Franklin 2007 User Manual

Submersible Motors
Application • Installation • Maintenance
60 Hz, Single-Phase and Three-Phase Motors
2007
ATTENTION!
IMPORTANT INFORMATION FOR INSTALLERS OF THIS EQUIPMENT!
THIS EQUIPMENT IS INTENDED FOR INSTALLATION BY TECHNICALLY QUALIFIED PERSONNEL. FAILURE TO INSTALL IT IN COMPLIANCE WITH NATIONAL AND LOCAL ELECTRICAL CODES, AND WITHIN FRANKLIN ELECTRIC RECOMMENDATIONS, MAY RESULT IN ELECTRICAL SHOCK OR FIRE HAZARD, UNSATISFACTORY PERFORMANCE, AND EQUIPMENT FAILURE. FRANKLIN INSTALLATION INFORMATION IS AVAILABLE FROM PUMP MANUFACTURERS AND DISTRIBUTORS, AND DIRECTLY FROM FRANKLIN ELECTRIC. CALL FRANKLIN TOLL FREE 800-348-2420 FOR INFORMATION.
WARNING
SERIOUS OR FATAL ELECTRICAL SHOCK MAY RESULT FROM FAILURE TO CONNECT THE MOTOR, CONTROL ENCLOSURES, METAL PLUMBING, AND ALL OTHER METAL NEAR THE MOTOR OR CABLE, TO THE POWER SUPPLY GROUND TERMINAL USING WIRE NO SMALLER THAN MOTOR CABLE WIRES. TO REDUCE RISK OF ELECTRICAL SHOCK, DISCONNECT POWER BEFORE WORKING ON OR AROUND THE WATER SYSTEM. DO NOT USE MOTOR IN SWIMMING AREAS.
ATTENTION!
INFORMATIONS IMPORTANTES POUR L’INSTALLATEUR DE CET EQUIPEMENT.
CET EQUIPEMENT DOIT ETRE INTALLE PAR UN TECHNICIEN QUALIFIE. SI L’INSTALLATION N’EST PAS CONFORME AUX LOIS NATIONALES OU LOCALES AINSI QU’AUX RECOMMANDATIONS DE FRANKLIN ELECTRIC, UN CHOC ELECTRIQUE, LE FEU, UNE PERFORMANCE NON ACCEPTABLE, VOIRE MEME LE NON-FONCTIONNEMENT PEUVENT SURVENIR. UN GUIDE D’INSTALLATION DE FRANKLIN ELECTRIC EST DISPONIBLE CHEZ LES MANUFACTURIERS DE POMPES, LES DISTRIBUTEURS, OU DIRECTEMENT CHEZ FRANKLIN. POUR DE PLUS AMPLES RENSEIGNEMENTS, APPELEZ SANS FRAIS LE 800-348-2420.
AVERTISSEMENT
UN CHOC ELECTRIQUE SERIEUX OU MEME MORTEL EST POSSIBLE, SI L’ON NEGLIGE DE CONNECTER LE MOTEUR, LA PLOMBERIE METALLIQUE, BOITES DE CONTROLE ET TOUT METAL PROCHE DU MOTEUR A UN CABLE ALLANT VERS UNE ALIMENTATION D’ENERGIE AVEC BORNE DE MISE A LA TERRE UTILISANT AU MOINS LE MEME CALIBRE QUE LES FILS DU MOTEUR. POUR REDUIRE LE RISQUE DE CHOC ELECTRIQUE. COUPER LE COURANT AVANT DE TRAVAILLER PRES OU SUR LE SYSTEM D’EAU. NE PAS UTILISER CE MOTEUR DANS UNE ZONE DE BAIGNADE.
ATENCION!
INFORMACION PARA EL INSTALADOR DE ESTE EQUIPO.
PARA LA INSTALACION DE ESTE EQUIPO, SE REQUIERE DE PERSONAL TECNICO CALIFICADO. EL NO CUMPLIR CON LAS NORMAS ELECTRICAS NACIONALES Y LOCALES, ASI COMO CON LAS RECOMENDACIONES DE FRANKLIN ELECTRIC DURANTE SU INSTALACION, PUEDE OCASIONAR, UN CHOQUE ELECTRICO, PELIGRO DE UN INCENDIO, OPERACION DEFECTUOSA E INCLUSO LA DESCOMPOSTURA DEL EQUIPO. LOS MANUALES DE INSTALACION Y PUESTA EN MARCHA DE LOS EQUIPOS, ESTAN DISPONIBLES CON LOS DISTRIBUIDORES, FABRICANTES DE BOMBAS O DIRECTAMENTE CON FRANKLIN ELECTRIC. PUEDE LLAMAR GRATUITAMENTE PARA MAYOR INFORMACION AL TELEFONO 800-348-2420.
ADVERTENCIA
PUEDE OCURRIR UN CHOQUE ELECTRICO, SERIO O FATAL DEBIDO A UNA ERRONEA CONECCION DEL MOTOR, DE LOS TABLEROS ELECTRICOS, DE LA TUBERIA, DE CUALQUIER OTRA PARTE METALICA QUE ESTA CERCA DEL MOTOR O POR NO UTILIZAR UN CABLE PARA TIERRA DE CALIBRE IGUAL O MAYOR AL DE LA ALIMENTACION. PARA REDUCIR EL RIESGO DE CHOQUE ELECTRIC, DESCONECTAR LA ALIMENTACION ELECTRICA ANTES DE INICIAR A TRABAJAR EN EL SISTEMA HIDRAULICO. NO UTILIZAR ESTE MOTOR EN ALBERCAS O AREAS EN DONDE SE PRACTIQUE NATACION.
Commitment to Quality
Franklin Electric is committed to provide customers with defect free products through our program of continuous improvement. Quality shall, in every case, take precedence over quantity.
Submersible Motors
Application • Installation • Maintenance Manual
The submersible motor is a reliable, effi cient and trouble­free means of powering a pump. Its needs for a long operational life are simple. They are:
1. A suitable operating environment
2. An adequate supply of electricity
3. An adequate fl ow of cooling water over the motor
4. An appropriate pump load
Contents
Application – All Motors
Storage ...........................................................................3
Frequency of Starts .........................................................3
Mounting Position ...........................................................3
Transformer Capacity .....................................................4
Effects of Torque .............................................................4
Use of Engine Driven Generators ................................... 5
Use of Check Valves .......................................................5
Well Diameters, Casing, Top Feeding, Screens ............. 6
Water Temperature and Flow .........................................6
Flow Inducer Sleeve .......................................................6
Head Loss Past Motor ....................................................7
Hot Water Applications ................................................7-8
Drawdown Seals ............................................................. 9
Grounding Control Boxes and Panels .............................9
Grounding Surge Arrestors ............................................. 9
Control Box and Panel Environment ...............................9
Equipment Grounding ..................................................... 9
All considerations of application, installation, and maintenance of submersible motors relating to these four areas are presented in this manual. Franklin Electric’s web page, www.franklin-electric.com, should be checked for the latest updates.
SubMonitor .................................................................... 31
Power Factor Correction ............................................... 31
Three-Phase Starter Diagrams ..................................... 32
Three-Phase Power Unbalance ....................................33
Rotation and Current Unbalance ..................................33
Three-Phase Motor Lead Identifi cation .........................34
Phase Converters .........................................................34
Reduced Voltage Starters .............................................35
Inline Booster Pump Systems ..................................35-38
Variable Speed Operation .............................................39
Installation – All Motors
Submersible Motors - Dimensions ................................ 40
Tightening Lead Connector Jam Nut ............................41
Pump to Motor Coupling ...............................................41
Shaft Height and Free End Play ...................................41
Submersible Leads and Cables .................................... 41
Application – Single-Phase Motors
3-Wire Control Boxes ....................................................10
2-Wire Motor Solid State Controls ................................10
QD Relays (Solid State) ................................................10
Cable Selection 2-Wire or 3-Wire .................................11
Two Different Cable Sizes ............................................12
Single-Phase Motor Specifi cations ...............................13
Single-Phase Motor Fuse Sizing ...................................14
Auxiliary Running Capacitors ........................................15
Buck-Boost Transformers .............................................15
Application – Three-Phase Motors
Cable Selection - 60 °C Three-Wire .........................16-17
Cable Selection - 60 °C Six-Wire .................................. 18
Cable Selection - 75 °C Three-Wire .........................19-20
Cable Selection - 75 °C Six-Wire .................................. 21
Three-Phase Motor Specifi cations ...........................22-26
Three-Phase Motor Fuse Sizing ...................................27
Overload Protection .................................................28-30
Submersible Pump Installation Checklist (No. 3656) Submersible Motor Installation Record (No. 2207) Submersible Booster Installation Record (No. 3655)
Maintenance – All Motors
System Troubleshooting ..........................................42-43
Preliminary Tests ..........................................................44
Insulation Resistance ....................................................45
Resistance of Drop Cable ............................................. 45
Maintenance – Single-Phase Motors & Controls
Identifi cation of Cables ..................................................46
Single-Phase Control Boxes ......................................... 46
Ohmmeter Tests ...........................................................47
QD Control Box Parts ...................................................48
Integral hp Control Box Parts ...................................49-50
Control Box Wiring Diagrams ...................................51-54
Maintenance – Electronic Products
Pumptec-Plus Troubleshooting During Installation ....... 55
Pumptec-Plus Troubleshooting After Installation .......... 56
QD Pumptec and Pumptec Troubleshooting ................57
SubDrive/MonoDrive Troubleshooting .......................... 58
SubMonitor Troubleshooting .........................................59
Subtrol-Plus Troubleshooting ...................................60-61
Storage
Application – All Motors
Franklin Electric submersible motors are a water­lubricated design. The fi ll solution consists of a mixture of deionized water and Propylene Glycol (a non-toxic antifreeze). The solution will prevent damage from freezing in temperatures to -40 °F (-40 °C); motors should be stored in areas that do not go below this temperature. The solution will partially freeze below 27 °F (-3 °C), but no damage occurs. Repeated freezing and thawing should be avoided to prevent possible loss of fi ll solution.
There may be an interchange of fi ll solution with well water during operation. Care must be taken with motors removed from wells during freezing conditions to prevent damage.
Frequency of Starts
The average number of starts per day over a period of months or years infl uences the life of a submersible pumping system. Excessive cycling affects the life of control components such as pressure switches, starters, relays and capacitors. Rapid cycling can also cause motor spline damage, bearing damage, and motor overheating. All these conditions can lead to reduced motor life.
The pump size, tank size and other controls should be selected to keep the starts per day as low as practical for longest life. The maximum number of starts per 24-hour period is shown in table 3.
Motors should run a minimum of one minute to dissipate heat build up from starting current. 6" and larger motors should have a minimum of 15 minutes between starts or starting attempts.
When the storage temperature does not exceed 100 °F (37 °C), storage time should be limited to two years. Where temperatures reach 100° to 130 °F, storage time should be limited to one year.
Loss of a few drops of liquid will not damage the motor as an excess amount is provided, and the fi lter check valve will allow lost liquid to be replaced by fi ltered well water upon installation. If there is reason to believe there has been a considerable amount of leakage, consult the factory for checking procedures.
Table 3 Number of Starts
MOTOR RATING MAXIMUM STARTS PER 24 HR PERIOD
HP KW SINGLE-PHASE THREE-PHASE
Up to 0.75 Up to 0.55 300 300
1 thru 5.5 0.75 thru 4 100 300
7.5 thru 30 5.5 thru 22 50 100
40 and over 30 and over - 100
Mounting Position
Franklin submersible motors are designed primarily for operation in the vertical, shaft-up position.
During acceleration, the pump thrust increases as its output head increases. In cases where the pump head stays below its normal operating range during startup and full speed condition, the pump may create upward thrust. This creates upward thrust on the motor upthrust bearing. This is an acceptable operation for short periods at each start, but running continuously with upthrust will cause excessive wear on the upthrust bearing.
With certain additional restrictions as listed in this section and the Inline Booster Pump Systems sections of this manual, motors are also suitable for operation in positions
3
from shaft-up to shaft-horizontal. As the mounting position becomes further from vertical and closer to horizontal, the probability of shortened thrust bearing life increases. For normal motor life expectancy with motor positions other than shaft-up, follow these recommendations:
1. Minimize the frequency of starts, preferably to fewer than 10 per 24-hour period. 6” and 8” motors should have a minimum of 20 minutes between starts or starting attempts
2. Do not use in systems which can run even for short periods at full speed without thrust toward the motor.
Application – All Motors
Transformer Capacity - Single-Phase or Three-Phase
Distribution transformers must be adequately sized to satisfy the kVA requirements of the submersible motor. When transformers are too small to supply the load, there is a reduction in voltage to the motor.
Table 4 references the motor horsepower rating, single­phase and three-phase, total effective kVA required, and
Table 4 Transformer Capacity
MOTOR RATING
HP KW
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
TOTAL
EFFECTIVE
KVA
REQUIRED
32 1
4 2 1.5
53 2
7.5 5 3
10 7.5 5
15 10 5
20 15 7.5
25 15 10
30 20 10
40 25 15
50 30 20
60 35 20
75 40 25
90 50 30
120 65 40
150 85 50
175 100 60
200 115 70
230 130 75
SMALLEST KVA RATING-EACH TRANSFORMER
OPEN WYE
OR DELTA
2- TRANSFORMERS
the smallest transformer required for open or closed three-phase systems. Open systems require larger transformers since only two transformers are used.
Other loads would add directly to the kVA sizing requirements of the transformer bank.
NOTE: Standard kVA
CLOSED
WYE OR DELTA
3- TRANSFORMERS
ratings are shown. If power company experience and practice allows transformer loading higher than standard, higher loading values may be used to meet total effective kVA required, provided correct voltage and balance is maintained.
Effects of Torque
During starting of a submersible pump, the torque developed by the motor must be supported through the pump, delivery pipe or other supports. Most pumps rotate in the direction which causes unscrewing torque on right-handed threaded pipe or pump stages. All threaded joints, pumps and other parts of the pump support system must be capable of withstanding the maximum torque repeatedly without loosening or breaking. Unscrewing joints will break electrical cable and may cause loss of the pump-motor unit.
Table 4A Torque Required (Examples)
MOTOR RATING
HP KW
1 hp & Less 0.75 kW & Less
20 hp 15 kW
75 hp 55 kW
200 hp 150 kW
MINIMUM SAFE
TORQUE-LOAD
10 lb-ft
200 lb-ft
750 lb-ft
2000 lb-ft
To safely withstand maximum unscrewing torques with a minimum safety factor of 1.5, tightening all theaded joints to at least 10 lb-ft per motor horsepower is recommended (table 4A). It may be necessary to tack or strap weld pipe joints on high horsepower pumps, especially at shallower settings.
4
Application – All Motors
Use of Engine Driven Generators - Single-Phase or Three-Phase
Table 5 lists minimum generator sizes based on typical 80 °C rise continuous duty generators, with 35% maximum voltage dip during starting, for Franklin’s three­wire motors, single- or three-phase.
This is a general chart. The generator manufacturer should be consulted whenever possible, especially on larger sizes.
There are two types of generators available: externally and internally regulated. Most are externally regulated. They use an external voltage regulator that senses the output voltage. As the voltage dips at motor start-up, the regulator increases the output voltage of the generator.
Internally regulated (self-excited) generators have an extra winding in the generator stator. The extra winding senses the output current to automatically adjust the output voltage.
Generators must be sized to deliver at least 65% of the rated voltage during starting to ensure adequate starting torque. Besides sizing, generator frequency is important as the motor speed varies with the frequency (Hz). Due to pump affi nity laws, a pump running at 1 to 2 Hz below motor nameplate frequency design will not meet its performance curve. Conversely, a pump running at 1 to 2 Hz above may trip overloads.
Generator Operation
Always start the generator before the motor is started and always stop the motor before the generator is shut down. The motor thrust bearing may be damaged if the generator is allowed to coast down with the motor running. This same condition occurs when the generator is allowed to run out of fuel.
Follow generator manufacturer’s recommendations for de-rating at higher elevations or using natural gas.
Table 5 Engine Driven Generators
NOTE: This chart applies to 3-wire or 3-phase motors. For best starting of 2-wire motors, the minimum generator rating is 50% higher than shown.
MOTOR RATING MINIMUM RATING OF GENERATOR
HP KW
1/3 0.25
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
EXTERNALLY REGULATED INTERNALLY REGULATED
KW KVA KW KVA
1.5 1.9 1.2 1.5 2 2.5 1.5 1.9 3 3.8 2 2.5 4 5.0 2.5 3.13 5 6.25 3 3.8
7.5 9.4 4 5
10 12.5 5 6.25 15 18.75 7.5 9.4 20 25.0 10 12.5 30 37.5 15 18.75 40 50 20 25 60 75 25 31
75 94 30 37.50 100 125 40 50 100 125 50 62.5 150 188 60 75 175 220 75 94 250 313 100 125 300 375 150 188 375 469 175 219 450 563 200 250 525 656 250 313 600 750 275 344
WARNING: To prevent accidental electrocution, automatic or manual transfer switches must be used any time a generator is used as standby or back up on power lines. Contact power company for use and approval.
Use of Check Valves
It is recommended that one or more check valves always be used in submersible pump installations. If the pump does not have a built-in check valve, a line check valve should be installed in the discharge line within 25 feet of the pump and below the draw down level of the water supply. For deeper settings, check valves should be installed per the manufacturer’s recommendations. More than one check valve may be required, but more than the recommended number of check valves should not be used.
Swing type check valves are not acceptable and should never be used with submersible motors/pumps. Swing type check valves have a slower reaction time which can cause water hammer (see next page). Internal pump check valves or spring loaded check valves close quickly and help eliminate water hammer.
Check valves are used to hold pressure in the system when the pump stops. They also prevent backspin, water
5
hammer and upthrust. Any of these can lead to early pump or motor failure.
NOTE: Only positive sealing check valves should be used in submersible installations. Although drilling the check valves or using drain-back check valves may prevent back spinning, they create upthrust and water hammer problems.
A. Backspin - With no check valve or a failed check
valve, the water in the drop pipe and the water in the system can fl ow down the discharge pipe when the motor stops. This can cause the pump to rotate in a reverse direction. If the motor is started while it is backspinning, an excessive force is placed across the pump-motor assembly that can cause impeller damage, motor or pump shaft breakage, excessive bearing wear, etc.
B. Upthrust - With no check valve, a leaking check
valve, or drilled check valve, the unit starts under
Application – All Motors
a zero head condition. This causes an uplifting or upthrust on the impeller-shaft assembly in the pump. This upward movement carries across the pump­motor coupling and creates an upthrust condition in the motor. Repeated upthrust can cause premature failure of both the pump and the motor.
C. Water Hammer - If the lowest check valve is more
than 30 feet above the standing (lowest static) water level, or a lower check valve leaks and the
the discharge piping. On the next pump start, water moving at very high velocity fi lls the void and strikes the closed check valve and the stationary water in the pipe above it, causing a hydraulic shock. This shock can split pipes, break joints and damage the pump and/or motor. Water hammer can often be heard or felt. When discovered, the system should be shut down and the pump installer contacted to correct the problem.
check valve above holds, a vacuum is created in
Wells – Large Diameter, Uncased, Top Feeding and Screened Sections
Franklin Electric submersible motors are designed to operate with a cooling fl ow of water over and around the full length of the motor.
If the pump installation does not provide the minimum fl ow shown in table 6, a fl ow inducer sleeve (fl ow sleeve) must be used. The conditions requiring a fl ow sleeve are:
• Well diameter is too large to meet table 6 fl ow requirements.
• Pump is in an open body of water.
• Pump is in a rock well or below the well casing.
• The well is “top-feeding” (a.k.a. cascading)
• Pump is set in or below screens or perforations.
Water Temperature and Flow
Franklin Electric’s standard submersible motors, except Hi-Temp designs (see note below), are designed to operate up to maximum service factor horsepower in water up to 86 °F (30 °C). A fl ow of 0.25 ft/s for 4" motors rated 3 hp and higher, and 0.5 ft/s for 6 and 8" motors is required for proper cooling. Table 6 shows minimum fl ow rates, in gpm, for various well diameters and motor sizes.
If a standard motor is operated in water over 86 °F (30 °C), water fl ow past the motor must be increased to maintain safe motor operating temperatures. See HOT WATER APPLICATIONS on page 7.
NOTE: Franklin Electric offers a line of Hi-Temp motors designed to operate in water at higher temperatures or lower fl ow conditions. Consult factory for details.
Table 6 Required Cooling Flow
MINIMUM GPM REQUIRED FOR MOTOR COOLING IN WATER UP TO 86 °F (30 °C).
CASING OR
SLEEVE ID
INCHES (MM)
4 (102)
5 (127)
6 (152)
7 (178)
8 (203)
10 (254)
12 (305)
14 (356)
16 (406)
0.25 ft/s = 7.62 cm/sec 0.50 ft/s = 15.24 cm/sec 1 inch = 2.54 cm
4" MOTOR (3-10 HP)
0.25 FT/S
GPM (L/M)
1.2 (4.5) - -
7 (26.5) - -
13 (49) 9 (34) -
20 (76) 25 (95) -
30 (114) 45 (170) 10 (40)
50 (189) 90 (340) 55 (210)
80 (303) 140 (530) 110 (420)
110 (416) 200 (760) 170 (645)
150 (568) 280 (1060) 245 (930)
6" MOTOR
0.50 FT/S
GPM (L/M)
Flow Inducer Sleeve
If the fl ow rate is less than specifi ed, then a fl ow inducer sleeve must be used. A fl ow sleeve is always required in an open body of water. FIG. 1 shows a typical fl ow inducer sleeve construction.
EXAMPLE: A 6" motor and pump that delivers 60 gpm will be installed in a 10" well.
From table 6, 90 gpm would be required to maintain proper cooling. In this case adding an 8" or smaller fl ow sleeve provides the required cooling.
FIG. 1
WORM GEAR CLAMPS
INTAKE
FLOW INDUCER SLEEVE
SUBMERSIBLE MOTOR
CENTERING BOLT
CENTERING BOLTS MUST BE LOCATED ON MOTOR CASTING. DO NOT LOCATE ON STATOR SHELL.
SAW CUTS
NOTCH OUT FOR CABLE GUARD
BOTTOM END VIEW
CENTERING BOLT HOLE (3 REQUIRED)
8" MOTOR
0.50 FT/S
GPM (L/M)
LOCK NUTS INSIDE SLEEVE
6
Application – All Motors
Head Loss From Flow Past Motor
Table 7 lists the approximate head loss due to fl ow between an average length motor and smooth casing or fl ow inducer sleeve.
Table 7 Head Loss in Feet (Meters) at Various Flow Rates
MOTOR DIAMETER 4" 4" 4" 6" 6" 6" 8" 8"
CASING ID IN INCHES (MM) 4 (102) 5 (127) 6 (152) 6 (152) 7 (178) 8 (203) 8.1 (206) 10 (254)
25 (95) 0.3 (.09)
50 (189) 1.2 (.37)
100 (378) 4.7 (1.4) 0.3 (.09) 1.7 (.52)
150 (568) 10.2 (3.1) 0.6 (.18) 0.2 (.06) 3.7 (1.1)
200 (757) 1.1 (.34) 0.4 (.12) 6.3 (1.9) 0.5 (.15) 6.8 (2.1)
250 (946) 1.8 (.55) 0.7 (.21) 9.6 (2.9) 0.8 (.24) 10.4 (3.2)
300 (1136) 2.5 (.75) 1.0 (.30) 13.6 (4.1) 1.2 (.37) 0.2 (.06) 14.6 (4.5)
Flow Rate in gpm (l/m)
400 (1514) 23.7 (7.2) 2.0 (.61) 0.4 (.12) 24.6 (7.5)
500 (1893) 3.1 (.94) 0.7 (.21) 37.3 (11.4) 0.6 (0.2)
600 (2271) 4.4 (1.3) 1.0 (.30) 52.2 (15.9) 0.8 (0.3)
800 (3028) 1.5 (0.5)
1000 (3785) 2.4 (0.7)
Hot Water Applications (Standard Motors)
Franklin Electric offers a line of Hi-Temp motors which are designed to operate in water with various temperatures up to 194 °F (90 °C) without increased fl ow. When a standard pump-motor operates in water hotter than 86 °F (30 °C), a fl ow rate of at least 3 ft/s is required. When selecting the motor to drive a pump in over 86 °F (30 °C) water, the motor horsepower must be de-rated per the following procedure.
1. Using table 7A, determine pump gpm required for different well or sleeve diameters. If necessary, add a fl ow sleeve to obtain at least 3 ft/s fl ow rate.
Table 7A Minimum gpm (l/m) Required for 3 ft/s (.91 m/sec) Flow Rate
INCHES (MM) GPM (L/M) GPM (L/M) GPM (L/M)
CASING OR SLEEVE ID
4 (102) 15 (57)
5 (127) 80 (303)
6 (152) 160 (606) 52 (197)
7 (178) 150 (568)
8 (203) 260 (984) 60 (227)
10 (254) 520 (1970) 330 (1250)
12 (305) 650 (2460)
14 (356) 1020 (3860)
16 (406) 1460 (5530)
4" HIGH
THRUST MOTOR
6" MOTOR 8" MOTOR
7
Application – All Motors
2. Determine pump horsepower required from the pump manufacturer’s curve.
3. Multiply the pump horsepower required by the heat factor multiplier from table 8.
6
EXAMPLE
5
4
3
2
Brake Horsepower
1
0
0 5 10 15 20 25 30 35 40 45 50
Gallons Per Minute
A
B
C
FIG. 2 MANUFACTURER’S PUMP CURVE
Table 8 Heat Factor Multiplier at 3 ft/s (.91 m/sec) Flow Rate
MAXIMUM
WATER TEMPERATURE
140 °F (60 °C) 1.25 1.62 2.00
131 °F (55 °C) 1.11 1.32 1.62
122 °F (50 °C) 1.00 1.14 1.32
113 °F (45 °C) 1.00 1.00 1.14
104 °F (40 °C) 1.00 1.00 1.00
95 °F (35 °C) 1.00 1.00 1.00
1/3 - 5 HP
.25 - 3.7 KW
7 1/2 - 30 HP
5.5 - 22 KW
OVER 30 HP
OVER 22 KW
Table 8A Service Factor Horsepower
4. Select a rated hp motor on table 8A whose Service Factor Horsepower is at least the value calculated in Item 3.
HP KW SFHP HP KW SFHP HP KW SFHP HP KW SFHP
1/3 0.25 0.58 3 2.2 3.45 25 18.5 28.75 100 75 115.00
1/2 0.37 0.80 5 3.7 5.75 30 22.0 34.50 125 90 143.75
3/4 0.55 1.12 7.5 5.5 8.62 40 30.0 46.00 150 110 172.50
1 0.75 1.40 10 7.5 11.50 50 37.0 57.50 175 130 201.25
1.5 1.10 1.95 15 11.0 17.25 60 45.0 69.00 200 150 230.00
2 1.50 2.50 20 15.0 23.00 75 55.0 86.25
Hot Water Applications - Example
EXAMPLE: A 6" pump end requiring 39 hp input will pump 124 °F water in an 8" well at a delivery rate of 140 gpm. From table 7A, a 6" fl ow sleeve will be required to increase the fl ow rate to at least 3 ft/s
Using table 8, the 1.62 heat factor multiplier is selected because the hp required is over 30 hp and water
temperature is above 122 °F. Multiply 39 hp x 1.62 (multiplier), which equals 63.2 hp. This is the minimum rated service factor horsepower usable at 39 hp in 124 °F. Using table 8A, select a motor with a rated service factor horsepower above 63.2 hp. A 60 hp motor has a service factor horsepower of 69, so a 60 hp motor may be used.
8
Application – All Motors
Drawdown Seals
Allowable motor temperature is based on atmospheric pressure or higher surrounding the motor. “Drawdown seals,” which seal the well to the pump above its intake
Grounding Control Boxes and Panels
The National Electrical Code requires that the control box or panel-grounding terminal always be connected to supply ground. If the circuit has no grounding conductor and no metal conduit from the box to supply panel, use a wire at least as large as line conductors and connect as required by the National Electrical Code, from the grounding terminal to the electrical supply ground.
Grounding Surge Arrestors
An above ground surge arrestor must be grounded, metal to metal, all the way to the lowest draw down water strata for the surge arrestor to be effective. GROUNDING THE ARRESTOR TO THE SUPPLY GROUND OR TO A DRIVEN GROUND ROD PROVIDES LITTLE OR NO SURGE PROTECTION FOR THE MOTOR.
Control Box and Panel Environment
Franklin Electric control boxes meet UL requirements for NEMA Type 3R enclosures. They are suitable for indoor and outdoor applications within temperatures of +14 °F (-10 °C) to 122 °F (50 °C). Operating control boxes below +14 °F can cause reduced starting torque and loss of overload protection when overloads are located in control boxes.
Control boxes and panels should never be mounted in direct sunlight or high temperature locations. This will cause shortened capacitor life and unnecessary tripping
to maximize delivery, are not recommended, since the suction created can be lower than atmospheric pressure.
WARNING: Failure to ground the control frame can result in a serious or fatal electrical shock hazard.
of overload protectors. A ventilated enclosure painted white to refl ect heat is recommended for an outdoor, high temperature location.
A damp well pit, or other humid location, accelerates component failure from corrosion.
Control boxes with voltage relays are designed for vertical upright mounting only. Mounting in other positions will affect the operation of the relay.
Equipment Grounding
WARNING: Serious or fatal electrical shock may result from failure to connect the motor, control enclosures, metal plumbing and all other metal near the motor or cable to the power supply ground terminal using wire no smaller than motor cable wires.
The primary purpose of grounding the metal drop pipe and/or metal well casing in an installation is safety. It is done to limit the voltage between nonelectrical (exposed metal) parts of the system and ground, thus minimizing dangerous shock hazards. Using wire at least the size of the motor cable wires provides adequate current-carrying capability for any ground fault that might occur. It also provides a low resistance path to ground, ensuring that the current to ground will be large enough to trip any overcurrent device designed to detect faults (such as a ground fault circuit interrupter, or GFCI).
Normally, the ground wire to the motor would provide the
9
primary path back to the power supply ground for any ground fault. There are conditions, however, where the ground wire connection could become compromised. One such example would be the case where the water in the well is abnormally corrosive or aggressive. In this example, a grounded metal drop pipe or casing would then become the primary path to ground. However, the many installations that now use plastic drop pipes and/or casings require further steps to be taken for safety purposes, so that the water column itself does not become the conductive path to ground.
When an installation has abnormally corrosive water AND the drop pipe or casing is plastic, Franklin Electric recommends the use of a GFCI with a 10 mA set-point. In this case, the motor ground wire should be routed through the current-sensing device along with the motor power leads. Wired this way, the GFCI will trip only when a ground fault has occurred AND the motor ground wire is no longer functional.
Application – Single-Phase Motors
3-Wire Control Boxes
Single-phase three-wire submersible motors require the use of control boxes. Operation of motors without control boxes or with incorrect boxes can result in motor failure and voids warranty.
Control boxes contain starting capacitors, a starting relay, and, in some sizes, overload protectors, running capacitors and contactors.
Ratings through 1 hp may use either a Franklin Electric solid state QD or a potential (voltage) type starting relay, while larger ratings use potential relays.
Potential (Voltage) Relays
Potential relays have normally closed contacts. When power is applied, both start and main motor windings are energized, and the motor starts. At this instant, the voltage across the start winding is relatively low and not
2-Wire Motor Solid State Controls
BIAC Switch Operation
When power is applied the bi-metal switch contacts are closed, so the triac is conducting and energizes the start winding. As rpm increases, the voltage in the sensor coil generates heat in the bi-metal strip, causing the bi-metal strip to bend and open the switch circuit. This removes the starting winding and the motor continues to run on the main winding alone.
Approximately 5 seconds after power is removed from the motor, the bi-metal strip cools suffi ciently to return to its closed position and the motor is ready for the next start cycle.
enough to open the contacts of the relay.
As the motor accelerates, the increasing voltage across the start winding (and the relay coil) opens the relay contacts. This opens the starting circuit and the motor continues to run on the main winding alone, or the main plus run capacitor circuit. After the motor is started the relay contacts remain open.
CAUTION: The control box and motor are two pieces
of one assembly. Be certain that the control box and motor hp and voltage match. Since a motor is designed to operate with a control box from the same manufacturer, we can promise warranty coverage only when a Franklin control box is used with a Franklin motor.
to restart the motor before the starting switch has reset, the motor may not start; however, there will be current in the main winding until the overload protector interrupts the circuit. The time for the protector to reset is longer than the reset of the starting switch. Therefore, the start switch will have closed and the motor will operate.
A waterlogged tank will cause fast cycling. When a waterlogged condition does occur, the user will be alerted to the problem during the off time (overload reset time) since the pressure will drop drastically. When the waterlogged tank condition is detected, the condition should be corrected to prevent nuisance tripping of the overload protector.
Rapid Cycling
The BIAC starting switch will reset within approximately 5 seconds after the motor is stopped. If an attempt is made
CAUTION: Restarting the motor within 5 seconds after power is removed may cause the motor overload to trip.
QD Relays (Solid State)
There are two elements in the relay: a reed switch and a triac. The reed switch consists of two tiny rectangular blade-type contacts, which bend under magnetic fl ux. It is hermetically sealed in glass and is located within a coil, which conducts line current. When power is supplied to the control box, the main winding current passing through the coil immediately closes the reed switch contacts. This turns on the triac, which supplies voltage to the start winding, thus starting the motor.
Once the motor is started, the operation of the QD relay is an interaction between the triac, the reed switch and
Bound Pump (Sandlocked)
When the motor is not free to turn, as with a sandlocked pump, the BIAC switch creates a “reverse impact torque” in the motor in either direction. When the sand is dislodged, the motor will start and operate in the correct direction.
the motor windings. The solid state switch senses motor speed through the changing phase relationship between start winding current and line current. As the motor approaches running speed, the phase angle between the start current and the line current becomes nearly in phase. At this point, the reed switch contacts open, turning off the triac. This removes voltage from the start winding and the motor continues to run on the main winding only. With the reed switch contacts open and the triac turned off, the QD relay is ready for the next starting cycle.
10
Application – Single-Phase Motors
2 or 3-Wire Cable, 60 Hz (Service Entrance to Motor - Maximum Length In Feet)
Table 11
MOTOR RATING 60 °C INSULATION - AWG COPPER WIRE SIZE
VOLTSHPKW1412108643210000000000
115 1/2 .37
1/2 .37
3/4 .55
1 .75
1.5 1.1
230
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
100 160 250 390 620 960 1190 1460 1780 2160 2630 3140 3770
400 650 1020 1610 2510 3880 4810 5880 7170 8720
300 480 760 1200 1870 2890 3580 4370 5330 6470 7870
250 400 630 990 1540 2380 2960 3610 4410 5360 6520
190 310 480 770 1200 1870 2320 2850 3500 4280 5240
150 250 390 620 970 1530 1910 2360 2930 3620 4480
120
190 300 470 750 1190 1490 1850 2320 2890 3610
00
000
0000
0000
180
280 450 710 890 1110 1390 1740 2170 2680
200
310 490 610 750 930 1140 1410 1720
250
170 270
390 490 600 750 930 1160 1430 1760
340 430 530 660 820 1020 1260
Table 11A
MOTOR RATING 75 °C INSULATION - AWG COPPER WIRE SIZE
VOLTSHPKW1412108643210000000000
115 1/2 .37
1/2 .37
3/4 .55
1 .75
1.5 1.1
230
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
100 160 250 390 620 960 1190 1460 1780 2160 2630 3140 3770
400 650 1020 1610 2510 3880 4810 5880 7170 8720
300 480 760 1200 1870 2890 3580 4370 5330 6470 7870 9380
250 400 630 990 1540 2380 2960 3610 4410 5360 6520 7780 9350
190 310 480 770 1200 1870 2320 2850 3500 4280 5240 6300 7620
150 250 390 620 970 1530 1910 2360 2930 3620 4480 5470 6700
120
190 300 470 750 1190 1490 1850 2320 2890 3610 4470 5550
0
110
00
000
0000
180 280 450 710 890 1110 1390 1740 2170 2680 3330
120
200 310 490 610 750 930 1140 1410 1720 2100
160
250 390 490 600 750 930 1160 1430 1760
170
270 340 430 530 660 820 1020 1260
60 °C
75 °C
1 Foot = .3048 Meter
Lengths in BOLD only meet the US National Electrical Code ampacity requirements for individual conductors 60 °C or 75 °C in free air or water, not in magnetic enclosures, conduit or direct buried.
Lengths NOT in bold meet the NEC ampacity requirements for either individual conductors or jacketed 60 °C or 75 °C cable and can be in conduit or direct buried. Flat molded and web/ribbon cable are considered jacketed cable.
If any other cable is used, the NEC and local codes should be observed.
Cable lengths in tables 11 & 11A allow for a 5% voltage drop running at maximum nameplate amperes. If 3% voltage drop is desired, multiply table 11 and 11A lengths by 0.6 to get maximum cable length.
11
The portion of the total cable length, which is between the supply and single-phase control box with a line contactor, should not exceed 25% of total maximum allowable to ensure reliable contactor operation. Single­phase control boxes without line contactors may be connected at any point in the total cable length.
Tables 11 & 11A are based on copper wire. If aluminum wire is used, it must be two sizes larger than copper wire and oxidation inhibitors must be used on connections.
EXAMPLE: If tables 11 & 11A call for #12 copper wire, #10 aluminum wire would be required.
Contact Franklin Electric for 90 °C cable lengths. See pages 15, 48, and 49 for applications using 230 V motors on 208 V power systems.
Application – Single-Phase Motors
Two or More Different Cable Sizes Can Be Used
Depending on the installation, any number of combinations of cable may be used.
For example, in a replacement/upgrade installation, the well already has 160 feet of buried #10 cable between the service entrance and the wellhead. A new 3 hp, 230-volt, single-phase motor is being installed to replace a smaller motor. The question is: Since there is already 160 feet of #10 AWG installed, what size cable is required in the well with a 3 hp, 230-volt, single-phase motor setting at 310 feet?
From tables 11 & 11A, a 3 hp motor can use up to 300 feet of #10 AWG cable.
The application has 160 feet of #10 AWG copper wire installed.
Using the formula below, 160 feet (actual) ÷ 300 feet (max allowable) is equal to 0.533. This means 53.3% (0.533 x 100) of the allowable voltage drop or loss, which is allowed between the service entrance and the motor,
Formula:
Actual Length
Max Allowed
occurs in this wire. This leaves us 46.7% (1.00 - 0.533 = 0.467) of some other wire size to use in the remaining 310 feet “down hole” wire run.
The table shows #8 AWG copper wire is good for 470 feet. Using the formula again, 310 feet (used) ÷ 470 feet (allowed) = 0.660; adding this to the 0.533 determined earlier; 0.533 + 0.660 = 1.193. This combination is greater than 1.00, so the voltage drop will not meet US National Electrical Code recommendations.
Tables 11 & 11A show #6 AWG copper wire is good for 750 feet. Using the formula, 310 ÷ 750 = 0.413, and using these numbers, 0.533 + 0.413 = 0.946, we fi nd this is less than one and will meet the NEC recommended voltage drop.
This works for two, three or more combinations of wire and it does not matter which size wire comes fi rst in the installation.
Actual Length
+
Max Allowed
=
1.00
EXAMPLE: 3 hp, 230-Volt, Single-Phase Motor
160 ft #10 AWG
(53.3% of allowable cable)
FIG. 3
310 ft #6 AWG
(41.3% of allowable cable)
3 hp, 230 V Single-Phase Motor
12
Application – Single-Phase Motors
Table 13 Single-Phase Motor Specifi cations (60 Hz) 3450 rpm
FULL
LOAD
(2)
WATTS
AMPS
Y10.0 B10.0R0670
Y5.0 B5.0R0670
Y6.8 B6.8R0940
Y8.2 B8.2R01210
Y3.6 B3.7 R2.0
Y4.9 B5.0 R3.2
Y6.0 B5.7 R3.4
Y6.6 B6.6 R1.3
Y10.0
B9.9 R1.3
Y10.0
B9.3
R2.6 Y14.0 B11.2
R6.1 Y23.0 B15.9 R11.0 Y23.0 B14.3 R10.8 Y36.5 B34.4
R5.5 Y44.0 B39.5
R9.3 Y62.0 B52.0 R17.5
655
925
1160
1130
1660
2060
2940
4920
4910
7300
9800
13900
TYPE
MOTOR MODEL PREFIX
244504 244505 244507 244508
4" 2-WIRE
244309
214504
214505
4" 3-WIRE
214507
214508
214505
214507
4" 3-WIRE W/CRC CB
214508
214508
W/1-
1.5 CB
224300
224301
4" 3-WIRE
224302
(3)
224303
(4)
226110
(5)
226111
6"
226112
226113
RATING
HP KW VOLTS HZ S.F.
1/2 0.37 1/2 0.37 3/4 0.55
1 0.75
1.5 1.1
1/2 0.37
1/2 0.37
3/4 0.55
1 0.75
1/2 0.37
3/4 0.55
1 0.75
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
5 3.7
7.5 5.5
10 7.5
15 11
115 60 1.6 10.0 670 12.0 960 1.0-1.3 62 56 73 58 64.4 R 230 60 1.6 5.0 670 6.0 960 4.2-5.2 62 56 73 58 32.2 R 230 60 1.5 6.8 940 8.0 1310 3.0-3.6 64 59 74 62 40.7 N 230 60 1.4 8.2 1210 9.8 1600 2.2-2.7 65 62 74 63 48.7 N 230 60 1.3 10.6 1700 13.1 2180 1.5-1.9 67 66 80 73 66.6 M
115 60 1.6
230 60 1.6
230 60 1.5
230 60 1.4
230 60 1.6
230 60 1.5
230 60 1.4
230 60 1.4
230 60 1.3
230 60 1.25
230 60 1.15
230 60 1.15
230 60 1.15
230 60 1.15
230 60 1.15
230 60 1.15
(1) Main winding - yellow to black Start winding - yellow to red
(2) Y = Yellow lead - line amps B = Black lead - main winding amps R = Red lead - start or auxiliary winding amps
(3) Control Boxes date coded 02C and older have 35 MFD run capacitors. Current values should be Y14.0 @ FL and Y17.0 @ SF Load. B12.2 B14.5 R4.7 R4.5
Performance is typical, not guaranteed, at specifi ed voltages and specifi ed capacitor values. Performance at voltage ratings not shown is similar, except amps vary inversely with voltage.
MAXIMUM
(S.F. LOAD)
(2)
WATTS
AMPS
Y12.0 B12.0R0960
Y6.0 B6.0R0960
Y8.0 B8.0R01310
Y9.8 B9.8R01600
Y4.3 B4.0 R2.0
Y5.7 B5.2 R3.1
Y7.1 B6.2 R3.3
Y8.0 B7.9
R1.3 Y11.5 B11.0
R1.3 Y13.2 B11.9
R2.6 Y17.0 B12.6
R6.0 Y27.5 B19.1 R10.8 Y27.5 B17.4 R10.5 Y42.1 B40.5
R5.4 Y51.0 B47.5
R8.9 Y75.0 B62.5 R16.9
890
1220
1490
1500
2100
2610
3350
5620
5570
8800
11300
16200
WINDING (1) RES. IN OHMS M=MAIN RES.
S=START RES.
M1.0-1.3 S4.1-5.1
M4.2-5.2
S16.7-20.5
M3.0-3.6
S10.7-13.1
M2.2-2.7
S9.9-12.1
M4.2-5.2
S16.7-20.5
M3.0-3.6
S10.7-13.1
M2.2-2.7
S9.9-12.1
M2.2-2.7
S9.9-12.1
M1.7-2.2 S8.0-9.7
M1.8-2.3 S5.8-7.2
M1.0-1.5 S3.5-4.4
M.68-1.0 S1.8-2.2
M.55-.68 S1.3-1.7
M.36-.50 S.88-1.1
M.27-.33 S.80-.99
M.17-.22 S.68-.93
EFFICIENCY %
S.F. F.L. S.F. F.L.
62 56 73 58 50.5 M
62 56 73 58 23 M
64 59 74 62 34.2 M
65 62 74 63 41.8 L
67 57 90 81 23 M
69 60 92 84 34.2 M
70 64 92 86 41.8 L
70 66 82 72 43 L
69 67 82 74 52 J
71 73 95 93 51 G
77 76 97 97 83.5 H
76 76 100 100 121 F
77 76 100 99 99 E
73 74 91 90 165 F
76 77 96 96 204 E
79 80 97 98 303 E
POWER
FACTOR %
(4) Control Boxes date coded 01M and older have 60 MFD run capacitors and the current values on a 4" motor will be Y23.0 @ FL - Y27.5 @ SF Load. B19.1 B23.2 R8.0 R7.8
(5) Control Boxes date coded 01M and older have 60 MFD run capacitors and the current values on a 6" motor will be Y23.0 @ FL -Y27.5 @ SF Load. B18.2 B23.2 R8.0 R7.8
LOCKED
ROTOR
AMPS
KVA
CODE
13
Application – Single-Phase Motors
Table 14 Single-Phase Motor Fuse Sizing
RATING
HP KW VOLTS
STANDARD
FUSE
TYPE
MOTOR MODEL PREFIX
CIRCUIT BREAKERS OR FUSE AMPS CIRCUIT BREAKERS OR FUSE AMPS
(MAXIMUM PER NEC) (TYPICAL SUBMERSIBLE)
DUAL ELEMENT
TIME DELAY
FUSE
CIRCUIT
BREAKER
STANDARD
FUSE
DUAL ELEMENT
TIME DELAY
FUSE
CIRCUIT
BREAKER
4" 2-WIRE
4" 3-WIRE
4" 3-WIRE W/CRC CB
244504
244505
244507
244508
244309
214504
214505
214507
214508
214505
214507
214508
1/2 0.37
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
1/2 0.37
1/2 0.37
3/4 0.55
1 0.75
1/2 0.37
3/4 0.55
1 0.75
115 35 20 30 30 15 30
230 20 10 15 15 8 15
230 25 15 20 20 10 20
230 30 20 25 25 11 25
230 35 20 30 35 15 30
115 35 20 30 30 15 30
230 20 10 15 15 8 15
230 25 15 20 20 10 20
230 30 20 25 25 11 25
230 20 10 15 15 8 15
230 25 15 20 20 10 20
230 30 20 25 25 11 25
W/ 1-1.5 CB
4" 3-WIRE
6"
214508
224300
224301
224302
224303
226110
226111
226112
226113
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
5 3.7
7.5 5.5
10 7.5
15 11
230 30 20 25 25 11 25
230 35 20 30 30 15 30
230 30 20 25 30 15 25
230 45 30 40 45 20 40
230 80 45 60 70 30 60
230 80 45 60 70 30 60
230 125 70 100 110 50 100
230 150 80 125 150 60 125
230 200 125 175 200 90 175
14
Application – Single-Phase Motors
Auxiliary Running Capacitors
Added capacitors must be connected across “Red” and “Black” control box terminals, in parallel with any existing running capacitors. The additional capacitor(s) should be mounted in an auxiliary box. The values of additional running capacitors most likely to reduce noise are given below. The tabulation gives the max S.F. amps normally
Although motor amps decrease when auxiliary run capacitance is added, the load on the motor does not. If a motor is overloaded with normal capacitance, it still will be overloaded with auxiliary run capacitance, even though motor amps may be within nameplate values.
in each lead with the added capacitor.
Table 15 Auxiliary Capacitor Sizing
MOTOR RATING
HP VOLTS MFD MFD MIN VOLTS FRANKLIN PART YELLOW BLACK RED
1/2 115
1/2
3/4
1
1.5
2
3
5
7.5
10
15
230
NORMAL RUNNING
CAPACITOR(S)
0 60(1) 370 TWO 155327101 8.4 7.0 4.0
0 15(1) 370 ONE 155328101 4.2 3.5 2.0
0 20(1) 370 ONE 155328103 5.8 5.0 2.5
0 25(1) 370
10 20 370 ONE 155328103 9.3 7.5 4.4
20 10 370 ONE 155328102 11.2 9.2 3.8
45 NONE 370 17.0 12.6 6.0
80 NONE 370 27.5 19.1 10.8
45 45 370
70 30 370 ONE 155327101 49.0 42.0 13.0
135 NONE 75.0 62.5 16.9
AUXILIARY RUNNING CAPACITORS FOR
NOISE REDUCTION
ONE EA. 155328101
155328102
ONE EA. 155327101
155328101
S.F. AMPS WITH RUN CAP
7.1 5.6 3.4
37.0 32.0 11.3
(1) Do not add running capacitors to 1/3 through 1 hp control boxes, which use solid state switches or QD relays. Adding capacitors will cause switch failure. If the control box is converted to use a voltage relay, the specifi ed running capacitance can be added.
Buck-Boost Transformers
When the available power supply voltage is not within the proper range, a buck-boost transformer is often used to adjust voltage to match the motor. The most common usage on submersible motors is boosting a 208 volt supply to use a standard 230 volt single-phase submersible motor and control. While tables to give a
Table 15A Buck-Boost Transformer Sizing
MOTOR HP 1/3 1/2 3/4 1 1.5 2 3 5 7.5 10 15
LOAD KVA
MINIMUM XFMR KVA
STANDARD XFMR KVA
1.02 1.36 1.84 2.21 2.65 3.04 3.91 6.33 9.66 11.70 16.60
0.11 0.14 0.19 0.22 0.27 0.31 0.40 0.64 0.97 1.20 1.70
0.25 0.25 0.25 0.25 0.50 0.50 0.50 0.75 1.00 1.50 2.00
Buck-Boost transformers are power transformers, not control transformers. They may also be used to lower voltage when the available power supply voltage is too high.
wide range of voltage boost or buck are published by transformer manufacturers, the following table shows Franklin’s recommendations. The table, based on boosting the voltage 10%, shows the minimum rated transformer kVA needed and the common standard transformer kVA.
15
Application – Three-Phase Motors
Table 16 Three-Phase 60 °C Cable, 60 Hz (Service Entrance to Motor) Maximum Length in Feet
60 °C
MOTOR RATING 60 °C INSULATION - AWG COPPER WIRE SIZE MCM COPPER WIRE SIZE
VOLTSHPKW1412108643210000000000 250 300 350 400 500
710 1140 1800 2840 4420
510 810 1280 2030 3160
430 690 1080 1710 2670 4140 5140
310 500 790 1260 1960 3050 3780
240 390 610 970 1520 2360 2940 3610 4430 5420
180 290 470 740 1160 1810 2250 2760 3390 4130
170 280 440 690 1080 1350 1660 2040 2490 3050 3670 4440 5030
110
0 0 200 310 490 770 960 1180 1450 1770 2170 2600 3150 3560
000
000
0000
00000
000000
930 1490 2350 3700 5760 8910
670 1080 1700 2580 4190 6490 8060 9860
560 910 1430 2260 3520 5460 6780 8290
420 670 1060 1670 2610 4050 5030 6160 7530 9170
320 510 810 1280 2010 3130 3890 4770 5860 7170 8780
240 390 620 990 1540 2400 2980 3660 4480 5470 6690 8020 9680
230 370 590 920 1430 1790 2190 2690 3290 4030 4850 5870 6650 7560 8460 9220
140
0
00
000
0000
00000
00000
2690 4290 6730
2000 3190 5010 7860
1620 2580 4060 6390 9980
1230 1970 3100 4890 7630
870 1390 2180 3450 5400 8380
680 1090 1710 2690 4200 6500 8020 9830
400 640 1010 1590 2490 3870 4780 5870 7230 8830
270 440 690 1090 1710 2640 3260 4000 4930 6010 7290 8780
200 320
00
000
000
0000
00000
000000
0000000
00000000
000000000
00000000000
000000000000
0000000000000
0000000000000 0
260 420 650 1020 1270 1560 1920 2340 2870 3440 4160 4710 5340 5970 6500 7510
160
190
510 800 1250 1930 2380 2910 3570 4330 5230 6260 7390 8280 9340
370
370 570 720 880 1090 1330 1640 1970 2390 2720 3100 3480 3800 4420
230
160 250
310 490 760 950 1170 1440 1760 2160 2610 3160 3590 4100 4600 5020 5840
210
590 920 1430 1770 2170 2690 3290 4000 4840 5770 6520 7430 8250 8990
440
360
390 490 600 740 910 1110 1340 1630 1850 2100 2350 2570 2980
300 380 460 570 700 860 1050 1270 1440 1650 1850 2020 2360
190
240 300 370
250 310 380
330 520 650 800 980 1200 1470 1780 2150 2440 2780 3110 3400 3940
400 500 610 760 930 1140 1380 1680 1910 2180 2450 2680 3120
250
400 500 610 750 920 1120 1360 1540 1760 1980 2160 2520
320
260 330 410
700 1090 1350 1670 2060 2530 3090 3760 4500 5110 5840 6510 7120 8190
570 880 1100 1350 1670 2050 2510 3040 3640 4130 4720 5250 5740 6590
730 910 1120 1380 1700 2080 2520 3020 3430 3920 4360 4770 5490
470
660 820 1010 1240 1520 1840 2200 2500 2850 3170 3470 3990
530
540 660
460 570 700 840 1030 1170 1330 1500 1640 1900
470 580 700 850 970 1110 1250 1360 1590
510 620 760 930 1130 1280 1470 1650 1800 2110
820 1000 1220 1480 1770 2010 2290 2550 2780 3190
560 690
850 1030 1250 1500 1700 1940 2150 2350 2700
570 700 860
510 630 760
1050 1270 1440 1660 1850 2030 2350
910 1030 1180 1310 1430 1650
620 740 840 950
620 700 790 880 960
650 750 840 920
630 700 760 880
1060 1160 1330
1090
1070
200 V
60 Hz Three­Phase
3 - Lead
230 V
60 Hz Three­Phase
3 - Lead
380 V
60 Hz Three­Phase
3 - Lead
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
Lengths in BOLD only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.
Continued on page 17
16
Application – Three-Phase Motors
Table 17 Three-Phase 60 °C Cable (Continued)
60 °C
MOTOR RATING 60 °C INSULATION - AWG COPPER WIRE SIZE MCM COPPER WIRE SIZE
VOLTSHPKW1412108643210000000000 250 300 350 400 500
3770 6020 9460
2730 4350 6850
2300 3670 5770 9070
1700 2710 4270 6730
1300 2070 3270 5150 8050
1000 1600 2520 3970 6200
590 950 1500 2360 3700 5750
420 680 1070 1690 2640 4100 5100 6260 7680
310 500 790 1250 1960 3050 3800 4680 5750 7050
0
00
000
000
0000
00000
00000
0000000
00000000
0000000000
00000000000
000000000000
0000000000000
5900 9410
4270 6810
3630 5800 9120
2620 4180 6580
2030 3250 5110 8060
1580 2530 3980 6270
920 1480 2330 3680 5750
660 1060 1680 2650 4150
490 780 1240 1950 3060 4770 5940
330
0
00
00
000
0000
00000
00000
0000000
00000000
000000000
0000000000
00000000000
540 850 1340 2090 2600 3200 3930 4810 5900 7110
340
650 1030 1610 2000 2470 3040 3730 4580 5530
410
830 1300 1620 1990 2450 3010 3700 4470 5430
530
680 1070 1330 1640 2030 2490 3060 3700 4500 5130 5860
430
790 980 1210 1490 1830 2250 2710 3290 3730 4250
500
800 980 1210 1480 1810 2190 2650 3010 3420 3830 4180 4850
640
540 670 830
530 850 1340 2090 3260 4060
650 1030 1610 2520 3140 3860 4760 5830
410
830 1300 2030 2530 3110 3840 4710
520
680 1070 1670 2080 2560 3160 3880 4770 5780 7030 8000
430
790 1240 1540 1900 2330 2860 3510 4230 5140 5830
500
1000 1250 1540 1890 2310 2840 3420 4140 4700 5340 5990 6530 7580
640
1060 1300 1600 1960 2400 2890 3500 3970 4520 5070 5530 6410
850
690 860 1060
1020 1250 1540 1850 2240 2540 2890 3240 3540 4100
680 840
790 970 1190
1030 1260 1520 1850 2100 2400 2700 2950 3440
620 760 940
1310 1600 1970 2380 2890 3290 3750 5220 4610 5370
770 950 1160
800 990 1190
1130 1380 1560 1790 2010 2190 2550
740 890 1000
760 920 1050 1190
810 930 1060 1190
1460 1770 2150 2440 2790 3140 3430 3990
1400 1690 1920 2180 2440 2650 3070
1440 1630 1860 2080 2270 2640
870 1050 1270 1450
920 1110 1260 1440
1220 1390 1560 1700 1960
1340 1460 1690
1300 1510
810 920 1030 1130
1650 1860 2030 2360
1620 1760 2050
1310
460 V
60 Hz Three­Phase
3 - Lead
575 V
60 Hz Three­Phase
3 - Lead
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
Lengths in BOLD only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See 11 for additional details.
17
Continued on page 18
Application – Three-Phase Motors
Table 18 Three-Phase 60 °C Cable (Continued)
60 °C
MOTOR RATING 60 °C INSULATION - AWG COPPER WIRE SIZE MCM COPPER WIRE SIZE
VOLTSHPKW1412108643210000000000 250 300 350 400 500
200 V
60 Hz Three­Phase
6 - Lead
Y-D
230 V
60 Hz Three­Phase
6 - Lead
Y-D
380 V
60 Hz Three­Phase
6 - Lead
Y-D
460 V
60 Hz Three­Phase
6 - Lead
Y-D
575 V
60 Hz Three­Phase
6 - Lead
Y-D
5 3.7
7.5 5.5 10 7.5 15 11 20 15 25 18.5 30 22
5 3.7
7.5 5.5 10 7.5 15 11 20 15 25 18.5 30 22
5 3.7
7.5 5.5 10 7.5 15 11 20 15 25 18.5 30 22 40 30 50 37 60 45 75 55
100 75 125 90 150 110 175 130 200 150
5 3.7
7.5 5.5 10 7.5 15 11 20 15 25 18.5 30 22 40 30 50 37 60 45 75 55
100 75 125 90 150 110 175 130 200 150
5 3.7
7.5 5.5 10 7.5 15 11 20 15 25 18.5 30 22 40 30 50 37 60 45 75 55
100 75 125 90 150 110 175 130 200 150
160 250 420 660 1030 1620 2020 2490 3060 3730 4570 5500 6660 7540 110 180 300 460 730 1150 1440 1770 2170 2650 3250 3900 4720 5340
130 210 340 550 850 1080 1320 1630 1990 2460 2950 3580 4080 4650 5220 5700 6630
80
00 000 000
0000 210 340 550 880 1380 2140 2680 3280 4030 4930 6040 7270 8800 9970 150 240 390 630 970 1530 1900 2340 2880 3510 4300 5160 6240 7060 8010 8950 9750
180 280 460 730 1140 1420 1750 2160 2640 3240 3910 4740 5380 6150 6900 7530 8760
110
00
00
000
000 600 960 1510 2380 3730 5800 7170 8800 400 660 1030 1630 2560 3960 4890 6000 7390 9010 300 480 760 1200 1870 2890 3570 4360 5350 6490 7840 9390 210 340 550 880 1380 2140 2650 3250 4030 4930 6000 7260 8650 9780
260 410 660 1050 1630 2020 2500 3090 3790 4630 5640 6750 7660 4260 9760
160
0
210
00
000
000
0000
00000
000000
0000000
00000000
00000000
0000000000 880 1420 2250 3540 5550 8620 630 1020 1600 2530 3960 6150 7650 9390 460 750 1180 1870 2940 4570 5700 7020 8620 310 510 810 1270 2010 3130 3900 4800 5890 7210 8850
380 610 970 1540 2410 3000 3700 4560 5590 6870 8290
230
310 490 790 1240 1950 2430 2980 3670 4510 5550 6700 8140
190
0
250
00
000
000
0000
00000
000000
0000000
00000000
000000000
1380 2220 3490 5520 8620
990 1590 2520 3970 6220 730 1170 1860 2920 4590 7150 8910 490 790 1270 2010 3130 4890 6090 370 610 970 1540 2410 3780 4710 5790 7140 8740
490 780 1240 1950 3040 3790 4660 5760 7060
300
400 645 1020 1600 2500 3120 3840 4740 5820 7150 8670
240
0
300
00
000
000
0000
00000
000000
0000000
00000000
240 370 580 730 900 1110 1360 1660 2010 2440 2770 3150 3520 3850 4470
140
190
140
330 540 850 1320 1650 2020 2500 3070 3760 4560 5460 6190 7080 7870 8610 9880
270
410 640 1020 1600 1990 2460 3040 3730 4590 5550 6750 7690 8790
300
480 750 1180 1860 2310 2850 3490 4290 5260 6340 7710 8740
380
280 450 570 690 850 1050 1290 1570 1900 2160 2470 2770 3030 3540
170
140 220
310 490 780 970 1200 1470 1800 2200 2670 3220 3660 4170 4660 5100 5910 230 370 600 750 910 1140 1390 1710 2070 2520 2860 3270 3670 4020 4680
190
150 240
430 700 1090 1360 1680 2070 2550 3120 3780 4530 5140 5880 6540 7150 8230
320
250 400
480 750 1180 1470 1810 2230 2740 3370 4060 4930 5590 6370
370
320 500
590 960 1500 1870 2310 2830 3460 4260 5130 6210 7050 8010 8980 9790
500 790
420 660
360 450 550 690 850 1050 1260 1540 1750 1990 2250 2460 2850 294 370 460 570 700 870 1050 1270 1450 1660 1870 2040 2380
180
300 480 600 750 910 1120 1380 1680 2040 2310 2640 2970 3240 3780
390 490 610 760 930 1140 1390 1690 1920 2200 2470 2700 3160
510 790 990 1230 1510 1860 2280 2760 3300 3750 4270 4750 5200 5980
630 810 990 1230 1500 1830 2220 2650 3010 3430 3820 4170 4780 540 660 840 1030 1270 1540 1870 2250 2550 2910 3220 3520 4050
340
590 960 1200 1470 1810 2220 2710 3280 3970 4510 5130 5740 6270 7270
420
400 780
550 690 855 1050 1290 1570 1900 2160 2490 2770 3040 3520
450
420 520
810 1000 1240 1530 1870 2310 2770 3360 3810 4330 4860 5310 6150 660 810 1020 1260 1540 1890 2280 2770 3150 3600 4050 4420 5160
500 610
470 590 730
1270 1590 1950 2400 2940 3600 4330 5250 5950 6780 7600 8290 9610 1030 1290 1590 1960 2400 2950 3570 4330 4930 5620 6330 6910 8050
960 1180 1450 1780 2190 2650 3220 3660 4180 4710 5140 5980
600 740
650 800 990
640 760 940 1140 1360 1540 1770 1960 2140 2470
400 490 600
420 510 620
360 440 540
760 930 1140 1410 1690 2070 2340 2680 3010 3280 3820
510 630 770
550 680 830
920 1150 1420 1740 2100 2530 2880 3270 3660 3970 4600
700 860
760 930
730 930 1110 1260 1420 1590 1740 1990
750 930 1050 1180 1320 1440 1630 660 780 970 1120 1260 1380 1600
480 580 690
880 1110 1330 1500 1830 2080 2340 2550 2940
950 1140 1380 1570 1790 2000 2180 2530
1000 1220 1390 1580 1780 1950 2270
590 730 880
1210 1480 1780 2160 2450 2790 3120 3410 3950 1060 1300 1570 1910 2170 2480 2780 3040 3540
1140 1370 1670 1890 2160 2420 2640 3070
790 940 1050 1140 1320
1070 1210 1380 1550 1690 1970
Lengths in BOLD only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.
18
Application – Three-Phase Motors
Table 19 Three-Phase 75 °C Cable, 60 Hz (Service Entrance to Motor) Maximum Length in Feet
75 °C
MOTOR RATING 75 °C INSULATION - AWG COPPER WIRE SIZE MCM COPPER WIRE SIZE
VOLTSHPKW1412108643210000000000 250 300 350 400 500
710 1140 1800 2840 4420
510 810 1280 2030 3160
430 690 1080 1710 2670 4140 5140
310 500 790 1260 1960 3050 3780
240 390 610 970 1520 2360 2940 3610 4430 5420
180 290 470 740 1160 1810 2250 2760 3390 4130
170 280 440 690 1080 1350 1660 2040 2490 3050 3670 4440 5030
110
0 0 200 310 490 770 960 1180 1450 1770 2170 2600 3150 3560
00
000
0000
00000
00000
930 1490 2350 3700 5760 8910
670 1080 1700 2580 4190 6490 8060 9860
560 910 1430 2260 3520 5460 6780 8290
420 670 1060 1670 2610 4050 5030 6160 7530 9170
320 510 810 1280 2010 3130 3890 4770 5860 7170 8780
240 390 620 990 1540 2400 2980 3660 4480 5470 6690 8020 9680
230 370 590 920 1430 1790 2190 2690 3290 4030 4850 5870 6650 7560 8460 9220
140
0
160
00
000
000
0000
00000
2690 4290 6730
2000 3190 5010 7860
1620 2580 4060 6390 9980
1230 1970 3100 4890 7630
870 1390 2180 3450 5400 8380
680 1090 1710 2690 4200 6500 8020 9830
400 640 1010 1590 2490 3870 4780 5870 7230 8830
270 440 690 1090 1710 2640 3260 4000 4930 6010 7290 8780
320 510 800 1250 1930 2380 2910 3570 4330 5230 6260 7390 8280 9340
200
0 0 370 590 920 1430 1770 2170 2690 3290 4000 4840 5770 6520 7430 8250 8990
00
000
000
00000
00000
00000
0000000
00000000
0000000000
00000000000
000000000000
0000000000000
230 370 570 720 880 1090 1330 1640 1970 2390 2720 3100 3480 3800 4420
150
250 390 490 600 740 910 1110 1340 1630 1850 2100 2350 2570 2980
160
300 380 460 570 700 860 1050 1270 1440 1650 1850 2020 2360
190
300 370 460 570 700 840 1030 1170 1330 1500 1640 1900
240
200 250
260 420 650 1020 1270 1560 1920 2340 2870 3440 4160 4710 5340 5970 6500 7510
310 490 760 950 1170 1440 1760 2160 2610 3160 3590 4100 4600 5020 5840
190
330 520 650 800 980 1200 1470 1780 2150 2440 2780 3110 3400 3940
210
160 250
440 700 1090 1350 1670 2060 2530 3090 3760 4500 5110 2840 6510 7120 8190
280
360
290
400 500 610 760 930 1140 1380 1680 1910 2180 2450 2680 3120
320 400 500 610 750 920 1120 1360 1540 1760 1980 2160 2520
200
260
570 880 1100 1350 1670 2050 2510 3040 3640 4130 4720 5250 5740 6590
470 730 910 1120 1380 1700 2080 2520 3020 3430 3920 4360 4770 5490
530
440 540
370 460 560
310 380 470 580 700 850 970 1110 1250 1360 1590
330 410 510 620 760 930 1130 1280 1470 1650 1800 2110
660 820 1010 1240 1520 1840 2200 2500 2850 3170 3470 3990
660 820 1000 1220 1480 1770 2010 2290 2550 2780 3190
690 850 1030 1250 1500 1700 1940 2150 2350 2700
460 570
700 860 1050 1270 1440 1660 1850 2030 2350
420 510 630
760 910 1030 1180 1310 1430 1650
510 620 740
520 620 700 790
840 950 1060 1160 1330
880 960 1090
560 650 750 840
550 630 700 760
920 1070
880
200 V
60 Hz Three­Phase
3 - Lead
230 V
60 Hz Three­Phase
3 - Lead
380 V
60 Hz Three­Phase
3 - Lead
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
Lengths in BOLD only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.
19
Continued on page 20
Application – Three-Phase Motors
Table 20 Three-Phase 75 °C Cable (Continued)
MOTOR RATING 75 °C INSULATION - AWG COPPER WIRE SIZE MCM COPPER WIRE SIZE
VOLTSHPKW1412108643210000000000 250 300 350 400 500
3770 6020 9460
2730 4350 6850
2300 3670 5770 9070
1700 2710 4270 6730
1300 2070 3270 5150 8050
1000 1600 2520 3970 6200
590 950 1500 2360 3700 5750
420 680 1070 1690 2640 4100 5100 6260 7680
310 500 790 1250 1960 3050 3800 4680 5750 7050
0
0 0 410 650 1030 1610 2000 2470 3040 3730 4580 5530
00
00
000
0000
00000
00000
0000000
000000000
0000000000
00000000000
00000000000
5900 9410
4270 6810
3630 5800 9120
2620 4180 6580
2030 3250 5110 8060
1580 2530 3980 6270
920 1480 2330 3680 5750
660 1060 1680 2650 4150
490 780 1240 1950 3060 4770 5940
330
0
0 0 520 830 1300 2030 2530 3110 3840 4710
00
000
000
0000
00000
000000
0000000
00000000
000000000
0000000000
540 850 1340 2090 2600 3200 3930 4810 5900 7110
340
530 830 1300 1620 1990 2450 3010 3700 4470 5430
330
430 680 1070 1330 1640 2030 2490 3060 3700 4500 5130 5860
270
320 500
410
530 850 1340 2090 3260 4060
650 1030 1610 2520 3140 3860 4760 5830
410
680 1070 1670 2080 2560 3160 3880 4770 5780 7030 8000
430
790 1240 1540 1900 2330 2860 3510 4230 5140 5830
500
410 640
540
460 V
60 Hz Three­Phase
3 - Lead
575 V
60 Hz Three­Phase
3 - Lead
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
1/2 0.37
3/4 0.55
1 0.75
1.5 1.1
2 1.5
3 2.2
5 3.7
7.5 5.5
10 7.5
15 11
20 15
25 18.5
30 22
40 30
50 37
60 45
75 55
100 75
125 90
150 110
175 130
200 150
790 980 1210 1490 1830 2250 2710 3290 3730 4250
640 800 980 1210 1480 1810 2190 2650 3010 3420 3830 4180 4850
540 670
440 550 680
1000 1250 1540 1890 2310 2840 3420 4140 4700 5340 5990 6530 7580
850 1060 1300 1600 1960 2400 2890 3500 3970 4520 5070 5530 6410
690
830 1020 1250 1540 1850 2240 2540 2890 3240 3540 4100
840 1030 1260 1520 1850 2100 2400 2700 2950 3440
500 620 760
860 1060 1310 1600 1970 2380 2890 3290 3750 5220 4610 5370
640 790
970 1190 1460 1770 2150 2440 2790 3140 3430 3990
630 770 950
660 800 990
940 1130 1380 1560 1790 2010 2190 2550
600 740 890
630 760 920
1160 1400 1690 1920 2180 2440 2650 3070
700 870 1050
760 920 1110
1000 1220 1390 1560 1700 1960
1050 1190 1340 1460 1690
670 810 930
590 710 810 920
1190 1440 1630 1860 2080 2270 2640
1270 1450 1650 1860 2030 2360
1060 1190 1300 1510
1260 1440 1620 1760 2050
75 °C
1030 1130 1310
Lengths in BOLD only meet the US National Electrical Code ampacity requirements for individual conductors in free air or water. Lengths NOT in bold meet NEC ampacity requirements for either individual conductors or jacketed cable. See page 11 for additional details.
Continued on page 21
20
Loading...
+ 52 hidden pages