No part of this material may be reproduced or duplicated in any form or by any means without the written permission of Seiko
Epson. Seiko Epson reserves the right to make changes to this material without notice. Seiko Epson does not assume any
liability of any kind arising out of any inaccuracies contained in this material or due to its application or use in any product or
circuit and, further, there is no representation that this material is applicable to products requiring high level reliability, such
as medical products. Moreover, no license to any intellectual property rights is granted by implication or otherwise, and there
is no representation or warranty that anything made in accordance with this material will be free from any patent or copyright
infringement of a third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export license from
the Ministry of International Trade and Industry or other approval from another government agency.
II-2 CPU AND OPERATING MODE ................................................................................... B-II-2-1
CPU ............................................................................................................................................B-II-2-1
Precautions on Using ICD33................................................................................................. B-VII-2-42
Examples of LCD Controller Setting Program...................................................................... B-VII-2-43
APPENDIX I/O MAP
S1C33L03 TECHNICAL MANUALEPSONix
S1C33L03
PRODUCT PART
1 OUTLINE
1 Outline
The S1C3 3L03 is a Seiko Epson original 32-bit microcomputer with a built-in LCD controller. It features high
speed, low power and low-voltage operation and is most suitable for portable equipment that needs display
function, such as information terminals, E-mail terminals, electronic dictionaries.
The S1C33L03 consists of the S1C33000 32-bit RISC type CPU as the core, a bus control unit, a DMA controller,
an interrupt controller, an LCD controller, an SDRAM controller, timers, serial interface circuits, an A/D converter,
ROM and RAM.
The S1C3 3L03 provides a DSP function, by using the internal MAC (multiplication and accumulation) operation
function with the A/D converter, it makes it possible to design simply speech recognition and voice synthesis
systems.
Serial interface:4 channels (clock-synchronous system, asynchronous system and IrDA
interface are selectable)
A/D converter:10 bit s × 8 channels
DMA controller:High-speed DMA4 channels
Intelligent DMA128 channels
S1C33L03 PRODUCT PARTEPSONA-1
1 OUTLINE
Interrupt controller:Possible to invoke DMA
Input interrupt10 types (programmable)
DMA controller interrupt5 types
16-bit programmable timer interrupt 12 types
8-bit programmable timer interrupt4 types
Serial interface inte rru pt6 types
A/D converter interrupt1 type
Clock timer interrupt1 type
General-purpose inputShared with the I/O pins for internal peripheral circuits
and outp ut port s:Input port13 bits
I/O port29 bits
External bus interface
BCU (bus control unit) built-in
•24-bit address bus (internal 28-bit processing)
•16-bit data bus
Data size is selectable from 8 bits and 16 bits in each area.
•Little-endian memory access; big-endian may be set in each area.
•Memory ma pped I/O
•Chip enable and wait control circuits built-in
•DRAM direct interface fu nc tio n b uil t-i n
Supports fast page mode and EDO page mode.
Suppor ts self-refresh and CAS-before RAS refresh.
•Supports SDRAM.
Supports SDRAM self-refr esh.
•Supports burst ROM.
Operating conditions and power consumption
Operating voltage:Core (VDD)1.8 V to 3.6 V
I/O (V
DDE)1.8 V to 5.5 V
Operating clock frequency: CPU operating clock frequency
50 MHz max. (core voltage = 3.3 V ±0.3 V)
LCD controller operating clock frequency
25 MHz max. (core voltage = 3.3 V ±0.3 V)
* When the SDRAM controller is used
(core voltage = 3.3 V ±0.3 V and PLL is used),
In x1 speed mode: CPU = Bus = 25 MHz max.
In x2 speed mode: CPU = 35 MHz max., Bus = 17.5 MHz max.
Operating temper at ure :-40 to 85°C
Power con sumption:During SLEEP3.5 µW typ. (3.3 V)
During HALT100 mW typ. (3.3 V, 50 MHz)
During execution200 mW typ. (3.3 V, 50 MHz)
Note: The values of pow er consumption during exe cution were measured when a test
program that consisted of 55% load instructions, 23% arithmetic operation
instructions, 1% mac instruction, 12% branch instructions and 9% ext
instructio n w as bein g co nt inuously exec uted.
#CE6
#CE7&8
#CE5
#CE15
#CE15&16
#CE4
#CE11
#CE11&12
#CE3135O–Area 3 chip enable
#RD44O–Read signal
#EMEMRD126O–Read signal for internal ROM emulation memory
85O–A0:Address bus (A0) when SBUSST(D3/0x4812E) = "0" (default)
85–90,92–96O
99,100O–A[13:12]:A ddress bus (A12–A13)
101,102O–A[15:14]:Address bus (A14–A15)
106–111
60–63
137O–Area 10 chip enable for external memory
131O–#CE9:Area 9 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "00" (default)
64O–#CE8:Area 8 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "00",
65O–#CE7:Area 7 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "00",
138O–Area 6 chip enable
133O–#CE5:Area 5 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "00" (default)
139O–#CE4:Area 4 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "00" (default)
––Power supply (-); GND
Table 1.3.2 List of Pins for External Bus Interface Signals
#BSL:Bus strobe (low byte) signal when SBUSST(D3/0x4812E) = "1"
A[10:1]:Address bus (A1–A10)
–
SDA[9:0]:SDRAM address bus (SDA0–SDA9)
SDA[12:11]: SDRAM address bus (SDA11–SDA12)
O–Address bus (A16–A23)
I/O–Data bus (D0–D15)
SDBA[1:0]: SDRAM bank select (SDBA0–SDBA1)
* When CEFUNC[1:0] = "1x", this pin outputs #CE9+#CE10EX signal.
#CE17:Area 17 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "01"
* When CEFUNC[1:0] = "1x", this pin outputs #CE17+#CE18 signal.
A8DRA(D8/0x48128) = "0" and SDRPC1(D2/0x39FFC0) = "0" (default)
#RAS1:Area 8 DRAM row strobe when CEFUNC[1:0](D[A:9]/0x48130) = "00",
A8DRA(D8/0x48128) = "1" and SDRPC1(D2/0x39FFC0) = "0"
#CE14:Area 14 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "01" or "1x",
A14DRA(D8/0x48122) = "0" and SDRPC1(D2/0x39FFC0) = "0"
#RAS3:Area 14 DRAM row strobe when CEFUNC[1:0](D[A:9]/0x48130) = "01" or
"1x", A14DRA(D8/0x48122) = "1" and SDRPC1(D2/0x39FFC0) = "0"
#SDCE1:SDRAM chip enable 1 when SDRPC1(D2/0x39FFC0) = "1" and
SDRENA(D7/0x39FFC1) = "1"
A7DRA(D7/0x48128) = "0" and SDRPC0(D3/0x39FFC0) = "0" (default)
#RAS0:Area 7 DRAM row strobe when CEFUNC[1:0](D[A:9]/0x48130) = "00",
A7DRA(D7/0x48128) = "1" and SDRPC0(D3/0x39FFC0) = "0"
#CE13:Area 13 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "01" or "1x",
A13DRA(D7/0x48122) = "0" and SDRPC0(D3/0x39FFC0) = "0"
#RAS2:Area 13 DRAM row strobe when CEFUNC[1:0](D[A:9]/0x48130) = "01" or
"1x", A13DRA(D7/0x48122) = "1" and SDRPC0(D3/0x39FFC0) = "0"
#SDCE0:SDRAM chip enable 0 when SDRPC0(D3/0x39FFC0) = "1" and
SDRENA(D7/0x39FFC1) = "1"
* When CEFUNC[1:0] = "1x", this pin outputs #CE7+#CE8 signal.
#CE15:Area 15 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "01"
* When CEFUNC[1:0] = "1x", this pin outputs #CE15+#CE16 signal.
#CE11:Area 11 chip enable when CEFUNC[1:0](D[A:9]/0x48130) = "01"
* When CEFUNC[1:0] = "1x", this pin outputs #CE11+#CE12 signal.
1 OUTLINE
A-1
S1C33L03 PRODUCT PARTEPSONA-5
1 OUTLINE
Pin namePin No.I/O Pull-upFunction
#WRL
#WR
#WE
#WRH
#BSH
#HCAS
#SDCAS
#LCAS
#SDRAS
BCLK
SDCLK
P34
#BUSREQ
#CE6
GPIO0
P35
#BUSACK
GPIO1
P30
#WAIT
#CE4&5
P20
#DRD
SDCKE
P21
#DWE
#GAAS
#SDWE
P31
#BUSGET
#GARD
GPIO2
EA10MD1123IPull-up Area 10 boot mode selection
EA10MD0124I–11External ROM mode
43O–#WRL:Write (low byte) signal when SBUSST(D3/0x4812E) = "0" (default)
#WR:Write signal when SBUSST(D3/0x4812E) = "1"
#WE:DRAM write signal
42O–#WRH: Write (high byte) signal when SBUSST(D3/0x4812E) = "0" (default)
#BSH: Bus strobe (high byte) signal when SBUSST(D3/0x4812E) = "1"
77O–#HCAS:DRAM column address strobe (high byte) signal when
SDRENA(D7/0x39FFC1) = "0" (default)
#SDCAS: SDRAM column address strobe when SDRENA(D7/0x39FFC1) = "1"
76O–#LCAS:DRAM column address strobe (low byte) signal when
SDRENA(D7/0x39FFC1) = "0" (default)
#SDRAS: SDRAM row address strobe when SDRENA(D7/0x39FFC1) = "1"
81O–BCLK:Bus clock output when SDRENA(D7/0x39FFC1) = "0" (default)
SDCLK:SDRAM clock output when SDRENA(D7/0x39FFC1) = "1"
71I/O–P34:I/O port when CFP34(D4/0x402DC) = "0" (default)
#BUSREQ: Bus release request input when CFP34(D4/0x402DC) = "1"
#CE6:Area 6 chip enable when CFP34(D4/0x402DC) = "1" and
IOC34(D4/0x402DE) = "1"
GPIO0:LCDC general-purpose I/O when LCDCEN(D5/0x39FFE3) = "1" and
BREQEN(D2/0x39FFFD) = "0"
70I/O–P35:I/O port when CFP35(D5/0x402DC) = "0" (default)
#BUSACK: Bus acknowledge output when CFP35(D5/0x402DC) = "1" and
CFP34(D4/0x402DC) = "1"
GPIO1:LCDC general-purpose I/O when LCDCEN(D5/0x39FFE3) = "1" and
BREQEN(D2/0x39FFFD) = "0"
75I/O–P30: I/O port when CFP30(D0/0x402DC) = "0" (default)
#WAIT:Wait cycle request input when CFP30(D0/0x402DC) = "1"
#CE4&5: Areas 4&5 chip enable when CFP30(D0/0x402DC) = "1" and
IOC30(D0/0x402DE) = "1"
80I/O–P20:I/O port when CFP20(D0/0x402D8) = "0" and SDRENA(D7/0x39FFC1) =
"0" (default)
#DRD:DRAM read signal output for successive RAS mode when
CFP20(D0/0x402D8) = "1" and SDRENA(D7/0x39FFC1) = "0"
SDCKE:SDRAM clock enable signal when SDRENA(D7/0x39FFC1) = "1"
79I/O–P21: I/O port when CFP21(D1/0x402D8) = "0", CFEX2(D2/0x402DF) = "0" and
SDRENA(D7/0x39FFC1) = "0" (default)
#DWE: DRAM write signal output for successive RAS mode when
CFP21(D1/0x402D8) = "1", CFEX2(D2/0x402DF) = "0" and
SDRENA(D7/0x39FFC1) = "0"
#GAAS: Area address strobe output for GA when CFEX2(D2/0x402DF) = "1" and
SDRENA(D7/0x39FFC1) = "0"
#SDWE:SDRAM write signal when SDRENA(D7/0x39FFC1) = "1"
74I/O–P31: I/O port when CFP31(D1/0x402DC) = "0" and CFEX3(D3/0x402DF) = "0"
(default)
#BUSGET: Bus status monitor signal output for bus release request when
CFP31(D1/0x402DC) = "1" and CFEX3(D3/0x402DF) = "0"
#GARD: Area read signal output for GA when CFEX3(D3/0x402DF) = "1"
GPIO2:LCDC general-purpose I/O when LCDCEN(D5/0x39FFE3) = "1" and
BREQEN(D2/0x39FFFD) = "0"
EA10MD1EA10MD0Mode
10Internal ROM mode
A-6EPSONS1C33L03 PRODUCT PART
1 OUTLINE
Table 1.3.3 List of Pins for HSDMA Control Signals
41IPull-up K50:Input port when CFK50(D0/0x402C0) = "0" (default)
#DMAREQ0: HSDMA Ch. 0 request input when CFK50(D0/0x402C0) = "1"
40IPull-up K51:Input port when CFK51(D1/0x402C0) = "0" (default)
#DMAREQ1: HSDMA Ch. 1 request input when CFK51(D1/0x402C0) = "1"
39IPull-up K52:Input port when CFK52(D2/0x402C0) = "0" (default)
#ADTRG:A/D converter trigger input when CFK52(D2/0x402C0) = "1"
38IPull-up K53:Input port when CFK53(D3/0x402C0) = "0" (default)
#DMAREQ2: HSDMA Ch. 2 request input when CFK53(D3/0x402C0) = "1"
37IPull-up K54:Input port when CFK54(D4/0x402C0) = "0" (default)
#DMAREQ3: HSDMA Ch. 3 request input when CFK54(D4/0x402C0) = "1"
35I–K60:Input port when CFK60(D0/0x402C3) = "0" (default)
AD0:A/D converter Ch. 0 input when CFK60(D0/0x402C3) = "1"
34I–K61:Input port when CFK61(D1/0x402C3) = "0" (default)
AD1:A/D converter Ch. 1 input when CFK61(D1/0x402C3) = "1"
33I–K62:Input port when CFK62(D2/0x402C3) = "0" (default)
AD2:A/D converter Ch. 2 input when CFK62(D2/0x402C3) = "1"
32I–K63:Input port when CFK63(D3/0x402C3) = "0" (default)
AD3:A/D converter Ch. 3 input when CFK63(D3/0x402C3) = "1"
31I–K64:Input port when CFK64(D4/0x402C3) = "0" (default)
AD4:A/D converter Ch. 4 input when CFK64(D4/0x402C3) = "1"
30I–K65:Input port when CFK65(D5/0x402C3) = "0" (default)
AD5:A/D converter Ch. 5 input when CFK65(D5/0x402C3) = "1"
29I–K66:Input port when CFK66(D6/0x402C3) = "0" (default)
AD6:A/D converter Ch. 6 input when CFK66(D6/0x402C3) = "1"
28I–K67:Input port when CFK67(D7/0x402C3) = "0" (default)
AD7:A/D converter Ch. 7 input when CFK67(D7/0x402C3) = "1"
144I/O–P00:I/O port when CFP00(D0/0x402D0) = "0" (default)
SIN0:Serial I/F Ch. 0 data input when CFP00(D0/0x402D0) = "1"
143I/O–P01:I/O port when CFP01(D1/0x402D0) = "0" (default)
SOUT0:Serial I/F Ch. 0 data output when CFP01(D1/0x402D0) = "1"
142I/O–P02:I/O port when CFP02(D2/0x402D0) = "0" (default)
#SCLK0:Serial I/F Ch. 0 clock input/output when CFP02(D2/0x402D0) = "1"
141I/O–P03:I/O port when CFP03(D3/0x402D0) = "0" (default)
#SRDY0:Serial I/F Ch. 0 ready signal input/output when CFP03(D3/0x402D0) = "1"
12I/O–P04:I/O port when CFP04(D4/0x402D0) = "0" and CFEX4(D4/0x402DF) = "0"
(default)
SIN1:Serial I/F Ch. 1 data input when CFP04(D4/0x402D0) = "1" and
CFEX4(D4/0x402DF) = "0"
#DMAACK2: HSDMA Ch. 2 acknowledge output when CFEX4(D4/0x402DF) = "1"
11I/O–P05:I/O port when CFP05(D5/0x402D0) = "0" and CFEX5(D5/0x402DF) = "0"
(default)
SOUT1:Serial I/F Ch. 1 data output when CFP05(D5/0x402D0) = "1" and
CFEX5(D5/0x402DF) = "0"
#DMAEND2: HSDMA Ch. 2 end-of-transfer signal output when
CFEX5(D5/0x402DF) = "1"
10I/O–P06:I/O port when CFP06(D6/0x402D0) = "0" and CFEX6(D6/0x402DF) = "0"
(default)
#SCLK1:Serial I/F Ch. 1 clock input/output when CFP06(D6/0x402D0) = "1" and
CFEX6(D6/0x402DF) = "0"
#DMAACK3: HSDMA Ch. 3 acknowledge output when CFEX6(D6/0x402DF) = "1"
9I/O–P07:I/O port when CFP07(D7/0x402D0) = "0" and CFEX7(D7/0x402DF) = "0"
(default)
#SRDY1:Serial I/F Ch. 1 ready signal output when CFP07(D7/0x402D0) = "1" and
CFEX5(D5/0x402DF) = "0"
#DMAEND3: HSDMA Ch. 3 end-of-transfer signal output when
CFEX7(D7/0x402DF) = "1"
122I/O–P10:I/O port when CFP10(D0/0x402D4) = "0" and CFEX1(D1/0x402DF) = "0"
EXCL0:16-bit timer 0 event counter input when CFP10(D0/0x402D4) = "1",
IOC10(D0/0x402D6) = "0" and CFEX1(D1/0x402DF) = "0"
T8UF0:8-bit timer 0 output when CFP10(D0/0x402D4) = "1", IOC10(D0/0x402D6)
= "1" and CFEX1(D1/0x402DF) = "0"
DST0:DST0 signal output when CFEX1(D1/0x402DF) = "1" (default)
A-8EPSONS1C33L03 PRODUCT PART
1 OUTLINE
Pin namePin No.I/O Pull-upFunction
P11
EXCL1
T8UF1
DST1
P12
EXCL2
T8UF2
DST2
P13
EXCL3
T8UF3
DPCO
P14
FOSC1
DCLK
P15
EXCL4
#DMAEND0
#SCLK3
LDQM
P16
EXCL5
#DMAEND1
SOUT3
P20
#DRD
SDCKE
P21
#DWE
#GAAS
#SDWE
P22
TM0
P23
TM1
P24
TM2
#SRDY2
P25
TM3
#SCLK2
121I/O–P11:I/O port when CFP11(D1/0x402D4) = "0" and CFEX1(D1/0x402DF) = "0"
EXCL1:16-bit timer 1 event counter input when CFP11(D1/0x402D4) = "1",
IOC11(D1/0x402D6) = "0" and CFEX1(D1/0x402DF) = "0"
T8UF1:8-bit timer 1 output when CFP11(D1/0x402D4) = "1", IOC11(D1/0x402D6)
= "1" and CFEX1(D1/0x402DF) = "0"
DST1:DST1 signal output when CFEX1(D1/0x402DF) = "1" (default)
120I/O–P12:I/O port when CFP12(D2/0x402D4) = "0" and CFEX0(D0/0x402DF) = "0"
EXCL2:16-bit timer 2 event counter input when CFP12(D2/0x402D4) = "1",
IOC12(D2/0x402D6) = "0" and CFEX0(D0/0x402DF) = "0"
T8UF2:8-bit timer 2 output when CFP12(D2/0x402D4) = "1", IOC12(D2/0x402D6)
= "1" and CFEX0(D0/0x402DF) = "0"
DST2:DST2 signal output when CFEX0(D0/0x402DF) = "1" (default)
119I/O–P13:I/O port when CFP13(D3/0x402D4) = "0" and CFEX1(D1/0x402DF) = "0"
EXCL3:16-bit timer 3 event counter input when CFP13(D3/0x402D4) = "1",
IOC13(D3/0x402D6) = "0" and CFEX1(D1/0x402DF) = "0"
T8UF3:8-bit timer 3 output when CFP13(D3/0x402D4) = "1", IOC13(D3/0x402D6)
= "1" and CFEX1(D1/0x402DF) = "0"
DPCO:DPCO signal output when CFEX1(D1/0x402DF) = "1" (default)
118I/O–P14:I/O port when CFP14(D4/0x402D4) = "0" and CFEX0(D0/0x402DF) = "0"
FOSC1:OSC1 clock output when CFP14(D4/0x402D4) = "1" and
CFEX0(D0/0x402DF) = "0"
DCLK:DCLK signal output when CFEX0(D0/0x402DF) = "1" (default)
84I/O–P15:I/O port when CFP15(D5/0x402D4) = "0" and SDRENA(D7/0x39FFC1)
= "0" (default)
EXCL4:16-bit timer 4 event counter input when CFP15(D5/0x402D4) = "1",
IOC15(D5/0x402D6) = "0" and SDRENA(D7/0x39FFC1) = "0"
#DMAEND0: HSDMA Ch. 0 end-of-transfer signal output when CFP15(D5/0x402D4)
= "1", IOC15(D5/0x402D6) = "1" and SDRENA(D7/0x39FFC1) = "0"
#SCLK3:Serial I/F Ch. 3 clock input/output when SSCLK3(D2/0x402D7) = "1",
CFP15(D5/0x402D4) = "0" and SDRENA(D7/0x39FFC1) = "0"
LDQM:SDRAM data (low byte) input/output mask signal when
SDRENA(D7/0x39FFC1) = "1"
83I/O–P16:I/O port when CFP16(D6/0x402D4) = "0" (default)
EXCL5:16-bit timer 5 event counter input when CFP16(D6/0x402D4) = "1" and
IOC16(D6/0x402D6) = "0"
#DMAEND1: HSDMA Ch. 1 end-of-transfer signal output when CFP16(D6/0x402D4) =
"1" and IOC16(D6/0x402D6) = "1"
SOUT3:Serial I/F Ch. 3 data output when SSOUT3(D1/0x402D7) = "1" and
CFP16(D6/0x402D4) = "0"
80I/O–P20:I/O port when CFP20(D0/0x402D8) = "0" and SDRENA(D7/0x39FFC1)
= "0" (default)
#DRD:DRAM read signal output for successive RAS mode when
CFP20(D0/0x402D8) = "1" and SDRENA(D7/0x39FFC1) = "0"
SDCKE:SDRAM clock enable signal when SDRENA(D7/0x39FFC1) = "1"
79I/O–P21: I/O port when CFP21(D1/0x402D8) = "0", CFEX2(D2/0x402DF) = "0" and
SDRENA(D7/0x39FFC1) = "0" (default)
#DWE: DRAM write signal output for successive RAS mode when
CFP21(D1/0x402D8) = "1", CFEX2(D2/0x402DF) = "0" and
SDRENA(D7/0x39FFC1) = "0"
#GAAS: Area address strobe output for GA when CFEX2(D2/0x402DF) = "1" and
SDRENA(D7/0x39FFC1) = "0"
#SDWE:SDRAM write signal when SDRENA(D7/0x39FFC1) = "1"
1I/O–P22:I/O port when CFP22(D2/0x402D8) = "0" (default)
TM0:16-bit timer 0 output when CFP22(D2/0x402D8) = "1"
2I/O–P23:I/O port when CFP23(D3/0x402D8) = "0" (default)
TM1:16-bit timer 1 output when CFP23(D3/0x402D8) = "1"
4I/O–P24:I/O port when CFP24(D4/0x402D8) = "0" (default)
TM2:16-bit timer 2 output when CFP24(D4/0x402D8) = "1"
#SRDY2:Serial I/F Ch. 2 ready signal input/output when SSRDY2(D3/0x402DB) = "1"
and CFP24(D4/0x402D8) = "0"
5I/O–P25:I/O port when CFP25(D5/0x402D8) = "0" (default)
TM3:16-bit timer 3 output when CFP25(D5/0x402D8) = "1"
#SCLK2:Serial I/F Ch. 2 clock input/output when SSCLK2(D2/0x402DB) = "1" and
CFP25(D5/0x402D8) = "0"
A-1
S1C33L03 PRODUCT PARTEPSONA-9
1 OUTLINE
Pin namePin No.I/O Pull-upFunction
P26
TM4
SOUT2
P27
TM5
SIN2
P30
#WAIT
#CE4&5
P31
#BUSGET
#GARD
GPIO2
P32
#DMAACK0
#SRDY3
HDQM
P33
#DMAACK1
SIN3
SDA10
P34
#BUSREQ
#CE6
GPIO0
P35
#BUSACK
GPIO1
6I/O–P26:I/O port when CFP26(D6/0x402D8) = "0" (default)
TM4:16-bit timer 4 output when CFP26(D6/0x402D8) = "1"
SOUT2:Serial I/F Ch. 2 data output when SSOUT2(D1/0x402DB) = "1" and
CFP26(D6/0x402D8) = "0"
7I/O–P27:I/O port when CFP27(D7/0x402D8) = "0" (default)
TM5:16-bit timer 5 output when CFP27(D7/0x402D8) = "1"
SIN2:Serial I/F Ch. 2 data input when SSIN2(D0/0x402DB) = "1" and
CFP27(D7/0x402D8) = "0"
75I/O–P30: I/O port when CFP30(D0/0x402DC) = "0" (default)
#WAIT:Wait cycle request input when CFP30(D0/0x402DC) = "1"
#CE4&5: Areas 4&5 chip enable when CFP30(D0/0x402DC) = "1" and
IOC30(D0/0x402DE) = "1"
74I/O–P31: I/O port when CFP31(D1/0x402DC) = "0" and CFEX3(D3/0x402DF) = "0"
(default)
#BUSGET: Bus status monitor signal output for bus release request when
CFP31(D1/0x402DC) = "1" and CFEX3(D3/0x402DF) = "0"
#GARD: Area read signal output for GA when CFEX3(D3/0x402DF) = "1"
GPIO2:LCDC general-purpose I/O when LCDCEN(D5/0x39FFE3) = "1" and
BREQEN(D2/0x39FFFD) = "0"
73I/O–P32:I/O port when CFP32(D2/0x402DC) = "0" and SDRENA(D7/0x39FFC1)
= "0" (default)
#DMAACK0: HSDMA Ch. 0 acknowledge output when CFP32(D2/0x402DC) = "1" and
SDRENA(D7/0x39FFC1) = "0"
#SRDY3:Serial I/F Ch. 3 ready signal input/output when SSRDY3(D3/0x402D7) =
"1", CFP32(D2/0x402DC) = "0" and SDRENA(D7/0x39FFC1) = "0"
HDQM:SDRAM data (high byte) input/output mask signal when
SDRENA(D7/0x39FFC1) = "1"
72I/O–P33:I/O port when CFP33(D3/0x402DC) = "0" and SDRENA(D7/0x39FFC1)
= "0" (default)
#DMAACK1: HSDMA Ch. 1 acknowledge output when CFP33(D3/0x402DC) = "1" and
SDRENA(D7/0x39FFC1) = "0"
SIN3:Serial I/F Ch. 3 data input when SSIN3(D0/0x402D7) = "1",
CFP33(D3/0x402DC) = "0" and SDRENA(D7/0x39FFC1) = "0"
SDA10:SDRAM address bus bit 10 when SDRENA(D7/0x39FFC1) = "1"
71I/O–P34:I/O port when CFP34(D4/0x402DC) = "0" (default)
#BUSREQ: Bus release request input when CFP34(D4/0x402DC) = "1"
#CE6:Area 6 chip enable when CFP34(D4/0x402DC) = "1" and
IOC34(D4/0x402DE) = "1"
GPIO0:LCDC general-purpose I/O when LCDCEN(D5/0x39FFE3) = "1" and
BREQEN(D2/0x39FFFD) = "0"
70I/O–P35:I/O port when CFP35(D5/0x402DC) = "0" (default)
#BUSACK: Bus acknowledge output when CFP35(D5/0x402DC) = "1" and
CFP34(D4/0x402DC) = "1"
GPIO1:LCDC general-purpose I/O when LCDCEN(D5/0x39FFE3) = "1" and
BREQEN(D2/0x39FFFD) = "0"
A-10EPSONS1C33L03 PRODUCT PART
1 OUTLINE
Table 1.3.5 List of Pins for LCD Controller
Pin namePin No.I/O Pull-upFunction
FPDAT[7:4]13–16O–4 high-order bits of data bus for 8-bit LCD panels
Data bus for 4-bit LCD panels
FPDAT[3:0]
GPO[6:3]
FPFRAME23O–Frame pulse output
FPLINE24O–Line pulse output
FPSHIFT25O–Shift clock output
DRDY(MOD)
(FPSHIFT2)
LCDPWR26O–LCD power control output (active high)
17–20O–FPDAT[3:0]: 4 low-order bits of data bus for 8-bit LCD panels
GPO[6:3]:General-purpose outputs when a 4-bit LCD panel is used
22O–MOD:LCD backplane bias (for panels other than 8-bit color panel format 1)
FPSHIFT2: Second shift clock (for 8-bit color panel format 1)
When this pin is set to High, all the output pins go into high-impedance state. This makes
it possible to disable the S1C33 chip on the board.
This pin is used to communicate with the debugging tool S5U1C33000H.
1: CPU clock = bus clock × 1, 0: CPU clock = bus clock × 2
Function
A-1
Note: "#" in the pin names indicates that the signal is low active.
S1C33L03 PRODUCT PARTEPSONA-11
2 POWER SUPPLY
2 Power Supply
This chapter explains the operating voltage of the S1C33L03.
2.1 Power Supply Pins
The S1C3 3L03 has the power supply pins s hown in Tabl e 2.1.1.
Table 2.1.1 Power Supply Pins
Pin namePin No.Function
VDD8,51,78,127Power supply (+) for the internal logic
VSS3,27,45,66,82,98,105,114,116,136Power supply (-); GND
VDDE21,59,91,132Power supply (+) for the I/O block
AVDDE36A na log sys tem power supply (+); AV DDE = VDDE
V
AV
DD
CPU core
DDE
V
interface circuit
DDE
Analog circuits
(A/D converter)
V
SS
Internal
peripheral
circuit
I/O
1.8 to 3.6 V
1.8 to 5.5 V
1.8 to 5.5 V
GND
I/O pins
Figure 2.1.1 Power Supply System
2.2 Operating Voltage (VDD, VSS)
The core CPU and internal peripheral circuits operate with a voltage supplied between the VDD and VSS pins. The
following operating voltage can be used:
DD = 1.8 V to 3.6 V (VSS = GND)
V
Note: The S1 C33L03 has 4 V
pins. Do not open any of them.
The ope rating clock frequency range (OSC3) is 5 MHz to 50 MHz with this voltage.
DD pins an d 10 VSS pins. Be sure to supply the operating voltage to all the
A-12EPSONS1C33L03 PRODUCT PART
2 POWER SUPPLY
2.3 Power Supply for I/O Interface (VDDE)
The VDDE voltage is used for interfacing with external I/O signals. For the output interface of the S1C33L03, the
V
DDE voltage is used as high level and the VSS voltage as low level.
Normally, supply the same voltage level as V
pin is used for the ground common with VDD.
The following voltage is enabled for V
V
DDE = 1.8 V to 5.5 V (VSS = GND)
DD. It can be suppli ed separately from VDD for 5 V interface. The VSS
DDE:
A-1
A-2
Notes:•The S1C33L03 has 4 V
DDE pin s. Be sure t o supp l y a volta ge to al l the pins. Do not open any of
them.
•When an ext ernal clock is input to the OSC1 or OSC3 pin, the clock signal level must be V
•The interface voltage level of the DSIO, P10, P11, P12, P13 and P14 pins is V
DD.
DD.
2.4 Power Supply for Analog Circuits (AVDDE)
The analog power supply pin (AVDDE) is provided separately from the VDD and VDDE pins in order that the digital
circuits do not affect the analog circuit (A/D converter). The AV
and the V
Supply the same voltage level as the V
AV
Note: Be sure to supply V
SS pin is used as the analog ground.
DDE to the AVDDE pin.
DDE = VDDE, VSS = GND
DDE to the AVDDE pin even if the analog circu it is not used .
Noise on the analog power lines decrease the A/D converting precision, so use a stabilized power supply and make
the board pattern with consideration given to that.
DDE pin is used to supply an analog power voltage
S1C33L03 PRODUCT PARTEPSONA-13
3 INTERNAL MEMORY
3 In ternal Memory
This chapter explains the internal memory configuration.
Figure 3.1 shows the S1C33L 03 memory map.
Area
Areas 18–11
Area 10
Areas 9–7
Area 6
Areas 5–4
Area 3
Area 2
Area 1
Area 0
Address
0xFFFFFFF
0x1000000
0x0FFFFFF
0x0C00000
0x0BFFFFF
0x0400000
0x03FFFFF
0x0300000
0x02FFFFF
0x0100000
0x00FFFFF
0x0080000
0x007FFFF
0x0060000
0x005FFFF
0x0050000
0x004FFFF
0x0040000
0x003FFFF
0x0030000
0x002FFFF
0x0002000
0x0001FFF
0x0000000
Figure 3.1 Memory Map
For middleware use
For CPU, debug mode
Internal peripheral circuits
(Mirror of internal RAM)
Internal RAM (8KB)
External Memory
External Memory
External Memory
LCD controller
SDRAM controller
External Memory
(Reserved)
(Reserved)
(Mirror of internal
peripheral circuits)
(Mirror of internal
peripheral circuits)
Area 2 is use d in debug mo de only and it cannot be accessed in user mode (normal program execution status).
3.1 ROM and Boot Address
The S1C3 3L03 does no t have a built-in ROM. Th e boot add ress is fixed at 0x0C00000, a nd so externa l ROM/Fla sh
should be use d in Area 10.
For setting up Area 10, refer to the "BCU (Bus Control Unit)" in "S1C33L03 FUNCTION PART" in this manual.
A-14EPSONS1C33L03 PRODUCT PART
3 INTERNAL MEMORY
3.2 RAM
The S1C3 3L03 has a built -in 8KB RAM. The RAM is allocated to A rea 0, address 0x00 00000 to address
0x0001FFF.
The internal RAM is a 32-bit sized device and data can be read/written in 1 cycle regardless of data size (byte, halfword or word).
A-1
A-3
S1C33L03 PRODUCT PARTEPSONA-15
4 PERIPHERAL CIRCUITS
4 Peripheral Circuits
This chapter lists the built-in peripheral circuits and the I/O memory map. For details of the circuits, refer to the
"S1C33L03 FUNCTION PART".
4.1 List of Peripheral Circuits
The S1C33L03 consists of the C33 Co re Block, C33 SDRAM Contr oller Block, C33 Perip heral Block, C33 DMA
Block, C33 Analog Block, and C33 LCD Controll er Block.
C33 Core Block
CPUS1C33000 32-b it R I S C ty pe CPU
BCU (Bus Control Unit)24-bit external address bus and 16-bit data bus
All the BCU functions can be used.
ITC (Interrupt Controller)39 types of interrupts are available.
CLG (Clock Generator)OSC3 oscillation circuit (33 MHz Max.), PLL and OSC1 oscillation circuit
(32.768 kHz Typ.) built-in
DBG (Debug Unit)Functional block for debugging with the S5U1C 3 3000H (In-Cir cu i t D eb ug ger
for S1C33 Family)
C33 SDRAM Controller Block
SDRAM interfaceUp to two 128M-bit SDRAMs or a 256M-bit SDRAM (32MB) can be
connected directly.
C33 Peripheral Block
PrescalerProgrammable clock generator for peripheral circuits
8-bit program mable timer6 channels with clock output function
16-bit programmable timer6 channels with event counter, clock output and watchdog timer functions
Serial interface4 channels (asynchronous m ode, clock synchr on ous mode and IrDA are
selectable.)
Input and I/O ports13 bits of input ports and 29 bits of I/O ports (used for peripheral I/O)
Clock timer1 channel with alarm function
A/D converter10-bit A/D con verter with 8 input channels
C33 LCD Cont roller Block
LCD controller4 or 8-bit monochrome/color LCD interface
2, 4 or 16-level (1, 2 or 4 bit- per-pixel) gray-scale display
2, 4, 16 or 256-level (1, 2, 4 or 8 bit- per-pixel) color display
Resolution examples : 640 × 480 pixel s with 1bpp color depth
640 × 240 pixels with 2bpp color depth
320 × 240 pixels with 4bpp color depth
240 × 160 pixels with 8bpp color depth
8-bit timer 5 can
generate the clock for
the serial I/F Ch.3.
R/W
θ: selected by
R/W
Prescaler clock select
R/W
register (0x40181)
R/W
8-bit timer 4 can
generate the clock for
the serial I/F Ch.2.
–
0 when being read.
R/W
θ: selected by
R/W
Prescaler clock select
R/W
register (0x40181)
R/W
–
0 when being read.
R/W
θ: selected by
R/W
Prescaler clock select
register (0x40181)
16-bit timer 0 can be
used as a watchdog
timer.
–
0 when being read.
R/W
θ: selected by
R/W
Prescaler clock select
register (0x40181)
–
0 when being read.
R/W
θ: selected by
R/W
Prescaler clock select
register (0x40181)
A-4
(B) in [Address] indicates an 8-bit register and (HW) indicates a 16-bit register.
The meaning of the symbols described in [Init.] are listed below:
0, 1: Initial values that are set at initial reset.
(However, the registers for the bus and input/output ports are not initialized at hot start.)
X:Not initialized at initial reset.
–:N ot s et in the circuit.
8-bit timer 3 clock control
8-bit timer 3
clock division ratio selection
8-bit timer 2 clock control
8-bit timer 2
clock division ratio selection
reserved
A/D converter clock control
A/D converter clock division ratio
selection
reserved
Clock timer reset
Clock timer Run/Stop control
Clock timer interrupt factor
selection
Clock timer alarm factor selection
Interrupt factor generation flag
Alarm factor generation flag
Clock timer data 1 Hz
Clock timer data 2 Hz
Clock timer data 4 Hz
Clock timer data 8 Hz
Clock timer data 16 Hz
Clock timer data 32 Hz
Clock timer data 64 Hz
Clock timer data 128 Hz
reserved
Clock timer second counter data
TCMD5 = MSB
TCMD0 = LSB
Prescaler On/Off control
reserved
CPU operating clock switch
High-speed (OSC3) oscillation On/Off
Low-speed (OSC1) oscillation On/Off
reserved
Prescaler clock selection
–
HALT clock option
OSC3-stabilize waiting function
reserved
OSC1 external output control
Power control register protect flag0
CLKDT[1:0]Division ratio
1
1
1
0
0
1
0
0
1 On0 Off
1 OSC30 OSC1
1 On0 Off
1 On0 Off
1/8
1/4
1/2
1/1
–
–Prescaler clock
1 OSC10 OSC3/PLL
1 On0 Off
1 Off0 On
1 On0 Off
Writing 10010110 (0x96)
removes the write protection of
the power control register
(0x40180) and the clock option
register (0x40190).
Writing another value set the
write protection.
Serial I/F Ch.0 transmit data
TXD07(06) = MSB
TXD00 = LSB
Serial I/F Ch.0 receive data
RXD07(06) = MSB
RXD00 = LSB
–
Ch.0 transmit-completion flag
Ch.0 flaming error flag
Ch.0 parity error flag
Ch.0 overrun error flag
Ch.0 transmit data buffer empty
Ch.0 receive data buffer full
Serial I/F Ch.1 transmit data
TXD17(16) = MSB
TXD10 = LSB
Serial I/F Ch.1 receive data
RXD17(16) = MSB
RXD10 = LSB
–
Ch.1 transmit-completion flag
Ch.1 flaming error flag
Ch.1 parity error flag
Ch.1 overrun error flag
Ch.1 transmit data buffer empty
Ch.1 receive data buffer full
Serial I/F Ch.2 transmit data
TXD27(26) = MSB
TXD20 = LSB
Serial I/F Ch.2 receive data
RXD27(26) = MSB
RXD20 = LSB
reserved
Ch.2 transmit-completion flag
Ch.2 flaming error flag
Ch.2 parity error flag
Ch.2 overrun error flag
Ch.2 transmit data buffer empty
Ch.2 receive data buffer full
0x0 to 0xFF(0x7F)TXD17
0x0 to 0xFF(0x7F)RXD17
1
Transmitting
1 Error0 Normal
1 Error0 Normal
1 Error0 Normal
1 Empty0 Buffer full
1 Buffer full0 Empty
1 Enabled0 Disabled
1 Enabled0 Disabled
1 With parity 0 No parity
1 Odd0 Even
1 2 bits0 1 bit
1 #SCLK10
SMD1[1:0] Transfer mode
1
1
0
0
1 1/80 1/16
1 Inverted0 Direct
1 Inverted0 Direct
IRMD1[1:0]–I/F mode
1
1
0
0
1
Transmitting
1 Error0 Normal
1 Error0 Normal
1 Error0 Normal
1 Empty0 Buffer full
1 Buffer full0 Empty
Serial I/F Ch.3 transmit data
TXD37(36) = MSB
TXD30 = LSB
Serial I/F Ch.3 receive data
RXD37(36) = MSB
RXD30 = LSB
reserved
Ch.3 transmit-completion flag
Ch.3 flaming error flag
Ch.3 parity error flag
Ch.3 overrun error flag
Ch.3 transmit data buffer empty
Ch.3 receive data buffer full
16-bit timer 0 comparison A
16-bit timer 0 comparison B
High-speed DMA Ch.1
High-speed DMA Ch.0
Port input 3
Port input 2
Port input 1
Port input 0
16-bit timer 4 comparison A
16-bit timer 4 comparison B
16-bit timer 3 comparison A
16-bit timer 3 comparison B
16-bit timer 2 comparison A
16-bit timer 2 comparison B
16-bit timer 1 comparison A
16-bit timer 1 comparison B
Port input 7
Port input 6
Port input 5
Port input 4
reserved
A/D converter
SIF Ch.1 transmit buffer empty
SIF Ch.1 receive buffer full
16-bit timer 0 comparison A
16-bit timer 0 comparison B
High-speed DMA Ch.1
High-speed DMA Ch.0
Port input 3
Port input 2
Port input 1
Port input 0
16-bit timer 4 comparison A
16-bit timer 4 comparison B
16-bit timer 3 comparison A
16-bit timer 3 comparison B
16-bit timer 2 comparison A
16-bit timer 2 comparison B
16-bit timer 1 comparison A
16-bit timer 1 comparison B
reserved
K54 function selection
K53 function selection
K52 function selection
K51 function selection
K50 function selection
reserved
K54 input port data
K53 input port data
K52 input port data
K51 input port data
K50 input port data
K67 function selection
K66 function selection
K65 function selection
K64 function selection
K63 function selection
K62 function selection
K61 function selection
K60 function selection
K67 input port data
K66 input port data
K65 input port data
K64 input port data
K63 input port data
K62 input port data
K61 input port data
K60 input port data
P07 function selection
P06 function selection
P05 function selection
P04 function selection
P03 function selection
P02 function selection
P01 function selection
P00 function selection
P07 I/O port data
P06 I/O port data
P05 I/O port data
P04 I/O port data
P03 I/O port data
P02 I/O port data
P01 I/O port data
P00 I/O port data
P07 I/O control
P06 I/O control
P05 I/O control
P04 I/O control
P03 I/O control
P02 I/O control
P01 I/O control
P00 I/O control
reserved
P16 function selection
P15 function selection
P14 function selection
P13 function selection
P12 function selection
P11 function selection
P10 function selection
reserved
P16 I/O port data
P15 I/O port data
P14 I/O port data
P13 I/O port data
P12 I/O port data
P11 I/O port data
P10 I/O port data
reserved
P16 I/O control
P15 I/O control
P14 I/O control
P13 I/O control
P12 I/O control
P11 I/O control
P10 I/O control
reserved
Serial I/F Ch.3 SRDY selection
Serial I/F Ch.3 SCLK selection
Serial I/F Ch.3 SOUT selection
Serial I/F Ch.3 SIN selection
P27 function selection
P26 function selection
P25 function selection
P24 function selection
P23 function selection
P22 function selection
P21 function selection
P20 function selection
P27 I/O port data
P26 I/O port data
P25 I/O port data
P24 I/O port data
P23 I/O port data
P22 I/O port data
P21 I/O port data
P20 I/O port data
P27 I/O control
P26 I/O control
P25 I/O control
P24 I/O control
P23 I/O control
P22 I/O control
P21 I/O control
P20 I/O control
reserved
Serial I/F Ch.2 SRDY selection
Serial I/F Ch.2 SCLK selection
Serial I/F Ch.2 SOUT selection
Serial I/F Ch.2 SIN selection
reserved
P35 function selection
P34 function selection
P33 function selection
P32 function selection
P31 function selection
P30 function selection
reserved
P35 I/O port data
P34 I/O port data
P33 I/O port data
P32 I/O port data
P31 I/O port data
P30 I/O port data
reserved
P35 I/O control
P34 I/O control
P33 I/O control
P32 I/O control
P31 I/O control
P30 I/O control
P07 port extended function
P06 port extended function
P05 port extended function
P04 port extended function
P31 port extended function
P21 port extended function
P10, P11, P13 port extended
function
P12, P14 port extended function
reserved
Areas 18–17 device size selection
Areas 18–17
output disable delay time
reserved
Areas 18–17 wait control
reserved
Areas 16–15 device size selection
Areas 16–15
output disable delay time
reserved
Areas 16–15 wait control
reserved
Area 14 DRAM selection
Area 13 DRAM selection
Areas 14–13 device size selection
Areas 14–13
output disable delay time
reserved
Areas 14–13 wait control
1
#DMAEND3
1
#DMAACK3
1
#DMAEND2
1
#DMAACK2
1 #GARD0 P31, etc.
1 #GAAS0 P21, etc.
1 DST0
DST1
DPC0
1 DST2
DCLK
1 8 bits0 16 bits
A18DF[1:0] Number of cycles
1
1
0
0
A18WT[2:0]Wait cycles
1
1
1
1
1
0
1
0
0
1
0
1
0
0
0
0
1 8 bits0 16 bits
A16DF[1:0] Number of cycles
1
1
0
0
A16WT[2:0]Wait cycles
1
1
1
1
1
0
1
0
0
1
0
1
0
0
0
0
1 Used0 Not used
1 Used0 Not used
1 8 bits0 16 bits
A14DF[1:0] Number of cycles
reserved
Area 3 emulation
#CE pin function selection
Successive RAS mode setup
DRAM
RAS precharge cycles selection
reserved
DRAM
CAS cycles selection
reserved
DRAM
RAS cycles selection
Area 18, 17 internal/external access
Area 16, 15 internal/external access
Area 14, 13 internal/external access
Area 12, 11 internal/external access
reserved
Area 8, 7 internal/external
Area 6 internal/external
Area 5, 4 internal/external
access
access
access
Area 18, 17 endian control
Area 16, 15 endian control
Area 14, 13 endian control
Area 12, 11 endian control
Area 10, 9 endian control
Area 8, 7 endian control
Area 6 endian control
Area 5, 4 endian control
Area 18, 17 address strobe signal
Area 16, 15 address strobe signal
Area 14, 13 address strobe signal
Area 12, 11 address strobe signal
reserved
Area 8, 7 address strobe signal
Area 6 address strobe signal
Area 5, 4 address strobe signal
Area 18, 17 read signal
Area 16, 15 read signal
Area 14, 13 read signal
Area 12, 11 read signal
reserved
Area 8, 7 read signal
Area 6 read signal
Area 5, 4 read signal
reserved
Area 1 access-speed
reserved
BCLK output clock selection
This chapter describes the controls used to reduce power consumption of the device.
5 POWER-DOWN CONTROL
A-1
Points on power saving
The current consumption of the device varies greatly with the CPU's operation mode, the system clocks used,
and the peripheral circuits operated.
Current consumptionlow←→high
CPU/BCUSLEEPHALT2OperatingHALT2HALT(basic)Operating
System clock–OSC1OSC1OSC3OSC3OSC3
OSC3 oscillation circuitOFFOFFOFFONONON
Prescaler/peripheral circuitSTOPRUN
To reduce power consumption of the device, it is important that as many unnecessary circuits as possible be
turned off. In particular, peripheral circuits operating at a fast-clock rate consume a large amount of current,
so design the program so that these circuits are turned off whenever unnecessary.
Power-saving in standby modes
When CPU processing is unnecessary, such as when waiting for an interrupt from key entries or peripheral
circuits, place the device in standby mode to reduce current consumption.
Standby modeMethod to enter the modeCircuits/functions stopped
Basic HALT mode Execute the halt instruction after setting HLT2OP
(D3)/Clock option register (0x40190) to "0".
When the #BUSREQ signal is asserted from an
external bus master while SEPD (D1)/Bus control
register (0x4812E) = "1".
HALT2 modeExecute the halt instruction after setting HLT2OP
to "1".
SLEEP modeExecute the slp instruction.CPU, BCU, bus clock, DMA, high-speed
HLT2OP (D3)/Clock option register (0x40190) that is used to select a HALT mode is set to "0" (basic HALT
mode) at initial reset.
Notes:•In systems in which DRAM or SDRAM is connected directly to the device, the refresh function is
turned off during HALT2 a nd SLEEP modes. However, the SDRAM self refresh function can be
used by activating it before the CPU enters HALT2 or SLEEP mode.
•The standby mode is cleared by inter rupt generation (ex cept for the basic HALT mode, which is
set using an external bus master). Theref ore, before entering standby mode, set the related
registers to allow an interrupt to be used to clear the standby mode to be generated.
•When clearing the standby mode with an inter rupt from port input, the interrupt operates as a
level interrupt regardless of the interrupt trigger setting. When edge trigger is set for the interrupt
trigger, attention must be paid to the port level during standby mo de.
The low-speed (O SC1) osc illation circuit and clock timer continue operating even during SLEEP mode. If
they are unnecessary, these circuits can also be turned off.
(OSC3) oscillation circuit, prescaler, and
peripheral circuits that use the prescaler
output clocks
ONOFFON
A-5
Switching over the system clocks
Normally, the system is clocked by the high-speed (O S C3 ) osci ll a tion clock. If high -s peed operation is
unnecessary, switch the system clock to the low-speed (OSC1) oscillation clock and turn off the high-speed
(OSC3) oscillation circuit. This helps to reduce current consumption. However, if DRAM is connected
directly to the device, note that the refresh function is also turned off.
Even du ring operation using the high-speed (OSC3) oscillation clock, power reduction can also be achieved
through the use of a system clock derived from the OSC3 clock by dividing it (1/1, 1/2, 1/4, or 1/8).
System clock division ratio selectionCLKDT(D[7:6])/
Power control register(0x40180)
"11" = 1/8
"10" = 1/4
"01" = 1/2
"00" = 1/1
Turning off the prescaler and peripheral circuits
Current consumption can be reduced by turning off the peripheral circuits operating at high speed as much as
possible. The peripheral circuits are as follows.
1) Peripheral circuits using the cl oc k generated b y the prescaler
• 16-bit programmable timers 0 to 5 (watchdog timer)
• 8-bit programmable timers 0 to 5 (DRAM refresh, serial interface)
• A/D converter
2) Peripheral circuits using the cl oc k (source clock fo r p res caler) suppli ed to the p res ca le r
• 16-bit programmable timers 0 to 5 (watchdog timer)
• 8-bit programmable timers 0 to 5 (DRAM refresh)
• A/D converter
• Serial interface
• Input/output ports
If none of all circuits of the above 1) and 2) need to be used, turn off the prescaler. If the circuit of the above
1) or 2) need to be used, do not turn off the prescaler. When operation of the prescaler is stopped, the clock
supply to the circuits of the above 2) stops. When some these circuits of the above 1) need to be used, turn off
all other unnecessary circuits and stop the clock supply from the prescaler to those circuits.
The prescaler operating control and the clock supply control bits for each peripheral circuit are shown in the
table below.
FunctionControl bit"1""0"Default
Prescaler ON/OFFPSCON(D5)/Power control register(0x40180)ONOFFON
16-bit timer 0 clock controlP16TON0(D3)/16-bit timer 0 clock control register(0x40147)ONOFFOFF
16-bit timer 0 Run/StopPRUN0(D0)/16-bit timer 0 control register(0x48186)RUNSTOPSTOP
16-bit timer 1 clock controlP16TON1(D3)/16-bit timer 1 clock control register(0x40148)ONOFFOFF
16-bit timer 1 Run/StopPRUN1(D0)/16-bit timer 1 control register(0x4818E)RUNSTOPSTOP
16-bit timer 2 clock controlP16TON2(D3)/16-bit timer 2 clock control register(0x40149)ONOFFOFF
16-bit timer 2 Run/StopPRUN2(D0)/16-bit timer 2 control register(0x48196)RUNSTOPSTOP
16-bit timer 3 clock controlP16TON3(D3)/16-bit timer 3 clock control register(0x4014A)ONOFFOFF
16-bit timer 3 Run/StopPRUN3(D0)/16-bit timer 3 control register(0x4819E)RUNSTOPSTOP
16-bit timer 4 clock controlP16TON4(D3)/16-bit timer 4 clock control register(0x4014B)ONOFFOFF
16-bit timer 4 Run/StopPRUN4(D0)/16-bit timer 4 control register(0x481A6)RUNSTOPSTOP
16-bit timer 5 clock controlP16TON5(D3)/16-bit timer 5 clock control register(0x4014C)ONOFFOFF
16-bit timer 5 Run/StopPRUN5(D0)/16-bit timer 5 control register(0x481AE)RUNSTOPSTOP
8-bit timer 0 clock controlP8TON0(D3)/8-bit timer 0/1 clock control register(0x4014D)ONOFFOFF
8-bit timer 0 Run/StopPTRUN0(D0)/8-bit timer 0 control register(0x40160)RUNSTOPSTOP
8-bit timer 1 clock controlP8TON1(D7)/8-bit timer 0/1 clock control register(0x4014D)ONOFFOFF
8-bit timer 1 Run/StopPTRUN1(D0)/8-bit timer 1 control register(0x40164)RUNSTOPSTOP
8-bit timer 2 clock controlP8TON2(D3)/8-bit timer 2/3 clock control register(0x4014E)ONOFFOFF
8-bit timer 2 Run/StopPTRUN2(D0)/8-bit timer 2 control register(0x40168)RUNSTOPSTOP
8-bit timer 3 clock controlP8TON3(D7)/8-bit timer 2/3 clock control register(0x4014E)ONOFFOFF
8-bit timer 3 Run/StopPTRUN3(D0)/8-bit timer 3 control register(0x4016C)RUNSTOPSTOP
8-bit timer 4 clock controlP8TON4(D3)/8-bit timer 4/5 clock control register(0x40145)ONOFFOFF
8-bit timer 4 Run/StopPTRUN4(D0)/8-bit timer 4 control register(0x40174)RUNSTOPSTOP
8-bit timer 5 clock controlP8TON5(D7)/8-bit timer 4/5 clock control register(0x40145)ONOFFOFF
8-bit timer 5 Run/StopPTRUN5(D0)/8-bit timer 5 contro l register(0x40178)RUNSTOPSTOP
A/D converter clock controlPSONAD(D3)/A/D clock control register(0x4014F)ONOFFOFF
A/D conversion enableADE(D2)/A/D enable register(0x40244)RUNSTOPSTOP
1/1
A-66EPSONS1C33L03 PRODUCT PART
5 POWER-DOWN CONTROL
The same clock source must be used for the prescaler operating clock and the CPU operating clock. Therefore,
when operating the CPU in low-speed with the OSC1 clock, the prescaler input clock must be switched
according to the CPU operating clock. In this case, in order to prevent a malfunction in the peripheral circuit,
the prescaler should be turned off before switching the CPU operating clock. After the CPU operating clock
has been switched, switch the prescaler operating clock and then turn the prescaler on.
The LCD controller provides the power save m ode on its own. Sin ce the power save mode can be con trolled
by software, set the mode when turning the LCD display off.
FunctionControl bit"11""00"Default
Power save modeLPSAVE[1:0] D([1:0])/LCDC mode register 2
(0x39FFE3)
Note:The power save mode switche s the LCD pa ne l power cont rol sig na l (LCD PWR) to t he inact ive st ate .
This ma y cause da m age of the LCD panel if the clock supply to the LCD controller is stopped at the
same time.
Therefor e , do not stop t he clock supp ly f or 1 f ra me cy cle s or m ore after se tti ng t he LCD co ntr oll er to
power save mode.
Note: The above table is simply an example, and is not guaranteed to work.
A-68EPSONS1C33L03 PRODUCT PART
7 PRECAUTIONS ON MOUNTING
7 Precautions on Mounting
The following shows the precautions when designing the board and mounting the IC.
Oscillation Circuit
•Oscillation characteristics change depending on conditions (board pattern, components used, etc.).
In particular, when a ceramic oscillator or crystal oscillator is used, use the oscillator manufacturer's
recommended values for constants such as capacitance and resistance.
•Disturbances of the oscillation clock due to noise may cause a malfunction. Consider the following points to
prevent this:
(1) Components which are connected to the OSC3 (OSC1), OSC4 (OSC2) and PLLC pins, such as
oscillators, resistors and capacitors, should be connected in the shortest line.
A-1
A-7
(2) As shown in the figure below, make a V
SS pattern as large as possible at circumscription of the OSC3
(OSC1) and OSC4 (OSC2) pins and the components connected to these pins. The same applies to the
PLLC pin.
Furthermore, do not use this V
SS pattern to connect other components than the oscillation system.
Sample VSS pattern
OSC3 and OSC4
OSC4
OSC3
SS
V
PLLC
V
SS
PLLC
V
SS
(3) When supplying an external clock to the OSC3 (OSC1) pin, the clock source should be connected to the
OSC3 (OSC1) pin in the shortest line.
Furthermore, do not connect anything else to the OSC4 (OSC2) pin.
•In ord er to prevent unstable operation of the oscillation circuit due to current leak between OSC3 (OSC1) and
DD, please keep enough distance between OSC3 (OSC1) and VDD or other signals on the board pattern.
V
Reset Circuit
•The power-on reset signal which is input to the #RESET pin changes depending on conditions (power rise
time, components used, board pattern, etc.). Decide the time constant of the capacitor and resistor after
enough tests have been completed with the application product.
•In order to prevent any occurrences of unnecessary resetting caused by noise during operating, components
such as capacitors and resistors should be connected to the #RESET pin in the shortest line.
Power Supply Circuit
•Sudden power supply variation due to noise may cause malfunction. Consider the following points to prevent
this:
(1) The power supply should be connected to the V
and large as possible.
In particular, the power supply for AV
S1C33205 PRODUCT PARTEPSONA-69
DDE affects A/D conversion precision.
DD, VDDE, VSS and AVDDE pins with patterns as short
7 PRECAUTIONS ON MOUNTING
(2) When connec ti n g b etw een the VDD and VSS pins with a bypass capacitor, the pins should be connected
as short as possible.
Bypass capacitor connection example
V
DD
V
SS
V
DD
V
SS
A/D Conver ter
•When the A/D converter is not used, the power supply pin AVDDE for the analog system should be connected
DDE.
to V
Arrangement of Signal Lines
•In ord er to prevent generation of electromagnetic induction noise caused by mutual inductance, do not
arrange a large current signal line near the circuits that are sensitive to noise such as the oscillation unit and
analog input unit.
•When a signal li ne is parallel with a high-speed line in long distance or intersects a high-speed line, noise
may gen erated by m utual interference betw een the signals and it may cause a malfunction.
Do not arrange a high-speed signal line especially near circuits that are sensitive to noise such as the
oscillation unit and analog input unit.
Prohibited pattern
Large current signal line
High-speed signal line
K60 (AD0)
Large current signal line
High-speed signal line
OSC4
OSC3
V
SS
A-70EPSONS1C33205 PRODUCT PART
8 ELECTRICAL CHARACTERISTICS
8 El ectrical Characteristics
8.1 Absolute Maximum Ratin g
(VSS=0V)
ItemSymbolConditionRated valueUnit ∗
Supply voltageVDD-0.3 to +4.0V
C33 I/O power voltageVDDE-0.3 to +7.0V
Input volta geVI-0.3 to VDDE+0.5V
High-level output currentIOH1 pin-10mA
Total of all pins-40mA
Low-level output currentIOL1 pin10mA
Total of all pins40mA
Analog power voltageAVDDE-0.3 to +7.0V
Analog input voltageAVIN-0.3 to AVDDE+0.3V
Storage temperatureTSTG-65 to +150°C
A-1
A-8
S1C33L03 PRODUCT PARTEPSONA-71
8 ELECTRICAL CHARACTERISTICS
8.2 Recommended Operating Conditions
1) 3.3 V/5.0 V dual power source
(VSS=0V)
ItemSymbolConditionMin.Typ.Max.Unit ∗
Supply voltage (high voltage)VDDE4.505.005.50V
Supply voltage (low voltage)VDD2.70–3.60V
Input volta geHV IVSS–VDDEVLVIVSS–VDDV
CPU operating clock frequencyfCPU––50MHz
External bus operating clock frequencyfBUS––35MHz
Low-spe ed os ci lla tion frequencyfOSC1–32.768– kHz
Operating temperatureTa-402585°C
Input rise time (normal input)tri––50ns
Input fall time (normal input)tfi––50ns
Input rise time (schmitt input)tri––5ms
Input fall time (schmitt input)tfi––5ms
2) 3.3 V single power source
(VDDE=VDD, VSS=0V)
ItemSymbolConditionMin.Typ.Max.Unit ∗
Supply voltageVDD2.70–3.60V
Input volta geVIVSS–VDDV
CPU operating clock frequencyfCPU––50MHz
External bus operating clock frequencyfBUS––35MHz
Low-spe ed os ci lla tion frequencyfOSC1–32.768– kHz
Operating temperatureTa-402585°C
Input rise time (normal input)tri––50ns
Input fall time (normal input)tfi––50ns
Input rise time (schmitt input)tri––5ms
Input fall time (schmitt input)tfi––5ms
3) 2.0 V single power source
(VDDE=VDD, VSS=0V)
ItemSymbolConditionMin.Typ.Max.Unit ∗
Supply voltageVDD1.802.002.20V
Input volta geVIVSS–VDDV
CPU operating clock frequencyfCPU––20MHz
External bus operating clock frequencyfBUS––20MHz
Low-spe ed os ci lla tion frequencyfOSC1–32.768– kHz
Operating temperatureTa-402585°C
Input rise time (normal input)tri––100ns
Input fall time (normal input)tfi––100ns
Input rise time (schmitt input)tri––10ms
Input fall time (schmitt input)tfi––10ms
A-72EPSONS1C33L03 PRODUCT PART
8 ELECTRICAL CHARACTERISTICS
8.3 DC Characteristics
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
1On Off Normal operation ∗1StopStop
2On OffHALT modeStopStop
3On OffHALT2 modeStopStop
4OffOffSLEEP modeStopStop
5Off OnHALT modeRunStop
6On OffHALT modeStopA/D converter only operated,
–6.57mA
–1213mA
conversion clock frequency=2MHz
∗1:The values of current consumption while the CPU is operating were measured when a test program that
consists of 55% load instructions, 23% arithmetic operation instructions, 1% mac instruction, 12% branch
instructions and 9% ext instruction is being executed in the built-in ROM continuously.
∗2:The LCD controller is included.
S1C33L03 PRODUCT PARTEPSONA-75
8 ELECTRICAL CHARACTERISTICS
8.5 A/D Converter Ch aracteristics
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=AVDDE=4.5V to 5.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C, ST[1:0]=11)
ItemSymbolConditionMin.Typ.Max.Unit ∗
Resolution––10–bit
Conversion time–5––µs1
Zero scale errorEZS024LSB
Full scale errorEFS-2–2LSB
Integral linearity errorEL-3–3LSB
Differential linearity errorED-3–3LSB
Permissible signal source impedance–––5kΩ
Analog input capacitance–––45pF
∗ note 1) Indicates the minimum value when A/D clock = 4MHz (maximum clock frequency in 5V system).
Indicates the maximum value when A/D clock = 32kHz (minimum clock frequency in 5V system).
2) 3.3 V single power source
(Unless otherwise specified: VDDE=AVDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C, ST[1:0]=11)
ItemSymbolConditionMin.Typ.Max.Unit ∗
Resolution––10–bit
Conversion time–10–625µs1
Zero scale errorEZS024LSB
Full scale errorEFS-2–2LSB
Integral linearity errorEL-3–3LSB
Differential linearity errorED-3–3LSB
Permissible signal source impedance–––5kΩ
Analog input capacitance–––45pF
∗ note 1) Indicates the minimum value when A/D clock = 2MHz (maximum clock frequency in 3V system).
Indicates the maximum value when A/D clock = 32kHz (minimum clock frequency in 3V system).
Note:•Be sure to use as VDDE = AVDDE.
•The A/D converter cannot be used when the S1C33L03 is used with a 2V power source.
A/D conversion error
V[000]h = Ideal voltage at zero-scale point (=0.5LSB)
V'[000]h = Actual voltage at zero-scale point
V[3FF]h = Ideal voltage at full-scale point (=1022.5LSB)
V'[3FF]h = Actual voltage at full-scale point
1LSB =
1LSB' =
AV
DDE
- V
SS
210 - 1
V'[3FF]h - V'[000]h
10
2
- 2
A-76EPSONS1C33L03 PRODUCT PART
8 ELECTRICAL CHARACTERISTICS
Zero scale error
004
003
V[000]h
(=0.5LSB)
002
001
Digital output (hex)
V'[000]h
000
SS
V
Full scale error
3FF
3FE
3FD
3FC
Digital output (hex)
3FB
V'[3FF]h
Integral linearity error
3FF
Ideal conversion characteristic
Actual conversion characteristic
Zero scale error EZS =[LSB]
Analog input
V[3FF]h (=1022.5LSB)
Full scale error EFS =[LSB]
Actual conversion characteristic
Ideal conversion characteristic
DDE
AV
Analog input
A-1
(V'[000]h - 0.5LSB') - (V[000]h - 0.5LSB)
1LSB
A-8
(V'[3FF]h + 0.5LSB') - (V[3FF]h + 0.5LSB)
1LSB
3FE
3FD
003
002
Digital output (hex)
001
V'[000]h
000
SS
V
Analog input
Differential linearity error
N+1
N
N-1
N-2
Digital output (hex)
V'[N]h
V'[N-1]h
Analog input
V'[3FF]h
Integral linearity error EL =[LSB]
VN'V
N
Actual conversion characteristic
Ideal conversion characteristic
AV
DDE
Ideal conversion characteristic
Actual conversion characteristic
Differential linearity error ED =- 1 [LSB]
N
' - V
N
V
1LSB'
V'[N]h - V'[N-1]h
1LSB'
S1C33L03 PRODUCT PARTEPSONA-77
8 ELECTRICAL CHARACTERISTICS
8.6 AC Characteristics
8.6.1 Symbol Description
tCYC: Bus-clock cycle time
• In x1 mode,
• In x2 mode,
WC: Number of wait cycles
Up to 7 cycles can be set for the number of cycles using the BCU control register. Furthermore, it can be
extended to a desired number of cycles by setting the #WAIT pin from outside of the IC.
The minimum number of read cycles with no wait (0) inserted is 1 cycle.
The minimum number of write cyc le s with no wait cycle (0) inserted is 2 cycles. It does not change even if
1-wait cycle is set. The write cycle is actually extended when 2 or more wait cycles are set.
When inserting wait cycles by controlling the #WAIT pin from outside of the IC, pay attention to the
timing of the #WAIT signal sampling. Read cycles are terminated at the cycle in which the #WAIT signal
is negated. Write cycles are terminated at the following cycle after the #WAIT signal is negated.
C1, C2, C3, Cn: Cy cl e number
C1 indicates the first cycle when the BCU transfers data from/to an external memory or another device.
Similarly, C2 and Cn indicate the second cycle and nth cycle, respectively.
tCYC= 50 ns (20 MHz) when the CPU is operated with a 20-MHz clock
tCYC= 30 ns (33 MHz) when the CPU is operated with a 33-MHz clock
tCYC= 50 ns (20 MHz) when the CPU is operated with a 40-MHz clock
tCYC= 40 ns (25 MHz) when the CPU is operated with a 50-MHz clock
tCYC= 33 ns (30 MHz) when the CPU is operated with a 60-MHz clock
Cw: Wait cycle
Indicates that the cycle is wait cycle inserted.
8.6.2 AC Characteristics Measurement Condition
Signal detection level:Input signalHigh levelVIH = VDDE - 0.4 V
Low levelV
Output signa l High levelV
Low levelVOL = 1/2 VDDE
The following applies when OSC3 is external clock input:
Input signalHigh levelV
Low levelVIL = 1/2 VDD
Input signal waveform: Rise time (10% → 90% VDD)5 ns
Fall time (90% → 10% V
Output load capacitance: C
L = 50 pF
IL = 0.4 V
OH = 1/2 VDDE
IH = 1/2 VDD
DD)5 ns
A-78EPSONS1C33L03 PRODUCT PART
8 ELECTRICAL CHARACTERISTICS
8.6.3 C33 Block AC Characteristic Tables
External clock input characteristics
(Note) These AC characteristics apply to input signals from outside the IC.
The OSC3 input clock must be within V
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
High-speed clock cycle timetC330ns
OSC3 clock input dutytC3ED4555%
OSC3 clock i nput rise timetIF5ns
OSC3 clock i nput fall timetIR5ns
BCLK high-level output delay timetCD135ns
BCLK low-level output del ay timetCD235ns
Minimum reset pulse widthtRST6·tCYCns
2) 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
High-speed clock cycle timetC330ns
OSC3 clock input dutytC3ED4555%
OSC3 clock i nput rise timetIF5ns
OSC3 clock i nput fall timetIR5ns
BCLK high-level output delay timetCD135ns
BCLK low-level output del ay timetCD235ns
Minimum reset pulse widthtRST6·tCYCns
DD to VSS voltage range.
A-1
A-8
3) 2.0 V single power source
(Unless otherwise specified: VDDE=VDD=2.0V±0.2V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
High-speed clock cycle timetC350ns
OSC3 clock input dutytC3ED4555%
OSC3 clock i nput rise timetIF5ns
OSC3 clock i nput fall timetIR5ns
BCLK high-level output delay timetCD160ns
BCLK low-level output del ay timetCD260ns
Minimum reset pulse widthtRST6·tCYCns
BCLK clock output characteristics
(Note) These AC characteristic values are applied only when the high-speed oscillation circuit is used.
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
BCLK clock output dutytCBD4060%
2) 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
BCLK clock output dutytCBD4060%
3) 2.0 V single power source
(Unless otherwise specified: VDDE=VDD=2.0V±0.2V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
BCLK clock output dutytCBD4060%
S1C33L03 PRODUCT PARTEPSONA-79
8 ELECTRICAL CHARACTERISTICS
Common characteristics
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Address delay timetAD–8ns1
#CEx delay time (1)tCE1–8ns
#CEx delay time (2)tCE2–8ns
Wait setup timetWTS15–ns
Wait hold timetWTH0–ns
Read signal delay time (1)tRDD18ns2
Read data setup timetRDS12ns
Read data hold timetRDH0ns
Write signal delay time (1)tWRD18ns3
Write data delay time (1)tWDD110ns
Write data delay time (2)tWDD2010ns
Write data hold tim etWDH0ns
2) 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Address delay timetAD–10ns1
#CEx delay time (1)tCE1–10ns
#CEx delay time (2)tCE2–10ns
Wait setup timetWTS15–ns
Wait hold timetWTH0–ns
Read signal delay time (1)tRDD110ns2
Read data setup timetRDS15ns
Read data hold timetRDH0ns
Write signal delay time (1)tWRD110ns3
Write data delay time (1)tWDD110ns
Write data delay time (2)tWDD2010ns
Write data hold tim etWDH0ns
3) 2.0 V single power source
(Unless otherwise specified: VDDE=VDD=2.0V±0.2V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Address delay timetAD–20ns1
#CEx delay time (1)tCE1–20ns
#CEx delay time (2)tCE2–20ns
Wait setup timetWTS40–ns
Wait hold timetWTH0–ns
Read signal delay time (1)tRDD120ns2
Read data setup timetRDS40ns
Read data hold timetRDH0ns
Write signal delay time (1)tWRD120ns3
Write data delay time (1)tWDD120ns
Write data delay time (2)tWDD2020ns
Write data hold tim etWDH0ns
∗ note1) This applies to the #BSH and #BSL timings.
2) This applies to the #GAAS and #GARD timings.
3) This applies to the #GAAS timing.
A-80EPSONS1C33L03 PRODUCT PART
8 ELECTRICAL CHARACTERISTICS
SRAM read cycle
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Read signal delay time (2)tRDD28ns
Read signal pulse widthtRDWtCYC(0.5+WC)-8ns
Read address access time (1)tACC1tCYC(1+WC)-20ns
Chip enable access time (1)tCEAC1tCYC(1+WC)-20ns
Read signal access time (1)tRDAC1tCYC(0.5+WC)-20ns
2) 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Read signal delay time (2)tRDD210ns
Read signal pulse widthtRDWtCYC(0.5+WC)-10ns
Read address access time (1)tACC1tCYC(1+WC)-25ns
Chip enable access time (1)tCEAC1tCYC(1+WC)-25ns
Read signal access time (1)tRDAC1tCYC(0.5+WC)-25ns
3) 2.0 V single power source
(Unless otherwise specified: VDDE=VDD=2.0V±0.2V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Read signal delay time (2)tRDD210ns
Read signal pulse widthtRDWtCYC(0.5+WC)-10ns
Read address access time (1)tACC1tCYC(1+WC)-60ns
Chip enable access time (1)tCEAC1tCYC(1+WC)-60ns
Read signal access time (1)tRDAC1tCYC(0.5+WC)-60ns
A-1
A-8
SRAM write cycle
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Write signal delay time (2)tWRD28ns
Write signal pulse widthtWRWtCYC(1+WC)-10ns
2) 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Write signal delay time (2)tWRD210ns
Write signal pulse widthtWRWtCYC(1+WC)-10ns
3) 2.0 V single power source
(Unless otherwise specified: VDDE=VDD=2.0V±0.2V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Write signal delay time (2)tWRD220ns
Write signal pulse widthtWRWtCYC(1+WC)-20ns
S1C33L03 PRODUCT PARTEPSONA-81
8 ELECTRICAL CHARACTERISTICS
DRAM access cycle common characte rist ics
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
#RAS signal delay time (1)tRASD110ns
#RAS signal delay time (2)tRASD210ns
#RAS signal pulse widthtRASWtCYC(2+WC)-10ns
#CAS signal delay time (1)tCASD110ns
#CAS signal delay time (2)tCASD210ns
#CAS signal pulse widthtCASWtCYC(0.5+WC)-5ns
Read signal delay time (3)tRDD310ns
Read signal pulse width (2)tRDW2tCYC(2+WC)-10ns
Write signal delay time (3)tWRD310ns
Write signal pulse width (2)tWRW2tCYC(2+WC)-10ns
2) 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
#RAS signal delay time (1)tRASD110ns
#RAS signal delay time (2)tRASD210ns
#RAS signal pulse widthtRASWtCYC(2+WC)-10ns
#CAS signal delay time (1)tCASD110ns
#CAS signal delay time (2)tCASD210ns
#CAS signal pulse widthtCASWtCYC(0.5+WC)-10ns
Read signal delay time (3)tRDD310ns
Read signal pulse width (2)tRDW2tCYC(2+WC)-10ns
Write signal delay time (3)tWRD310ns
Write signal pulse width (2)tWRW2tCYC(2+WC)-10ns
3) 2.0 V single power source
(Unless otherwise specified: VDDE=VDD=2.0V±0.2V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
#RAS signal delay time (1)tRASD120ns
#RAS signal delay time (2)tRASD220ns
#RAS signal pulse widthtRASWtCYC(2+WC)-20ns
#CAS signal delay time (1)tCASD120ns
#CAS signal delay time (2)tCASD220ns
#CAS signal pulse widthtCASWtCYC(0.5+WC)-20ns
Read signal delay time (3)tRDD320ns
Read signal pulse width (2)tRDW2tCYC(2+WC)-20ns
Write signal delay time (3)tWRD320ns
Write signal pulse width (2)tWRW2tCYC(2+WC)-20ns
A-82EPSONS1C33L03 PRODUCT PART
8 ELECTRICAL CHARACTERISTICS
DRAM random access cycle and DRAM fast-page cycle
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
EDO DRAM random access cycle and EDO DRAM page cycle
1) 3.3 V/5.0 V dual power source
(Unless otherwise specified: VDDE=5.0V±0.5V, VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Column address access tim etACCEtCYC(1.5+WC)-25ns
#RAS access timetRACEtCYC(2+WC)-25ns
#CAS access timetCACEtCYC(1+WC)-15ns
Read data setup timetRDS220ns
A-1
A-8
2) 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=2.7V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Column address access tim etACCEtCYC(1.5+WC)-25ns
#RAS access timetRACEtCYC(2+WC)-25ns
#CAS access timetCACEtCYC(1+WC)-20ns
Read data setup timetRDS220ns
3) 2.0 V single power source
(Unless otherwise specified: VDDE=VDD=2.0V±0.2V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
Column address access tim etACCEtCYC(1.5+WC)-60ns
#RAS access timetRACEtCYC(2+WC)-60ns
#CAS access timetCACEtCYC(1+WC)-60ns
Read data setup timetRDS220ns
S1C33L03 PRODUCT PARTEPSONA-83
8 ELECTRICAL CHARACTERISTICS
SDRAM access cycle
1) #X2SP D = "1" (CPU : SDRAM clock = 1 : 1), 3.3 V single power sour ce
(Unless otherwise specified: VDDE=VDD=3.0V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
OSC3 input clock frequencyfOSC325MHz
BCLK clock output cycle timet(C3)40ns
Address delay timet(AD)11ns
SDA10 delay timet(A10D)11ns
#SDCEx delay time (1)t(CED)n11ns
#SDCEx delay time (2)t(CED)p11ns
#SDRAS signal delay time (1)t(RASD)n12ns
#SDRAS signal delay time (2)t(RASD)p11ns
#SDCAS signal delay time (1)t(CASD)n11ns
#SDCAS signal delay time (2)t(CASD)p11ns
HDQM, LDQM signal delay time (1)t(DQMD)n11ns
HDQM, LDQM signal delay time (2)t(DQMD)p11ns
SDCKE signal delay time (1)t(CKED)n11ns
SDCKE signal delay time (2)t(CKED)p11ns
#SDWE signal delay time (1)t(WED)n11ns
#SDWE signal delay time (2)t(WED)p11ns
Read data setup timet(RDS)(14)ns
Read data hold timet(RDH)(0)ns
Write data delay timet(WDD)11ns
Write data hold tim et(WDH)T+11ns
2) #X2SPD = "0 " (CPU : SDRAM clock = 2 : 1), 3.3 V single power source
(Unless otherwise specified: VDDE=VDD=3.0V to 3.6V, VSS=0V, Ta=-40°C to +85°C)
ItemSymbolMin.Max.Unit ∗
OSC3 input clock frequencyfOSC317.5MHz
BCLK clock output cycle timet(C3x2)57ns
Address delay timet(ADx2)T+11ns
SDA10 delay timet(A10Dx2)T+11ns
#SDCEx delay time (1)t(CEDx2)nT+11ns
#SDCEx delay time (2)t(CEDx2)pT+11ns
#SDRAS signal delay time (1)t(RASDx2)nT+11ns
#SDRAS signal delay time (2)t(RASDx2)pT+11ns
#SDCAS signal delay time (1)t(CASDx2)nT+11ns
#SDCAS signal delay time (2)t(CASDx2)pT+11ns
HDQM, LDQM signal delay time (1)t(DQMDx2)nT+11ns
HDQM, LDQM signal delay time (2)t(DQMDx2)pT+11ns
SDCKE signal delay time (1)t(CKEDx2)nT+11ns
SDCKE signal delay time (2)t(CKEDx2)pT+11ns
#SDWE signal delay time (1)t(WEDx2)nT+11ns
#SDWE signal delay time (2)t(WEDx2)pT+11ns
Read data setup timet(RDSx2)(14)ns
Read data hold timet(RDHx2)(0)ns
Write data delay timet(WDDx2)11ns
Write data hold tim et(WDHx2)T+11ns
Note:"T" indicates one cycle time of the CPU clock.
A-84EPSONS1C33L03 PRODUCT PART
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.