Emerson Y695A Data Sheet

Page 1
Bulletin 74.2:Y695A
Y695A Series Vapor Recovery Regulators
January 2010
W7381
Figure 1. Y695A Series Vapor Recovery Regulators
Features
  •  Precision Control—Large diaphragm area provides very accurate throttling control at low pressure settings.
 • Easy Conversion—Changes easily from the Type Y695A to the Type Y695AM with two O-rings and a machine screw.
  •  Rugged Construction—Heavy duty casings and internal parts are designed to reduce vibration and shock and give this regulator the ability to withstand 150 psig (10,3 bar) inlet pressure with no internal parts damage.
  •  Simplicity—Direct-operated, straightforward stem and lever design minimizes the number of parts while providing excellent regulation of pressure.
Introduction
The Y695A Series are direct-operated vapor recovery regulators. These regulators are used to sense an increase in vessel pressure and vent excessive internal tank pressure to an appropriate vapor recovery disposal or reclamation system. They may also be used as backpressure regulators or relief valves.
www.sherregulators.com
D102595X012
Page 2
Bulletin 74.2:Y695A
Specications
Available Congurations
Type Y695A: Direct-operated vapor
recovery regulator.
Type Y695AM: Direct-operated vapor recovery regulator equipped with a blocked throat and O-ring stem seal. The lower diaphragm casing is tapped 1/2 NPT for control line connection.
Body Sizes
NPS 3/4 or 1 (DN 20 or 25)
End Connection Styles
See Table 1
Maximum Allowable Inlet (Casing) Pressure
(1)
150 psig (10,3 bar)
Maximum Outlet Pressure
(1)
150 psig (10,3 bar)
Maximum Emergency Inlet Pressure to Avoid Internal Parts Damage
150 psig (10,3 bar)
Control Pressure Ranges
(1)
See Table 2
Flow Coefcients with Fully Open Disk
Cg: 120, CV: 3.43, C1: 35
Flow Capacities
See Table 4
Orice Size
7/16-inch (11 mm)
Construction Materials
See Table 3
Material Temperature Capabilities
Nitrile:
-20° to 180°F (-29° to 82°C) Fluorocarbon (FKM): 40° to 300°F (4° to 149°C) Peruoroelastomer (FFKM):
-20° to 300°F (-29° to 149°C) Ethylenepropylene (EPDM):
-20° to 300°F (-29° to 149°C)
Pressure Setting Adjustment
Adjusting Screw
Spring Case Vent Connection
1/4 NPT
Diaphragm Case Connection
1/2 NPT
Approximate Weight
19 pounds (9 kg)
(1)
1. The pressure/temperature limits in this bulletin and any applicable standard or code limitation should not be exceeded.
Table 1. End Connection Styles
BODY SIZES,
NPS (DN)
3/4 or 1 (20 or 25) NPT
  1.  All anges have 14-inches (356 mm) face-to-face.
Ductile Iron
END CONNECTION STYLES
CF8M
Stainless Steel
NPT, ANSI Class 150 RF,
ANSI Class 300 RF, or PN 16/25/40
(1)
Table 2. Control Pressure Ranges
RELIEF SET PRESSURE RANGE
2 to 7-inches w.c.
3 to 13-inches w.c.
10 to 26-inches w.c.
0.9 to 2.5 psig
1.3 to 4.5 psig
3.8 to 7 psig
1. Spring ranges based on spring case installed pointed down. When installed pointing up, the spring ranges increase by 2-inches w.c. (5 mbar).
2. Do not use Fluorocarbon (FKM) diaphragm with these springs at diaphragm temperatures lower than 60°F (16°C).
(5 to 17 mbar) (7 to 32 mbar) (25 to 65 mbar)
(0,06 to 0,17 bar) (0,09 to 0,31 bar) (0,26 to 0,48 bar)
(1)(2)
(1)(2)
SPRING PART
NUMBER
1B653827052 1B653927022 1B537027052
1B537127022 1B537227022 1B537327052
SPRING COLOR SPRING WIRE DIAMETER FREE LENGTH
Red
Olive drab
Yellow
Light green
Light blue
Black
0.085-inch
0.105-inch
0.114-inch
0.156-inch
0.187-inch
0.218-inch
(2,2 mm) (2,7 mm) (2,9 mm)
(4,0 mm) (4,8 mm) (5,5 mm)
Hastelloy® C
ANSI Class 150 RF
3.625-inches
3.75-inches
4.188-inches
4.060-inches
3.938-inches
3.980-inches
(92,1 mm) (95,2 mm) (106 mm)
(103 mm) (100 mm) (101 mm)
2
Page 3
Bulletin 74.2:Y695A
Type Y695A
Type Y695A
MXXXX
January 2010
Type Y695A
INLET PRESSURE OUTLET PRESSURE ATMOSPHERIC PRESSURE
Table 3. Construction Materials
BODY SPRING CASE DIAPHRAGM CASE DISK HOLDER DIAPHRAGM DISK
Ductile iron,
CF8M Stainless steel,
or Hastelloy C
Ductile iron or
CF8M Stainless
steel
Table 4. Y695A Series Capacities
SPRING RANGE,
PART NUMBER, AND COLOR
2 to 7-inches w.c. (5 to 17 mbar)
1B653827052
Red
3 to 13-inches w.c. (7 to 32 mbar)
10 to 26-inches w.c. (25 to 65 mbar)
1B653927022
Olive drab
1B537027052
Yellow
0.9 to 2.5 psig (0,06 to 0,17 bar) 1B537127022
Light green
1.3 to 4.5 psig (0,09 to 0,31 bar) 1B537227022
Light blue
3.8 to 7 psig (0,26 to 0,48 bar) 1B537327052
Black
Ductile iron,
CF8M Stainless steel, or
Hastelloy C
SET PRESSURE
2-inches w.c.
(5 mbar)
4-inches w.c.
(10 mbar)
10-inches w.c.
(25 mbar)
15-inches w.c.
(37 mbar)
1 psig
(0,07 bar)
2 psig
(0,14 bar)
5 psig
(0,34 bar)
316 Stainless steel
or Hastelloy C
MINIMUM BUILDUP TO
WIDE-OPEN
1.5-inches w.c. (3,7 mbar)
1.5-inches w.c. (3,7 mbar)
2.3-inches w.c. (5,7 mbar)
3.4-inches w.c. (8,5 mbar)
0.40 psig
(0,03 bar)
0.88 psig
(0,06 bar)
1.66 psig
(0,11 bar)
VACUUM OUTLET
Nitrile (NBR),
Fluorocarbon (FKM), or
Nitrile (NBR) with bonded
Teon (PTFE)
PRESSURE
0 psig
(0 bar)
2.5 psig
(0,17 bar)
5 psig
(0,34 bar)
0 psig
(0 bar)
2.5 psig
(0,17 bar)
5 psig
(0,34 bar)
0 psig
(0 bar)
2.5 psig
(0,17 bar)
5 psig
(0,34 bar)
0 psig
(0 bar)
2.5 psig
(0,17 bar)
5 psig
(0,34 bar)
0 psig
(0 bar)
2.5 psig
(0,17 bar)
5 psig
(0,34 bar)
0 psig
(0 bar)
2.5 psig
(0,17 bar)
5 psig
(0,34 bar)
0 psig
(0 bar)
2.5 psig
(0,17 bar)
5 psig
(0,34 bar)
SPECIFIC GRAVITY NITROGEN
Nitrile (NBR),
Fluorocarbon (FKM),
Peruoroelastomer (FFKM), 
Teon (PTFE), or 
Ethylenepropylene (EPDM)
CAPACITIES IN
SCFH (Nm3/h) OF 0.97
280
(7,50)
1180
(31,6)
1520
(40,7)
350
(9,38)
1200
(32,2)
1530
(41,0)
520
(13,9)
1250
(33,5)
1570
(42,1)
640
(17,2)
1300
(34,8)
1600
(42,9)
940
(25,2)
1450
(38,9)
1720
(46,1)
1360
(36,4)
1730
(46,4)
1940
(52,0)
2110
(56,5)
2330
(62,4)
2470
(66,2)
INLET PRESSURE OUTLET PRESSURE ATMOSPHERIC PRESSURE
B2648
Figure 2. Y695A Series Operational Schematic
3
Page 4
Bulletin 74.2:Y695A
Table 5. Materials Compatibility
Material
CORROSION INFORMATION
Material
Fluid
Cast or
Ductile Iron
Carbon Steel
Acetic Acid (Air Free) Acetic Acid Vapors Acetone Acetylene Alcohols
Aluminum Sulfate Ammonia Ammonium Chloride Ammonium Nitrate Ammonium Sulfate
  Ammonium Sulte
Beer Benzene (Benzol) Benzoic Acid Boric Acid
Butane Calcium Chloride (Alkaline) Carbon Dioxide (Dry) Carbon Dioxide (Wet)
  Carbon Disulde
Carbon Tetrachloride Carbonic Acid Chlorine Gas (Dry) Chlorine Gas (Wet) Chlorine (Liquid)
Chromic Acid Citric Acid Coke Oven Gas Copper Sulfate
  Ether
  Ethyl Chloride   Ethylene   Ethylene Glycol
Formaldehyde Formic Acid
Freon (Wet) Freon (Dry)
  Gasoline (Rened)
Glucose Hydrochloric Acid (Aerated)
1. Monel is a trademark of International Nickel Co.
2. Hastelloy is a trademark of Stelite Div., Cabot Corp.
I.L.
I.L.
C
C
C
C
A
A
A
A
A
A
C
C
A
A
C
C
A
C
C
C
C
C
B
B
A
A
C
C
C
C
A
A
B
B
A
A
C
C
A
A
B
B
C
C
A
A
C
C
C
C
C
C C
A
A
C
C
B
B
C
C
A
A
A
A
B
B C
B
B
B
B
A
A
A
A
C
C
S41600
Stainless Steel
Stainless Steel
CF8M or S31600
S30200 or S30400
B
B A A A A
A A B A B
A A A A A
A
C
A A A
B B B
C C
C
B A B A
A A A A B
B A A A
C
C
A
C
A
A
A
A
A
A
A
C
A
A
B
C
A
C
A
C
A
B
A
B
A
A
A
A
A
B
A
A
B
C
A
A
A
A
A
B
B
C
B
A
B
C
C
C
C
C
B
C
A
B
A
A
B
A
A
A
A
B
A
A
A
A
A
A
B
C
A
I.L.
A
I.L.
A
A
A
A
C
C
(2)
C
(1)
®
®
Monel
Stainless Steel
Hastelloy
B
A
A
A
A
A
A
A
A
A
B
A
A
A
B
A
C
A
A
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
A
A
A
A
A
A
A
C
B
C
A
A
A
B
A
B
A
C
A
A
A
A
A
A
A
A
I.L.
A
A
A
A
A
A
A
A
A
A
A
A
C
B
Fluid
Cast or
Carbon Steel
Hydrochloric Acid (Air free) Hydrogen Hydrogen Peroxide
  Hydrogen Sulde (Liquid)
Magnesium Hydroxide
Methanol
  Methyl Ethyl Ketone
Natural Gas Nitric Acid
  Petroleum Oils (Rened)
Phosphoric Acid (Air Free) Phosphoric Acid Vapors Potassium Chloride Potassium Hydroxide Propane
Silver Nitrate Sodium Acetate Sodium Carbonate Sodium Chloride Sodium Chromate
Sodium Hydroxide Stearic Acid Sulfur Sulfur Dioxide (Dry) Sulfur Trioxide (Dry)
Sulfuric Acid (Aerated) Sulfuric Acid (Air Free) Sulfurous Acid Trichloroethylene Water (Boiler Feed)
Water (Distilled) Water (Sea) Zinc Chloride Zinc Sulfate
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
A+--Best possible selection A--Recommended B--Minor to moderate effect. Proceed with caution. C--Unsatisfactory I.L.--Information lacking
I.L.
C
C
A
A A
C
C
A
A
A
A
A
A
A
A
C
C
A
A
C
C
C
C
B
B
B
B
A
A
C
C
A
A
A
A
C
C
A
A
A
A
A
C
A
A
A
A
A
A
C
C
C
C
C
C
B
B
B
C
A
A
B
B
C
C
C
C
Ductile Iron
Stainless Steel
CF8M or S31600
S30200 or S30400
C
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
A
A
A
A
B
A
A
A
A
B
A
A
A
A
B
A
A
A
B
B
A
A
A
A
A
A
A
A
A
A
A
A
C
C
C
C
B
B
B
A
A
A
A
A
B
B
C
C
A
A
®(1)
S41600
Monel
Stainless Steel
Stainless Steel
C
C
A
A
B
A
C
C
A
A
A
A
A
A
A
A
C
C
A
A
C
B
C
C
C
B
B
A
A
A
B
C
A
A
B
A
B
A
A
A
B
A
B
B
A
A
B
A
B
A
C
C
C
B
C
C
B
A
B
A
B
A
C
A
C
C
B
A
(2)
C
®
Hastelloy
B A B A A
A A A B A
A
I.L.
A A A
A A A A A
A A A A A
A A A A A
A A A A
- continued -
Principle of Operation
Y695A Series vapor recovery regulators are used to maintain a constant blanket (inlet) pressure or vessel
pressure with the outlet owing to a system whose 
pressure is lower than the inlet (see Figure 2).
4
When vessel pressure increases above the setpoint of the regulator due to pumping in or thermal heating, the force of the control spring is overcome by pressure acting on the diaphragm. This moves the disk away
from the orice, allowing gas to ow from the vessel 
to the vapor recovery system. As vessel pressure is
Page 5
Table 5. Materials Compatibility (continued)
Fluid
Acetic Acid (30%) Acetone
  Alcohol (Ethyl)
Alcohol (Methyl) Ammonia (Anhydrous)
Ammonia (Gas, Hot) Benzene Brine (Calcium Chloride) Butadiene Gas Butane (Gas) Butane (Liquid)
Carbon Tetrachloride Chlorine (Dry) Chlorine (Wet) Coke Oven Gas
  Ethyl Acetate
  Ethylene Glycol
Freon 11 Freon 12 Freon 22 Freon 114
Gasoline Hydrogen Gas
  Hydrogen Sulde (Dry)   Hydrogen Sulde (Wet)
Jet Fuel (JP-4)
Natural Gas Natural Gas + H2S (Sour Gas) Nitric Acid (20%) Nitric Acid (50 to 100%) Nitrogen
Oil (Fuel) Propane Sulfur Dioxide Sulfuric Acid (to 50%) Sulfuric Acid (50 to 100%)
Water (Ambient) Water [at 200°F (93°C)] Water (Sea)
A+--Best possible selection A--Recommended B--Minor to moderate effect. Proceed with caution. C--Unsatisfactory I.L.--Information lacking
Neoprene
(CR)
C B A
A+
A
B C A B A B
C C C C C
A
B A+ A+
A
B
A
A
B
C
A
A
B
C
A
B
A
B
A
B
C
A
C
FLUID INFORMATION
Nitrile (NBR)
B C A A C
C C A C
A+
A
C C C B C
A A A C A
A+
A C C A
A+
B C C A
A+
A A C C
C A B
Material
Fluorocarbon
(FKM)
B C B C C
C A B B A A
A A A
A+
C
A
A+
B C B
A A C C A
A C A A A
A A A A A
A A B
Bulletin 74.2:Y695A
Peruoroelastomer
(FFKM)
A A A A A
A A A A A A
A A A A A
A A A A A
A A A A A
A A A A A
A A A A A
A A A
Ethylenepropylene
(EPDM)
A A A A A
B C A C C C
C C C C B
A C B A A
C A A A
I.L.
C C C C A
C C A A B
B A A
reduced, the force of the back disk spring causes the
disk to move toward the orice, decreasing the ow of 
gas out of the vessel. As vessel pressure drops below the setpoint of the regulator, the disk will seat against
the orice, shutting off the ow of gas.
Sizing Vapor Recovery Systems
To determine the capacity required, you must consider the amount of blanketing gas that must be displaced
from the tank when either lling the vessel with liquid 
(pump-in) or the expansion of tank vapors during atmospheric thermal heating.
Using the established procedures from American Petroleum Institute Standard 2000 (API 2000),
determine the required ow rate for outbreathing.
For liquids with a ash point below 100°F (38°C) or a 
normal boiling point below 300°F (149°C), multiply the calculated outbreathing requirements in Table 6 by 2.0 as indicated in footnote 1 from Table 6.
5
Page 6
Bulletin 74.2:Y695A
Table 6. Flow Rate Conversions (Gas ow required to displace blanketing gas with pump-in of liquid.)
MULTIPLY MAXIMUM
PUMP RATE IN
U.S. GPM U.S. GPH
Barrels/hour
Barrels/day
  1.  For liquids with a ash point below 100°F (38°C) or normal boiling point below 300°F  (149°C), multiply the above calculated outbreathing requirement by 2.0.
2. To convert to Nm³/h multiply SCFH by 0.0268.
BY TO OBTAIN
8.021
0.1337
5.615
0.2340
SCFH air
required
(1)(2)
  1.  Determine the ow rate of blanketing gas displaced 
when liquid is being pumped in (see Table 6).
  2.  Determine the gas ow rate due to “outbreathing” 
caused by atmospheric thermal heating (see Table 7).
3. Add the requirements of steps 1 and 2 and select a vapor recovery regulator size based on total capacity required from Table 4.
Sample sizing problem for vapor recovery applications:
Vessel capacity . . . . . . 1000 barrels (42,000 gal)(159 000 liters)
Pump in capacity . . . . . . . . . . . . . . . . . 20 GPM (75,7 l/min)
Inlet pressure source . . . . . . . . 60 psig (4,14 bar) nitrogen
Desired blanket setpoint . . . . . . . . 0.5-inches w.c. (1 mbar)
Desired vapor recovery setpoint . . . 2-inches w.c. (5 mbar) Vapor recovery vacuum source . . . 5-inches Hg (169 mbar)
Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hexane
Boiling point . . . . . . . . . . . . . . . . . . . . . . . . . . 155°F (68°C)
  1.  From Table 6 the desired air ow rate due to pump 
in equals 20 GPM (75,7 l/min) x 8.021 x 2 = 321 SCFH (8,60 Nm3/h) air.
Table 7. Gas Flow Required for Thermal Heating (Outbreathing) per API 2000 (Interpolate for intermediate sizes.)
VESSEL CAPACITY
Barrels Gallons Liters
60 100 500
1000 2000
3000 4000
5000 10,000 15,000
20,000 25,000 30,000 35,000 40,000
45,000 50,000 60,000 70,000 80,000
90,000
100,000 120,000 140,000 160,000
180,000 7,560,000 28 616 000 54,000 (1447) 90,000 (2412)
2500
4200 21,000 42,000 84,000
126,000 168,000 210,000 420,000 630,000
840,000 1,050,000 1,260,000 1,470,000 1,680,000
1,890,000 2,100,000 2,520,000 2,940,000 3,360,000
3,780,000 4,200,000 5,040,000 5,880,000 6,720,000
9500 15 000 79 500
159 000 318 000
477 000 636 000
795 000 1 590 000 2 385 000
3 180 000 3 975 000 4 769 000 5 564 000 6 359 000
7 154 000 7 949 000 9 539 000
11 129 000 12 718 000
14 308 000 15 898 000 19 078 000 22 257 000 25 437 000
SCFH (Nm³/h) AIR FLOW
RATE REQUIRED
Flash point is equal
to or above 100°F
(38°C) or normal
boiling point is
equal to or above
300°F (149°C)
40 (1,07)
60 (1,61) 300 (8,04) 600 (16,1)
1200 (32,2)
1800 (48,2) 2400 (64,3) 3000 (80,4)
6000 (161) 9000 (241)
12,000 (322) 15,000 (402) 17,000 (456) 19,000 (509) 21,000 (563)
23,000 (616) 24,000 (643) 27,000 (724) 29,000 (777) 31,000 (831)
34,000 (911)
36,000 (965) 41,000 (1099) 45,000 (1206) 50,000 (1340)
Flash point is
below 100°F
(38°C) or
normal boiling
point is below
300°F (149°C)
60 (1,61) 100 (2,68) 500 (13,4)
1000 (26,8) 2000 (53,6)
3000 (80,4)
4000 (107)
5000 (134) 10,000 (268) 15,000 (402)
20,000 (536) 24,000 (643) 28,000 (750) 31,000 (831)
34,000 (911)
37,000 (992)
40,000 (1072)
44,000 (1179) 48,000 (1286) 52,000 (1394)
56,000 (1501) 60,000 (1608) 68,000 (1822) 75,000 (2010) 82,000 (2198)
given capacity of nitrogen by 0.985, and divide by the
square root of the appropriate specic gravity of the 
gas required. To determine regulating capacities at pressure settings not given or to determine wide-open
ow capacities, use the following formula:
  2.  From Table 7 the desired air ow rate = 1000 SCFH
(26,8 Nm3/h) air due to thermal heating.
  3.  Total required ow rate = 1000 SCFH (26,8 Nm3/h) air + 320 SCFH (8,58 Nm3/h) = 1320 SCFH (35,4 Nm3/h) air. This converts to nitrogen requirements of 1340 SCFH (35,9 Nm3/h).
Capacity Information
Table 4 gives typical nitrogen regulating capacities at selected inlet pressures and outlet pressure settings. Flows are in SCFH at 60°F and 14.7 psia and Nm³/h at
0°C and 1,01325 bar of 0.97 specic gravity nitrogen.  For gases of other specic gravities, multiply the 
6
520
Q = CgP1SIN
GT
3417
C
∆P
Deg.
P
1
1
Where:
Cg   = gas sizing coefcient from Specications C1 = Cg/CV or 35 from Specications
  G   = gas specic gravity (air = 1.0)
P
= inlet pressure, psia (add 14.7 psi to gauge inlet
1abs
pressure to obtain absolute inlet pressure)   Q   = ow rate, SCFH T = absolute temperature in °Rankine of gas at inlet (°Rankine = °F + 460)
  ∆P   = Pressure differential across the valve, 
psig (P1 - P2)
Page 7
Installation
Bulletin 74.2:Y695A
Install the regulator using a straight run of pipe the same size or larger as the regulator body. Flow
through the regulator body is indicated by the ow 
arrow on the body. If a block valve is required, install a
B
14
(356)
B2441
INCHES
(mm)
A
5.56
(141)
full ow valve between the regulator and the blanketed 
vessel. For proper operation at low setpoint ranges, the regulators should be installed with the spring case pointed down.
G F
D
8.38
(213)
DIAMETER
DIMENSIONS, INCHES (mm)
BODY SIZE,
NPS (DN)
3/4,1 (20, 25) 4.0 (102) 4.12 (105) 2.12 (54) 2.25 (57) 6.19 (157) 6.19 (157) 10.38 (264) 10.38 (264) 1.69 (43) 1.69 (43)
A B D F G
Iron
Stainless
Steel or
Hastelloy® C
Ductile
Iron
Stainless
Steel or
Hastelloy® C
Ductile
Iron
Stainless
Steel or
Hastelloy® C
Ductile
Iron
Stainless
Steel or
Hastelloy® C
Ductile
Iron
Stainless
Steel or
Hastelloy® C
Figure 3. Dimensions
7
Page 8
Bulletin 74.2:Y695A
Ordering information
When ordering, specify:
Application
  1.  Type of gas being controlled (natural gas, air, etc.); 
list any factors such as impurities in the gas that may affect compatibility of gas with the regulator trim parts.
  2.  Specic gravity of the gas.
3. Temperature of the gas.
  4.  Range of owing inlet pressures to regulator.
5. Flow rates
    a)  Minimum controlled ow     b)  Normal ow     c)  Maximum ow
6. Line size and end connection size of adjacent piping.
Regulator
Refer to the Specications table on page 2.  Carefully  review the description of each specication and make 
the desired selection wherever there is a choice. Always specify the type number.
Industrial Regulators
Emerson Process Management Regulator Technologies, Inc.
USA - Headquarters McKinney, Texas 75069-1872 USA Tel: 1-800-558-5853 Outside U.S. 1-972-548-3574
Asia-Pacic
Shanghai, China 201206 Tel: +86 21 2892 9000
Europe
Bologna, Italy 40013 Tel: +39 051 4190611
Middle East and Africa Dubai, United Arab Emirates
Tel: +971 4811 8100
For further information visit www.sherregulators.com
The Emerson logo  is a  trademark and service  mark of  Emerson Electric Co. All other marks  are the property of their  prospective owners.  Fisher is a  mark owned  by Fisher Controls, Inc., a  business of Emerson Process Management.
The contents of this publication are presented for informational purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. We reserve the right to modify or improve the designs or specications of such products at any time without notice.
Emerson Process Management does not assume responsibility for the selection, use or maintenance of any product. Responsibility for proper selection, use and maintenance of any Emerson 
Process Management product remains solely with the purchaser.
Natural Gas Technologies
Emerson Process Management Regulator Technologies, Inc.
USA - Headquarters McKinney, Texas 75069-1872 USA Tel: 1-800-558-5853 Outside U.S. 1-972-548-3574
Asia-Pacic
Singapore, Singapore 128461 Tel: +65 6777 8211
Europe
Bologna, Italy 40013 Tel: +39 051 4190611 Gallardon, France 28320 Tel: +33 (0)2 37 33 47 00
TESCOM
Emerson Process Management Tescom Corporation
USA - Headquarters
Elk River, Minnesota 55330-2445 USA
Tel: 1-763-241-3238
Europe
Selmsdorf, Germany 23923 Tel: +49 (0) 38823 31 0
©Emerson Process Management Regulator Technologies, Inc., 1999, 2010; All Rights Reserved
Loading...