Freescale MC9328MX1 User Manual

查询MC9328MX1_06供应商
Freescale Semiconductor
Data Sheet: Technical Data
MC9328MX1
Document Number: MC9328MX1
Rev. 7, 12/2006
Package Information
Plastic Package Case 1304B-01 (MAPBGA–225)
Ordering Information
See Ta b le 1 on page 3
1 Introduction
The i.MX Family of applications processors provides a leap in performance with an ARM9™ microprocessor core and highly integrated system functions. The i.MX family specifically addresses the requirements of the personal, portable product market by providing intelligent integrated peripherals, an advanced processor core, and power management capabilities.
The MC9328MX1 (i.MX1) processor features the advanced and power-efficient ARM920T™ core that operates at speeds up to 200 MHz. Integrated modules, which include a USB device, an LCD controller, and an MMC/SD host controller, support a suite of peripherals to enhance portable products seeking to provide a rich multimedia experience. It is packaged in a 256-contact Mold Array Process-Ball Grid Array (MAPBGA).
Figure 1 shows the functional block diagram of the
i.MX1 processor.
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Signals and Connections . . . . . . . . . . . . . . . 4
3 Electrical Characteristics . . . . . . . . . . . . . . 22
4 Functional Description and Application
Information . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5 Pin-Out and Package Information . . . . . . . . 96
6 Product Documentation . . . . . . . . . . . . . . . . 98
Contact Information . . . . . . . . . . . . . . . Last Page
Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products.
© Freescale Semiconductor, Inc., 2004, 2005, 2006. All rights reserved.
Introduction
JTAG/ICE
Connectivity
MMC/SD
Memory Stick® Host Controller
SPI 1 and
SPI 2
UART 1
UART 2 & 3
SSI/I2S 1 & 2
I2C
USB Device
SmartCard I/F
Bluetooth
Accelerator
System Control
Bootstrap
AIPI 1
AIPI 2
Power
Control (DPLLx2)
MC9328MX1
CPU Complex
ARM9TDMI™
I Cache
D Cache
VMMU
CGM
Interrupt
Controller
BusDMAC
Control(11 Chnl)
eSRAMEIM &
(128K)SDRAMC
Standard
System I/O
GPIO
PWM
Timer 1 & 2
RTC
Watchdog
Multimedia
Multimedia Accelerator
Video Port
Human Interface
Analog Signal
Processor
LCD Controller
Figure 1. i.MX1 Functional Block Diagram
1.1 Features
To support a wide variety of applications, the processor offers a robust array of features, including the following:
ARM920T™ Microprocessor Core
AHB to IP Bus Interfaces (AIPIs)
External Interface Module (EIM)
SDRAM Controller (SDRAMC)
DPLL Clock and Power Control Module
Three Universal Asynchronous Receiver/Transmitters (UART 1, UART 2, and UART3)
Two Serial Peripheral Interfaces (SPI1 and SPI2)
Two General-Purpose 32-bit Counters/Timers
Watchdog Timer
Real-Time Clock/Sampling Timer (RTC)
LCD Controller (LCDC)
Pulse-Width Modulation (PWM) Module
Universal Serial Bus (USB) Device
Multimedia Card and Secure Digital (MMC/SD) Host Controller Module
Memory Stick® Host Controller (MSHC)
Direct Memory Access Controller (DMAC)
Two Synchronous Serial Interfaces and an Inter-IC Sound (SSI1 and SSI2/I2S) Module
2
•Inter-IC (I
C) Bus Module
•Video Port
MC9328MX1 Technical Data, Rev. 7
2 Freescale Semiconductor
Introduction
General-Purpose I/O (GPIO) Ports
Bootstrap Mode
Analog Signal Processing (ASP) Module
Bluetooth™ Accelerator (BTA)
Multimedia Accelerator (MMA)
Power Management Features
Operating Voltage Range: 1.7 V to 1.9 V core, 1.7 V to 3.3 V I/O
256-pin MAPBGA Package
1.2 Target Applications
The i.MX1 processor is targeted for advanced information appliances, smart phones, Web browsers, based
on the popular Palm OS platform Accompli
TM
008 GSM/GPRS interactive communicator.
, and messaging applications such as wireless cellular products, including the
1.3 Ordering Information
Table 1 provides ordering information.
Table 1. Ordering Information
Package Type Frequency Temperature Solderball Type Order Number
256-lead MAPBGA 200 MHz 0°C to 70°C Pb-free MC9328MX1VM20(R2)
-30°C to 70°C Pb-free MC9328MX1DVM20(R2)
150 MHz 0°C to 70°C Pb-free MC9328MX1VM15(R2)
-30°C to 70°C Pb-free MC9328MX1DVM15(R2)
-40°C to 85°C Pb-free MC9328MX1CVM15(R2)
1.4 Conventions
This document uses the following conventions:
OVERBAR is used to indicate a signal that is active when pulled low: for example, RESET.
Logic level one is a voltage that corresponds to Boolean true (1) state.
Logic level zero is a voltage that corresponds to Boolean false (0) state.
•To set a bit or bits means to establish logic level one.
•To clear a bit or bits means to establish logic level zero.
•A signal is an electronic construct whose state conveys or changes in state convey information.
•A pin is an external physical connection. The same pin can be used to connect a number of signals.
Asserted means that a discrete signal is in active logic state. — Active low signals change from logic level one to logic level zero. — Active high signals change from logic level zero to logic level one.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor 3
Signals and Connections
Negated means that an asserted discrete signal changes logic state. — Active low signals change from logic level zero to logic level one.Active high signals change from logic level one to logic level zero.
LSB means least significant bit or bits, and MSB means most significant bit or bits. References to low and high bytes or words are spelled out.
Numbers preceded by a percent sign (%) are binary. Numbers preceded by a dollar sign ($) or 0x are hexadecimal.
2 Signals and Connections
Table 2 identifies and describes the i.MX1 processor signals that are assigned to package pins. The signals
are grouped by the internal module that they are connected to.
Table 2. i.MX1 Signal Descriptions
Signal Name Function/Notes
External Bus/Chip-Select (EIM)
A[24:0] Address bus signals
D[31:0] Data bus signals
EB0 MSB Byte Strobe—Active low external enable byte signal that controls D [31:24].
EB1 Byte Strobe—Active low external enable byte signal that controls D [23:16].
EB2 Byte Strobe—Active low external enable byte signal that controls D [15:8].
EB3 LSB Byte Strobe—Active low external enable byte signal that controls D [7:0].
OE Memory Output Enable—Active low output enables external data bus.
CS [5:0] Chip-Select—The chip-select signals CS [3:2] are multiplexed with CSD [1:0] and are selected by the
Function Multiplexing Control Register (FMCR). By default CSD
ECB Active low input signal sent by a flash device to the EIM whenever the flash device must terminate an
on-going burst sequence and initiate a new (long first access) burst sequence.
LBA Active low signal sent by a flash device causing the external burst device to latch the starting burst
address.
BCLK (burst clock) Clock signal sent to external synchronous memories (such as burst flash) during burst mode.
RW RW signal—Indicates whether external access is a read (high) or write (low) cycle. Used as a WE input
signal by external DRAM.
DTACK DTACK signal—The external input data acknowledge signal. When using the external DTACK signal
as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 clock counts have elapsed.
Bootstrap
BOOT [3:0] System Boot Mode Select—The operational system boot mode of the i.MX1 processor upon system
reset is determined by the settings of these pins.
[1:0] is selected.
SDRAM Controller
SDBA [4:0] SDRAM non-interleave mode bank address multiplexed with address signals A [15:11]. These signals
are logically equivalent to core address p_addr [25:21] in SDRAM cycles.
MC9328MX1 Technical Data, Rev. 7
4 Freescale Semiconductor
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name Function/Notes
SDIBA [3:0] SDRAM interleave addressing mode bank address multiplexed with address signals A [19:16]. These
signals are logically equivalent to core address p_addr [12:9] in SDRAM cycles.
MA [11:10] SDRAM address signals
MA [9:0] SDRAM address signals which are multiplexed with address signals A [10:1]. MA [9:0] are selected on
SDRAM cycles.
DQM [3:0] SDRAM data enable
CSD0 SDRAM Chip-select signal which is multiplexed with the CS2 signal. These two signals are selectable
by programming the system control register.
CSD1 SDRAM Chip-select signal which is multiplexed with CS3 signal. These two signals are selectable by
programming the system control register. By default, CSD1 is selected, so it can be used as boot chip-select by properly configuring BOOT [3:0] input pins.
RAS SDRAM Row Address Select signal
CAS SDRAM Column Address Select signal
SDWE SDRAM Write Enable signal
SDCKE0 SDRAM Clock Enable 0
SDCKE1 SDRAM Clock Enable 1
SDCLK SDRAM Clock
RESET_SF Not Used
Clocks and Resets
EXTAL16M Crystal input (4 MHz to 16 MHz), or a 16 MHz oscillator input when the internal oscillator circuit is shut
down.
XTAL16M Crystal output
EXTAL32K 32 kHz crystal input
XTAL32K 32 kHz crystal output
CLKO Clock Out signal selected from internal clock signals.
RESET_IN Master Reset—External active low Schmitt trigger input signal. When this signal goes active, all
modules (except the reset module and the clock control module) are reset.
RESET_OUT Reset Out—Internal active low output signal from the Watchdog Timer module and is asserted from the
following sources: Power-on reset, External reset (RESET_IN), and Watchdog time-out.
POR Power On Reset—Internal active high Schmitt trigger input signal. The POR signal is normally
generated by an external RC circuit designed to detect a power-up event.
JTAG
TRST Test Reset Pin—External active low signal used to asynchronously initialize the JTAG controller.
TDO Serial Output for test instructions and data. Changes on the falling edge of TCK.
TDI Serial Input for test instructions and data. Sampled on the rising edge of TCK.
TCK Test Clock to synchronize test logic and control register access through the JTAG port.
TMS Test Mode Select to sequence the JTAG test controller’s state machine. Sampled on the rising edge of
TCK.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor 5
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name Function/Notes
DMA
DMA_REQ DMA Request—external DMA request signal. Multiplexed with SPI1_SPI_RDY.
BIG_ENDIAN Big Endian—Input signal that determines the configuration of the external chip-select space. If it is
driven logic-high at reset, the external chip-select space will be configured to big endian. If it is driven logic-low at reset, the external chip-select space will be configured to little endian. This input must not change state after power-on reset negates or during chip operation.
ETM
ETMTRACESYNC ETM sync signal which is multiplexed with A24. ETMTRACESYNC is selected in ETM mode.
ETMTRACECLK ETM clock signal which is multiplexed with A23. ETMTRACECLK is selected in ETM mode.
ETMPIPESTAT [2:0] ETM status signals which are multiplexed with A [22:20]. ETMPIPESTAT [2:0] are selected in ETM
mode.
ETMTRACEPKT [7:0] ETM packet signals which are multiplexed with ECB, LBA, BCLK (burst clock), PA17, A [19:16].
ETMTRACEPKT [7:0] are selected in ETM mode.
CMOS Sensor Interface
CSI_D [7:0] Sensor port data
CSI_MCLK Sensor port master clock
CSI_VSYNC Sensor port vertical sync
CSI_HSYNC Sensor port horizontal sync
CSI_PIXCLK Sensor port data latch clock
LCD Controller
LD [15:0] LCD Data Bus—All LCD signals are driven low after reset and when LCD is off.
FLM/VSYNC Frame Sync or Vsync—This signal also serves as the clock signal output for the gate
driver (dedicated signal SPS for Sharp panel HR-TFT).
LP/HSYNC Line pulse or H sync
LSCLK Shift clock
ACD/OE Alternate crystal direction/output enable.
CONTRAST This signal is used to control the LCD bias voltage as contrast control.
SPL_SPR Program horizontal scan direction (Sharp panel dedicated signal).
PS Control signal output for source driver (Sharp panel dedicated signal).
CLS Start signal output for gate driver. This signal is an inverted version of PS (Sharp panel dedicated
signal).
REV Signal for common electrode driving signal preparation (Sharp panel dedicated signal).
SIM
SIM_CLK SIM Clock
SIM_RST SIM Reset
SIM_RX Receive Data
MC9328MX1 Technical Data, Rev. 7
6 Freescale Semiconductor
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name Function/Notes
SIM_TX Transmit Data
SIM_PD Presence Detect Schmitt trigger input
SIM_SVEN SIM Vdd Enable
SPI 1 and SPI 2
SPI1_MOSI Master Out/Slave In
SPI1_MISO Slave In/Master Out
SPI1_SS Slave Select (Selectable polarity)
SPI1_SCLK Serial Clock
SPI1_SPI_RDY Serial Data Ready
SPI2_TXD SPI2 Master TxData Output—This signal is multiplexed with a GPI/O pin yet shows up as a primary or
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
SPI2_RXD SPI2 Master RxData Input—This signal is multiplexed with a GPI/O pin yet shows up as a primary or
alternative signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
SPI2_SS SPI2 Slave Select—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
SPI2_SCLK SPI2 Serial Clock—This signal is multiplexed with a GPI/O pin yet shows up as a primary or alternative
signal in the signal multiplex scheme table. Please refer to the SPI and GPIO chapters in the MC9328MX1 Reference Manual for information about how to bring this signal to the assigned pin.
General Purpose Timers
TIN Timer Input Capture or Timer Input Clock—The signal on this input is applied to both timers
simultaneously.
TMR2OUT Timer 2 Output
USB Device
USBD_VMO USB Minus Output
USBD_VPO USB Plus Output
USBD_VM USB Minus Input
USBD_VP USB Plus Input
USBD_SUSPND USB Suspend Output
USBD_RCV USB Receive Data
USBD_ROE USB OE
USBD_AFE USB Analog Front End Enable
Secure Digital Interface
SD_CMD SD Command—If the system designer does not wish to make use of the internal pull-up, via the Pull-up
enable register, a 4.7K–69K external pull up resistor must be added.
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor 7
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name Function/Notes
SD_CLK MMC Output Clock
SD_DAT [3:0] Data—If the system designer does not wish to make use of the internal pull-up, via the Pull-up enable
register, a 50K–69K external pull up resistor must be added.
Memory Stick Interface
MS_BS Memory Stick Bus State (Output)—Serial bus control signal
MS_SDIO Memory Stick Serial Data (Input/Output)
MS_SCLKO Memory Stick Serial Clock (Input)—Serial protocol clock source for SCLK Divider
MS_SCLKI Memory Stick External Clock (Output)—Test clock input pin for SCLK divider. This pin is only for test
purposes, not for use in application mode.
MS_PI0 General purpose Input0—Can be used for Memory Stick Insertion/Extraction detect
MS_PI1 General purpose Input1—Can be used for Memory Stick Insertion/Extraction detect
UARTs – IrDA/Auto-Bauding
UART1_RXD Receive Data
UART1_TXD Transmit Data
UART1_RTS Request to Send
UART1_CTS Clear to Send
UART2_RXD Receive Data
UART2_TXD Transmit Data
UART2_RTS Request to Send
UART2_CTS Clear to Send
UART2_DSR Data Set Ready
UART2_RI Ring Indicator
UART2_DCD Data Carrier Detect
UART2_DTR Data Terminal Ready
UART3_RXD Receive Data
UART3_TXD Transmit Data
UART3_RTS Request to Send
UART3_CTS Clear to Send
UART3_DSR Data Set Ready
UART3_RI Ring Indicator
UART3_DCD Data Carrier Detect
UART3_DTR Data Terminal Ready
Serial Audio Port – SSI (configurable to I2S protocol)
SSI_TXDAT Transmit Data
SSI_RXDAT Receive Data
MC9328MX1 Technical Data, Rev. 7
8 Freescale Semiconductor
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name Function/Notes
SSI_TXCLK Transmit Serial Clock
SSI_RXCLK Receive Serial Clock
SSI_TXFS Transmit Frame Sync
SSI_RXFS Receive Frame Sync
SSI2_TXDAT TxD
SSI2_RXDAT RxD
SSI2_TXCLK Transmit Serial Clock
SSI2_RXCLK Receive Serial Clock
SSI2_TXFS Transmit Frame Sync
SSI2_RXFS Receive Frame Sync
I2C
I2C_SCL I2C Clock
I2C_SDA I2C Data
Signals and Connections
PWM
PWMO PWM Output
ASP
UIN Positive U analog input (for low voltage, temperature measurement)
UIP Negative U analog input (for low voltage, temperature measurement)
PX1 Positive pen-X analog input
PY1 Positive pen-Y analog input
PX2 Negative pen-X analog input
PY2 Negative pen-Y analog input
R1A Positive resistance input (a)
R1B Positive resistance input (b)
R2A Negative resistance input (a)
R2B Negative resistance input (b)
RVP Positive reference for pen ADC
RVM Negative reference for pen ADC
AVDD Analog power supply
AGND Analog ground
BlueTooth
BT1 I/O clock signal
BT2 Output
BT3 Input
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor 9
Signals and Connections
Table 2. i.MX1 Signal Descriptions (Continued)
Signal Name Function/Notes
BT4 Input
BT5 Output
BT6 Output
BT7 Output
BT8 Output
BT9 Output
BT10 Output
BT11 Output
BT12 Output
BT13 Output
BTRF VDD Power supply from external BT RFIC
BTRF GND Ground from external BT RFIC
Test Function
TRISTATE Forces all I/O signals to high impedance for test purposes. For normal operation, terminate this input
with a 1 k ohm resistor to ground. (TRI-STATE® is a registered trademark of National Semiconductor.)
Digital Supply Pins
NVDD Digital Supply for the I/O pins
NVSS Digital Ground for the I/O pins
Supply Pins – Analog Modules
AVDD Supply for analog blocks
Internal Power Supply
QVDD Power supply pins for silicon internal circuitry
QVSS Ground pins for silicon internal circuitry
2.1 I/O Pads Power Supply and Signal Multiplexing Scheme
This section describes detailed information about both the power supply for each I/O pin and its function multiplexing scheme. The user can reference information provided in Table 6 on page 23 to configure the power supply scheme for each device in the system (memory and external peripherals). The function multiplexing information also shown in Table 6 allows the user to select the function of each pin by configuring the appropriate GPIO registers when those pins are multiplexed to provide different functions.
MC9328MX1 Technical Data, Rev. 7
10 Freescale Semiconductor
Default
(At/After)
RESE
State
Signals and Connections
Table 3. MC9328MX1 Signal Multiplexing Scheme
Primary Alternate GPIO
O PA0 69K SPI2_CLK L A24
C
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD1 K8 NVDD1 Static
NVDD1 B1 A24 O ETMTRACESYN
NVDD1 C2 D31 I/O 69K Pull-H
NVDD1 C1 A23 O ETMTRACECLK O PA31 69K L A23
NVDD1 D2 D30 I/O 69K Pull-H
NVDD1 D1 A22 O ETMPIPESTAT2 O PA30 69K L A22
NVDD1 D3 D29 I/O 69K Pull-H
NVDD1 E2 A21 O ETMPIPESTAT1 O PA29 69K L A21
NVDD1 E3 D28 I/O 69K Pull-H
NVDD1 E1 A20 O ETMPIPESTAT0 O PA28 69K L A20
NVDD1 F2 D27 I/O 69K Pull-H
Voltage
I/O Supply
NVDD1 F4 A19 O ETMTRACEPKT3 O PA27 69K L A19
A1 VSS Static
NVDD1 E4 D26 I/O 69K Pull-H
NVDD1 H5 NVDD1 Static
NVDD1 F1 A18 O ETMTRACEPKT2 O PA26 69K L A18
NVDD1 F3 D25 I/O 69K Pull-H
NVDD1 G2 A17 O ETMTRACEPKT1 O PA25 69K L A17
NVDD1 G3 D24 I/O 69K Pull-H
NVDD1 F5 A16 O ETMTRACEPKT0 O PA24 69K L A16
NVDD1 G4 D23 I/O 69K Pull-H
NVDD1 G1 A15 O L
NVDD1 H2 D22 I/O 69K Pull-H
NVDD1 H3 A14 O L
MC9328MX1 Technical Data, Rev. 7
reescale Semiconductor 11
Signals and Connections
Default
(At/After)
RESE
State
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD1 G5 D21 I/O 69K Pull-H
Voltage
I/O Supply
NVDD1 H1 A13 O L
T1 VSS Static
NVDD1 H4 D20 I/O 69K Pull-H
QVDD1 H9 QVDD1 Static
H8 VSS Static
NVDD1 J5 NVDD1 Static
NVDD1 J1 A12 O L
NVDD1 J4 D19 I/O 69K Pull-H
NVDD1 J2 A11 O L
NVDD1 J3 D18 I/O 69K Pull-H
NVDD1 K1 A10 O L
NVDD1 K4 D17 I/O 69K Pull-H
NVDD1 K3 A9 O L
NVDD1 K2 D16 I/O 69K Pull-H
NVDD1 L1 A8 O L
NVDD1 L4 D15 I/O 69K Pull-H
NVDD1 L2 A7 O L
MC9328MX1 Technical Data, Rev. 7
12 Freescale Semiconductor
K6 VSS Static
NVDD1 L5 D14 I/O 69K Pull-H
NVDD1 K5 NVDD1 Static
NVDD1 M4 A6 O L
NVDD1 L3 D13 I/O 69K Pull-H
NVDD1 M1 A5 O L
NVDD1 M2 D12 I/O 69K Pull-H
Default
(At/After)
RESE
State
Signals and Connections
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
O H
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD1 N1 A4 O L
NVDD1 M3 D11 I/O 69K Pull-H
NVDD1 P3 EB0
Voltage
I/O Supply
NVDD1 N3 D10 I/O 69K Pull-H
reescale Semiconductor 13
O H
NVDD1 P1 A3 O L
NVDD1 N2 EB1
O H
M6 VSS Static
NVDD1 P2 D9 I/O 69K Pull-H
NVDD1 R1 EB2
NVDD1 H6 NVDD1 Static
O H
NVDD1 T2 A2 O L
NVDD1 R2 EB3
O H
NVDD1 R5 D8 I/O 69K Pull-H
NVDD1 T3 OE
O PA23 69K Pull-H PA23
NVDD1 R3 A1 O L
NVDD1 T4 CS5
O PA22 69K Pull-H PA22
NVDD1 N4 D7 I/O 69K Pull-H
NVDD1 R4 CS4
NVDD1 N5 A0 O PA21 69K L A0
OCSD1 HCSD1
NVDD1 P4 CS3
NVDD1 P5 D6 I/O 69K Pull-H
OCSD0 HCSD0
H7 VSS Static
NVDD1 T5 CS2
NVDD1 J6 NVDD1 Static
NVDD1 M5 SDCLK O H
MC9328MX1 Technical Data, Rev. 7
Signals and Connections
Default
RESE
(At/After)
1
H
H
State
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
O
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD1 T6 CS1 O H
Voltage
I/O Supply
NVDD1 T7 CS0
14 Freescale Semiconductor
I ETMTRACEPKT7 PA20 69K Pull-H ECB
NVDD1 R6 D5 I/O 69K Pull-H
NVDD1 P6 ECB
O ETMTRACEPKT6 PA19 69K H LBA
J7 VSS Static
NVDD1 N6 D4 I/O 69K Pull-H
NVDD1 R7 LBA
NVDD1 P8 D3 I/O 69K Pull-H
NVDD1 R8 BCLK ETMTRACEPKT5 PA18 69K L BCLK
NVDD1 P7 D2 I/O 69K Pull-H
NVDD1 L6 NVDD1 Static
NVDD1 N7 DTACK I ETMTRACEPKT4 PA17 69K SPI2_SS A25 Pull-H PA17
NVDD1 N8 D1 I/O 69K Pull-H
NVDD1 M7 RW
NVDD1 T8 MA11 O L
NVDD1 M8 MA10 O L
K7 VSS Static
NVDD1 R9 D0 I/O 69K Pull-H
NVDD1 P9 DQM3 O L
NVDD1 T9 DQM2 O L
NVDD1 N9 DQM1 O L
O H
O H
NVDD1 R10 DQM0 O L
NVDD1 M9 RAS
NVDD1 L8 CAS
NVDD1 J8 NVDD1 Static
MC9328MX1 Technical Data, Rev. 7
Default
Signals and Connections
RESE
(At/After)
2
L/H
2
3
4
4
4
4
4
Hiz
Hiz
Hiz
Hiz
Hiz
H/L
Hiz
State
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
O L/H
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD1 T10 SDWE O H
NVDD1 R11 SDCKE0 O H
NVDD1 P10 SDCKE1 O H
Voltage
I/O Supply
NVDD1 N10 RESET_SF
L7 VSS Static
NVDD1 T11 CLKO O L
reescale Semiconductor 15
I 69K
AVDD1 T12 AVDD1 Static
AVDD1 M10 RESET_IN
AVDD1 N11 RESET_OUT O L/H
AVDD1 M11 BIG_ENDIAN I
AVDD1 P11 BOOT3 I
AVDD1 N12 BOOT2 I
AVDD1 R12 POR I
AVDD1 R13 BOOT1 I
MC9328MX1 Technical Data, Rev. 7
T16 VSS Static
AVDD1 P12 BOOT0 I
AVDD1 T13 TRISTATE I
AVDD1 P13 TRST I 69K H
QVDD2 R15 QVDD2 Static
AVDD1 T14 EXTAL16M I Hiz
AVDD1 T15 XTAL16M O
AVDD1 R16 EXTAL32K I Hiz
AVDD1 P16 XTAL32K O
NVDD2 K10 NVDD2 Static
Signals and Connections
Default
5
(At/After)
RESE
Hiz
State
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD2 R14 TDO O
NVDD2 N15 TMS I 69K Pull-H
NVDD2 L9 TCK I 69K Pull-H
NVDD2 N16 TDI I 69K Pull-H
NVDD2 P14 I2C_SCL O PA16 69K Pull-H PA16
NVDD2 P15 I2C_SDA I/O PA15 69K Pull-H PA15
NVDD2 N13 CSI_PIXCLK I PA14 69K Pull-H PA14
NVDD2 M13 CSI_HSYNC I PA13 69K Pull-H PA13
NVDD2 M14 CSI_VSYNC I PA12 69K Pull-H PA12
NVDD2 N14 CSI_D7 I PA11 69K Pull-H PA11
NVDD2 M15 CSI_D6 I PA10 69K Pull-H PA10
NVDD2 M16 CSI_D5 I PA9 69K Pull-H PA9
NVDD2 J10 VSS Static
NVDD2 M12 CSI_D4 I PA8 69K Pull-H PA8
NVDD2 L16 CSI_D3 I PA7 69K Pull-H PA7
NVDD2 L15 CSI_D2 I PA6 69K Pull-H PA6
NVDD2 L14 CSI_D1 I PA5 69K Pull-H PA5
NVDD2 L13 CSI_D0 I PA4 69K Pull-H PA4
NVDD2 L12 CSI_MCLK O PA3 69K Pull-H PA3
NVDD2 L11 PWMO O PA2 69K Pull-H PA2
NVDD2 L10 TIN I PA1 69K SPI2_RxD Pull-H PA1
NVDD2 K15 TMR2OUT O PD31 69K SPI2_TxD Pull-H PD31
NVDD2 K16 LD15 O PD30 69K Pull-H PD30
NVDD2 K14 LD14 O PD29 69K Pull-H PD29
Voltage
I/O Supply
MC9328MX1 Technical Data, Rev. 7
16 Freescale Semiconductor
NVDD2 K13 LD13 O PD28 69K Pull-H PD28
Default
Signals and Connections
RESE
(At/After)
State
Pull-H PD11
SPI2_SS2
O PD10 69K SPI2_TxD Pull-H PD10
O PD9 69K SPI2_RxD Pull-H PD9
O PD8 69K SPI2_SS Pull-H PD8
I PD7 69K SPI2_CLK Pull-H PD7
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD2 K12 LD12 O PD27 69K Pull-H PD27
Voltage
I/O Supply
reescale Semiconductor 17
QVDD3 J15 QVDD3 Static
J16 VSS Static
NVDD2 K9 NVDD2 Static
NVDD2 J14 LD11 O PD26 69K Pull-H PD26
NVDD2 K11 LD10 O PD25 69K Pull-H PD25
NVDD2 H15 LD9 O PD24 69K Pull-H PD24
NVDD2 J13 LD8 O PD23 69K Pull-H PD23
NVDD2 J12 LD7 O PD22 69K Pull-H PD22
NVDD2 J11 LD6 O PD21 69K Pull-H PD21
NVDD2 H14 LD5 O PD20 69K Pull-H PD20
NVDD2 H13 LD4 O PD19 69K Pull-H PD19
MC9328MX1 Technical Data, Rev. 7
NVDD2 H16 LD3 O PD18 69K Pull-H PD18
NVDD2 H12 LD2 O PD17 69K Pull-H PD17
NVDD2 G16 LD1 O PD16 69K Pull-H PD16
NVDD2 H11 LD0 O PD15 69K Pull-H PD15
NVDD2 G15 FLM/VSYNC O PD14 69K Pull-H PD14
NVDD2 G14 LP/HSYNC O PD13 69K Pull-H PD13
NVDD2 G13 ACD/OE O PD12 69K Pull-H PD12
NVDD2 G12 CONTRAST O PD11 69K
NVDD2 F16 SPL_SPR O UART2_DSR
NVDD2 H10 PS O UART2_RI
NVDD2 G11 CLS O UART2_DCD
NVDD2 F12 REV O UART2_DTR
NVDD2 F15 LSCLK O PD6 69K Pull-H PD6
Signals and Connections
Default
(At/After)
RESE
State
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
J9 VSS Static
Pin
BGA
Voltage
I/O Supply
E16 R2A I qvdd
6
QVDD
18 Freescale Semiconductor
F14 PX1 I
F13 PY1 I
E15 PX2 I
D16 R2B I
6
6
6
QVDD
QVDD
QVDD
E14 PY2 I
D15 R1A I
C16 R1B I
C15 VSS Static
6
6
6
6
QVDD
QVDD
QVDD
QVDD
C14 AVDD2 Static
6
AVDD2
B16 NC I
A16 NC I
B15 UIN I
A15 UIP I
E13 NC I
6
6
6
6
6
QVDD
QVDD
QVDD
QVDD
QVDD
B14 RVM I
D14 NC I
6
QVDD
A14 RVP I
D13 NC I
6
6
6
QVDD
QVDD
QVDD
E12 NC O
C13 NC I
6
6
QVDD
QVDD
MC9328MX1 Technical Data, Rev. 7
Default
Signals and Connections
RESE
(At/After)
Hiz PC30
Pull-H PC28
Pull-H PC27
LPC25
Pull-H PC13
State
DMA_Req
UART3_TX
UART3_CTS
UART3_DTR L PC26
SPI2_SS3
UART3_DCD
UART3_DSR
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
NVDD3 B9 SPI1_SCLK I/O PC14 69K Pull-H PC14
I PC13 69K
NVDD3 D9 SPI1_SPI_RDY
NVDD3 A9 UART1_RXD I PC12 69K Pull-H PC12
I/O PC15 69K Pull-H PC15
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
I/O Supply
D12 NC O
6
QVDD
Voltage
QVDD4 A13 QVDD4 Static
B13 VSS Static
BTRFVDD C11 BT8 O SSI2_RXFS PC24 69K UART3_RI Hiz PC24
BTRFVDD G10 BT9 O SSI2_RX PC23 69K L PC23
BTRFVDD F10 BT10 O SSI2_TX PC22 69K H PC22
BTRFVDD B10 BT11 O SSI2_TXCLK PC21 69K H PC21
BTRFVDD A12 BT3 I PC29 69K UART3_RTS Pull-H PC29
BTRFVDD E11 BT4 I PC28 69K
BTRFVDD A11 BT5 I/O PC27 69K
BTRFVDD C12 BTRFVDD Static
BTRFVDD B12 BT1 I PC31 69K UART3_RX Pull-H PC31
BTRFVDD F11 BT2 O PC30 69K
BTRFVDD D11 BT6 O PC26 69K
BTRFVDD B11 BT7 O PC25 69K
BTRFVDD E10 BT12 O SSI2_TXFS PC20 69K Hiz PC20
BTRFVDD D10 BT13 O SSI2_RXCLK PC19 69K L PC19
C10 BTRFGND Static
NVDD3 A10 NVDD3 Static
NVDD3 G9 SPI1_MOSI I/O PC17 69K Pull-H PC17
NVDD3 F9 SPI1_MISO I/O PC16 69K Pull-H PC16
NVDD3 E9 SPI1_SS
MC9328MX1 Technical Data, Rev. 7
reescale Semiconductor 19
Signals and Connections
Default
(At/After)
RESE
State
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
I PC10 69K Pull-H PC10
O PC9 69K Pull-H PC9
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
NVDD3 C8 SSI_RXFS I/O PC3 69K Pull-H PC3
A7 VSS Static
NVDD4 C7 UART2_RXD I PB31 69K Pull-H PB31
Pin
BGA
NVDD3 G8 UART1_CTS
NVDD3 B8 SSI_TXCLK I/O PC8 69K Pull-H PC8
NVDD3 F8 SSI_TXFS I/O PC7 69K Pull-H PC7
NVDD3 E8 SSI_TXDAT O PC6 69K Pull-H PC6
NVDD3 D8 SSI_RXDAT I PC5 69K Pull-H PC5
NVDD3 C9 UART1_TXD O PC11 69K Pull-H PC11
Voltage
I/O Supply
NVDD3 A8 UART1_RTS
NVDD3 B7 SSI_RXCLK I/O PC4 69K Pull-H PC4
MC9328MX1 Technical Data, Rev. 7
20 Freescale Semiconductor
I PB29 69K Pull-H PB29
O PB28 69K Pull-H PB28
NVDD4 F7 UART2_TXD O PB30 69K Pull-H PB30
NVDD4 C6 UART2_CTS
NVDD4 E7 UART2_RTS
NVDD4 D7 USBD_VMO O PB27 69K Pull-H PB27
NVDD4 D6 USBD_VPO O PB26 69K Pull-H PB26
NVDD4 E6 USBD_VM I PB25 69K Pull-H PB25
O PB23 69K Pull-H PB23
ROE O PB21 69K Pull-H PB21
USBD_SUSPND
A4 VSS Static
NVDD4 B6 USBD_VP I PB24 69K Pull-H PB24
NVDD4 D5
NVDD4 C5 USBD_RCV I/O PB22 69K Pull-H PB22
NVDD4 B5 USBD_
NVDD4 A5 USBD_AFE O PB20 69K Pull-H PB20
NVDD4 A6 NVDD4 Static
NVDD4 G7 SIM_CLK O SSI_TXCLK I/O PB19 69K Pull-H PB19
Default
Signals and Connections
RESE
(At/After)
State
Pull-L PB11
(pull down)
Table 3. MC9328MX1 Signal Multiplexing Scheme (Continued)
Primary Alternate GPIO
Signal Dir Pull-up Signal Dir Mux Pull-up Ain Bin Aout
Pin
BGA
NVDD4 F6 SIM_RST O SSI_TXFS I/O PB18 69K Pull-H PB18
NVDD4 G6 SIM_RX I SSI_TXDAT O PB17 69K Pull-H PB17
NVDD4 B4 SIM_TX I/O SSI_RXDAT I PB16 69K Pull-H PB16
NVDD4 C4 SIM_PD I SSI_RXCLK I/O PB15 69K Pull-H PB15
NVDD4 D4 SIM_SVEN O SSI_RXFS I/O PB14 69K Pull-H PB14
NVDD4 B3 SD_CMD I/O MS_BS O PB13 69K Pull-H PB13
NVDD4 A3 SD_CLK O MS_SCLKO O PB12 69K Pull-H PB12
NVDD4 A2 SD_DAT3 I/O MS_SDIO I/O PB11 69K
NVDD4 E5 SD_DAT2 I/O MS_SCLKI I PB10 69K Pull-H PB10
NVDD4 B2 SD_DAT1 I/O MS_PI1 I PB9 69K Pull-H PB9
NVDD4 C3 SD_DAT0 I/O MS_PI0 I PB8 69K Pull-H PB8
Voltage
I/O Supply
MC9328MX1 Technical Data, Rev. 7
reescale Semiconductor 21
After reset, CS0 goes H/L depends on BOOT[3:0].2Need external circuitry to drive the signal.3Need external pull-up.4External resistor is needed.5Need external pull-up or pull-down.6ASP signals are clamped by AVDD2 to prevent ESD (electrostatic discharge) damage. AVDD2 must be greater than QVDD to keep diodes reverse-biased.
1
Electrical Characteristics
3 Electrical Characteristics
This section contains the electrical specifications and timing diagrams for the i.MX1 processor.
3.1 Maximum Ratings
Table 4 provides information on maximum ratings which are those values beyond which damage to the
device may occur. Functional operation should be restricted to the limits listed in Recommended Operating Range Table 5 on page 23 or the DC Characteristics table.
Table 4. Maximum Ratings
Symbol Rating Minimum Maximum Unit
NV
DD
QV
DD
QV
DD
AV
DD
BTRFV
DD
VESD_HBM ESD immunity with HBM (human body model) 2000 V
VESD_MM ESD immunity with MM (machine model) 100 V
ILatchup Latch-up immunity 200 mA
Test Storage temperature -55 150 °C
Pmax Power Consumption
1
A typical application with 30 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM® core-that is, 7x GPIO, 15x Data bus, and 8x Address bus.
2
A worst-case application with 70 pads simultaneously switching assumes the GPIO toggling and instruction fetches from the ARM core-that is, 32x GPIO, 30x Data bus, 8x Address bus. These calculations are based on the core running its heaviest OS application at MHz, and where the whole image is running out of SDRAM. QVDD at V, NVDD and AVDD at 3.3V, therefore, 180mA is the worst measurement recorded in the factory environment, max 5mA is consumed for OSC pads, with each toggle GPIO consuming 4mA.
DC I/O Supply Voltage -0.3 3.3 V
DC Internal (core = 150 MHz) Supply Voltage -0.3 1.9 V
DC Internal (core = 200 MHz) Supply Voltage -0.3 2.0 V
DC Analog Supply Voltage -0.3 3.3 V
DC Bluetooth Supply Voltage -0.3 3.3 V
800
1
1300
2
mW
3.2 Recommended Operating Range
Table 5 provides the recommended operating ranges for the supply voltages and temperatures. The i.MX1
processor has multiple pairs of VDD and VSS power supply and return pins. QVDD and QVSS pins are used for internal logic. All other VDD and VSS pins are for the I/O pads voltage supply, and each pair of VDD and VSS provides power to the enclosed I/O pads. This design allows different peripheral supply voltage levels in a system.
Because AVDD pins are supply voltages to the analog pads, it is recommended to isolate and noise-filter the AVDD pins from other VDD pins.
BTRFVDD is the supply voltage for the Bluetooth interface signals. It is quite sensitive to the data transmit/receive accuracy. Please refer to Bluetooth RF spec for special handling. If Bluetooth is not used
MC9328MX1 Technical Data, Rev. 7
22 Freescale Semiconductor
Electrical Characteristics
in the system, these Bluetooth pins can be used as general purpose I/O pins and BTRFVDD can be used as other NVDD pins.
For more information about I/O pads grouping per VDD, please refer to Table 2 on page 4.
Table 5. Recommended Operating Range
Symbol Rating Minimum Maximum Unit
T
T
T
NVDD I/O supply voltage (if using MSHC, CSI, SPI, BTA, LCD, and USBd which
NVDD I/O supply voltage (if not using the peripherals listed above) 1.70 3.30 V
QVDD Internal supply voltage (Core = 150 MHz) 1.70 1.90 V
QVDD Internal supply voltage (Core = 200 MHz) 1.80 2.00 V
AVDD Analog supply voltage 1.70 3.30 V
Operating temperature range
A
MC9328MX1VM20\MC9328MX1VM15
Operating temperature range
A
MC9328MX1DVM20\MC9328MX1DVM15
Operating temperature range
A
MC9328MX1CVM15
are only 3 V interfaces)
07C
-30 70 °C
-40 85 °C
2.70 3.30 V
3.3 Power Sequence Requirements
For required power-up and power-down sequencing, please refer to the “Power-Up Sequence” section of application note AN2537 on the i.MX applications processor website.
3.4 DC Electrical Characteristics
Table 6 contains both maximum and minimum DC characteristics of the i.MX1 processor.
Table 6. Maximum and Minimum DC Characteristics
Number or
Symbol
Iop Full running operating current at 1.8V for QVDD, 3.3V for
NVDD/AVDD (Core = 96 MHz, System = 96 MHz, MPEG4 decoding playback from external memory card to both external SSI audio decoder and driving TFT display panel, and OS with MMU enabled memory system is running on external SDRAM).
Sidd
Sidd
Sidd
Freescale Semiconductor 23
Standby current
1
(Core = 150 MHz, QVDD = 1.8V, temp = 25°C)
Standby current
2
(Core = 150 MHz, QVDD = 1.8V, temp = 55
Standby current
3
(Core = 150 MHz, QVDD = 2.0V, temp = 25°C)
Parameter Min Typical Max Unit
QVDD at
1.8V = 120mA;
NVDD+AVDD at
3.0V = 30mA
–25 –μA
–45 –μA
–mA
°C)
–35 –μA
MC9328MX1 Technical Data, Rev. 7
Electrical Characteristics
Table 6. Maximum and Minimum DC Characteristics (Continued)
Number or
Symbol
Sidd
4
V
IH
V
IL
V
OH
V
OL
I
IL
I
IH
I
OH
I
OL
I
OZ
C
i
Parameter Min Typical Max Unit
Standby current (Core = 150 MHz, QVDD = 2.0V, temp = 55°C)
Input high voltage 0.7V
Input low voltage 0.4 V
Output high voltage (IOH= 2.0 mA) 0.7V
Output low voltage (IOL= -2.5 mA) 0.4 V
Input low leakage current
= GND, no pull-up or pull-down)
(V
IN
Input high leakage current (V
IN=VDD
Output high current (V
OH
Output low current (VOL=0.4V, VDD=1.8V)
Output leakage current (V
out=VDD
Input capacitance 5 pF
, no pull-up or pull-down)
=0.8VDD, VDD=1.8V)
, output is high impedance)
–60 –μA
DD
DD
––±1μA
––±1μA
4.0 mA
-4.0 mA
––±5μA
–Vdd+0.2V
–VddV
C
o
Output capacitance 5 pF
3.5 AC Electrical Characteristics
The AC characteristics consist of output delays, input setup and hold times, and signal skew times. All signals are specified relative to an appropriate edge of other signals. All timing specifications are specified at a system operating frequency from 0 MHz to 96 MHz (core operating frequency 150 MHz) with an operating supply voltage from V
DD min
timing is measured at 30 pF loading.
Pin Parameter Minimum Maximum Unit
TRISTATE Time from TRISTATE activate until I/O becomes Hi-Z 20.8 ns
Table 8. 32k/16M Oscillator Signal Timing
Parameter Minimum RMS Maximum Unit
EXTAL32k input jitter (peak to peak) 5 20 ns
EXTAL32k startup time 800 ms
to V
DD max
under an operating temperature from TL to TH. All
Table 7. Tristate Signal Timing
MC9328MX1 Technical Data, Rev. 7
24 Freescale Semiconductor
Functional Description and Application Information
Table 8. 32k/16M Oscillator Signal Timing (Continued)
Parameter Minimum RMS Maximum Unit
EXTAL16M input jitter (peak to peak)
EXTAL16M startup time
1
The 16 MHz oscillator is not recommended for use in new designs.
1
1
–TBDTBD–
TBD
4 Functional Description and Application Information
This section provides the electrical information including and timing diagrams for the individual modules of the i.MX1.
4.1 Embedded Trace Macrocell
All registers in the ETM9 are programmed through a JTAG interface. The interface is an extension of the ARM920T processor’s TAP controller, and is assigned scan chain 6. The scan chain consists of a 40-bit shift register comprised of the following:
32-bit data field
7-bit address field
A read/write bit
The data to be written is scanned into the 32-bit data field, the address of the register into the 7-bit address field, and a 1 into the read/write bit.
A register is read by scanning its address into the address field and a 0 into the read/write bit. The 32-bit data field is ignored. A read or a write takes place when the TAP controller enters the UPDATE-DR state. The timing diagram for the ETM9 is shown in Figure 2. See Table 9 for the ETM9 timing parameters used in Figure 2.
TRACECLK
TRACECLK
(Half-Rate Clocking Mode)
Output Trace Port
2a
3a
3b
Figure 2. Trace Port Timing Diagram
2b
Valid Data
4a
1
Valid Data
4b
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor 25
Functional Description and Application Information
Table 9. Trace Port Timing Diagram Parameter Table
1.8 ± 0.1 V 3.0 ± 0.3 V
Ref No. Parameter
Minimum Maximum Minimum Maximum
1 CLK frequency 0 85 0 100 MHz
2a Clock high time 1.3 2 ns
2b Clock low time 3 2 ns
3a Clock rise time 4 3 ns
3b Clock fall time 3 3 ns
4a Output hold time 2.28 2 ns
4b Output setup time 3.42 3 ns
4.2 DPLL Timing Specifications
Unit
Parameters of the DPLL are given in Table 10. In this table, T pre-divider and T
is the output double clock period.
dck
is a reference clock period after the
ref
Table 10. DPLL Specifications
Parameter Test Conditions Minimum Typical Maximum Unit
DPLL input clock freq range Vcc = 1.8V 5 100 MHz
Pre-divider output clock freq range
DPLL output clock freq range Vcc = 1.8V 80 220 MHz
Pre-divider factor (PD) 1 16
Total multiplication factor (MF) Includes both integer and fractional parts 5 15
MF integer part 5 15
MF numerator Should be less than the denominator 0 1022
MF denominator 1 1023
Pre-multiplier lock-in time
Freq lock-in time after full reset
Freq lock-in time after partial reset
Vcc = 1.8V
FOL mode for non-integer MF (does not include pre-multi lock-in time)
FOL mode for non-integer MF (does not include pre-multi lock-in time)
5–30MHz
312.5
250
220
280
(56 μs)
250
(50 μs)
300
270
μsec
T
T
ref
ref
Phase lock-in time after full reset
Phase lock-in time after partial reset
Freq jitter (p-p)
26 Freescale Semiconductor
FPL mode and integer MF (does not include pre-multi lock-in time)
FPL mode and integer MF (does not include pre-multi lock-in time)
MC9328MX1 Technical Data, Rev. 7
300
270
350
(70 μs)
320
(64 μs)
0.005
(0.01%)
400
370
0.01
2•T
T
ref
T
ref
dck
Functional Description and Application Information
Table 10. DPLL Specifications (Continued)
Parameter Test Conditions Minimum Typical Maximum Unit
Phase jitter (p-p) Integer MF, FPL mode, Vcc=1.8V
1.0
(10%)
1.5 ns
Power supply voltage 1.7 2.5 V
Power dissipation FOL mode, integer MF,
= MHz, Vcc = 1.8V
f
dck
––4mW
4.3 Reset Module
The timing relationships of the Reset module with the POR and RESET_IN are shown in Figure 3 and
Figure 4.
NOTE
Be aware that NVDD must ramp up to at least 1.8V before QVDD is powered up to prevent forward biasing.
90% AVDD
1
POR
RESET_POR
RESET_DRAM
10% AVDD
2
Exact 300ms
3
7 cycles @ CLK32
HRESET
RESET_OUT
CLK32
HCLK
4
14 cycles @ CLK32
Figure 3. Timing Relationship with POR
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor 27
Functional Description and Application Information
RESET_IN
5
HRESET
RESET_OUT
6
CLK32
HCLK
14 cycles @ CLK32
4
Figure 4. Timing Relationship with RESET_IN
Table 11. Reset Module Timing Parameter Table
Ref No.
1 Width of input POWER_ON_RESET
2 Width of internal POWER_ON_RESET
(9600 *CLK32 at 32 kHz)
3 7K to 32K-cycle stretcher for SDRAM reset 7 7 7 7 Cycles of
4 14K to 32K-cycle stretcher for internal system reset
HRESERT
5 Width of external hard-reset RESET_IN
and output reset at pin RESET_OUT
Parameter
1.8 ± 0.1 V 3.0 ± 0.3 V Unit
Min Max Min Max
1
note
300 300 300 300 ms
14 14 14 14 Cycles of
4 4 Cycles of
note
1
––
CLK32
CLK32
CLK32
6 4K to 32K-cycle qualifier 4 4 4 4 Cycles of
CLK32
1
POR width is dependent on the 32 or 32.768 kHz crystal oscillator start-up time. Design margin should allow for crystal tolerance, i.MX chip variations, temperature impact, and supply voltage influence. Through the process of supplying crystals for use with CMOS oscillators, crystal manufacturers have developed a working knowledge of start-up time of their crystals. Typically, start-up times range from 400 ms to 1.2 seconds for this type of crystal. If an external stable clock source (already running) is used instead of a crystal, the width of POR should be ignored in calculating timing for the start-up process.
4.4 External Interface Module
The External Interface Module (EIM) handles the interface to devices external to the i.MX1 processor, including the generation of chip-selects for external peripherals and memory. The timing diagram for the EIM is shown in Figure 5, and Table 12 defines the parameters of signals.
MC9328MX1 Technical Data, Rev. 7
28 Freescale Semiconductor
(HCLK) Bus Clock
Address
Chip-select
Read (Write
Functional Description and Application Information
1a 1b
2a 2b
3b3a
)
(rising edge)
OE
(falling edge)
OE
EB
(rising edge)
EB
(falling edge)
LBA
(negated falling edge)
LBA
(negated rising edge)
BCLK (burst clock) - rising edge
BCLK (burst clock) - falling edge
Read Data
Write Data (negated falling)
Write Data (negated rising)
DTACK_B
4a 4b
4c 4d
5a 5b
5c 5d
6a
6a
7a 7b
7c
9a
9a
10a
6c
7d
8a
10a
6b
8b
9b
9c
Figure 5. EIM Bus Timing Diagram
Table 12. EIM Bus Timing Parameter Table
1.8 ± 0.1 V 3.0 ± 0.3 V
Ref No. Parameter
Min Typical Max Min Typical Max
1a Clock fall to address valid 2.48 3.31 9.11 2.4 3.2 8.8 ns
1b Clock fall to address invalid 1.55 2.48 5.69 1.5 2.4 5.5 ns
2a Clock fall to chip-select valid 2.69 3.31 7.87 2.6 3.2 7.6 ns
2b Clock fall to chip-select invalid 1.55 2.48 6.31 1.5 2.4 6.1 ns
3a Clock fall to Read (Write
) Valid 1.35 2.79 6.52 1.3 2.7 6.3 ns
3b Clock fall to Read (Write) Invalid 1.86 2.59 6.11 1.8 2.5 5.9 ns
MC9328MX1 Technical Data, Rev. 7
Freescale Semiconductor 29
Unit
Functional Description and Application Information
Table 12. EIM Bus Timing Parameter Table (Continued)
Ref No. Parameter
4a Clock1 rise to Output Enable Valid 2.32 2.62 6.85 2.3 2.6 6.8 ns
4b Clock1 rise to Output Enable Invalid 2.11 2.52 6.55 2.1 2.5 6.5 ns
4c Clock1 fall to Output Enable Valid 2.38 2.69 7.04 2.3 2.6 6.8 ns
4d Clock1 fall to Output Enable Invalid 2.17 2.59 6.73 2.1 2.5 6.5 ns
5a Clock1 rise to Enable Bytes Valid 1.91 2.52 5.54 1.9 2.5 5.5 ns
5b Clock1 rise to Enable Bytes Invalid 1.81 2.42 5.24 1.8 2.4 5.2 ns
5c Clock1 fall to Enable Bytes Valid 1.97 2.59 5.69 1.9 2.5 5.5 ns
5d Clock1 fall to Enable Bytes Invalid 1.76 2.48 5.38 1.7 2.4 5.2 ns
6a Clock1 fall to Load Burst Address Valid 2.07 2.79 6.73 2.0 2.7 6.5 ns
6b Clock1 fall to Load Burst Address Invalid 1.97 2.79 6.83 1.9 2.7 6.6 ns
6c Clock1 rise to Load Burst Address Invalid 1.91 2.62 6.45 1.9 2.6 6.4 ns
7a Clock1 rise to Burst Clock rise 1.61 2.62 5.64 1.6 2.6 5.6 ns
1.8 ± 0.1 V 3.0 ± 0.3 V Unit
Min Typical Max Min Typical Max
7b Clock1rise to Burst Clock fall 1.61 2.62 5.84 1.6 2.6 5.8 ns
7c Clock1 fall to Burst Clock rise 1.55 2.48 5.59 1.5 2.4 5.4 ns
7d Clock1 fall to Burst Clock fall 1.55 2.59 5.80 1.5 2.5 5.6 ns
8a Read Data setup time 5.54 5.5 ns
8b Read Data hold time 0 0 ns
9a Clock1 rise to Write Data Valid 1.81 2.72 6.85 1.8 2.7 6.8 ns
9b Clock1 fall to Write Data Invalid 1.45 2.48 5.69 1.4 2.4 5.5 ns
9c Clock1 rise to Write Data Invalid 1.63 1.62 ns
10a DTACK setup time 2.52 2.5 ns
1
Clock refers to the system clock signal, HCLK, generated from the System DPLL
4.4.1 DTACK Signal Description
The DTACK signal is the external input data acknowledge signal. When using the external DTACK signal as a data acknowledge signal, the bus time-out monitor generates a bus error when a bus cycle is not terminated by the external DTACK signal after 1022 HCLK counts have elapsed. Only the CS5 group supports DTACK signal function when the external DTACK signal is used for data acknowledgement.
4.4.2 DTACK Signal Timing
Figure 6 through Figure 9 show the access cycle timing used by chip-select 5. The signal values and units
of measure for this figure are found in the associated tables.
MC9328MX1 Technical Data, Rev. 7
30 Freescale Semiconductor
Loading...
+ 70 hidden pages