Measuring tolerance (relative to the end value 10 V)%≤ 2
Protection against polarity reversal and voltagesV≤ 28
Subject to change without notice
RS485 bus interface
PropertiesUnitValue / Comment
Functional scope– –
Baud ratekbit/s115
Dielectric strengthV-8 V to +13 V
Internal bus terminationohm12k
Subject to change without notice
Safety and monitoring functions
PropertiesUnitValue / Comment
Functional scope–• Temperature monitoring of the output stage
Temperature cut-out point output stage (PC software)
(Hysteresis: 10 K),
Error must be acknowledged again by means of software
overvoltage cut-out
U
ZK
(Hardware, hysteresis: 1V)
undervoltage auto restart
U
ZK
(software, cut-off U
The error must be acknowledged.
Overload protection I²t (software)–yes
Hardware overcurrent protection circuit as max. current per winding
limitation
Resolution of single turn absolute encoderBit / revolution10 (accuracy approx. 3°)
Subject to change without notice
Logic
at 16V),
°C120
V63
V18
A
• Under and overvoltage monitoring of the
system voltages incl. UB overcurrent
limitation
• Overload protection through I²t
45 for VDC-3-49.15-K4
53 for ECI-63.XX-K4
21
5 Installation
3x
Ø3,7
This chapter describes the mechanical and electrical connection of the drive systems.
5.1 Notes
The drives must be checked for visible damage before installation. Damaged drive system must not be installed.
The drives must be fixed onto a flat surface with at least 4 screws. The screws must be secured with suitable measures against loosening.
Use thread-forming screws to DIN 7500 for the fixing.
5.2 Installing the drive
Risk of damage!
CAUTION
CAUTION
When the drives are installed in the motor housing it can be damaged by high radial loads, if the tightening torque applied
to the fixing screws is too high or if the fixing screws are too long.
f Do not load the motor shaft, either radially or axially, with more than 150 N.
f Tighten fixing screws M4 with 3
±0.2
Nm maximum, M5 with 4
±0.2
Nm maximum.
f Do not exceed the specified maximum length of the fixing screws (see Chapter “5.2.1 Determine screw length”).
Risk of damage to electronic components!
The discharge of static charge during installation of the drives can damage the electronic component.
f Use ESD protective equipment during installation.
5.2.1 Determine screw length
XE
A minimum screw length S
is required for safe and reliable fixing of the motors.
min
The maximum allowable screw length S
Minimum screw length S
Minimum depth of engagement E
Maximum screw length S
Maximum depth of engagement E
=
min
6.5 mm + material thickness X of the mounting plate.
min
=
max
8.0 mm + material thickness X of the mounting plate.
min
prevents damage to the motor.
max
max
E
min
S
min
S
max
5.2.2 Prepare the mounting plate
120˚
±0,04
±0,5
44,65
±0,2
24
Ø40
Ø50
±0,2
Ø63
Sketch of fixing holes, motor
housing ECI-63.XX-K4
Only use the drillholes on the output side of the motors housing to fix the drive.
To this end, transfer the necessary drillholes for the centring collar of the motor,
pitch circle and size of the fixing holes onto the mounting plate and drill (see
sketch).
Sketch of fixing holes, motor
housing VDC-3-49.15-K4
22
5 Installation
5.3 Electrical connection
The connection cable for the VDC-3-49.15-K4 drive system is attached to the motor in the factory, no additional plugs are required for the
electrical connection and parameter setting.
The following is required for the electrical connection and parameter setting of the ECI-63.XX-K4 drive system:
1 Connection cable with 15 pin connector M16 (not for the Litz wire (stranded wire) variant of the ECI-63.XX-K4, see Chapter 5.4.4 Harness
for Litz wire version ECI-63.XX-K4, page 25).
1 ebm-papst USB-CAN-RS485 adapter (screw terminal adapter board to the D-SUB 9 connection, USB connection cable to the PC).
1 ebm-papst “Kickstart” PC software.
Health hazard!
The drive systems are installed in design applications in which electrical and electromagnetic components are used.
DANGER
NOTE
These can affect pacemakers, metallic implants or hearing aids and cause severe personal harm.
f Avoid the immediate vicinity, especially areas identified by the warning symbol
implants or wear a hearing aid.
• The drive systems are built-in parts and do not have any electrical disconnecting switches.
• Connect the product to suitable electrical circuits only. Please note that the power supply units must have suitable
protection against regenerative voltage generated on the secondary side.
• When working on the drive system the system / machine must always be disconnected from the power supply and
secured against being switched back on again.
, if you have a pacemaker, metal
5.3.1 Safety check
Before connecting the drive system, check:
• Supply voltage and product voltage identical?
• Does the rating plate data match the connection data of the power supply unit?
• Connection cable suitable for the current intensity and the ambient conditions and area of use?
23
5 Installation
5.4 Connection descriptions
• The connection cable of the VDC-3-49.15-K4 motors is pre-installed on the motor in the factory.
NOTE
5.4.1 Connection cable VDC-3-49.15-K4
The pin assignment of the connection socket is as follows:
• The ECI-63.XX-K4 motors have a 15 pin connector M16 (12+3) on the motor. This is used for the connection of a
connector variant connector cable or for the separately supplied cable harness of the Litz wire variant.
LitzConnectionIDAWGCross-section
AWG 16
AWG 24
Blue
Brown
Black
Green
White
Grey
red
Yellow
Violet
Black
Red-blue
Grey-pink
Brown
Pink
Blue
BallastBallast resistance16
U
ZK
GNDPower / signal GND16
U
Logic
RS485 +Progr. Bus24
RS485 -Progr. Bus24
Analog IN 10 …10 V (differential)24
Analog GNDGND for analog IN 1 (differential)24
IN 1NPN 24V24
IN 2NPN 24V / Analog24
IN ANPN 24V24
IN BNPN 24V24
OUT 1 PNP 24V24
OUT 2PNP 24V24
GNDSignal-GND24
Power supply16
Logic supply + (24 V)24
1,3 mm
1,3 mm
1,3 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
0,22 mm
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
5.4.2 Motor connection socket ECI-63.XX-K4
The pin assignment of the connector is as follows:
12
A
C
11
10
B
9
4
8
7
6
PinConnectionID
1
1IN ANPN 24 V
2
2IN BNPN 24 V
3
3IN 1NPN 24 V
4IN 2 *NPN 24 V
5OUT 1PNP 24 V
6OUT 2PNP 24 V
7OUT 3PNP 24 V
5
8Analog IN 10 …10 V (differential)
9Analog GNDGND for analog IN 1 (differential)
10RS485 +Progr. Bus
11RS485 –Progr. Bus
12U
ABallastBallast resistance
BU
CGNDPower / signal GND
Logic
ZK
* Can also be parameterised as analog IN 2.
Logic supply + (24 V)
Power supply
24
5 Installation
5.4.3 Connection cable with connector ECI-63.XX-K4
The connection cable with connector is available only for the ECI-63.XX-K4. For the VDC-3-49.15-K4, the connecting
cable is factory-mounted to the engine, means that no plug required.
NOTE
A standard cable with classification CF-C11Y (3 x 1.5² / 12 x 0.34²) and connector M16 is required for connection of the motor. 1 m, 3 m
and 10 m cable lengths are available for the connection.
LengthOrder No.
1 m
3 m
10 m
992 0160 025
992 0160 026
992 0160 027
Cable: CF-C11Y (3 x 1.5² / 12 x 0.34²)
Shielding: Complete shield
L
L = 1 000 ±30
3 000 ±30
10 000 ±30
Cable plug-in connector M16
for cable Ø 8 – 11 mm
Other cable types available on request.
NOTE
Crimp insert series M16
15-pin (12 + 3)
See below for pin
5 4 3 A 2 1 12
6 B 7 8 9 C 10 11
assignment
Wire colourPinConnectionID
white1IN ANPN 24 V
brown2IN BNPN 24 V
green3IN 1NPN 24 V
yellow4IN 2 *NPN 24 V
grey5OUT 1PNP 24 V
pink6OUT 2PNP 24 V
blue7OUT 3PNP 24 V
red8Analog IN 10 …10 V (differential)
black9Analog GNDGND for analog IN 1 (differential)
violet10RS485 +Progr. Bus
45°
grey / pink11RS485 –Progr. Bus
red / blue12U
greyABallastBallast resistance
brownBU
blackCGNDPower / signal GND
Logic
ZK
* Can also be parameterised as analog IN 2.
Ballast, U
and GND are the 1.5 mm² stranded wires.
ZK
Please note! The colours are assigned twice.
Logic supply + (24 V)
Power supply
5.4.4 Harness for Litz wire version ECI-63.XX-K4
The cable harness, length 500 mm, for the Litz wire variant of the ECI-63.XX-K4 can be ordered from ebm-papst under
order number 9920400001.
NOTE
For further connection details, see Chapter 5.4 Connection descriptions, page 24.
Other cable types available on request.
25
5 Installation
5.5 Braking chopper K4
The task of the braking chopper is to convert the energy not required in case of fast speed changes. If the set voltage threshold is exceeded
the external resistor is switched on.
Chopper currentRecommended braking resistor
max. 10 A
Braking resistor not included in the scope of supply.
The braking resistor must be tested and designed according to the use of the drive.
NOTE
(Note maximum power loss!)
5.6 Functional ground connection
A functional ground connection must be provided for equipotential
bonding.
24 V systems: >= 3.75 ohm
48 V systems: >= 5.6 ohm
Functional ground connection
on the ECI-63.XX-K4 drive
5.7 RS485 interface
The RS485 interface is used as the parameterisation and diagnostic interface. The “Kickstart” PC software can be used for operation of the
interface. A PC and the ebm-papst USB-CAN-RS485 adapter are required for this.
The “Kickstart” PC software only operates correctly with the ebm-papst USB-CAN-RS485 adapter.
If you use another USB-CAN-RS485 adapter, you will need the relevant software.
NOTE
The bus interfaces are wired by the user. Depending on the topology, the line termination (resistors) must be realised by
the user.
NOTE
5.8 USB-CAN-RS485 adapter
The USB-CAN-RS485 adapter is required as an accessory for the ebm-papst “Kickstart” software, in order to connect the PC with the K4
drive. The adapter can be ordered under Material No. 914 0000 400.
Functional description of the LED displays
LED nameColourFunction assignment
Data
Error
microSD
red• No assignment.
green
red
green• Received data is ok.
red• No assignment.
green• Access to the memory card.
• Active data transfer via the USB CAN-RS485
adapter.
• No response following request to K4.
• Receipt of a faulty data package.
26
5 Installation
Pin assignment (D-SUB pin 9 pole):
Adapter electrically isolated
PinConnection
1
2
3
4
5
6
7
8
9
USB device drivers of the type “FTDI USB Serial Converter” are required for operation of the USB-CAN-RS485 adapter. In many cases these
are already available on the PC or can be installed using the files provided in the subdirectory of the “Kickstart PC-Software\USB-CAN-basic-
driver-files”. Detailed installation instructions (in English) for the operating systems Windows 7, Windows Vista and Windows XP are provided
as PDF files in the installation directory of the “Kickstart” PC software.
1 Screw terminal adapter board to the D-SUB 9 connection
1 USB connection cable to the PC.
5.9 Connection to the USB-CAN-RS485 adapter
• Connect the cable at Pin 10 (violet) with connection 4 (RS485 +) of the USB-CAN-RS485 adapter.
• Connect the cable at Pin 11 (grey/pink) with connection 8 (RS485 –) of the USB-CAN-RS485 adapter.
• Switch on the “Logic” voltage at the power supply unit.
• Start the “Kickstart” tool at the PC for parameterisation.
• Load an existing project (*.kickzip or *.kicktpl) or create a new project: *.kickpro.
27
5.10 Circuit diagram
+
+
or
24 V (SPS)
ebmpapst
5 Installation
Motor VDC-3-49.15-K4
Motor ECI-63.XX-K4
Enable
IN 2
Control
LogicSMPS
RS485 -
RS485 +
U
Powerstage
GND
Analog IN 2
Ballast
µC
ZK
U
Logic
OUT 1
OUT 2
OUT 3*
RS485-Controller
Ballast - Resistor
Power Supply
„Power“
(+24 V / +48 V DC)
GND
Power Supply
„Logic“
(+24 V DC)
GND
Laptop
IN B
IN A
* The OUT 3 connection is only available for the ECI-63.XX-K4 drive systems.
IN 1
IN 2
The user is responsible for external fusing of the power supply.
NOTE
Analog IN 1 Analog GND
0…10 V
28
5 Installation
SPS
5.11 Schematic layout: parameterisation, commissioning (startup) and automatic operation
5.11.1 Parameterisation and commissioning5.11.2 Automatic operation
Automatic operation with stored parameters and integrated control
Power supply
Control
SPS
USB-K4
ebmpapst
Data
Error
microSD
USB
microSD
Adapter
ECI-63.XX-K4 drive
5.11.3 Connecting connector at the motor
Risk of damage.
When plugging in the connector to the connection on the motor ECI-63.XX-K4, ensure that the company logo on the
CAUTION
connector is facing upwards towards the housing edge of the motor.
When connecting the Litz wires of the VDC-3-49.15-K4 motor variant, ensure that the pin assignment is precisely as
specified and not incorrectly assigned, as this causes irreparable damage to the motor electronics.
KICKSTART
Control
Power supply
PC with “Kick-
start” software
ECI-63.XX-K4 drive
VDC-3-49.15-K4
ECI-63.XX-K4
29
6 Parameterisation
82 parameters are available for parameterising the VDC-3-49.15-K4 and ECI-63.XX-K4 drive systems (from page 32). These are managed
via the electronic class K4 and are set using the ebm-papst “Kickstart” PC software.
A detailed parameter description see Chapter “10 Parameter Description”, page 94.
6.1 Memory management
The K4 has a management function for the “RAM”, “custom” and “default” memory areas.
To edit the values you will need the password “custom access key”. This is set to 0 on delivery. If you change it, please ensure that it is not
lost.
6.1.1 “RAM” memory area
The motor operates with the values in the RAM area.
The memory class “appl func” can be changed (written) if the motor is at a standstill (IN A and IN B input to LOW). If the inputs are not set to
zero you will receive an error message in the status display.
The memory class “appl value” can be changed (written) while the motor is in operation and therefore directly affects the motor's perfor-
mance.
All values can be read out during operation or while the motor is at a standstill.
Parameters that are written in the “RAM” memory area with the “write” command are no longer available if the power supply fails or is
switched off.
6.1.2 “custom” memory area
To ensure that the data is available permanently, it must be located in the “custom” memory area. The data from the “RAM” area is not
written in the “custom” area unless the “store” command is used; after it has been moved the data is then permanently available. On
switching on the voltage, the data from the “custom” area is transferred into the “RAM” area.
30
6 Parameterisation
6.1.3 “default” memory area
The default values loaded in the factory are stored in the “default” memory area. The operating data can be reset to the as-delivered
condition by using the “reload” command. The data is written in the “custom” and “RAM” areas.
Access to parameterisation with “customer access key” (password).
“Kickstart”
RS485
Drive memory area
externalRAMcustomdefault
reload
Parameter
(application
function)
Parameter
(application
value)
Parameter
(HW set val)
write
readpower upreload
write
readpower upreload
Parameter
(application
function)
Parameter
(application
value)
Parameter
(HW set val)
Parameter
(Offset single
sensor)
store
store
power up
power up
Parameter
(application
function)
reload
Parameter
(application
value)
Parameter
(HW set val)
Parameter
(Offset single
sensor)
Parameter
(application
function)
Parameter
(application
value)
Parameter
(HW set val)
Parameter
(Offset single
sensor)
Blue arrow = Command is executed in the operational status (clockwise, counterclockwise, braking / positioning)
Black arrow = Command is executed in the state unlock (motor in freewheel)
With the command „Save“, the „user access key“ is reseted.
The “store” command is used to reset the “customer access key”.
NOTE
31
6 Parameterisation
6.2 Parameter
The following parameters are available in the K4:
For a detailed parameter description, see Chapter “10 Parameter Description”, page 94.
• The data in the “No. [dec]” column is relevant for the parameter descriptions, refer to Chapter “10 Parameter
Description”, from page 94.
NOTE
Parameterübersicht
Parameter
No. [hex]
0x1
0x2Mode 218appl func
0x3O107appl func
0x4O207appl func
0x5O307appl func
0x6Restart01appl func
0x7intentionally left blank065535
0x8intentionally left blank065535
0x9intentionally left blank065535
0xAintentionally left blank065535
0xBFE_Speed_X1Digits01023appl func
0xCFE_Speed_X2Digits01023appl func
0xDFE_Speed_X3Digits01023appl func
0xEFE_Speed_X4rpm–3000029999appl func
0xFFE_Speed_Y1rpm–3000029999appl func
0x10FE_Speed_Y2rpm–3000029999appl func
0x11FE_Speed_Y3rpm–3000029999appl func
0x12FE_Speed_Y4rpm–3000029999appl func
0x13Speed_X1_HystDigits01023appl func
0x14Speed_X2_HystDigits01023appl func
0x15Speed_X3_HystDigits01023appl func
0x16Speed errorrpm–3000029999appl func
0x17Fixed speed N1rpm–3000029999appl value
0x18Fixed speed N2rpm–3000029999appl value
0x19Fixed speed N3rpm–3000029999appl value
0x1At ramp-up cwms für 1000 rpm065535appl value
0x1Bt ramp-down cwms für 1000 rpm065535appl value
0x1Ct ramp-up ccwms für 1000 rpm065535appl value
0x1Dt ram-down ccwms für 1000 rpm065535appl value
0x1ESpeed controller KP065535appl value
0x1FSpeed controller KI065535appl value
• The data in the “No. [hex]” column is relevant for the “Kickstart” PC software.
• The data in column No. [hex] is the address of the parameter.
• The guide values for the parameters represent the so-called default parameters in the respective drive system.
Parameter
Name
Mode 1
Unitsmin.max.Speicherklasse
19
appl func
32
6 Parameterisation
Parameterübersicht
Parameter
No. [hex]
0x20
0x21K_ff1/255065535appl func
0x22Actual speed averaging2^x [ms]015appl value
0x23Resolution of the actual outputsPulse/mech.Umdrehung0100appl value
0x24Speed signal thresholdrpm029999appl value
0x25Speed signal delta hysteresis029999appl value
0x26FE_Current_X1Digits01023appl func
0x27FE_Current_X2Digits01023appl func
0x28FE_Current_X3Digits01023appl func
0x29FE_Current_Y0 %0100appl func
0x2AFE_Current_Y1%0100appl func
0x2BFE_Current_Y2%0100appl func
0x2CFE_Current_Y3%0100appl func
0x2DFE_Current_Y4%0100appl func
0x2ECurrent_X1_HystDigits01023appl func
0x2FCurrent_X2_HystDigits01023appl func
0x30Current_X3_HystDigits01023appl func
0x31Current error%0100appl func
0x32Current signal threshold10 mA032767appl value
0x33Current signal delta hysteresis10 mA065535appl value
0x34Current time constantms15000appl value
0x35Current gating timems05000appl value
0x36Reversing threshold029999appl value
0x37Reversing threshold delta hysteresisrpm029999appl value
0x38I_Max_driving_Rechts10 mA065535appl value
0x39I_Max_driving_Links10 mA065535appl value
0x3AI_Max_braking_Rechts10 mA065535appl value
0x3BI_Max_braking_Links10 mA065535appl value
0x3CHold gain KP_H1/256065535appl value
0x3DPWM/Freq: Lower frequency limitHz2515000appl func
0x3EPWM/Freq: Upper frequency limitHz2515000appl func
0x3FMax. positioning speedrpm029999appl value
0x40Coasting, cw1/65535 revolutions065535appl value
0x41Coasting, cwrevolutions–3276832767appl value
0x42Coasting ccw 1/65535 revolutions065535appl value
0x43Coasting ccwrevolutions0–3276832767appl value
0x44Distance1/65535 revolutions065535appl value
0x45Distancerevolutions–3276832767appl value
0x46Positive positioning window*1/65535 revolutions065535appl value
0x47Positive positioning window*revolutions065535appl value
0x48Negative positioning window*1/65535 revolutions065535appl value
Parameter
Name
Speed controller KD (currently unused)
* Parameter 46 + 47 (positive) = 1000
Parameter 48 + 49 (negativ) = 500
Target position = 50000
Here “Position reached” = ACTIVE should be set, if
Actual position > 49500 and actual position < 51000
Unitsmin.max.Speicherklasse
065535
appl value
33
6 Parameterisation
Parameterübersicht
Parameter
No. [hex]
0x49
0x4AU
0x4BU
0x4CU
0x4DBallast chopper switching on threshold10 mV065535appl value
0x4EBallast chopper– switching off threshold10 mV065535appl value
v4FTemperature signal threshold°C0110appl value
0x50Temperature signal delta hysteresis°C0110appl value
0x51Transmission ratio165535appl value
0x52Bus address1127appl value
0x8001Current actual speed rpmappl value
0x8002current electrical current, winding10 mAappl value
0x8003current actual position LoByte1/65535 revolutionsappl value
0x8004current actual position HiByterevolutionsappl value
0x8005current actual temperature LP°Cappl value
0x8006current electrical current I
0x8007current electrical current I
0x8008Output statusdigitalappl value
0x8009Status of inputs: IN A, IN B, IN 1, INdigitalappl value
0x800Anot used
0x800Bnot used
0x800Cnot used
0x800DAnalog IN 1digitsappl value
0x800EAnalog IN 2digitsappl value
0x800F
Parameter
Name
Negative positioning window*
overvoltage threshold10 mV065535appl value
ZK
undervoltage threshold10 mV065535appl value
ZK
voltage hysteresis10 mV065535appl value
ZK
d
q
Analog internal NTC
Unitsmin.max.Speicherklasse
revolutions065535
10 mAappl value
10 mAappl value
digits
appl value
appl value
34
7 Parameterisation of the Operating Modes
The parameterisation of the operating modes is described in this chapter. 38 operating modes are available to choose from for the electronic
class K4. The operating modes are selected using parameters Mode 1 and Mode 2. The descriptions are laid out as follows:
7.1 Application example
Task: The motor should reach a fixed speed via a defined acceleration / braking ramp. If the speed has been reached a corre-
sponding display should appear.
Setpoint values:
Basic conditions:
After switching off: Brake motor / transition in free-wheeling? The motor should switch to free-wheeling.
Acceleration direction of rotation? Direction of rotation cw
Signal from a higher-level control? Yes. = 1 output (On / Off), 1 input (target speed reached signal).
Procedure:
Connect the electrical system (see Chapter 5.2 Installing the drive, page 22).
Start the “Kickstart” PC software at the PC.
1
Open project file
(File type .kicktpl / .kickzip)
Target speed n = 3500 rpm, acceleration time = 730 ms.
2
Enter user password
(Access Key “Customer” = “0”)
and confirm with “Set”.
35
7 Parameterisation of the Operating Modes
3
• Operating mode selection:
Parameter O1h = 1, Parameter O2h = 1
• Speed signal O2 (OUT 2):
Parameter O4h = 2
4
• Fixed speed parameterisation:
Parameter 17h = 3500
• Parameterisation of
acceleration / braking (deceleration)
ramp:
Parameter 1ah, 1bh, 1ch, 1dh = 209 *
• Set speed signalling threshold: Parameter
24h = 3490
• Set signalling threshold hysteresis:
Parameter 25h = 40
* Determination of the acceleration value in ms
for 1000 rpm
Speed input: 3500 rpm, acceleration time: 730
ms
Acceleration value = acceleration
time / speed difference x 1000
730 / 3500 x 1000 = 208.57 ~ 209
5
Write parameters: Mark (select) the set
parameters and write in the RAM memory
area with the “Write” command.
36
7 Parameterisation of the Operating Modes
6
Save parameters: Save the parameters
written with the “store” command in the
“custom” memory area.
Commissioning (startup)
The following connections must be set up for the commissioning:
UZK = supply voltage
GND = ground / earth
= supply voltage +24V
U
Logic
IN A= On / Off (see IN A / B logic table, see Chapter 8 Inputs and Outputs, page 77)
here: Switch from free-wheeling to rotational direction cw (speed control)
IN 1 = +24V (see logic table - fixed speeds)
here: Selection of N1
7.2 Parameterisation of the speed regulation characteristic
The speed regulation characteristic can be defined via three interpolation points. A hysteresis can be set for each interpolation point. In
addition, an error speed can be parameterised, which is used if an invalid X axis value results.
The speed regulation characteristic is defined using the following parameters:
The jump back into the bootloader is made after transferring the response.
9.17.1 Request
RS485 CharUseValue / Comment
1Start byteCOM_CRX_BACK_TO_BOLO
2Address byteBus address
3…6Data 01…04 (AccessKey)Customer access key
7Checksum
91
9 RS485 Communication
9.17.2 Answer
RS485 CharUseValue / Comment
1Start byteCOM_CTX_BACK_TO_BOLO
2Address byteBus address
3Status byte
4Checksum
9.17.3 Error flags
BitMeaning
7
6
5Motor is not in free-wheeling, jump back into the bootloader does not take place
4Incorrect access key, jump back into the bootloader does not take place
9.18 Reset customer password
9.18.1 Request
RS485 CharUseValue / Comment
1Start byteCOM_CRX_CUSTOMER PASS SET
2Address byteBus address
3Customer password until now HiHi
4Customer password until now HiLo
5Customer password until now LoHi
6Customer password until now LoLo
7New customer password HiHi
8New customer password HiLo
9New customer password LoHi
10New customer password LoLo
11Checksum
9.18.2 Answer
RS485 CharUseValue / Comment
1Start byteCOM_CTX_CUST_PASS_SET
2Address byteBus address
3Status byte
4Checksum
92
9 RS485 Communication
9.18.3 Error flags
BitMeaning
7
6
5
4Incorrect access key
9.19 Undefined telegrams
Undefined telegrams are not answered. Corresponding error flags are set in the start byte of the response. Use of an already defined
response should simplify processing on the ho side.
93
10 Parameter Description
This chapter describes the functions of the available parameters.
• For a list of all parameters, see Chapter 6.2 Parameter, page 32. The possible assignable status outputs are listed
page 110.
NOTE
Parameter memory
The parameter memory can store all the parameters listed in the following as non-volatile memory, if a STORE command is received.
Use the RESTORE command to restore the factory settings.
Parameter 0x1: Mode 1
Description: The parameter Mode 1 contains the configuration for the Input IN 1. This parameter describes how the input IN 1 is to be used and which
control task it undertakes.
Parameter 0x2: Mode 2
Description: The parameter Mode 2 contains the configuration for the Input IN 2. This parameter describes how the input IN 2 is to be used and which
control task it undertakes.
Parameter 0x3: Use the output OUT1
Description: The parameter defines which status output is output at output OUT1.
Parameter 0x4: Use of the output OUT2
Description: The parameter defines which status output is output at output OUT 2.
Parameter 0x5: Use of the output OUT3
Description: The parameter defines which status output is output at output OUT 3.
94
10 Parameter Description
Parameter 0x6: Restart
Description: The “restart” parameter is used to configure the behaviour according following safety-critical errors. The drive cannot be operated while
safety-critical errors are queued. If there are no longer any safety-critical errors, the drive can be switched ready for use automatically or manually via an
acknowledgement.
Parameter 0x7, 0x8, 0x9, 0xA: intentionally left blank
Parameter 0xB: FE_DREHZAHL_X1
Description: X1 interpolation point in the target value characteristic curve.
Parameter 0xC: FE_DREHZAHL_X2
Description: X2 interpolation point in the target value characteristic curve.
Parameter 0xD: FE_DREHZAHL_X3
Description: X3 interpolation point in the target value characteristic curve.
Parameter 0xE: FE_DREHZAHL_Y0
Description: Target speed below the first interpolation point.
Parameter 0xF: FE_DREHZAHL_Y1
Description: Target speed value for interpolation point X1.
Parameter 0x10: FE_DREHZAHL_Y2
Description: Target speed value for interpolation point X2.
95
10 Parameter Description
Parameter 0x11: FE_DREHZAHL_Y3
Description: Target speed value for interpolation point X3.
Parameter 0x12: FE_DREHZAHL_Y4
Description: Target speed value above the interpolation point X3.
Parameter 0x13: DREHZAHL_X1_HYSTERESE
Description: Interpolation point hysteresis value for X1. Value is understood as being the width of the hysteresis on the X axis and is used half under and
half above the corresponding interpolation point.
E.g.:
FE_DREHZAHL_X1 = 100,
DREHZAHL_X1_HYSTERESE = 20
If the X axis value moves upwards, from value 110 (= 100 + (20/2)) the characteristic moves to value Y1. If the X axis value moves downwards, from X axis
value 90 (= 100 – (20/2)) the characteristic jumps to Y0.
Parameter 0x14: DREHZAHL_X2_HYSTERESE
Description: Interpolation point hysteresis value for X2. Value is understood as being the width of the hysteresis on the X axis and is used half under and
half above the corresponding interpolation point.
E.g.:
FE_DREHZAHL_X2 = 100,
DREHZAHL_X2_HYSTERESE = 20
If the X axis value moves upwards, from value 110 (= 100 + (20/2)) the characteristic moves to value Y2. If the X axis value moves downwards, from X axis
value 90 (= 100 – (20/2)) the characteristic jumps to Y1.
Parameter 0x15: DREHZAHL_X3_HYSTERESE
Description: Interpolation point hysteresis value for X3. Value is understood as being the width of the hysteresis on the X axis and is used half under and
half above the corresponding interpolation point.
E.g.:
FE_DREHZAHL_X3 = 100,
DREHZAHL_X3_HYSTERESE = 20
If the X axis value moves upwards, from value 110 (= 100 + (20/2)) the characteristic moves to value Y3. If the X axis value moves downwards, from X axis
value 90 (= 100 – (20/2)) the characteristic jumps to Y2.
Parameter 0x16: FEHLER_DREHZAHL
Description: Speed setpoint in case of setpoint detection errors
96
10 Parameter Description
Parameter 0x17: Fixed speed N1
Description: Fixed speed value, which is used depending on the setting of the parameter 0x1 and parameter 0x2 and their corresponding inputs IN 1 / IN 2.
Parameter 0x18: Fixed speed N2
Description: Fixed speed value, which is used depending on the setting of the parameter 0x1 and parameter 0x2 and their corresponding inputs IN 1 / IN 2.
Parameter 0x19: Fixed speed N3
Description: Fixed speed value, which is used depending on the setting of the parameter 0x1 and parameter 0x2 and their corresponding inputs IN 1 / IN 2.
Parameter 0x1A: t ramp-up cw
Description: Parameter is to be seen and used as the ramp slope (gradient) for the acceleration process in clockwise rotation (cw). The time given here is
to be implemented for a setpoint jump of 1000 rpm. That is to say, the drive follows the setpoint jump ramped up by 1000 revs in the time set here.
Parameter 0x1B: t ramp-down cw
Description: Parameter is to be seen and used as the ramp slope (gradient) for the braking process in clockwise rotation (cw). The time given here is to be
implemented for a setpoint jump of 1000 rpm. That is to say, the drive follows the setpoint jump ramped up by 1000 revs in the time set here.
Parameter 0x1C: t-ramp-up ccw
Description: Parameter is to be seen and used as the ramp slope (gradient) for the acceleration process in counter-clockwise rotation (ccw). The time given
here is to be implemented for a setpoint jump of 1000 rpm. That is to say, the drive follows the setpoint jump ramped down by 1000 revs in the time set
here.
Parameter 0x1D: t-ramp-down ccw
Description: Parameter is to be seen and used as the ramp slope (gradient) for the braking process in counter-clockwise rotation (ccw). The time given
here is to be implemented for a setpoint jump of 1000 rpm. That is to say, the drive follows the setpoint jump ramped down by 1000 revs in the time set
here.
97
10 Parameter Description
Parameter 0x1E: Speed controller KP
Description: Amplification factor (gain) for the proportional component in the speed controller.
Parameter 0x1F: Speed controller KI
Description: Amplification factor (gain) for the integral component in the speed controller.
Parameter 0x20: Speed controller KD
Description: Amplification factor (gain) for the differential component in the speed controller.
Parameter 0x21: K_ff
Description: The parameter K_ff (speed control input) is a link between the ramp generator target speed output and the setpoint of the speed controller
input.
This parameter can be used to zero the setpoint input of the speed controller or pass the ramp generator input to the speed controller with additional gain.
See also “Parameter 0x1E: Speed controller KP”.
PI controller structure
Target speed
+
Actual speed
KP
KI
dyn anti windup
+
Control structure K4
Target speedRamp generator
Target speed
K_ff
Target speed
Target position
98
Ramp generator
Only positioning
Position controller
K_p
Actual position
+
Target speed
Speed controller
K_p
K_I
Actual speed
I-Target
Current controller
K_p
K_I
Actual current
V
10 Parameter Description
60
Parameter 0x22: Actual speed value averaging
Description: The registered actual speed is filtered with a digital filter for the period defined here.
Parameter 0x23: Resolution of the actual outputs
Description: The resolution of the actual outputs.
Tolerance range of the actual outputs
55
50
45
40
35
30
25
20
Hexwert [Impulse / revolution]
15
10
5
0
Parameter 0x24: Speed signal threshold
Description: The speed signal threshold (amount) parameter defined from which speed a speed signal is set at an output.
Difference up to 5 %Difference up to 15 %Difference up to 10 %
0 1000 2000 3000 4000 5000 6000
Revolution [rpm]
99
10 Parameter Description
Parameter 0x25: Speed signal delta hysteresis
Description: Parameter is to be understood as being an absolute delta value (amount), which specifies the absolute threshold “speed signal threshold
– hysteresis speed signal delta”.
E.g.:
Speed signal threshold = 1000 rpm
Hysteresis speed signal delta = 150 rpm
Here the lower hysteresis threshold of the speed signal is therefore 850 rpm = (1000 – 150)
Parameter 0x26: FE_STROM_X1
Description: X axis interpolation point value X1.
Parameter 0x27: FE_STROM_X2
Description: X axis interpolation value X2.
Parameter 0x28: FE_STROM_X3
Description: X axis interpolation value X3
Parameter 0x29: FE_STROM_Y0
Description: Maximum current percentage below interpolation point X1.
Parameter 0x2A: FE_STROM_Y1
Description: Maximum current percentage for interpolation point X1.
Parameter 0x2B: FE_STROM_Y2
Description: Maximum current percentage for interpolation point X2.
Parameter 0x2C: FE_STROM_Y3
Description: Maximum current percentage for interpolation point X3.
100
Loading...
+ hidden pages
You need points to download manuals.
1 point = 1 manual.
You can buy points or you can get point for every manual you upload.