FUJITSU Am29SL800D Service Manual

Am29SL800D

Data Sheet

The following document contains information on Spansion memory products. Although the document is marked with the name of the company that originally developed the specification, Spansion will continue to offer these products to existing customers.

Continuity of Specifications

There is no change to this data sheet as a result of offering the device as a Spansion product. Any changes that have been made are the result of normal data sheet improvement and are noted in the document revision summary, where supported. Future routine revisions will occur when appropriate, and changes will be noted in a revision summary.

Continuity of Ordering Part Numbers

Spansion continues to support existing part numbers beginning with “Am” and “MBM”. To order these products, please use only the Ordering Part Numbers listed in this document.

For More Information

Please contact your local sales office for additional information about Spansion memory solutions.

Publication Number 27546 Revision A Amendment 6 Issue Date January 23, 2007

THIS PAGE LEFT INTENTIONALLY BLANK.

DATA SHEET

Am29SL800D

8 Megabit (1 M x 8-Bit/512 K x 16-Bit)

CMOS 1.8 Volt-only Super Low Voltage Flash Memory

DISTINCTIVE CHARACTERISTICS

Single Power Supply Operation

1.65 to 2.2 V for read, program, and erase operations

Ideal for battery-powered applications

Manufactured on 0.23 µm Process Technology

Compatible with 0.32 µm Am29SL800C device

High Performance

Access times as fast as 90 ns

Ultra Low Power Consumption (Typical Values at 5 MHz)

0.2 µA Automatic Sleep Mode current

0.2 µA standby mode current

5 mA read current

15 mA program/erase current

Flexible Sector Architecture

One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and fifteen 64 Kbyte sectors (byte mode)

One 8 Kword, two 4 Kword, one 16 Kword, and fifteen 32 Kword sectors (word mode)

Supports full chip erase

Sector Protection Features:

A hardware method of locking a sector to prevent any program or erase operations within that sector Sectors can be locked in-system or via programming equipment

Temporary Sector Unprotect feature allows code changes in previously locked sectors

Unlock Bypass Program Command

Reduces overall programming time when issuing multiple program command sequences

Top or Bottom Boot Block Configurations Available

Embedded Algorithms

Embedded Erase algorithm automatically preprograms and erases the entire chip or any combination of designated sectors

Embedded Program algorithm automatically writes and verifies data at specified addresses

Minimum 1,000,000 Erase Cycle Guarantee Per Sector

20-Year Data Retention at 125°C

Package Option

48-pin TSOP

48-ball FBGA

Compatibility with JEDEC Standards

Pinout and software compatible with singlepower supply Flash

Superior inadvertent write protection

Data# Polling and Toggle Bits

Provides a software method of detecting program or erase operation completion

Ready/Busy# Pin (RY/BY#)

Provides a hardware method of detecting program or erase cycle completion

Erase Suspend/Erase Resume

Suspends an erase operation to read data from, or program data to, a sector that is not being erased, then resumes the erase operation

Hardware Reset Pin (RESET#)

Hardware method to reset the device to reading array data

This Data Sheet states AMD’s current specifications regarding the Products described herein. This Data Sheet may

Publication# 27546 Rev: A Amendment/6

Issue Date: January 23, 2007

be revised by subsequent versions or modifications due to changes in technical specifications.

 

 

D A T A S H E E T

GENERAL DESCRIPTION

The Am29SL800D is an 8 Mbit, 1.8 V volt-only Flashmemory organized as 1,048,576 bytes or 524,288 words. The device is offered in 48-pin TSOP and 48ball FBGA packages. The word-wide data (x16) appears on DQ15–DQ0; the byte-wide (x8) data appears on DQ7–DQ0. This device is designed to be programmed and erased in-system with a single 1.8 volt VCC supply. No VPP is for write or erase operations. The device can also be programmed in standard EPROM programmers.

The standard device offers access times of 90, 100, 120, and 150 ns, allowing high speed microprocessors to operate without wait states. To eliminate bus contention, the device has separate chip enable (CE#), write enable (WE#) and output enable (OE#) controls.

The device requires only a single 1.8 volt power supply for both read and write functions. Internally generated and regulated voltages are provided for the program and erase operations.

The device is entirely command set compatible with the

JEDEC single-power-supply Flash standard. Commands are written to the command register using standard microprocessor write timings. Register contents serve as input to an internal state-machine that controls the erase and programming circuitry. Write cycles also internally latch addresses and data needed for the programming and erase operations. Reading data out of the device is similar to reading from other Flash or EPROM devices.

Device programming occurs by executing the program command sequence. This initiates the Embedded Program algorithm—an internal algorithm that automatically times the program pulse widths and verifies proper cell margin. The Unlock Bypass mode facilitates faster programming times by requiring only two write cycles to program data instead of four.

Device erasure occurs by executing the erase command sequence. This initiates the Embedded Erase algorithm—an internal algorithm that automatically preprograms the array (if it is not already programmed) before executing the erase operation.

During erase, the device automatically times the erase pulse widths and verifies proper cell margin.

The host system can detect whether a program or erase operation is complete by observing the RY/BY# pin, or by reading the DQ7 (Data# Polling) and DQ6 (toggle) status bits. After a program or erase cycle has been completed, the device is ready to read array data or accept another command.

The sector erase architecture allows memory sectors to be erased and reprogrammed without affecting the data contents of other sectors. The device is fully erased when shipped from the factory.

Hardware data protection measures include a low VCC detector that automatically inhibits write operations during power transitions. The hardware sector protection feature disables both program and erase operations in any combination of the sectors of memory. This can be achieved in-system or via programming equipment.

The Erase Suspend feature enables the user to put erase on hold for any period of time to read data from, or program data to, any sector that is not selected for erasure. True background erase can thus be achieved.

The hardware RESET# pin terminates any operation in progress and resets the internal state machine to reading array data. The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the device, enabling the system microprocessor to read the boot-up firmware from the Flash memory.

The device offers two power-saving features. When addresses have been stable for a specified amount of time, the device enters the automatic sleep mode. The system can also place the device into the standby mode. Power consumption is greatly reduced in both these modes.

AMD’s Flash technology combines years of Flash memory manufacturing experience to produce the highest levels of quality, reliability and cost effectiveness. The device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data is programmed using hot electron injection.

2

Am29SL800D

27546A6 January 23, 2007

D A T A S H E E T

TABLE OF CONTENTS

Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 4

Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . 5

Special Handling Instructions for FBGA Packages ..................

5

Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . .

. 6

Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6

Ordering Information . . . . . . . . . . . . . . . . . . . . . .

. 7

Standard Products ....................................................................

7

Device Bus Operations . . . . . . . . . . . . . . . . . . . . .

8

Table 1. Am29SL800D Device Bus Operations ................................

8

Word/Byte Configuration ..........................................................

8

Requirements for Reading Array Data .....................................

8

Writing Commands/Command Sequences ..............................

8

Program and Erase Operation Status ......................................

9

Standby Mode ..........................................................................

9

Automatic Sleep Mode .............................................................

9

RESET#: Hardware Reset Pin .................................................

9

Output Disable Mode ..............................................................

10

Table 2. Am29SL800DT Top Boot Block Sector Address Table .....

10

Table 3. Am29SL800DB Bottom Boot Block Sector Address Table 11

Autoselect Mode .....................................................................

12

Table 4. Am29SL800D Autoselect Code (High Voltage Method) ...

12

Sector Protection/Unprotection ...............................................

12

Temporary Sector Unprotect ..................................................

12

Figure 1. In-System Sector Protect/Unprotect Algorithms ..............

13

Figure 2. Temporary Sector Unprotect Operation...........................

14

Hardware Data Protection ......................................................

14

Command Definitions . . . . . . . . . . . . . . . . . . . . .

14

Reading Array Data ................................................................

14

Reset Command .....................................................................

14

Autoselect Command Sequence ............................................

15

Word/Byte Program Command Sequence .............................

15

Figure 3. Program Operation ..........................................................

16

Chip Erase Command Sequence ...........................................

16

Sector Erase Command Sequence ........................................

16

Erase Suspend/Erase Resume Commands ...........................

17

Figure 4. Erase Operation...............................................................

18

Table 5. Am29SL800D Command Definitions ................................

19

Write Operation Status . . . . . . . . . . . . . . . . . . . . .

20

DQ7: Data# Polling .................................................................

20

Figure 5. Data# Polling Algorithm ...................................................

20

RY/BY#: Ready/Busy# ...........................................................

21

DQ6: Toggle Bit I ....................................................................

21

DQ2: Toggle Bit II ...................................................................

21

Reading Toggle Bits DQ6/DQ2 ..............................................

21

Figure 6. Toggle Bit Algorithm.........................................................

22

DQ5: Exceeded Timing Limits ................................................

22

DQ3: Sector Erase Timer .......................................................

22

Table 6. Write Operation Status .....................................................

23

Absolute Maximum Ratings . . . . . . . . . . . . . . . .

24

Figure 7. Maximum Negative Overshoot Waveform ......................

24

Figure 8. Maximum Positive Overshoot Waveform........................

24

Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . .

24

DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . .

25

Table 7. CMOS Compatible ...........................................................

25

Zero Power Flash ...................................................................

26

Figure 9. ICC1 Current vs. Time (Showing Active and Automatic

 

Sleep Currents) ..............................................................................

26

Figure 10. Typical ICC1 vs. Frequency ...........................................

26

Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . .

27

Figure 11. Test Setup.....................................................................

27

Table 8. Test Specifications ...........................................................

27

Table 9. Key to Switching Waveforms ...........................................

27

Figure 12. Input Waveforms and Measurement Levels .................

27

AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . .

28

Table 10. Read Operations ............................................................

28

Figure 13. Read Operations Timings .............................................

28

Table 11. Hardware Reset (RESET#) ............................................

29

Figure 14. RESET# Timings ..........................................................

29

Table 12. Word/Byte Configuration (BYTE#) .................................

30

Figure 15. BYTE# Timings for Read Operations............................

30

Figure 16. BYTE# Timings for Write Operations............................

30

Table 13. Erase/Program Operations ............................................

31

Figure 17. Program Operation Timings..........................................

32

Figure 18. Chip/Sector Erase Operation Timings ..........................

33

Figure 19. Data# Polling Timings (During Embedded Algorithms). 34

Figure 20. Toggle Bit Timings (During Embedded Algorithms)......

34

Figure 21. DQ2 vs. DQ6.................................................................

35

Table 14. Temporary Sector Unprotect ..........................................

35

Figure 22. Temporary Sector Unprotect Timing Diagram ..............

35

Figure 23. Sector Protect/Unprotect Timing Diagram ....................

36

Table 15. Alternate CE# Controlled Erase/Program Operations ....

37

Figure 24. Alternate CE# Controlled Write Operation Timings ......

38

Erase and Programming Performance . . . . . . .

39

Table 16. Erase and Programming Performance ...........................

39

Table 17. Latchup Characteristics ..................................................

39

Table 18. TSOP Pin Capacitance ..................................................

39

Table 19. Data Retention ...............................................................

39

Physical Dimensions . . . . . . . . . . . . . . . . . . . . . .

40

TS 048—48-Pin Standard TSOP ............................................

40

FBA048—48-Ball Fine-Pitch Ball Grid Array (FBGA)

 

8.15 X 6.15 mm Package .......................................................

41

FBC048—48-Ball Fine-Pitch Ball Grid Array (FBGA)

 

9 x 8 mm Package ..................................................................

42

VBK048—48 Ball Fine-Pitch Ball Grid Array (FBGA) .............

43

8.15 x 6.15 mm .......................................................................

43

Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 44

January 23, 2007 27546A6

Am29SL800D

3

FUJITSU Am29SL800D Service Manual

D A T A S H E E T

PRODUCT SELECTOR GUIDE

Family Part Number

 

 

Am29SL800D

 

 

 

 

 

 

 

Speed Options

90

 

 

 

 

(Note 2)

100

 

120

150

 

 

 

 

 

 

 

 

Max access time, ns (tACC)

90 (Note 2)

100

 

120

150

 

 

 

 

 

 

Max CE# access time, ns (tCE)

90 (Note 2)

100

 

120

150

 

 

 

 

 

 

Max OE# access time, ns (tOE)

30

35

 

50

65

 

 

 

 

 

 

Notes:

1.See “AC Characteristics” for full specifications.

2.VCC min. = 1.7 V

BLOCK DIAGRAM

 

RY/BY#

 

 

 

 

DQ0DQ15 (A-1)

 

 

 

 

 

 

VCC

 

 

Sector Switches

 

 

 

VSS

 

 

 

 

 

 

 

 

 

 

 

RESET#

 

 

Erase Voltage

 

 

Input/Output

 

 

Generator

 

 

Buffers

WE#

State

 

 

 

 

 

BYTE#

Control

 

 

 

 

 

 

 

 

 

 

 

 

Command

 

 

 

 

 

 

Register

 

 

 

 

 

 

 

PGM Voltage

 

 

 

 

 

 

Generator

 

 

 

 

 

 

 

Chip Enable

 

Data

 

 

 

STB

Latch

CE#

 

 

Output Enable

 

 

 

Logic

 

 

OE#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

STB

Y-Decoder

 

Y-Gating

 

 

 

 

 

 

 

VCC Detector

Timer

Latch

 

 

 

 

 

 

 

 

 

 

 

 

Address

X-Decoder

 

Cell Matrix

A0–A18

 

 

 

 

 

 

 

 

 

 

 

4

Am29SL800D

27546A6 January 23, 2007

D A T A S H E E T

CONNECTION DIAGRAMS

A15

 

1

 

48

 

A16

 

 

 

 

 

 

A14

 

2

 

47

 

BYTE#

 

 

 

 

 

 

A13

 

3

 

46

 

VSS

 

 

 

 

 

 

A12

 

4

 

45

 

DQ15/A-1

 

 

 

 

 

 

A11

 

5

 

44

 

DQ7

 

 

 

 

 

 

A10

 

6

 

43

 

DQ14

 

 

 

 

 

 

A9

 

7

 

42

 

DQ6

 

 

 

 

 

 

A8

 

8

 

41

 

DQ13

 

 

 

 

 

 

NC

 

9

 

40

 

DQ5

 

 

 

 

 

 

NC

 

10

 

39

 

DQ12

 

 

 

 

 

 

WE#

 

11

Standard TSOP

38

 

DQ4

 

 

 

 

RESET#

 

12

 

37

 

VCC

 

 

 

NC

 

13

 

36

 

DQ11

 

 

 

 

 

 

NC

 

14

 

35

 

DQ3

 

 

 

 

 

 

RY/BY#

 

15

 

34

 

DQ10

 

 

 

 

 

 

A18

 

16

 

33

 

DQ2

 

 

 

 

 

 

A17

 

17

 

32

 

DQ9

 

 

 

 

 

 

A7

 

18

 

31

 

DQ1

 

 

 

 

 

 

A6

 

19

 

30

 

DQ8

 

 

 

 

 

 

A5

 

20

 

29

 

DQ0

 

 

 

 

 

 

A4

 

21

 

28

 

OE#

 

 

 

 

 

 

A3

 

22

 

27

 

VSS

 

 

 

 

 

 

A2

 

23

 

26

 

CE#

 

 

 

 

 

 

A1

 

24

 

25

 

A0

 

 

 

 

 

 

48-Ball FBGA

(Top View, Balls Facing Down)

A6

B6

C6

D6

E6

F6

G6

H6

A13

A12

A14

A15

A16

BYTE#

DQ15/A-1

VSS

A5

B5

C5

D5

E5

F5

G5

H5

A9

A8

A10

A11

DQ7

DQ14

DQ13

DQ6

A4

B4

C4

D4

E4

F4

G4

H4

WE#

RESET#

NC

NC

DQ5

DQ12

VCC

DQ4

A3

B3

C3

D3

E3

F3

G3

H3

RY/BY#

NC

A18

NC

DQ2

DQ10

DQ11

DQ3

A2

B2

C2

D2

E2

F2

G2

H2

A7

A17

A6

A5

DQ0

DQ8

DQ9

DQ1

A1

B1

C1

D1

E1

F1

G1

H1

A3

A4

A2

A1

A0

CE#

OE#

VSS

Special Handling Instructions for FBGA Packages

Special handling is required for Flash Memory products in molded packages (TSOP and BGA). The package

and/or data integrity may be compromised if the package body is exposed to temperatures about 150°C for prolonged periods of time.

January 23, 2007 27546A6

Am29SL800D

5

BYTE#
CE#
OE#
WE#
RESET#
RY/BY# VCC VSS
NC
6

D A T A S H E E T

PIN CONFIGURATION

A0–A18 = 19 addresses

DQ0–DQ14 = 15 data inputs/outputs

DQ15/A-1 = DQ15 (data input/output, word mode), A-1 (LSB address input, byte mode)

= Selects 8-bit or 16-bit mode = Chip enable

= Output enable = Write enable

= Hardware reset pin, active low = Ready/Busy# output

= 1.65–2.2 V single power supply = Device ground

= Pin not connected internally

LOGIC SYMBOL

 

19

 

 

A0–A18

 

16 or 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DQ0–DQ15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CE#

(A-1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OE#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

WE#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RESET#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

BYTE#

RY/BY#

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Am29SL800D

27546A6 January 23, 2007

D A T A S H E E T

ORDERING INFORMATION

Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.

Am29SL800D T -100 E C

TEMPERATURE RANGE

C= Commercial (0°C to +70°C)

D= Commercial (0°C to +70°C) with Pb-free package

I

=

Industrial (–40°C to +85°C)

F

=

Industrial (–40°C to +85°C) with Pb-free package

PACKAGE TYPE

E= 48-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 048)

VU

= 48-ball Fine-Pitch Ball Grid Array (FBGA)

 

0.80mm pitch, 8.15 x 6.15 mm package (VBK048)

WA

= 48-Ball Fine-Pitch Ball Grid Array (FBGA)

 

0.80 mm pitch, 8.15 x 6.15 mm package (FBA048)

WC

= 48-Ball Fine-Pitch Ball Grid Array (FBGA)

 

0.80 mm pitch, 9 x 8 mm package (FBC048)

SPEED OPTION

See Product Selector Guide and Valid Combinations

BOOT CODE SECTOR ARCHITECTURE

T

=

Top Sector

B

=

Bottom Sector

DEVICE NUMBER/DESCRIPTION

Am29SL800D

8 Megabit (1 M x 8-Bit/512 K x 16-Bit) CMOS Flash Memory

1.8 Volt-only Read, Program, and Erase

Valid Combinations

Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations and to check on newly released combinations.

Valid Combinations for TSOP Packages

AM29SL800DT90,

AM29SL800DB90

AM29SL800DT100,

AM29SL800DB100

EC, EI, ED, EF

AM29SL800DT120,

AM29SL800DB120

AM29SL800DT150,

AM29SL800DB150

Valid Combinations for FBGA Packages

Order Number

Package Marking

 

 

 

 

 

WAC, WAD

A800DT90U,

 

AM29SL800DT90,

WAI, WAF

A800DB90U

 

 

 

 

AM29SL800DB90

WCC, WCD,

A800DT90P,

 

 

 

 

WCI, WCF

A800DB90P

 

 

 

 

 

 

WAC, WAD

A800DT10U,

 

AM29SL800DT100,

WAI, WAF

A800DB10U

 

 

 

 

AM29SL800DB100

WCC, WCD,

A800DT10P,

 

 

 

 

WCI, WCF

A800DB10P

 

 

 

 

 

 

WAC, WAD

A800DT12U,

C, I,

AM29SL800DT120,

WAI, WAF

A800DB12U

D, F

 

 

 

AM29SL800DB120

WCC, WCD,

A800DT12P,

 

 

 

 

WCI, WCF

A800DB12P

 

 

 

 

 

 

WAC, WAD

A800DT15U,

 

AM29SL800DT150,

WAI, WAF

A800DB15U

 

 

 

 

AM29SL800DB150

WCC, WCD,

A800DT15P,

 

 

 

 

WCI, WCF

A800DB15P

 

 

 

 

 

Am29SL800DT120

VUF

A800DT12V

 

A800DB12V

 

 

 

 

 

 

 

 

January 23, 2007 27546A6

Am29SL800D

7

D A T A S H E E T

DEVICE BUS OPERATIONS

This section describes the requirements and use of the device bus operations, which are initiated through the internal command register. The command register itself does not occupy any addressable memory location. The register is composed of latches that store the commands, along with the address and data informa-

tion needed to execute the command. The contents of the register serve as inputs to the internal state machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus operations, the inputs and control levels they require, and the resulting output. The following subsections describe each of these operations in further detail.

Table 1. Am29SL800D Device Bus Operations

 

 

 

 

 

 

 

 

DQ8–DQ15

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Addresses

DQ0–

BYTE#

BYTE#

Operation

CE#

OE#

WE#

RESET#

(Note 1)

DQ7

= VIH

= VIL

Read

L

L

H

H

AIN

DOUT

DOUT

DQ8–DQ14 = High-Z,

Write

L

H

L

H

AIN

DIN

DIN

DQ15 = A-1

 

Standby

VCC ±

X

X

VCC ±

X

High-Z

High-Z

High-Z

 

0.2 V

 

 

0.2 V

 

 

 

 

Output Disable

L

H

H

H

X

High-Z

High-Z

High-Z

 

 

 

 

 

 

 

 

 

Reset

X

X

X

L

X

High-Z

High-Z

High-Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sector Address, A6 =

 

 

 

Sector Protect (Note)

L

H

L

VID

L, A1 = H,

DIN

X

X

 

 

 

 

 

A0 = L

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sector Address, A6 =

 

 

 

Sector Unprotect (Note)

L

H

L

VID

H, A1 = H,

DIN

X

X

 

 

 

 

 

A0 = L

 

 

 

 

 

 

 

 

 

 

 

 

Temporary Sector Unprotect

X

X

X

VID

AIN

DIN

DIN

High-Z

Legend:

L = Logic Low = VIL, H = Logic High = VIH, VID = 10 ± 1.0 V, X = Don’t Care, AIN = Address In, DIN = Data In, DOUT = Data Out

Notes:

1.Addresses are A18:A0 in word mode (BYTE# = VIH), A18:A-1 in byte mode (BYTE# = VIL).

2.The sector protect and sector unprotect functions may also be implemented via programming equipment.

Word/Byte Configuration

The BYTE# pin controls whether the device data I/O pins DQ15–DQ0 operate in the byte or word configuration. If the BYTE# pin is set at logic ‘1’, the device is in word configuration, DQ15–DQ0 are active and controlled by CE# and OE#.

If the BYTE# pin is set at logic ‘0’, the device is in byte configuration, and only data I/O pins DQ0–DQ7 are active and controlled by CE# and OE#. The data I/O pins DQ8–DQ14 are tri-stated, and the DQ15 pin is used as an input for the LSB (A-1) address function.

Requirements for Reading Array Data

To read array data from the outputs, the system must drive the CE# and OE# pins to VIL. CE# is the power control and selects the device. OE# is the output control and gates array data to the output pins. WE# should remain at VIH. The BYTE# pin determines whether the device outputs array data in words or bytes.

The internal state machine is set for reading array data upon device power-up, or after a hardware reset. This

ensures that no spurious alteration of the memory content occurs during the power transition. No command is necessary in this mode to obtain array data. Standard microprocessor read cycles that assert valid addresses on the device address inputs produce valid data on the device data outputs. The device remains enabled for read access until the command register contents are altered.

See Reading Array Data‚ on page 14 for more information. Refer to the AC Read Operations table for timing specifications and to Figure 13, on page 28 for the timing diagram. ICC1 in the DC Characteristics table represents the active current specification for reading array data.

Writing Commands/Command Sequences

To write a command or command sequence (which includes programming data to the device and erasing sectors of memory), the system must drive WE# and CE# to VIL, and OE# to VIH.

For program operations, the BYTE# pin determines whether the device accepts program data in bytes or

8

Am29SL800D

27546A6 January 23, 2007

D A T A S H E E T

words. Refer to Word/Byte Configuration‚ on page 8 for more information.

The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the Unlock Bypass mode, only two write cycles are required to program a word or byte, instead of four. The

Word/Byte Program Command Sequence‚ on page 15 has details on programming data to the device using both standard and Unlock Bypass command sequences.

An erase operation can erase one sector, multiple sectors, or the entire device. Tables 2 and 3 indicate the address space that each sector occupies. A “sector address” consists of the address bits required to uniquely select a sector. The Command Definitions‚ on page 14 has details on erasing a sector or the entire chip, or suspending/resuming the erase operation.

After the system writes the autoselect command sequence, the device enters the autoselect mode. The system can then read autoselect codes from the internal register (which is separate from the memory array) on DQ7–DQ0. Standard read cycle timings apply in this mode. Refer to the Autoselect Mode‚ on page 12 and Autoselect Command Sequence‚ on page 15 sections for more information.

ICC2 in the DC Characteristics table represents the active current specification for the write mode. AC Characteristics‚ on page 28 contains timing specification tables and timing diagrams for write operations.

Program and Erase Operation Status

During an erase or program operation, the system may check the status of the operation by reading the status bits on DQ7–DQ0. Standard read cycle timings and ICC read specifications apply. Refer to Write Operation Status‚ on page 20 for more information, and to “AC Characteristics” for timing diagrams.

Standby Mode

When the system is not reading or writing to the device, it can place the device in the standby mode. In this mode, current consumption is greatly reduced, and the outputs are placed in the high impedance state, independent of the OE# input.

The device enters the CMOS standby mode when the CE# and RESET# pins are both held at VCC ± 0.2 V. (Note that this is a more restricted voltage range than VIH.) If CE# and RESET# are held at VIH, but not within VCC ± 0.2 V, the device will be in the standby mode, but the standby current will be greater. The device requires standard access time (tCE) for read access when the device is in either of these standby modes, before it is ready to read data.

The device also enters the standby mode when the RESET# pin is driven low. Refer to the next section, RESET#: Hardware Reset Pin.

If the device is deselected during erasure or programming, the device draws active current until the operation is completed.

ICC3 in Table 7 on page 25 represents the standby current specification.

Automatic Sleep Mode

The automatic sleep mode minimizes Flash device energy consumption. The device automatically enables this mode when addresses remain stable for tACC + 50 ns. The automatic sleep mode is independent of the CE#, WE#, and OE# control signals. Standard address access timings provide new data when addresses are changed. While in sleep mode, output data is latched and always available to the system. ICC4 in Table 7 on page 25 represents the automatic sleep mode current specification.

RESET#: Hardware Reset Pin

The RESET# pin provides a hardware method of resetting the device to reading array data. When the RESET# pin is driven low for at least a period of tRP, the device immediately terminates any operation in progress, tristates all output pins, and ignores all read/write commands for the duration of the RESET# pulse. The device also resets the internal state machine to reading array data. The operation that was interrupted should be reinitiated once the device is ready to accept another command sequence, to ensure data integrity.

Current is reduced for the duration of the RESET# pulse. When RESET# is held at VSS±0.2 V, the device draws CMOS standby current (ICC4). If RESET# is held at VIL but not within VSS±0.2 V, the standby current is greater.

The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash memory, enabling the system to read the boot-up firmware from the Flash memory.

If RESET# is asserted during a program or erase operation, the RY/BY# pin remains a “0” (busy) until the internal reset operation is complete, which requires a time of tREADY (during Embedded Algorithms). The system can thus monitor RY/BY# to determine whether the reset operation is complete. If RESET# is asserted when a program or erase operation is not executing (RY/BY# pin is “1”), the reset operation is completed

within a time of tREADY (not during Embedded Algorithms). The system can read data tRH after the

RESET# pin returns to VIH.

January 23, 2007 27546A6

Am29SL800D

9

D A T A S H E E T

Refer to the Table 10 on page 28 for RESET# parameters and to Figure 14, on page 29 for the timing diagram.

Output Disable Mode

When the OE# input is at VIH, output from the device is disabled. The output pins are placed in the high impedance state.

Table 2. Am29SL800DT Top Boot Block Sector Address Table

 

 

 

 

 

 

 

 

Sector Size

Address Range (in hexadecimal)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Kbytes/

(x8)

(x16)

Sector

A18

A17

A16

A15

A14

A13

A12

Kwords)

Address Range

Address Range

 

 

 

 

 

 

 

 

 

 

 

SA0

0

0

0

0

X

X

X

64/32

00000h–0FFFFh

00000h–07FFFh

 

 

 

 

 

 

 

 

 

 

 

SA1

0

0

0

1

X

X

X

64/32

10000h–1FFFFh

08000h–0FFFFh

 

 

 

 

 

 

 

 

 

 

 

SA2

0

0

1

0

X

X

X

64/32

20000h–2FFFFh

10000h–17FFFh

 

 

 

 

 

 

 

 

 

 

 

SA3

0

0

1

1

X

X

X

64/32

30000h–3FFFFh

18000h–1FFFFh

 

 

 

 

 

 

 

 

 

 

 

SA4

0

1

0

0

X

X

X

64/32

40000h–4FFFFh

20000h–27FFFh

 

 

 

 

 

 

 

 

 

 

 

SA5

0

1

0

1

X

X

X

64/32

50000h–5FFFFh

28000h–2FFFFh

 

 

 

 

 

 

 

 

 

 

 

SA6

0

1

1

0

X

X

X

64/32

60000h–6FFFFh

30000h–37FFFh

 

 

 

 

 

 

 

 

 

 

 

SA7

0

1

1

1

X

X

X

64/32

70000h–7FFFFh

38000h–3FFFFh

 

 

 

 

 

 

 

 

 

 

 

SA8

1

0

0

0

X

X

X

64/32

80000h–8FFFFh

40000h–47FFFh

 

 

 

 

 

 

 

 

 

 

 

SA9

1

0

0

1

X

X

X

64/32

90000h–9FFFFh

48000h–4FFFFh

 

 

 

 

 

 

 

 

 

 

 

SA10

1

0

1

0

X

X

X

64/32

A0000h–AFFFFh

50000h–57FFFh

 

 

 

 

 

 

 

 

 

 

 

SA11

1

0

1

1

X

X

X

64/32

B0000h–BFFFFh

58000h–5FFFFh

 

 

 

 

 

 

 

 

 

 

 

SA12

1

1

0

0

X

X

X

64/32

C0000h–CFFFFh

60000h–67FFFh

 

 

 

 

 

 

 

 

 

 

 

SA13

1

1

0

1

X

X

X

64/32

D0000h–DFFFFh

68000h–6FFFFh

 

 

 

 

 

 

 

 

 

 

 

SA14

1

1

1

0

X

X

X

64/32

E0000h–EFFFFh

70000h–77FFFh

 

 

 

 

 

 

 

 

 

 

 

SA15

1

1

1

1

0

X

X

32/16

F0000h–F7FFFh

78000h–7BFFFh

 

 

 

 

 

 

 

 

 

 

 

SA16

1

1

1

1

1

0

0

8/4

F8000h–F9FFFh

7C000h–7CFFFh

 

 

 

 

 

 

 

 

 

 

 

SA17

1

1

1

1

1

0

1

8/4

FA000h–FBFFFh

7D000h–7DFFFh

 

 

 

 

 

 

 

 

 

 

 

SA18

1

1

1

1

1

1

X

16/8

FC000h–FFFFFh

7E000h–7FFFFh

 

 

 

 

 

 

 

 

 

 

 

10

Am29SL800D

27546A6 January 23, 2007

 

 

 

 

 

 

D A T A

S H E E T

 

 

 

 

Table 3. Am29SL800DB Bottom Boot Block Sector Address Table

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sector Size

Address Range (in hexadecimal)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Kbytes/

(x8)

(x16)

Sector

A18

A17

A16

A15

A14

 

A13

 

A12

Kwords)

Address Range

Address Range

 

 

 

 

 

 

 

 

 

 

 

 

 

SA0

0

0

0

0

0

 

0

 

X

16/8

00000h–03FFFh

00000h–01FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA1

0

0

0

0

0

 

1

 

0

8/4

04000h–05FFFh

02000h–02FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA2

0

0

0

0

0

 

1

 

1

8/4

06000h–07FFFh

03000h–03FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA3

0

0

0

0

1

 

X

 

X

32/16

08000h–0FFFFh

04000h–07FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA4

0

0

0

1

X

 

X

 

X

64/32

10000h–1FFFFh

08000h–0FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA5

0

0

1

0

X

 

X

 

X

64/32

20000h–2FFFFh

10000h–17FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA6

0

0

1

1

X

 

X

 

X

64/32

30000h–3FFFFh

18000h–1FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA7

0

1

0

0

X

 

X

 

X

64/32

40000h–4FFFFh

20000h–27FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA8

0

1

0

1

X

 

X

 

X

64/32

50000h–5FFFFh

28000h–2FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA9

0

1

1

0

X

 

X

 

X

64/32

60000h–6FFFFh

30000h–37FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA10

0

1

1

1

X

 

X

 

X

64/32

70000h–7FFFFh

38000h–3FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA11

1

0

0

0

X

 

X

 

X

64/32

80000h–8FFFFh

40000h–47FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA12

1

0

0

1

X

 

X

 

X

64/32

90000h–9FFFFh

48000h–4FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA13

1

0

1

0

X

 

X

 

X

64/32

A0000h–AFFFFh

50000h–57FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA14

1

0

1

1

X

 

X

 

X

64/32

B0000h–BFFFFh

58000h–5FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA15

1

1

0

0

X

 

X

 

X

64/32

C0000h–CFFFFh

60000h–67FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA16

1

1

0

1

X

 

X

 

X

64/32

D0000h–DFFFFh

68000h–6FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA17

1

1

1

0

X

 

X

 

X

64/32

E0000h–EFFFFh

70000h–77FFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

SA18

1

1

1

1

X

 

X

 

X

64/32

F0000h–FFFFFh

78000h–7FFFFh

 

 

 

 

 

 

 

 

 

 

 

 

 

Note for Tables 2 and 3: Address range is A18:A-1 in byte mode and A18:A0 in word mode. See “Word/Byte Configuration” section for more information.

January 23, 2007 27546A6

Am29SL800D

11

D A T A S H E E T

Autoselect Mode

The autoselect mode provides manufacturer and device identification, and sector protection verification, through identifier codes output on DQ7–DQ0. This mode is primarily intended for programming equipment to automatically match a device to be programmed with its corresponding programming algorithm. However, the autoselect codes can also be accessed in-system through the command register.

When using programming equipment, the autoselect mode requires VID on address pin A9. Address pins A6, A1, and A0 must be as shown in Table 4. In addition, when verifying sector protection, the sector

address must appear on the appropriate highest order address bits (see Table 2 on page 10 and Table 3 on page 11). Table 4 shows the remaining address bits that are don’t care. When all necessary bits have been set as required, the programming equipment may then read the corresponding identifier code on DQ7–DQ0.

To access the autoselect codes in-system, the host system can issue the autoselect command via the command register, as shown in Table 5 on page 19. This method does not require VID. See Command Definitions‚ on page 14 for details on using the autoselect mode.

Table 4. Am29SL800D Autoselect Code (High Voltage Method)

 

 

 

 

 

A18

A11

 

A8

 

A5

 

 

DQ8

DQ7

 

 

 

 

 

to

to

 

to

 

to

 

 

to

to

Description

Mode

CE#

OE#

WE#

A12

A10

A9

A7

A6

A2

A1

A0

DQ15

DQ0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Manufacturer ID: AMD

L

L

H

X

X

VID

X

L

X

L

L

X

01h

Device ID:

Word

L

L

H

 

 

 

 

 

 

 

 

22h

EAh

Am29SL800D

 

 

 

 

X

X

VID

X

L

X

L

H

 

 

Byte

L

L

H

X

EAh

(Top Boot Block)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Device ID:

Word

L

L

H

 

 

 

 

 

 

 

 

22h

6Bh

Am29SL800D

 

 

 

 

X

X

VID

X

L

X

L

H

 

 

Byte

L

L

H

X

6Bh

(Bottom Boot Block)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X

01h (protected)

Sector Protection Verification

L

L

H

SA

X

VID

X

L

X

H

L

 

 

X

00h

 

 

 

 

 

 

 

 

 

 

 

 

 

(unprotected)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.

Sector Protection/Unprotection

The hardware sector protection feature disables both program and erase operations in any sector. The hardware sector unprotection feature re-enables both program and erase operations in previously protected sectors. Sector protection/unprotection can be implemented via two methods.

Sector Protection/ Unprotection requires VID on the RESET# pin only, and can be implemented either insystem or via programming equipment. Figure 1, on page 13 shows the algorithms and Figure 23, on page 36 shows the timing diagram. For sector unprotect, all unprotected sectors must first be protected prior to the first sector unprotect write cycle.

The device is shipped with all sectors unprotected. AMD offers the option of programming and protecting sectors at its factory prior to shipping the device

through AMD’s ExpressFlash™ Service. Contact an AMD representative for details.

It is possible to determine whether a sector is protected or unprotected. See Autoselect Mode‚ on page 12 for details.

Temporary Sector Unprotect

This feature allows temporary unprotection of previously protected sectors to change data in-system. The Sector Unprotect mode is activated by setting the RESET# pin to VID. During this mode, formerly protected sectors can be programmed or erased by selecting the sector addresses. Once VID is removed from the RESET# pin, all the previously protected sectors are protected again. Figure 2, on page 14 shows the algorithm, and Figure 22, on page 35 shows the timing diagrams, for this feature.

12

Am29SL800D

27546A6 January 23, 2007

Loading...
+ 32 hidden pages