Due to continuing engineering research and technology, specifications are subject to change without notice.
Manufactured under U.S. Design Patent DES 368, 306 decorative front; Utility Patent 5, 622, 058
3
MAXIMUM outdoor ambient operating temperature is 130°F (54°C).
MAXIMUM TEMPERATURE RATING FOR CLASS I, DIVISION 2, GROUPS A,B,C,D
COMPONENT OPERATION AND TESTING
WARNING
DISCONNECT ELECTRICAL POWER TO THE
UNIT BEFORE SERVICING OR TESTING
COMPRESSORS
Compressors are single phase, 208/230 volt. All
compressor motors are permanent split capacitor
type, using only a running capacitor across the start
and run terminal.
FIGURE 2 COMPRESSOR WINDING TEST
All compressors are internally spring mounted and
externally mounted on rubber isolators.
Line Voltage Overload
The compressor is equipped with an internal line
voltage overload. This overload is embedded in the
windings of the motor to sense the motor temperature.
The overload will open and disconnect the power to the
motor due to high temperatures caused by:
1. A locked rotor.
2. Excessive running amps.
3. High discharge temperature.
4. Low refrigerant charge.
FIGURE 1 INTERNAL OVERLOAD
LINE BREAK
INTERNAL OVERLOAD
OHMMETER
Testing Procedures
1. Terminal "C" and "S" - no continuity - open
winding - replace compressor.
2. Terminal "C" and "R" - no continuity - open
winding - replace compressor.
3. Terminal "R" and "S" - no continuity open
winding - replace compressor.
4. Terminal "C" and the shell of the compressor
– continuity – grounded motor – replace
compressor.
5. Should continuity exist between terminals
"R" and "S", but not between terminals
"C" and "S" and "C" and "R", the internal
overload may be open. If the compressor
is extremely hot, allow it suffi cient time to
cool. It may require as long as one hour for
the compressor to cool suffi ciently for the
internal overload to close.
COMPRESSOR WINDING TEST (Figure 2.)
Remove the compressor terminal box cover and
disconnect the wires from the terminals. Using an
ohmmeter, check continuity across the following:
4
GROUND TEST
Use an ohmmeter set on its highest scale. Touch one
lead to the compressor body (clean point of contact,
as a good connection is a must) and the other probe
in turn to each compressor terminal. (See Figure 3.)
If a reading is obtained, the compressor is grounded
and must be replaced.
FIGURE 3 TYPICAL GROUND TEST
CHECKING COMPRESSOR EFFICIENCY
The reason for compressor ineffi ciency is normally
due to broken or damaged suction and/or discharge
valves, reducing the ability of the compressor to pump
refrigerant gas.
This condition can be checked as
follows:
1. Install a piercing valve on the suction and
discharge or liquid process tube.
2. Attach gages to the high and low sides of
the system.
FAN MOTOR (Figure 4)
A 230 volt single phase permanent split capacitor motor
is used to drive the evaporator blower and condenser
fan. A running capacitor is wired across the start and
run terminals of the motor.
The motor is totally enclosed and is protected with a line
voltage overload located internally of the motor. The
motor shaft is stainless steel to resist corrosion.
FIGURE 4 FAN MOTOR
FAN MOTOR – TEST
Disconnect power to the unit.
1. Determine that the capacitor is serviceable.
2. Disconnect the black lead from the circuit
board.
3. Apply "live" test cord leads to the common
terminal of the capacitor and the black lead.
The motor should run at high speed.
SOLID STATE RELAY (Figure 5)
Two 50 amp rated 208/230 volt solid state relays
are used to energize the compressor and fan motor.
Terminals 3 and 4 are the 208/230 volt line side.
Terminals 1 and 2 are load side contacts.
3. Start the system and run a "cooling or
heating performance test."
If test shows:
A. Below normal high side pressure.
B. Above normal low side pressure.
C. Low temperature difference across the coil.
The compressor valves are faulty
- replace the compressor.
FIGURE 5 SOLID STATE RELAY
Line side
Load side
LED indicates
contacts closed
when lit
5
SYSTEM CONTROL SWITCH (Figure 6)
This switch is double pole, single throw. Check for
continuity between terminals 2 and 3, and 5 and 6.
FIGURE 6 SWITCH, ON-OFF
CAPACITOR – TEST
1. Remove the capacitor from the unit.
2. Check for visual damage such as bulges, cracks,
or leaks.
3. For dual rated capacitors, apply an ohmmeter lead
to the common (C) terminal and the other probe to
the compressor (HERM) terminal. A satisfactory
capacitor will cause a defl ection on the pointer,
then gradually move back to infi nity.
4. Reverse the leads of the probe and momentarily
touch the capacitor terminals. The defl ection of the
pointer should be two times that of the fi rst check
if the capacitor is good.
5. Repeat steps 3 and 4 to check the fan motor
capacitor.
CAPACITOR, RUN
A run capacitor is wired across the auxiliary and main
winding of a single phase permanent split capacitor
motor such as the compressor and fan motors. A single
capacitor can be used for each motor or a dual rated
capacitor can be used for both.
The capacitor’s primary function is to reduce the
line current while greatly improving the torque
characteristics of a motor. The capacitor also reduces
the line current to the motor by improving the power
factor of the load. The line side of the capacitor is
marked with a red dot and is wired to the line side of
the circuit (see Figure 7.)
FIGURE 7 RUN CAPACITOR HOOK–UP
COMPRESSOR
FAN
MOTOR
NOTE: A shorted capacitor will indicate a low
resistance and the pointer will move more to the
“0” end of the scale and remain there as long as
the probes are connected. An open capacitor
will show no movement of the pointer when
placed across the terminals of the capacitor.
THERMOSTAT
A cross ambient
thermostat is used to
maintain the desired
comfort level. The
thermostat reacts only to a
change in temperature at the
bulb location.
Important to the
successful operation
of the unit is the position
of the sensing bulb in
relation to the evaporator
(see Figure 8).
FIGURE 8 SENSING
BULB LOCATION
RED DOT
RANGE:
Thermostat
RUN CAPACITOR
(Part No. 618-225-02)
60° F ( ± 2° ) to 90° F( ± 4° )
6
Loading...
+ 14 hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.