Datasheet VIPER12ASTR-E Specification

Page 1
VIPER12A-E
Low power offline switched-mode power supply primary switcher
Features
Fixed 60 kHz switching frequency
9 V to 38 V wide range V
Current mode control
Auxiliary undervoltage lockout with hysteresis
High voltage start-up current source
Overtemperature, overcurrent and overvoltage
protection with auto-restart
Typical power capability
– European (195 - 265 Vac) 8 W for SO-8,
13 W for DIP-8
– European (85 - 265 Vac) 5 W for SO-8,
8 W for DIP-8
Description
The VIPER12A combines a dedicated current mode PWM controller with a high voltage power MOSFET on the same silicon chip.
DD
DIP-8SO-8
Typical applications cover off line power supplies for battery charger adapters, standby power supplies for TV or monitors, auxiliary supplies for motor control, etc.
The internal control circuit offers the following benefits: Large input voltage range on the V accommodates changes in auxiliary supply voltage (This feature is well adapted to battery charger adapter configurations), automatic burst mode in low load condition and overvoltage protection in HICCUP mode.
DD
pin

Figure 1. Block diagram

DRAIN
ON/OFF
REGULATOR
INTERNAL
VDD
FB
8/14.5V
42V
SUPPLY
_
+
+
_
OVERTEMP.
DETECTOR
R
FF
S
OVERVOLTAGE
Q
December 2010 Doc ID 11977 Rev 2 1/21
LATCH
60kHz
OSCILLATOR
S
FF
R1
R2
R4QR3
PWM
LATCH
BLANKING
+
_
0.23 V
230 Ω
1 kΩ
SOURCE
www.st.com
21
Page 2
Contents VIPER12A-E
Contents
1 Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin connections and function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4 Rectangular U-I output characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5 Wide range of VDD voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
6 Feedback pin principle of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
7 Startup sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
8 Overvoltage threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
9 Operation pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
10 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
11 Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
12 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21 Doc ID 11977 Rev 2
Page 3
VIPER12A-E Electrical data

1 Electrical data

1.1 Maximum rating

Stressing the device above the rating listed in the “absolute maximum ratings” table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 1. Absolute maximum rating

Symbol Parameter Value Unit
(2)
(1)
-0.3 ... 730 V
-0.3 ... 400 V
200
1.5
V
kV
V
Switching drain source voltage (TJ = 25 ... 125 °C)
DS(sw)
Start-up drain source voltage (TJ = 25 ... 125 °C)
V
DS(st)
I
Continuous drain current Internally limited A
D
Supply voltage 0 ... 50 V
V
DD
I
Feedback current 3 mA
FB
Electrostatic discharge:
V
Machine model (R = 0 Ω; C = 200 pF)
ESD
Charged device model
Junction operating temperature Internally limited °C
T
J
Case operating temperature -40 to 150 °C
T
C
T
1. This parameter applies when the start-up current source is OFF. This is the case when the VDD voltage has reached V
2. This parameter applies when the start up current source is ON. This is the case when the VDD voltage has not yet reached V
Storage temperature -55 to 150 °C
stg
and remains above V
DDon
or has fallen below V
DDon
DDoff
.
.
DDoff

1.2 Thermal data

Table 2. Thermal data

Symbol Parameter SO-8 DIP-8 Unit
R
thJC
R
thJA
1. When mounted on a standard single-sided FR4 board with 200 mm2 of Cu (at least 35 µm thick) connected to all DRAIN pins.
Thermal resistance junction-case Max 25 15 °C/W
Thermal resistance ambient-case
(1)
Max 55 45 °C/W
Doc ID 11977 Rev 2 3/21
Page 4
Electrical characteristics VIPER12A-E

2 Electrical characteristics

TJ = 25 °C, V
= 18 V, unless otherwise specified
DD

Table 3. Power section

Symbol Parameter Test conditions Min Typ Max Unit
BV
Drain-source voltage ID = 1 mA; V
DSS
I
DSS
r
DS(on)
OFF State drain current
Static drain-source ON state resistance
tf Fall time
Rise time
t
r
Drain capacitance V
C
OSS
1. On clamped inductive load
= 500 V; V
V
DS
TJ = 125 °C
ID = 0.2 A ID = 0.2 A; 27 30
= 0.2 A ID = 0.2 A; TJ = 100 °C 54
I
D
= 0.1 A; V
I
D
(See Figure 9 on page 13)
I
= 0.2 A; V
D
(See Figure 9 on page 13)
= 25 V 40 pF
DS
= 2 V 730 V
FB
= 2 V;
FB
= 300 V
IN
= 300 V
IN
(1)
(1)
100 ns
50 ns
0.1 mA
Ω

Table 4. Supply section

Symbol Parameter Test conditions Min Typ Max Unit
400 V;
DS
DDon
HYST
(1)
-1 mA
0 mA
4.5 mA
I
DDch
I
DDoff
I
DD0
I
DD1
Start-up charging current
Start-up charging current in thermal shutdown
Operating supply current not switching
Operating supply current switching
100 V ≤ V
= 0 V ...V
V
DD
(See Figure 10 on page 13)
= 5 V; VDS = 100 V
V
DD
TJ > TSD - T
= 2 mA 3 5 mA
I
FB
I
= 0.5 mA; ID = 50 mA
FB
D
Restart duty-cycle (See Figure 11 on page 13) 16 %
RST
undervoltage
V
V
DDoff
V
DDon
V
DDhyst
V
DDovp
1. These test conditions obtained with a resistive load are leading to the maximum conduction time of the device.
DD
shutdown threshold
start-up
V
DD
threshold
V
threshold
DD
hysteresis
overvoltage
V
DD
threshold
(See Figure 10,
Figure 11 on page 13)
(See Figure 10,
Figure 11 on page 13))
(See Figure 10 on page 13) 5.8 6.5 7.2 V
4/21 Doc ID 11977 Rev 2
7 8 9 V
13 14.5 16 V
38 42 46 V
Page 5
VIPER12A-E Electrical characteristics

Table 5. Oscillation section

Symbol Parameter Test conditions Min Typ Max Unit
F
Oscillator frequency
OSC
total variation
= V
V
DD
TJ = 0 ... 100 °C
DDoff
... 35 V;
54 60 66 kHz

Table 6. PWM comparator section

Symbol Parameter Test conditions Min Typ Max Unit
G
I
Dlim
I
FBsd
RFB
t
ID
d
I
to ID current gain (See Figure 12 on page 14) 320
FB
Peak current limitation
I
shutdown current (See Figure 12 on page 14) 0.9 mA
FB
FB pin input impedance
Current sense delay to turn-OFF
= 0 V
V
FB
(See Figure 12 on page 14)
= 0 mA
I
D
(See Figure 12 on page 14)
I
= 0.2 A 200 ns
D
0.32 0.4 0.48 A
1.2 kΩ
tb Blanking time 500 ns
t
ONmin
Minimum Turn-ON time
700 ns

Table 7. Overtemperature section

Symbol Parameter Test conditions Min Typ Max Unit
TSD
T
HYST
Thermal shutdown temperature
Thermal shutdown hysteresis
(See Figure 13 on page 14) 140 170 °C
(See Figure 13 on page 14) 40 °C

Table 8. Typical power capability

Mains type SO-8 DIP-8
European (195 - 265 Vac) 8W 13W
US / Wide range (85 - 265 Vac) 5W 8W
Doc ID 11977 Rev 2 5/21
Page 6
Pin connections and function VIPER12A-E

3 Pin connections and function

Figure 2. Pin connection

SOURCE
SOURCE
FB
VDD
1
2
3
4
8
7
6
5
DRAIN
DRAIN
DRAIN
DRAIN
SO-8 DIP-8

Figure 3. Current and voltage conventions

I
DD
I
FB
V
DD
V
FB
VDD DRAIN
FB
VIPer12A
CONTROL
SOURCE
SOURCE
SOURCE
FB
VDD
1
2
3
4
I
D
V
D
8
DRAIN
7
DRAIN
6
DRAIN
5
DRAIN

Table 9. Pin function

Pin Name Pin Function
Power supply of the control circuits. Also provides a charging current during start up thanks to a high voltage current source connected to the drain. For this purpose, an hysteresis comparator monitors the V
V
DD
SOURCE Power MOSFET source and circuit ground reference.
DRAIN
FB
6/21 Doc ID 11977 Rev 2
: Voltage value (typically 14.5 V) at which the device starts switching and turns
- V
DDon
off the start up current source.
: Voltage value (typically 8 V) at which the device stops switching and turns on
- V
DDoff
the start up current source.
Power MOSFET drain. Also used by the internal high voltage current source during start up phase for charging the external VDD capacitor.
Feedback input. The useful voltage range extends from 0 V to 1 V, and defines the peak drain MOSFET current. The current limitation, which corresponds to the maximum drain current, is obtained for a FB pin shorted to the SOURCE pin.
voltage and provides two thresholds:
DD
Page 7
VIPER12A-E Rectangular U-I output characteristics

4 Rectangular U-I output characteristics

Figure 4. Rectangular U-I output characteristics for battery charger

A complete regulation scheme can achieve combined and accurate output characteristics.
Figure 4. presents a secondary feedback through an optocoupler driven by a TSM101. This
device offers two operational amplifiers and a voltage reference, thus allowing the regulation of both output voltage and current. An integrated OR function performs the combination of the two resulting error signals, leading to a dual voltage and current limitation, known as a rectangular output characteristic. This type of power supply is especially useful for battery chargers where the output is mainly used in current mode, in order to deliver a defined charging rate. The accurate voltage regulation is also convenient for Li-ion batteries which require both modes of operation.
Doc ID 11977 Rev 2 7/21
Page 8
Wide range of VDD voltage VIPER12A-E

5 Wide range of VDD voltage

The VDD pin voltage range extends from 9 V to 38 V. This feature offers a great flexibility in design to achieve various behaviors. In Figure 4 on page 7 a forward configuration has been chosen to supply the device with two benefits:
As soon as the device starts switching, it immediately receives some energy from the
auxiliary winding. C5 can be therefore reduced and a small ceramic chip (100 nF) is sufficient to insure the filtering function. The total start up time from the switch on of input voltage to output voltage presence is dramatically decreased.
The output current characteristic can be maintained even with very low or zero output
voltage. Since the TSM101 is also supplied in forward mode, it keeps the current regulation up whatever the output voltage is.The V the input voltage, that is to say with a ratio of about 4 for a wide range application.
pin voltage may vary as much as
DD
8/21 Doc ID 11977 Rev 2
Page 9
VIPER12A-E Feedback pin principle of operation

6 Feedback pin principle of operation

A feedback pin controls the operation of the device. Unlike conventional PWM control circuits which use a voltage input (the inverted input of an operational amplifier), the FB pin is sensitive to current. Figure 5. presents the internal current mode structure.

Figure 5. Internal current control structure

The power MOSFET delivers a sense current I
which is proportional to the main current Id.
s
R2 receives this current and the current coming from the FB pin. The voltage across R2 is then compared to a fixed reference voltage of about 0.23 V. The MOSFET is switched off when the following equation is reached:
R2ISIFB+() 0.23V=
By extracting I
Using the current sense ratio of the MOSFET G
:
S
I
GIDIS⋅ G
D
Doc ID 11977 Rev 2 9/21
0.23V
--------------- - IFB–=
I
S
R
2
:
ID
0.23V
⎛⎞
--------------- - IFB–
==
ID
⎝⎠
R
2
Page 10
Feedback pin principle of operation VIPER12A-E
The current limitation is obtained with the FB pin shorted to ground (VFB = 0 V). This leads to a negative current sourced by this pin, and expressed by:
FB
0.23V
--------------- -=
R
1
I
By reporting this expression in the previous one, it is possible to obtain the drain current limitation I
Dlim
:
1
1
I
Dlim
GID0.23V
⋅⋅=
⎛⎞
------ -
------ -+
⎝⎠
R
R
2
1
In a real application, the FB pin is driven with an optocoupler as shown on Figure 5 which acts as a pull up. So, it is not possible to really short this pin to ground and the above drain current value is not achievable. Nevertheless, the capacitor C is averaging the voltage on the FB pin, and when the optocoupler is off (start up or short circuit), it can be assumed that the corresponding voltage is very close to 0 V.
For low drain currents, the formula (1) is valid as long as IFB satisfies I I
is an internal threshold of the VIPER12A. If IFB exceeds this threshold the device will
FBsd
stop switching. This is represented on Figure 12 on page 14, and I
FBsd
FB
< I
FBsd
, where
value is specified in the PWM COMPARATOR SECTION. Actually, as soon as the drain current is about 12 % of Idlim, that is to say 50 mA, the device will enter a burst mode operation by missing switching cycles. This is especially important when the converter is lightly loaded.
Figure 6. I
It is then possible to build the total DC transfer function between I
transfer function
FB
and IFB as shown on
D
Figure 6 on page 10. This figure also takes into account the internal blanking time and its
associated minimum turn on time. This imposes a minimum drain current under which the device is no more able to control it in a linear way. This drain current depends on the primary inductance value of the transformer and the input voltage. Two cases may occur, depending on the value of this current versus the fixed 50 mA value, as described above.
10/21 Doc ID 11977 Rev 2
Page 11
VIPER12A-E Startup sequence

7 Startup sequence

Figure 7. Startup sequence

This device includes a high voltage start up current source connected on the drain of the device. As soon as a voltage is applied on the input of the converter, this start up current source is activated as long as V
is lower than V
DD
. When reaching V
DDon
, the start up
DDon
current source is switched off and the device begins to operate by turning on and off its main power MOSFET. As the FB pin does not receive any current from the optocoupler, the device operates at full current capacity and the output voltage rises until reaching the regulation point where the secondary loop begins to send a current in the optocoupler. At this point, the converter enters a regulated operation where the FB pin receives the amount of current needed to deliver the right power on secondary side.
This sequence is shown in Figure 7. Note that during the real starting phase t consumes some energy from the V
capacitor, waiting for the auxiliary winding to provide a
DD
, the device
ss
continuous supply. If the value of this capacitor is too low, the start up phase is terminated before receiving any energy from the auxiliary winding and the converter never starts up. This is illustrated also in the same figure in dashed lines.
Doc ID 11977 Rev 2 11/21
Page 12
Overvoltage threshold VIPER12A-E

8 Overvoltage threshold

An overvoltage detector on the VDD pin allows the VIPER12A to reset itself when VDD exceeds V overvoltage event. Note that this event is only latched for the time needed by V V
, and then the device resumes normal operation automatically.
DDoff

Figure 8. Overvoltage sequence

. This is illustrated in Figure 8., which shows the whole sequence of an
DDovp
V
DD
V
DDovp
V
DDon
V
DDoff
t
to reach
DD
V
DS
t
12/21 Doc ID 11977 Rev 2
Page 13
VIPER12A-E Operation pictures

9 Operation pictures

Figure 9. Rise and fall time

Figure 10. Start-up V
I
DD
I
DD0
V
DDhyst
V
DDoff
I
DDch
DD
current
V
DDon

Figure 11. Restart duty-cycle

VDS = 100 V
= 0 kHz
F
sw
V
DD
Doc ID 11977 Rev 2 13/21
Page 14
Operation pictures VIPER12A-E

Figure 12. Peak drain current vs feedback current

Figure 13. Thermal shutdown

14/21 Doc ID 11977 Rev 2
Page 15
VIPER12A-E Operation pictures

Figure 14. Switching frequency vs temperature

Figure 15. Current limitation vs temperature

Doc ID 11977 Rev 2 15/21
Page 16
Package mechanical data VIPER12A-E

10 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.
®
packages, depending on their level of environmental compliance. ECOPACK®
16/21 Doc ID 11977 Rev 2
Page 17
VIPER12A-E Package mechanical data

Table 10. DIP8 mechanical data

Databook (mm)
Ref.
Min. Nom. Max.
A 5.33
A1 0.38
A2 2.92 3.30 4.95
b 0.36 0.46 0.56
b2 1.14 1.52 1.78
c 0.20 0.25 0.36
D 9.02 9.27 10.16
E 7.62 7.87 8.26
E1 6.10 6.35 7.11
e2.54
eA 7.62
eB 10.92
L 2.92 3.30 3.81
Package Weight Gr. 470

Figure 16. Package dimensions

Doc ID 11977 Rev 2 17/21
Page 18
Package mechanical data VIPER12A-E

Table 11. SO8 mechanical data

Databook (mm)
Dim.
Nom Min Max
A 1.35 1.75
A1 0.10 0.25
A2 1.10 1.65
B 0.33 0.51
C 0.19 0.25
D 4.80 5.00
E 3.80 4.00
e 1.27
H 5.80 6.20
h 0.25 0.50
L 0.40 1.27
k 8° (max.)
ddd 0.1

Figure 17. Package dimensions

18/21 Doc ID 11977 Rev 2
Page 19
VIPER12A-E Order codes

11 Order codes

Table 12. Order codes

Order codes Package Packaging
VIPER12ASTR-E SO-8 Tape and reel
VIPER12AS-E SO-8 Tube
VIPER12ADIP-E DIP-8 Tube
Doc ID 11977 Rev 2 19/21
Page 20
Revision history VIPER12A-E

12 Revision history

Table 13. Document revision history

Date Revision Changes
09-Jan-2006 1 Initial release.
13-Dec-2010 2
Updated Table 3 on page 4, Table 4 on page 4 and Figure 10
on page 13.
20/21 Doc ID 11977 Rev 2
Page 21
VIPER12A-E
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2010 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 11977 Rev 2 21/21
Loading...