION
F128
5IEC Curve B (BS142)
ctd.
6IEC Curve C (BS142)
7IEC Short Inverse
8IAC Extremely Inverse
9IAC Very Inverse
10IAC Inverse
11IAC Short Inverse
12FlexCurve™
13Definite Time
FC129 Unsigned
16 bit
integer
0Disabled
14 to 20 mA
20 to 20 mA
30 to 1 mA
F130 Unsigned
16 bit
integer
0Over
1Under
FC131 Unsigned
16 bit
integer
0Closed
1Open
F132 Unsigned
16 bit
integer
0No Coil
1Coil
F133 Unsigned
16 bit
integer
0Offline
1Offline
2Online
3Overload
4Tripped
F134 Unsigned
16 bit
integer
0No Event
1General Switch A Trip
2General Switch B Trip
3General Switch C Trip
4General Switch D Trip
5General Switch E Trip
6General Switch F Trip
7General Switch G Trip
8Sequential Trip
9Tachometer Trip
10Unknown Trip
11Unknown Trip
12Overload Trip
13Unknown Trip
14Neutral Overvoltage Trip
15Neutral Undervoltage
ANALOG INPUT
SELECTION
PICKUP TYPE
INPUT SWITCH
STATUS
TRIP COIL
SUPERVISION STATUS
GENERATOR STATUS
CAUSE OF EVENT /
CAUSE OF LAST TRIP
(3rd Harmonic) Trip
42
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map489
Communications Guide
Table 2: Data Formats (Sheet 7 of 12)
CODE TYPEDEFINITION
F134
16Not Used
ctd.
17Not Used
18Not Used
19Not Used
20Differential Trip
21Acceleration Trip
22RTD 1 Trip
23RTD 2 Trip
24RTD 3 Trip
25RTD 4 Trip
26RTD 5 Trip
27RTD 6 Trip
28RTD 7 Trip
29RTD 8 Trip
30RTD 9 Trip
31RTD 10 Trip
32RTD 11 Trip
33RTD 12 Trip
34Undervoltage Trip
35Overvoltage Trip
36Phase Reversal Trip
37Overfrequency Trip
38Power Factor Trip
39Reactive Power Trip
40Underfrequency Trip
41Analog Input 1 Trip
42Analog Input 2 Trip
43Analog Input 3 Trip
44Analog Input 4 Trip
45Single Phasing Trip
46Reverse Power Trip
47Field-Breaker Discrepancy
48Offline Overcurrent Trip
49Phase Overcurrent Trip
50Negative Sequence
51General Switch A Alarm
52General Switch B Alarm
53General Switch C Alarm
54General Switch D Alarm
55General Switch E Alarm
56General Switch F Alarm
57General Switch G Alarm
58Not Used
59Tachometer Alarm
60Thermal Model Alarm
61Overload Alarm
62Underfrequency Alarm
63Not Used
64Ground Fault Alarm
65RTD 1 Alarm
66RTD 2 Alarm
67RTD 3 Alarm
68RTD 4 Alarm
Overcurrent Trip
Table 2: Data Formats (Sheet 8 of 12)
CODE TYPEDEFINITION
F134
69RTD 5 Alarm
ctd.
70RTD 6 Alarm
71RTD 7 Alarm
72RTD 8 Alarm
73RTD 9 Alarm
74RTD 10 Alarm
75RTD 11 Alarm
76RTD 12 Alarm
77Open RTD Alarm
78Short/Low RTD Alarm
79Undervoltage Alarm
80Overvoltage Alarm
81Overfrequency Alarm
82Power Factor Alarm
83Reactive Power Alarm
84Low Forward Power Alarm
85Trip Counter Alarm
86Breaker Failure Alarm
87Current Demand Alarm
88kW Demand Alarm
89kvar Demand Alarm
90kVA Demand Alarm
91Broken Rotor Bar
92Analog Input 1 Alarm
93Analog Input 2 Alarm
94Analog Input 3 Alarm
95Analog Input 4 Alarm
96Reverse Power Alarm
97Incomplete Sequence
98Negative Sequence Alarm
99Ground Overcurrent
100Not Used
101Service Alarm
102Control Power Lost
103Control Power Applied
104Thermal Reset Close
105Emergency Reset Open
106Start While Blocked
107Relay Not Inserted
108Trip Coil Supervision
109Breaker Failure
110VT Fuse Failure
111Simulation Started
112Simulation Stopped
113Ground Overcurrent Trip
114Volts/Hertz Trip
115Volts/Hertz Alarm
116Low Forward Power Trip
117Inadvertent Energization
118Serial Start Command
119Serial Stop Command
120Input A Control
121Input B Control
Alarm
Alarm
GE Multilin
http://www.GEindustrial.com/multilin
43
489
Communications Guide
Modbus Memory Map
Table 2: Data Formats (Sheet 9 of 12)
CODE TYPEDEFINITION
F134
122Input C Control
ctd.
123Input D Control
124Input E Control
125Input F Control
126Input G Control
127Neutral Overvoltage
128Neutral Undervoltage
129Setpoint Group 1 Active
130Setpoint Group 2 Active
131Loss of Excitation 1
132Loss of Excitation 2
133Ground Directional Trip
134Ground Directional Alarm
135High-Set Phase
136Distance Zone 1 Trip
137Distance Zone 2 Trip
138Digital Input Waveform
139Serial Waveform Trigger
F136 Unsigned
16 bit
integer
Bit 00 = P5 (5 A CT
Bit 10 = HI (High Voltage
Bit 20 = A20 (4 to 20 mA
F138 Unsigned
16 bit
integer
0Off
1Simulate Pre-Fault
2Simulate Fault
3Pre-Fault to Fault
F139 Unsigned
16 bit
integer
0Disabled
11 TRIP
22 AUXILIARY
33 AUXILIARY
44 AUXILIARY
55 ALARM
66 SERVICE
7All Relays
8No Relays
F140 16 bitsGENERAL STATUS
bit 0Relay in Service
bit 1Active Trip Condition
bit 2Active Alarm Condition
bit 3Reserved
Alarm
(3rd Harmonic) Alarm
Overcurrent Trip
Trig ge r
ORDER CODE
secondary), 1 = P1 (1 A
CT secondary)
Power Supply),
1 = LO (Low Voltage
Power Supply)
Analog Outputs),
1 = A1 (0 to 1 mA Analog
Outputs)
SIMULATION MODE
FORCE OPERATION OF
RELAYS
Table 2: Data Formats (Sheet 10 of 12)
CODE TYPEDEFINITION
F140
bit 4Reserved
ctd.
bit 5Reserved
bit 6Reserved
bit 7Simulation Mode Enabled
bit 8Breaker Open LED
bit 9Breaker Closed LED
bit 10Hot Stator LED
bit 11Negative Sequence LED
bit 12Ground LED
bit 13Loss of Field LED
bit 14VT Failure LED
bit 15Breaker Failure LED
F141 16 bitsOUTPUT RELAY
bit 01 TRIP
bit 12 AUXILIARY
bit 23 AUXILIARY
bit 34 AUXILIARY
bit 45 ALARM
bit 56 SERVICE
bit 6 to
bit 15
F142 Unsigned
16 bit
integer
0Standard
1Custom
2Voltage Dependent
F200 Unsigned
16 bit
integer
0Buffer Cleared
1Received OK
2Wrong Slave Address
3Illegal Function
4Illegal Count
5Illegal Register Address
6CRC Error
7Illegal Data
F201 Unsigned
16 bit
integer
0Instantaneous
1Linear
F202 Unsigned
16 bit
integer
0Undervoltage and Offline
1Undervoltage or Offline
F206 Unsigned
16 bit
integer
0Low Forward Power
1Reverse Power
F207 Unsigned
16 bit
integer
0Open
1Shorted
STATUS
Not Used
THERMAL MODEL
CURVE STYLE
SELECTION
COMMUNICATION
MONITOR BUFFER
STATUS
CURVE RESET TYPE
INADVERTENT
ENERGIZATION
ARMING TYPE
SEQUENTIAL TRIP
TYPE
SWITCH STATUS
44
http://www.GEindustrial.com/multilin
GE Multilin
Modbus Memory Map489
Communications Guide
Table 2: Data Formats (Sheet 11 of 12)
CODE TYPEDEFINITION
F208 Unsigned
16 bit
integer
0Curve
1Definite Time
F209 Unsigned
16 bit
integer
0Breaker Auxiliary A
1Breaker Auxiliary B
F210 Unsigned
16 bit
integer
0None
1Input 1
2Input 2
3Input 3
4Input 4
5Input 5
6Input 6
7Input 7
F211 Unsigned
16 bit
integer
0Curve #1
1Curve #2
2Curve #3
3Definite Time
F212 Unsigned
16 bit
integer
0All
1RTD #1
2RTD #2
3RTD #3
4RTD #4
5RTD #5
6RTD #6
7RTD #7
8RTD #8
9RTD #9
10RTD #10
11RTD #11
12RTD #12
F213 Unsigned
16 bit
integer
0Computer RS485
1Auxiliary RS485
2Front Panel RS232
UNDERVOLTAGE TRIP
ELEMENT TYPE
BREAKER OPERATION
TYPE
ASSIGNABLE INPUT
SELECTION
VOLTS/HERTZ
ELEMENT TYPE
RTD NUMBER
COMMUNICATIONS
MONITOR PORT
SELECTION
Table 2: Data Formats (Sheet 12 of 12)
CODE TYPEDEFINITION
F214 Unsigned
16 bit
integer
0Phase A Line Current
1Phase B Line Current
2Phase C Line Current
3Phase A Line Current
4Neutral-End Phase A Line
5Neutral-End Phase B Line
6Neutral-End Phase C Line
7Phase A to Neutral
8Phase B to Neutral
9Phase C to Neutral
F215 Unsigned
16 bit
integer
0Neutral-End CTs
1Output-End CTs
F216 Unsigned
16 bit
integer
0None
1Computer RS485
2Auxiliary RS485
3Front Panel RS485
F217 Unsigned
16 bit
integer
00 degrees
190 degrees
2180 degrees
3270 degrees
F218 Unsigned
16 bit
integer
052 Closed
152 Open/Closed
F219 Unsigned
16 bit
integer
0None
1Delta/Wye
F220 Unsigned
16 bit
integer
0None
1DC Shift
2Amplitude Modulated
WAVEFORM MEMORY
CHANNEL SELECTOR
512 counts = 1 × CT
512 counts = 1 × CT
512 counts = 1 × CT
512 counts = 1 × CT
Current
512 counts = 1 × CT
Current
512 counts = 1 × CT
Current
512 counts = 1 × CT
Voltage; 3500 counts =
120 secondary volts
Voltage; 3500 counts =
120 secondary volts
Voltage; 3500 counts =
120 secondary volts
CURRENT SOURCE
DNP PORT SELECTION
GROUND
DIRECTIONAL MTA
BREAKER STATE
STEP-UP
TRANSFORMER TYPE
IRIG-B TYPE
GE Multilin
http://www.GEindustrial.com/multilin
45
Communications Guide
Ë
Ë
Ë
Ë
DNP Protocol489
DNP Protocol
Device Profile
Document
The communications port configured as a DNP slave port must support the full set of
features listed in the Level 2 DNP V3.00 Implementation (DNP-L2) described in
Chapter 2 of the subset definitions. See the DNP protocol website at http://
www.dnp.org for details
DNP 3.0: DEVICE PROFILE DOCUMENT
Vendor Name: General Electric Multilin Inc.
Device Name: 489 Generator Management Relay
Highest DNP Level Supported:
For Requests: Level 2
For Responses: Level 2
Notable objects, functions, and/or qualifiers supported in addition to the Highest DNP
Levels Supported (the complete list is described in the attached table):
Binary Input (Object 1, variations 1 and 2)
Binary Output (Object 10, variation 2)
Binary Counter (Object 20, variations 5 and 6)
Frozen Counter (Object 21, variations 9 and 10)
Analog Input (Object 30, variations 1, 2, 3, and 4)
Analog Input Change (Object 32, variations 1, 2, 3, and 4)
Warm Restart (Function Code 14)
Maximum Data Link Frame Size (octets):
Tran s m i t t e d : 2 9 2
Received: 292
Maximum Data Link Re-tries:
None
Ë
Fixed
Ë
Configurable
Ë
Requires Data Link Layer Confirmation:
Never
Ë
Always
Ë
Sometimes
Ë
Configurable
Ë
Requires Application Layer Confirmation:
Never
Ë
Always
Ë
When reporting Event Data
Ë
When sending multi-fragment responses
Ë
Sometimes
Ë
Configurable
Ë
Timeouts while waiting for:
Data Link Confirm None Fixed Variable Configurable
Complete Appl. Fragment None Fixed Variable Configurable
Application Confirm None Fixed Variable Configurable
Write Binary Outputs Never Always Sometimes Configurable
Select/Operate Never Always Sometimes Configurable
Direct Operate Never Always Sometimes Configurable
Direct Operate: No Ack Never Always Sometimes Configurable
Count > 1 Never Always Sometimes Configurable
Pulse On Never Always Sometimes Configurable
Pulse Off Never Always Sometimes Configurable
Latch On Never Always Sometimes Configurable
Latch Off Never Always Sometimes Configurable
See Binary / Control Relay Output Block (Objects 10/12) on page 51 for an
explanation of the above.
Queue Never Always Sometimes Configurable
Clear Queue Never Always Sometimes Configurable
Reports Binary Input Change Events when
no specific variations requested:
Never
Ë
Only time-tagged
Ë
Only non-time-tagged
Ë
Configurable to send both, one or
Ë
the other
Sends Unsolicited Responses:
Never
Ë
Configurable
Ë
Only certain objects
Ë
Sometimes
Ë
ENABLE/DISABLE UNSOLICITED
Ë
Function codes supported
Default Counter Object/Variation:
No Counters Reported
Ë
Configurable
Ë
Default Object / Default Variation
Ë
Point-by-point list attached
Ë
Sends Multi-Fragment Responses: Yes No
ËËË
ËËË
Ë
Ë
ËË
ËË
ËËË
Ë
ËË
ËËË
ËËË
ËËË
ËËË
ËËË
Reports time-tagged Binary Input Change
Events when no specific variation
requested:
Never
Ë
Binary Input Change With Time
Ë
Binary Input Change With Relative
Ë
Time
Configurable
Ë
Sends Static Data in Unsolicited
Responses:
Never
Ë
When Device Restarts
Ë
When Status Flags Change
Ë
Counters Roll Over at:
No Counters Reported
Ë
Configurable
Ë
16 Bits
Ë
32 Bits
Ë
Other Value
Ë
Point-by-point list attached
Ë
Ë
Ë
489
Implementation TableThe table below gives a list of all objects recognized and returned by the relay.
Additional information is provided on the following pages including a list of the
default variations returned for each object and lists of defined point numbers for
each object.
Implementation Table Notes:
1. For this object, the quantity specified in the request must be exactly 1 as there
is only one instance of this object defined in the relay.
2. All static data known to the relay is returned in response to a request for Class
0. This includes all objects of type 1 (Binary Input), type 10 (Binary Output),
type 20 (Binary Counter), type 21 (Frozen Counter) and type 30 (Analog Input).
3. The point tables for Binary Input and Analog Input objects contain a field that
defines to which event class the corresponding static data point has been
assigned.
4. For this object, the qualifier code must specify an index of 7 only.
5. Delay Measurement (function code 23) is supported since the relay allows for
writing the time via object 50 and it also periodically sets the “Time Synchronization Required” Internal Indication (IIN). The IIN is set at power-up and will be
set again 24 hours after it was last cleared. The IIN is cleared when time is written as object 50 data or if IRIG-B is enabled and relay time is updated as a
result of a successful decoding of this signal.
GE Multilin
http://www.GEindustrial.com/multilin
47
Communications Guide
Table 3: DNP Implementation Table
ObjectRequestResponse
ObjVarDescriptionFunc CodesQual Codes
10Binary Input - All Variations106
11Binary Input100, 01, 0612900, 01
12Binary Input With Status (Note 6)100, 01, 0612900, 01
20Binary Input Change - All Variations106, 07, 08
21Binary Input Change Without Time106, 07, 0812917, 28
22Binary Input Change With Time106, 07, 0812917, 28
200Binary Counter - All Variations1, 7, 8, 9, 100612900, 01
20532-Bit Binary Counter without Flag1, 7, 8, 9, 100612900, 01
20616-Bit Binary Counter without Flag1, 7, 8, 9, 100612900, 01
210Frozen Counter - All Variations10612900, 01
21932-Bit Frozen Counter without Flag10612900, 01
211016-Bit Frozen Counter without Flag10612900, 01
300Analog Input - All Variations106
30132-Bit Analog Input With Flag100, 01, 0612900, 01
30216-Bit Analog Input With Flag100, 01, 0612900, 01
30332-Bit Analog Input Without Flag100, 01, 0612900, 01
30416-Bit Analog Input Without Flag100, 01, 0612900, 01
320Analog Input Change - All Variations106, 07, 08
32132-Bit Analog Input Change without Time106, 07, 0812917, 28
32216-Bit Analog Input Change without Time106, 07, 0812917, 28
32332-Bit Analog Input Change with Time106, 07, 0812917, 28
32416-Bit Analog Input Change with Time106, 07, 0812917, 28
501Time and Date1, 207 (Note 1)12907
601Class 0 Data (Note 2)106129
602Class 1 Data (Note 3)106, 07, 08129
603Class 2 Data (Note 3)106, 07, 08129
604Class 3 Data (Note 3)106, 07, 08129
801Internal Indications200 (Note 4)129
No object - Cold Start13
No object - Warm Start14
No object - Delay Measurement (Note 5)23
(Hex)
DNP Protocol489
Func Codes Qual Codes
(Hex)
Default VariationsThe following table specifies the default variation for all objects returned by the
relay. These are the variations that will be returned for the object in a response
when no specific variation is specified in a request.
Table 4: Default Variations
48
OBJECTDESCRIPTIONDEFAULT
1Binary Input - Single Bit1
2Binary Input Change With Time2
10Binary Output Status2
2016-Bit Binary Counter without Flag6
2116-Bit Frozen Counter without Flag10
3032-Bit Analog Input Without Flag3
3232-Bit Analog Input Change Without Time1
http://www.GEindustrial.com/multilin
VARIATION
GE Multilin
DNP Point Lists489
Communications Guide
DNP Point Lists
Binary Input / Binary
Input Change (Objects
01/02)
The point list for Binary Inputs (Object 01) and Binary Input Change (Object 02) is
shown below:
Table 5: Binary Inputs (Sheet 1 of 4)
IdxDescriptionClass
0Relay In ServiceClass 1
1Trip Condition ActiveClass 1
2Alarm Condition ActiveClass 1
3Simulation Mode EnabledClass 1
4Breaker Is OpenClass 1
5Breaker Is ClosedClass 1
6Hot Stator Fault ActiveClass 1
7Negative Sequence Fault Active Class 1
8Ground Fault ActiveClass 1
9Loss Of Field Fault ActiveClass 1
10VT Failure DetectedClass 1
11Breaker Failure DetectedClass 1
12Relay 1 Trip OperatedClass 1
13Relay 2 Auxiliary OperatedClass 1
14Relay 3 Auxiliary OperatedClass 1
15Relay 4 Auxiliary OperatedClass 1
16Relay 5 Alarm OperatedClass 1
17Relay 6 Service OperatedClass 1
18Setpoint Access Input ClosedClass 1
19Breaker Status Input ClosedClass 1
20Assignable Input 1 ClosedClass 1
21Assignable Input 2 ClosedClass 1
22Assignable Input 3 ClosedClass 1
23Assignable Input 4 ClosedClass 1
24Assignable Input 5 ClosedClass 1
25Assignable Input 6 ClosedClass 1
26Assignable Input 7 ClosedClass 1
27Trip Coil Supervision - Coil
Detected
40Assignable Input 1 Trip Active
or Latched
41Assignable Input 2 Trip Active
or Latched
42Assignable Input 3 Trip Active
or Latched
43Assignable Input 4 Trip Active
or Latched
44Assignable Input 5 Trip Active
or Latched
45Assignable Input 6 Trip Active
or Latched
46Assignable Input 7 Trip Active
or Latched
47Sequential Trip Active or
Latched
48Field-Breaker Discrepancy Trip
Active or Latched
49Tachometer Trip Active or
Latched
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Table 5: Binary Inputs (Sheet 2 of 4)
IdxDescriptionClass
50Offline Overcurrent Trip Active
or Latched
51Inadvertent Energization Trip
Active or Latched
52Phase Overcurrent Trip Active
or Latched
53Negative Sequence
Overcurrent Trip Active or
Latched
54Ground Overcurrent Trip Active
or Latched
55Phase Differential Trip Active or
Latched
56Undervoltage Trip Active or
Latched
57Overvoltage Trip Active or
Latched
58Volts/Hertz Trip Active or
Latched
59Phase Reversal Trip Active or
Latched
60Underfrequency Trip Active or
Latched
61Overfrequency Trip Active or
Latched
62Neutral Overvoltage Trip Active
or Latched
63Neutral Undervoltage (Third
Harmonic) Trip Active or
Latched
64Reactive Power Trip Active or
Latched
65Reverse Power Trip Active or
Latched
66Low Fwd Power Trip Active or
Latched
67Thermal Model Trip Active or
Latched
68RTD 1 Trip Active or LatchedClass 1
69RTD 2 Trip Active or LatchedClass 1
70RTD 3 Trip Active or LatchedClass 1
71RTD 4 Trip Active or LatchedClass 1
72RTD 5 Trip Active or LatchedClass 1
73RTD 6 Trip Active or LatchedClass 1
74RTD 7 Trip Active or LatchedClass 1
75RTD 8 Trip Active or LatchedClass 1
76RTD 9 Trip Active or LatchedClass 1
77RTD 10 Trip Active or LatchedClass 1
78RTD 11 Trip Active or LatchedClass 1
79RTD 12 Trip Active or LatchedClass 1
80Analog Input 1 Trip Active or
Latched
81Analog Input 2 Trip Active or
Latched
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
GE Multilin
http://www.GEindustrial.com/multilin
49
489
Communications Guide
DNP Point Lists
Table 5: Binary Inputs (Sheet 3 of 4)
IdxDescriptionClass
82Analog Input 3 Trip Active or
Latched
83Analog Input 4 Trip Active or
Latched
84Loss of Excitation Circle 1 Trip
Active or Latched
85Loss of Excitation Circle 2 Trip
Active or Latched
86Ground Directional Trip Active
or Latched
87High Set Phase Overcurrent
Trip Active or Latched
88Distance Zone 1 Trip Active or
Latched
89Distance Zone 2 Trip Active or
Latched
100Assignable Input 1 Alarm
Active / Latched
101Assignable Input 2 Alarm
Active or Latched
102Assignable Input 3 Alarm
Active or Latched
103Assignable Input 4 Alarm
Active or Latched
104Assignable Input 5 Alarm
Active or Latched
105Assignable Input 6 Alarm
Active or Latched
106Assignable Input 7 Alarm
Active / Latched
107Tachometer Alarm Active or
Latched
108Overcurrent Alarm Active or
Latched
109Negative Sequence Alarm
Active or Latched
110Ground Overcurrent Alarm
Active or Latched
111Undervoltage Alarm Active or
Latched
112Overvoltage Alarm Active or
Latched
113Volts/Hertz Alarm Active or
Latched
114Underfreq Alarm Active or
Latched
115Overfrequency Alarm Active or
Latched
116Neutral Overvoltage Alarm
Active or Latched
117Neutral Undervoltage (Third
Harmonic) Alarm Active or
Latched
118Reactive Power Alarm Active or
Latched
119Reverse Power Alarm Active or
Latched
120Low Forward Power Alarm
Active / Latched
121RTD 1 Alarm Active or Latched Class 1
122RTD 2 Alarm Active or Latched Class 1
123RTD 3 Alarm Active or Latched Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Table 5: Binary Inputs (Sheet 4 of 4)
IdxDescriptionClass
124RTD 4 Alarm Active or Latched Class 1
125RTD 5 Alarm Active or Latched Class 1
126RTD 6 Alarm Active or Latched Class 1
127RTD 7 Alarm Active or Latched Class 1
128RTD 8 Alarm Active or Latched Class 1
129RTD 9 Alarm Active or Latched Class 1
130RTD 10 Alarm Active or Latched Class 1
131RTD 11 Alarm Active or Latched Class 1
132RTD 12 Alarm Active or Latched Class 1
133Open Sensor Alarm Active or
Latched
134Short/Low Temp Alarm Active
or Latched
135Thermal Model Alarm Active or
Latched
136Trip Counter Alarm Active or
Latched
137Breaker Failure Alarm Active or
Latched
138Trip Coil Monitor Alarm Active
or Latched
139VTFF Alarm Active or LatchedClass 1
140Current Dmd Alarm Active or
Latched
141MW Demand Alarm Active or
Latched
142Mvar Demand Alarm Active or
Latched
143MVA Alarm Active or LatchedClass 1
144Analog Input 1 Alarm Active or
Latched
145Analog Input 2 Alarm Active or
Latched
146Analog Input 3 Alarm Active or
Latched
147Analog Input 4 Alarm Active or
Latched
148Not Programmed Alarm Active
or Latched
149Simulation Mode Alarm Active
or Latched
150Output Relays Forced Alarm
Active or Latched
151Analog Output Forced Alarm
Active or Latched
152Test Switch Shorted Alarm
Active or Latched
153Ground Directional Alarm
Active or Latched
154IRIG-B Failure Alarm Active or
Latched
155Generator Running Hour Alarm
Active or Latched
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Class 1
Any detected change in the
state of any point assigned to
NOTE
Class 1 will cause the generation
of an event object.
50
http://www.GEindustrial.com/multilin
GE Multilin
DNP Point Lists
Communications Guide
489
Binary / Control Relay
Output Block (Objects
10/12)
Table 6: Binary Output Point List
INDEXDESCRIPTION
0Reset
1Generator Start
2Generator Stop
3Clear Trip Counters
4Clear Last Trip Data
5Clear MWh and Mvarh
6Clear Peak Demand Data
7Clear Generator Information
8Clear Breaker Information
The following restrictions should be noted when using object 12 to control the points
listed above:
1. The Count field is checked first. If it is zero, the command will be accepted but
no action will be taken. If this field is non-zero, the command will be executed
exactly once regardless of its value.
2. The Control Code field of object 12 is then inspected:
–The Queue and Clear sub-fields are ignored.
–If the Control Code field is zero (i.e., NUL operation) the command is
accepted but no action is taken.
–For all points, the only valid control is “Close - Pulse On” (41 hex). This is
used to initiate the function (e.g., Reset) associated with the point.
–Any value in the Control Code field not specified above is invalid and will
be rejected.
–The On Time and Off Time fields are ignored. A ”Pulse On” control takes
effect immediately when received. Thus, the timing is irrelevant.
–The Status field in the response will reflect the success or failure of the
control attempt thus:
–A Status of “Request Accepted” (0) will be returned if the command was
accepted.
–A Status of “Request not Accepted due to Formatting Errors” (3) will be
returned if the Control Code field was incorrectly formatted or an invalid
Code was present in the command.
–A Status of “Control Operation not Supported for this Point” (4) will be
returned if an attempt was made to operate the point and the relay, owing
to its configuration, does not allow the point to perform its function.
An operate of the Reset point may fail (even if the command is accepted) due to
other inputs or conditions (e.g., blocks) existing at the time. To verify the success or
failure of an operate of this point it is necessary that the associated Binary Input(s)
be examined after the control attempt is performed.
When using object 10 to read the status of any Binary Output, a value of zero will
always be returned. This is due to the fact that all points are “Pulse On” and are
deemed to be normally off.
GE Multilin
http://www.GEindustrial.com/multilin
51
Communications Guide
DNP Point Lists489
Binary / Frozen Counter
(Objects 20/21)
Table 7: Counters Point List
INDEXROLLOVER
050000Number of Breaker Operations
150000Number of Thermal Resets
250000Number of Trips (total)
350000Number of Digital Input Trips
450000Number of Sequential Trips
550000Number of Field-Breaker Discrepancy Trips
650000Number of Tachometer Trips
750000Number of Offline Overcurrent Trips
850000Number of Phase Overcurrent Trips
950000Number of Negative Sequence Overcurrent Trips
1050000Number of Ground Overcurrent Trips
1150000Number of Phase Differential Trips
1250000Number of Undervoltage Trips
1350000Number of Overvoltage Trips
1450000Number of Volts/Hertz Trips
1550000Number of Phase Reversal Trips
1650000Number of Underfrequency Trips
1750000Number of Overfrequency Trips
1850000Number of Neutral Overvoltage (Fundamental) Trips
1950000Number of Neutral Undervoltage (Third Harmonic) Trips
2050000Number of Reactive Power Trips
2150000Number of Reverse Power Trips
2250000Number of Underpower Trips
2350000Number of Stator RTD Trips
2450000Number of Bearing RTD Trips
2550000Number of Other RTD Trips
2650000Number of Ambient RTD Trips
2750000Number of Thermal Model Trips
2850000Number of Inadvertent Energization Trips
2950000Number of Analog Input 1 Trips
3050000Number of Analog Input 2 Trips
3150000Number of Analog Input 3 Trips
3250000Number of Analog Input 4 Trips
3350000Number of Loss of Excitation Circle 1 Trips
3450000Number of Loss of Excitation Circle 2 Trips
3550000Number of Ground Directional Trips
3650000Number of High Set Phase Overcurrent Trips
3750000Number of Distance Zone 1 Trips
3850000Number of Distance Zone 2 Trips
POINT
DESCRIPTION
52
NOTE
The counters cannot be cleared with the Freeze/Clear function codes (9/10).
Instead, the control relay output block points can be used to clear groups of
counters. There is only one copy of each counter, so clearing a counter via Modbus
or the front panel display causes the corresponding DNP counter point to be cleared
and vice-versa.
http://www.GEindustrial.com/multilin
GE Multilin
DNP Point Lists
Communications Guide
489
Analog Input / Input
Change (Objects 30/32)
In the following table, the Format column indicates that the associated data point
format is determined by the entry in Data Formats on page 40. For example, an
“F1” format is described in that table as a (16-bit) unsigned value without any
decimal places. Therefore, the value read should be interpreted in this manner.
Many of the values reported by the 489 have a size of 32-bits and have had their
upper and lower 16-bit components assigned to separate points. Where indicated,
refer to the appropriate note following the table for more detail.
Table 8: Analog Inputs Point List (Sheet 1 of 4)
INDEXFOR-
10F1Phase A Pre-Trip CurrentClass 1Notes 3, 6
11F1Phase B Pre-Trip CurrentClass 1Notes 3, 6
12F1Phase C Pre-Trip CurrentClass 1Notes 3, 6
13F1Phase A Pre-Trip Differential CurrentClass 1Notes 3, 6
14F1Phase B Pre-Trip Differential Current Class 1Notes 3, 6
15F1Phase C Pre-Trip Differential Current Class 1Notes 3, 6
26F1Pre-Trip Reactive Power (kvar)Class 1Notes 3,8
27F1Pre-Trip Apparent Power (MVA)Class 1Notes 3,8
28F1Pre-Trip Apparent Power (kVA)Class 1Notes 3,8
29F1Last Trip Stator RTDClass 1Note 3
30F4Last Trip Hottest Stator RTD Temperature
31F1Last Trip Bearing RTDClass 1Note 3
32F4Last Trip Hottest Bearing RTD Temperature
33F1Last Trip Other RTDClass 1Note 3
34F4Last Trip Hottest Other RTD Temperature
MAT
0F133Generator StatusClass 1Note 3
1F1Generator Thermal Capacity UsedClass 1
2F1Estimated Trip Time On Overload
3F134Cause Of Last TripClass 1Note 3
4F19Time Of Last Trip (Upper 16 Bits)Class 1Notes 3,4
5F19Time Of Last Trip (Lower 16 Bits)Class 1Notes 3,4
6F18Date Of Last Trip (Upper 16 Bits)Class 1Notes 3,4
7F18Date Of Last Trip (Lower 16 Bits)Class 1Notes 3,4
8F1Tachometer Pre-TripClass 1Note 3
9F1Scale factor for pre-trip current readings
DESCRIPTIONEVENT CLASS
(seconds, 65535 means never)
(pre-trip points marked with “Note 6”).
Will always be a power of 10 (1, 10, 100,
etc.). Changes only when the configuration
setpoints are changed.
be a power of 10 (1, 10, 100, etc.).
Changes only when the configuration
setpoints are changed.
to previous setpoint)
(°C)
(°C)
(°C)
ASSIGNED TO
Class 1
Class 1Note 3
Class 1Note 3
Class 1Note 3
Class 1Note 3
Class 1Note 3
Class 1Note 3
NOTES
GE Multilin
http://www.GEindustrial.com/multilin
53
Communications Guide
DNP Point Lists489
Table 8: Analog Inputs Point List (Sheet 2 of 4)
INDEXFOR-
35F1Last Trip Ambient RTDClass 1Note 3
36F4Last Trip Hottest Ambient RTD
37F12Pre-Trip Analog Input 1 Class 1Notes 3,9
38F12Pre-Trip Analog Input 2 Class 1Notes 3,9
39F12Pre-Trip Analog Input 3Class 1Notes 3,9
40F12Pre-Trip Analog Input 4 Class 1Notes 3,9
41F1Pre-Trip Fundamental Frequency Neutral
42F10Pre-Trip Fundamental Frequency Neutral
43F1Pre-Trip Third Harmonic Neutral Voltage
44F10Pre-Trip Third Harmonic Neutral Voltage
45F2Pre-Trip Vab/Iab (loss of excitation
46F1Pre-Trip Vab/Iab Angle (loss of excitation
47F1Scale factor for current readings (points
48F1Phase A Output CurrentClass 2Note 7
49F1Phase B Output CurrentClass 2Note 7
50F1Phase C Output CurrentClass 2Note 7
51F1Phase A Neutral-Side CurrentClass 2Note 7
52F1Phase B Neutral-Side CurrentClass 2Note 7
53F1Phase C Neutral-Side CurrentClass 2Note 7
54F1Phase A Differential CurrentClass 2Note 7
55F1Phase B Differential CurrentClass 2Note 7
56F1Phase C Differential CurrentClass 2Note 7
57F1Average Phase CurrentClass 2Note 7
58F1Generator Load (percent)Class 2
59F1Negative Sequence CurrentClass 2
60F1Ground Current Scale Factor. Will always
61F3Ground Current (scaled according to the
62F1Phase A-B VoltageClass 2
63F1Phase B-C VoltageClass 2
64F1Phase C-A VoltageClass 2
65F1Average Line VoltageClass 2
66F1Phase A-N VoltageClass 2
67F1Phase B-N VoltageClass 2
68F1Phase C-N VoltageClass 2
69F1Average Phase VoltageClass 2
70F3Per Unit Measurement Of V/HzClass 2
71F3FrequencyClass 2Note 2
72F1Fundamental Frequency Neutral Voltage
73F10Fundamental Frequency Neutral Voltage
MAT
DESCRIPTIONEVENT CLASS
Temperature (°C)
Voltage ( vo lts)
Voltage (tenths of a volt)
(volts)
(tenths of a volt)
impedance)
impedance angle)
marked with “Note 7”). Will always be a
power of 10 (1, 10, 100, etc.). Changes
only when the configuration setpoints are
changed.
be a power of 10 (1, 10, 100, etc.).
Changes only when the configuration
setpoints are changed.
previous point)
(volts)
(tenths of a volt)
ASSIGNED TO
Class 1Note 3
Class 1Notes 3,10
Class 1Notes 3,10
Class 1Notes 3,10
Class 1Notes 3,10
Class 1Note 3
Class 1Note 3
Class 1Note 3
Class 1Note 3
Class 2
Class 2Note 10
Class 2Note 10
NOTES
54
http://www.GEindustrial.com/multilin
GE Multilin
DNP Point Lists
Communications Guide
Table 8: Analog Inputs Point List (Sheet 3 of 4)
INDEXFOR-
74F1Third Harmonic Neutral Voltage (volts)Class 2Note 10
75F10Third Harmonic Neutral Voltage (tenths of
76F1Third Harmonic Terminal Voltage (volts)Class 2Note 10
77F10Third Harmonic Terminal Voltage (tenths of
78F2Vab/Iab (loss of excitation impedance)Class 2
79F1Vab/Iab Angle (loss of excitation
80F6Power FactorClass 2
81F1Real Power (MW)Class 2Note 8
82F1Real Power (kW)Class 2Note 8
83F1Reactive Power (Mar)Class 2Note 8
84F1Reactive Power (kvar)Class 2Note 8
85F1Apparent Power (MVA)Class 2Note 8
86F1Apparent Power (kVA)Class 2Note 8
87F1Hottest Stator RTDClass 2Note 3
88F4Hottest Stator RTD Temperature (°C)Class 2
89F4RTD #1 Temperature (°C)Class 2
90F4RTD #2 Temperature (°C)Class 2
91F4RTD #3 Temperature (°C)Class 2
92F4RTD #4 Temperature (°C)Class 2
93F4RTD #5 Temperature (°C)Class 2
94F4RTD #6 Temperature (°C)Class 2
95F4RTD #7 Temperature (°C)Class 2
96F4RTD #8 Temperature (°C)Class 2
97F4RTD #9 Temperature (°C)Class 2
98F4RTD #10 Temperature (°C)Class 2
99F4RTD #11 Temperature (°C)Class 2
100F4RTD #12 Temperature (°C)Class 2
101F1Current Demand Class 2Note 7
102F1MW DemandClass 2Note 8
103F1kW Demand Class 2Note 8
104F1Mvar Demand Class 2Note 8
105F1kvar Demand Class 2Note 8
106F1MVA Demand Class 2Note 8
107F1kVA Demand Class 2Note 8
108F1Peak Current Demand Class 2Note 7
109F1Peak MW Demand Class 2Note 8
110F1Peak kW Demand Class 2Note 8
111F1Peak Mvar Demand Class 2Note 8
112F1Peak kvar Demand Class 2Note 8
113F1Peak MVA Demand Class 2Note 8
114F1Peak kVA Demand Class 2Note 8
115F12Analog Input 1 Class 2Note 9
116F12Analog Input 2 Class 2Note 9
117F12Analog Input 3 Class 2Note 9
118F12Analog Input 4 Class 2Note 9
119F1Tachometer RPMClass 2
120F1Average Generator LoadClass 2
MAT
DESCRIPTIONEVENT CLASS
a volt)
a volt)
impedance angle)
ASSIGNED TO
Class 2Note 10
Class 2Note 10
Class 2
489
NOTES
GE Multilin
http://www.GEindustrial.com/multilin
55
Communications Guide
DNP Point Lists489
Table 8: Analog Inputs Point List (Sheet 4 of 4)
INDEXFOR-
121F1Average Negative Sequence CurrentClass 2
122F1Average Phase-Phase VoltageClass 2
123-User Map Value 1Note 5
124-User Map Value 2Note 5
246-User Map Value 124Note 5
247-User Map Value 125Note 5
248F118Active Setpoint GroupClass 1Note 3
249F13Positive kWhClass 2
250F13Positive kvarhClass 2
251F13Negative kvarhClass 2
252F12Generator Hours OnlineClass 2
MAT
↓↓…↓...↓↓
DESCRIPTIONEVENT CLASS
ASSIGNED TO
NOTES
TABLE NOTES:
1. Unless otherwise specified, an event object will be generated for a point if the
current value of the point changes by an amount greater than or equal to two
percent of its previous value.
2. An event object is created for the Frequency point if the frequency changes by
0.04 Hz or more from its previous value.
3. An event object is created for these points if the current value of a point is in
any way changed from its previous value.
4. To support existing SCADA hardware that is not capable of 32-bit data reads,
the upper and lower 16-bit portions of these 32-bit values have been assigned
to separate points. To read this data, it is necessary to read both the upper and
lower 16-bit portions, concatenate these two values to form a 32-bit value and
interpret the result in the format associated with the point as specified in DataFormats on page 40.
5. The data returned by a read of the User Map Value points is determined by the
values programmed into the corresponding User Map Address registers (which
are only accessible via Modbus). Refer to User-Definable Memory Map Area on
page 9 for more information. Changes in User Map Value points never generate
event objects. Note that it is possible to refer to a 32-bit quantity in a user map
register, which may require the use of a 32-bit variation to read the associated
analog input point.
6. The scale for pre-trip currents is determined by the value in point 9, which
should not normally change
7. The scale for currents is determined by the value in point 47, which should not
normally change
8. Each power quantity is available at two different points, with two different scale
factors (kW and MW, for example). The user should select the unit which is closest to providing the resolution and range desired. If 32-bit analog input capability is present, the higher-resolution (kW, kvar, kVA) points should generally be
used, since they provide the greatest resolution.
9. Analog input values may be –50000 to +50000 if so configured. Therefore, 32bit analog input capability is required to read the full possible range. If the
SCADA equipment can only read 16-bit registers, the analog inputs should be
configured to operate within the range –32768 to +32767.
10. Each neutral voltage quantity is available at two different points, with two different scale factors (volts and tenths of a volt). The user should select the unit
which is closest to providing the resolution and range desired. If 32-bit analog
input capability is present, the higher-resolution (tenths of a volt) points should
generally be used, since they provide the greatest resolution.
56
http://www.GEindustrial.com/multilin
GE Multilin
Ind
ex
Index
A
ANALOG INPUTS
DNP point list ................................................................ 2-53