Datasheet UCB1510DB Datasheet (Philips)

Page 1

1. Description

2. Features

UCB1510
AC97 digital modem codec
Rev. 01 — 4 February 2000 Preliminary specification
The UCB1510 is a single chip, integrated mixed signal telecom codec that can directly be connected to a DAA and supports high speed modem protocols. The general purpose I/O pins provide programmable inputs and/or outputs to the system.
c
c

3. Applications

Sigma delta telecom codec with programmable sample rate, including digitally
controlled input voltage level, mute, loop back and clip detection functions. The telecom codec can be directly connected to a Data Access Arrangement (DAA) and includes a built in sidetone suppression circuit
AClink (rev 2.1) interface with secondary codec support
3.3 V supply voltageand built in power saving modes make the UCB1510 optimal
for portable and battery powered applications
5 V tolerant interface for motherboard/PC add on
Maximum operating current 25 mA
8 general purpose IO pins for line interface control
Interrupt detection driven wake up sequence for ring detect
Low cost 12.288 MHz crystal
Standalone modems
Integrated modems
Audio/Modem Riser (AMR) Cards
Mobile Daughter Cards (MDC)
Page 2
Philips Semiconductors
UCB1510
AC97 digital modem codec

4. Ordering information

Table 1: Ordering information
Type number Package
Name Description Version
UCB1510DB SSOP28 plastic shrink small outline package, 28 leads, body width 5.3mm SOT341-1

5. Block diagram

A0
PON
TINP
TINN
TOUTP
TOUTN
VREFBYP
Voltage reference
XTAL_IN/A1
ADC
DAC
down sample filter
up sample filter
XTAL_OUT
Clock buffers &
sample rate
dividers
Line1 PCM flow
data / control registers
GPIO
IO[7:0]
Serial bus interface
SDOUT SDIN SYNC RESET
BIT_CLK
Fig 1. Block diagram
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 2 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 3
Philips Semiconductors

6. Pinning information

6.1 Pinning

UCB1510
AC97 digital modem codec
VDDD
IO0 IO1 IO2 IO3
RESET
PON
SYNC
SDOUT
VSSD
SDIN
BIT_CLK
VDDD
Fig 2. Pin configuration

6.2 Pin description

1 2
3 4 5 6 7
A0
8
9 10 11 12 13 14 15
UCB1510
28
XTAL_OUT
27
XTAL_IN/A1
26
VSSA
25
TINN
24
TINP
23
VREFBYP
22
TOUTN
21
TOUTP
20
VDDA
19
VSSD
18
IO7
17
IO6
16
IO5 IO4
Table 2: Pin description
Symbol Pin Reset
state
V
DDD
1 - S digital supply
[1]
Type
IO0 2 input I/O IO1 3 input I/O IO2 4 input I/O IO3 5 input I/O RESET 6 - I A0 7 - I
PON 8 - I SYNC 9 - I/O SDOUT 10 - I V
SSD
SDIN 12 0 BIT_CLK 13 ­V
DDD
11 - S digital ground
[4]
[3]
O I/O
14 - S digital supply
IO4 15 input I/O
[2]
Description
C C C
C C C
general purpose I/O pins general purpose I/O pins general purpose I/O pins general purpose I/O pins asynchronous reset input address select (for secondary codec) -
inverted polarity
C
C C
C
C
C
asynchronous cold reset AClink synchronization input AClink data input
AClink data output AClink serial interface clock
general purpose I/O pins
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 3 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 4
Philips Semiconductors
UCB1510
AC97 digital modem codec
Table 2: Pin description
Symbol Pin Reset
IO5 16 input I/O IO6 17 input I/O IO7 18 input I/O V
SSD
V
DDA
19 - S digital ground
20 - S analog supply TOUTP 21 hi Z O TOUTN 22 hi Z O VREFBYP 23 hi Z I/O TINP 24 - I TINN 25 - I V
SSA
XTAL_IN/
26 - S analog ground
A1 27 -
…continued
[1]
state
[3]
Type
C C C
A A
A A A
IA/I
C
[2]
Description
general purpose I/O pins general purpose I/O pins general purpose I/O pins
positive telecom codec output negative telecom codec output external reference voltage bypass positive telecom codec input negative telecom codec input
Xtal oscillator/master clock input or inverted secondary address
XTAL_OUT 28 -
[1] After cold or warm reset, the AClink interface is active with MLNK bit reset. [2] I/OC = CMOS bidirectional; ID = digital input; S = supply; OA = analog output; IC = CMOS input;
IA= analog input; I/OA = analog bidirectional; OC = CMOS output.
[3] BIT_CLK is an input for AClink secondary codec, an output for primary codec. When BIT_CLK is an
output, the XTAL oscillator is active.
[4] SDIN is driving a 0 until a valid SYNC framing signal is received after cold reset.
[3]
O
A
Xtal oscillator output
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 4 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 5
Philips Semiconductors

7. Functional description

The functional description of the devices id described in Section 8 through
Section 15.

8. Telecom codec

The telecom codec contains an input channel, built up from a 64 times oversampling sigma delta analog to digital converter (ADC) with digital decimation filters, programmable gain and attenuation and built-in sidetone suppression circuit.
The output path consists of a digital up sample filter, a 64 time oversampling 4 bit digital to analog converter (DAC) circuit with integrated filter followed by a differential output driver, capable of directly driving a 600 isolation transformer. The output path includes a mute function. The telecom codec also incorporates loop back modes, in which codec output path and the input path are connected in series. The loop back tap and entry points are identified as circled letters in Figure 3, loop back modes are described in the AClink register definition.
UCB1510
AC97 digital modem codec
TOUTP
TOUTN
TINP
TINN
E
sidetone_enable
SIDETONE
SUPPRESSION
CIRCUIT
ADC[3:2]
DAC Mute
ADC
J
D
DAC
H
C
DIGITAL DECIMATION FILTER
DIGITAL NOISE SHAPER
14
G
14
B
Fig 3. Telecom codec block diagram
The telecom sample rate (fst) is derived from the AC master clock and is programmable using the sample rate registers. Not all AC97 specified sample rates are supported, refer to Table 3 “Sampling frequencies” for details.
PCM data is transferred in the slot 5 of the AClink.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 5 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 6
Philips Semiconductors
Table 3: Sampling frequencies
Sampling frequency (Hz) Register 0x40
7200 0x1C20 no recommended 8000 0x1F40 yes required
8228.57 (57600/7) 0x2024 no recommended 8400 0x20D0 no recommended 9000 0x2328 no recommended 9600 0x2580 yes required
10285.71 (72000/7) 0x282D no recommended 12000 0x2EE0 yes recommended
13714.29 (96000/7) 0x3592 yes required 16000 0x3E80 yes required 19200 0x4B00 yes recommended 24000 0x5DC0 yes recommended 48000 0xBB80 no recommended
value
UCB1510
AC97 digital modem codec
Support AC ‘97
requirements
Any programmed vlaue above 24 kHz will lead to a 24 kHz sampling rate. Changing the sampling rate while the codec is active may lead to unpredictable
results in the ADC and DAC chains and should be avoided. The output section of the telecom codec is designed to interface with a 600 line
through an isolation transformer. The built in mute function is activated by the DAC Mute bit in register 0x46. The output driver remains active in the mute mode, however no output signal is produced.
8.1 Digital filters
These filters are tailored for high speed modem performance. A voice band filter can be activated to reduce the noise in the lower frequencies.
Table 4: Filter characteristics
Parameter Condition Value
Group delay 25 samples Pass band ripple ±0.1 dB Out of band rejection >0.55 fs -50 dB Pass band (no voice band filter) 0.0016 to 0.45 fs Transition band 0.45 to 0.55 fs Voice band filter rejection band 0-0.0018 fs 30 dB Voice band filter cutoff frequency 0.05 fs
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 6 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 7
Philips Semiconductors

8.2 Analog interface

UCB1510
AC97 digital modem codec
UCB1510
TOUTP
A
Central Office
1:1 transformer
Rt
Rt
Ro
TINP
Ri Rs
Rg
­+
+
Rt
B
Fig 4. Typical telecom codec sidetone suppression circuit (without protection circuits).
Rt
TINN
Ro
TOUTN
An important built-in feature of the telecom codec is the sidetone suppression circuit. The sidetone suppression circuit is activated when sidetone_enable of register 0x5A is set.The sidetone suppression circuit subtracts part of the telecom output signal from the telecom input signal. As a result the available dynamic range of the input path can be more effectively utilized. If the sidetone suppression circuit is disabled, the telecom input dynamic range can be largely occupied by the telecom output signal.
Rs Ri
-
Rg
The built-in side tone suppression circuit, shown in Figure 4, has a fixed subtraction ratio, set be the resistors R
and Ri, which equals
s
600
. This ratio is calculated from
456
the following relations. The impedance seen by the telephone line equals:
Z
line

2RtR
×=

RoRi×
++
----------------- -
t
RoRi+
, differential, in which Rtrepresents winding resistance
of the transformer, divided by 2. Assuming Ri >> Ro, then
R
line
RtRtRo600 2 300Ω==++=
single ended.
A typical transformer has 156 winding impedance, thus Ro should be 144 . The ratio of the telecom input and output voltage is, therefore:
V
i(tel)
V
---------------------------------------
o(tel)
156 300 144++
156 300+
V
o(tel)
456
×=×=
-------- -
600
Proper sidetone suppression thus requires Rs/Ri to be Vi/Vo.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 7 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 8
Philips Semiconductors

9. On-chip reference circuit

The UCB1510 contains an on chip reference voltage source, which generates the bias currents and the virtual analog ground. Alternatively the UCB1510 can be driven from an external reference voltage source.
Bias ENA
vref_external
ena
Vbg
vref_bypass
internal bandgap reference voltage circuitry
&
&
UCB1510
AC97 digital modem codec
internal analog ground
Fig 5. Block diagram of the reference circuit.
Two bits in the control register 0x5A determine the mode of operation of this reference voltage circuit. vref_bypass connects the internal reference voltage to the VREFBYP pin, while vref_external disables the internal reference voltage and switches the UCB1510 into the external voltage reference mode.
If the internal reference voltage is connected to the VREFBYP pin, an external capacitor could be connected to filter this reference voltage. When choosing a capacitor, the internal impedance (around 50 k) should be taken into account.
If vref_external is set, an external voltage reference connected to the VREFBYP pin is used as the voltage reference by UCB1510.

10. Power supply strategy

Since all the control logic of the UCB1510 is powered by the V alwaysbe present on this pin for interrupts to be possible. V all the time although it is recommended to use the control bits to turn OFF the analog sections.
VREFBYP
, power should
DDD
needs not be present
DDA
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 8 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 9
Philips Semiconductors
11. Register definition

11.1 Supported registers

Table 5: Supported registers
Register Name
0x00 to 0x3A All audio registers are ignored 0x3C Extended Modem ID 0x3E Extended Modem Status and Control 0x40 Line1 DAC/ADC Rate 0x42 and 0x44 Reserved for future use 0x46 Line1 DAC/ADC Level 0x48 and 0x4A Reserved for future use 0x4C GPIO Pin Configuration 0x4E GPIO Pin Polarity 0x50 GPIO Pin Sticky 0x52 GPIO Pin Wake-up Mask 0x54 GPIO Pin Status 0x56 Miscellaneous Modem AFE Status and Control 0x58 Ignored 0x5A Codec control 0x5C Mode control 0x5E Test control 0x5E to 0x7A Ignored 0x7C Vendor ID1 0x7E Vendor ID2
UCB1510
AC97 digital modem codec

11.2 Register detail

Shaded areas indicate read only data.
11.2.1 Extended Modem ID
Table 6: Extended Modem ID Register
Register address: 0x3C; default: N/A
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol
Table 7: Description of Extended Modem ID bits
Bit Symbol Function/Value
D15:14 ID[1:0] {A1,A0} where A0 is the inverse polarity of the
D0 LIN1 Line 1 support indicator = 1 (i.e., Line 1 is supported).
[1] Writing this register will cause a register reset: all modem registers will then take their default values.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 9 of 32
ID1 ID0
polarity of XTAL_IN pin if A0 is HIGH (
0 0 0 0 LIN1
A0 pin. A1 is the inverse
A0 pin is LOW), otherwise A1 is 0.
© Philips Electronics N.V. 2000. All rights reserved.
Page 10
Philips Semiconductors
11.2.2 Extended Modem Status and Control
Table 8: Extended Modem Status and Control Register
Register address: 0x3E; default: 0xFFxx
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol PRH PRG PRF PRE PRD PRC PRB PRA Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol
Table 9: Description of Extended Modem status and Control bits
Bit Symbol Function/Value
D15 PRH Reserved, should be 1 D14 PRG Reserved, should be 1 D13 PRF Reserved, should be 1 D12 PRE Reserved, should be 1 D11 PRD 1 -> Line1 DAC OFF D10 PRC 1 -> Line1 ADC OFF D9 PRB 1 -> Line1 V D8 PRA 1 -> GPIO OFF D7 HDAC 0 (not supported) D6 HADC 0 (not supported) D5 DAC2 0 (not supported) D4 ADC2 0 (not supported) D3 DAC1 1 indicates Line1 DAC ready (means that the Line1 DAC and the V
D2 ADC1 1 indicates Line1 ADC ready (means that the Line1 ADC and the V
D1 MREF 1 indicates Line1 V D0 GPIO 1 indicates GPIO ready.
UCB1510
AC97 digital modem codec
HDAC HADC DAC2 ADC2 DAC1 ADC1 MREF GPIO
OFF
REF
are enabled and ready)
are enabled and ready)
REF
up to nominal level.
REF
REF
11.2.3 Line 1 Sample Rate
Table 10: Line 1 Sample Rate Register
Register address: 0x40; default: 0x1F40
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol SR15 SR14 SR13 SR12 SR11 SR10 SR9 SR8 Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol SR7 SR6 SR5 SR4 SR3 SR2 SR1 SR0
Refer to Table 3 “Sampling frequencies” for supported sample rates.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 10 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 11
Philips Semiconductors
11.2.4 Line 1 DAC/ADC Level
Table 11: Line 1 DAC/ADC Level Register
Register address: 0x46; default: 0x8080
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol DAC
Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol ADC
Table 12: Description of Line1 DAC/ADC Level bits
Bit Symbol Function/Value
D15 DAC mute DAC section is active, but no signal will be sent. D7 ADC mute ADC section is active, but no signal will be sent. D3-D2 ADC[3:2] ADC Gain (0 -> 0 dB, 1 -> 6 dB, 2 -> 12 dB, 3 -> 18 dB) D1-D0 ADC[1:0] These bits are ignored.
UCB1510
AC97 digital modem codec
mute
ADC3 ADC2 ADC1 ADC0
mute
11.2.5 GPIO Pin Configuration
Table 13: GPIO Pin Configuration Register
Register address: 0x4C; default: 0x00FF
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol GC7 GC6 GC5 GC4 GC3 GC2 GC1 GC0
The GPIO Pin Configuration register specifies whether a GPIO pin is configured for input (1) or for output (0).
11.2.6 GPIO Pin Polarity
Table 14: GPIO Pin Polarity Register
Register address: 0x4E; default: 0xFFFF
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol GP7 GP6 GP5 GP4 GP3 GP2 GP1 GP0
The GPIO Pin Polarity register defines GPIO Input Polarity (0 = Low, 1 = High) when a GPIO pin is configured as an input.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 11 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 12
Philips Semiconductors
11.2.7 GPIO Pin Sticky
Table 15: GPIO Pin Sticky Register
Register address: 0x50; default: 0x0000
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol GS7 GS6 GS5 GS4 GS3 GS2 GS1 GS0
The GPIO Pin Sticky register defines GPIO Input Type (0 = Non-Sticky, 1 = Sticky) when a GPIO pin is configured as input. Sticky is defined as Edge sensitive, Non-Sticky as Level-sensitive.
GPIO inputs configured as Sticky are cleared by writing a 0 to the corresponding bit of the GPIO Pin Status register 0x54, and by reset.
Remark: Changing GPIO control registers while a GPIO is sticky may cause unwanted interrupts and should be done carefully.
11.2.8 GPIO Wake-up Mask
UCB1510
AC97 digital modem codec
Table 16: GPIO Wake-up Mask Register
Register address: 0x52; default: 0x0000
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol GW7 GW6 GW5 GW4 GW3 GW2 GW1 GW0
The GPIO Pin Wake-up Mask register provides a mask for determining if an input GPIO change will generate a wake-up or GPIO_INT (0 = No, 1 = Yes).
When the AC-link is powered down, a wake-up event will trigger the assertion of SDIN. When the AC-link is powered up, a wake-up event will appear as GPIO_INT = 1 on bit 0 of input slot 12.
11.2.9 GPIO Pin Status
Table 17: GPIO Pin Status Register
Register address: 0x54; default: N/A
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol GI7 GI6 GI5 GI4 GI3 GI2 GI1 GI0
The GPIO Status register reflects the state of all GPIO pins (inputs and outputs) on slot 12.
When the GPIO is an output pin, the value set on slot #12 is transmitted directly to the pin. When the GPIO pin is a non-sticky input, the status of the pin is accessible in read mode. When the GPIO is a sticky Input, a transition, either from high to low (polarity = 0) or from low-to-high (polarity = 1), will assert the corresponding GI bit to 1. The GI bit will remain asserted until it is cleared by a write of 0.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 12 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 13
Philips Semiconductors
11.2.10 Miscellaneous Modem AFE Status and Control
Table 18: Miscellaneous Modem AFE Status and Control Register
Register address: 0x56; default: 0x0000
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol MLNK reserved, should be 0x0 Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol reserved, should be 0x0 L1B2 L1B1 L1B0
Table 19: Description of Miscellaneous Modem AFE Status and Control bits
Bit Symbol Function/Value
D13 MLNK 1 -> AClink goes to sleep. D[2:0] L1B[2:0] Line1 loop back modes (refer to Table 20).
Table 20: Loop back modes
See Figure 3.
Mode Description
0 Disabled 1 ADC loop back (incoming analog signal is amplified, digitized, down-sampled,
2 Local analog loop back (digital signal is up-sampled, converted to analog,
3 DAC loop back (digital signal is up-sampled, converted to analog, LOOPED
4 Remote analog loop back (incoming analog signal is amplified, LOOPED,
7 Digital loop back: signal is captured from the AC-link and sent back as is. Slot
UCB1510
AC97 digital modem codec
LOOPED, up-sampled, converted to analog, amplified/filtered) (G) to (B) loop.
amplified/filtered, LOOPED, amplified, digitized, down-sampled, sent back) (E) to (J) loop.
digitized, down-sampled, sent back) (E) to (J) loop. Same as mode 2.
amplified/filtered, sent back) (J) to (D) loop.
request for slot#5 is controlled according to the programmed sampling rate.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 13 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 14
Philips Semiconductors
11.2.11 Vendor Specific Codec Control
Table 21: codec_control Register
Register address: 0x5A; default: 0x0400
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol AC ME VE VB Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol 0 0 0SE0 0 0VF
Table 22: codec_control bits
Bit Symbol Function/Value
D12 AC adc_clip, in read mode, this bit indicates clipping in the line1 ADC.
D10 ME reserved, should be 1 D9 VE vref_external, overwrites VB D8 VB vref_bypass D[7:5],
D[3:1] D4 SE sidetone_enable D0 VF voice_filter:1->enable voice band digital filter.
UCB1510
AC97 digital modem codec
This indicator is sticky and should be cleared by writing it with a 0.
0 Bits marked ‘0’ are reserved for future use and should be programmed
with 0.
11.2.12 Vendor Specific Mode Control
Table 23: mode_control Register
Register address: 0x5C; default: 0x0000
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol reserved: 0x0 Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol 0 0 0 0 BITSTREAM
[1] Bits marked 0 are reserved for future use and should be programmed with 0.
Table 24: mode_control bits
Bit Symbol Function/Value
D0 BITSTREAM line1 ADC bitstream data is sent directly to IO4. The associated
clock is sent to IO6.
11.2.13 Vendor specific Test Control
Table 25: Test_control Register
Register address: 0x5E; default: N/A
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol
This register cannot be reset. It has no effect until the IC is put in vendor test mode (see Table 29 “Mode selection with AC pins”).
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 14 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 15
Philips Semiconductors
11.2.14 Vendor ID1
Table 26: Vendor ID1 Register
Register address: 0x7C; default: 0x5053
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol
11.2.15 Vendor ID2
Table 27: Vendor ID2 Register
Register address: 0x7E; default: 0x4301
Bit D15 D14 D13 D12 D11 D10 D9 D8 Symbol Bit D7 D6 D5 D4 D3 D2 D1 D0 Symbol
UCB1510
AC97 digital modem codec
0 1 0 1 0 0 0 0
0 1 0 1 0 0 1 1
0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 1

11.3 Register reset modes

11.3.1 Warm reset
When a warm reset is activated, MLNK is set to 0 but the other registers retain their values. If the codec is primary, the BIT_CLK is started and stabilized after 200 ms.
11.3.2 Cold reset
When a cold reset is activated, MLNK is set to 0 and all registers are programmed to their default values. If the codec is primary, the BIT_CLK is started and stabilized after 200 ms.
11.3.3 Register reset
A register reset causes all registers to return to their default values. Initiated by a write to register 0x3C.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 15 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 16
Philips Semiconductors

12. AC97 interface

12.1 Control register data transfer

The AClink frames is made of 13 slots. Slot0 is a 16-bit long tag slot, the remaining 12 slots are 20-bit long data transfer.
SYNC
UCB1510
AC97 digital modem codec
48KHz
Clock:12.288MHz
SDOUT (SLOT #)
16 bits
#0 #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #0
SLOT #0: TAG
Fig 6. AClink frame slot definition
Register update is done at the end of slot 2. The new register value is effective thereafter.
Slot #0 and slot #3 to #12 are shared by all codecs (primary and secondary). Multiple codecs using the same slot cannot be used at the same time. Slot #1 and slot #2 are used for register transfer and are codec specific. Addressing is defined in the Tag slot #0: The UCB1510 will send a 1 as Tag slot bit 15 whenever the AClink is active (MLNK is 0).
20bits
SLOT #2: CMD DATA
SLOT #1: CMD ADDR
SLOT #3 & #4:
not supported by UCB1510
SLOT #5: LINE1 DAC
SLOT #6.. #9:
SLOT #12: I/O CTRL
not supported by UCB1510
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 16 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 17
Philips Semiconductors
SYNC
BIT_CLK
UCB1510
AC97 digital modem codec
16 BIT_CLKs
SDOUT
(bit numbers)
1514131211109876 543210
0
Bit 15: If 1 then Valid Frame; if 0 then frame can be ignored
Bit 14: If 1 then Slot #1 (CMD_ADDR) is valid
Bit 13: If 1 then Slot #2 (CMD_DATA) is valid
Bit 12: If 1 then Slot #3 is valid - should be 0 for UCB1510
Fig 7. Tag slot bit definition (controller to codec)
16 BIT_CLKs
SYNC
19 18 17 16 15
SLOT #0
Bit 11: If 1 then Slot #4 is valid - should be 0 for UCB1510
Bit 10: If 1 then Slot #5 (Line 1) is valid
Bit 9: If 1 then Slot #6 is valid - should be 0 for UCB1510
Bit 8: If 1 then Slot #7 is valid - should be 0 for UCB1510
Bit7: If 1 then Slot #8 is valid - should be 0 for UCB1510
Bit 6: If 1 then Slot #9 is valid - should be 0 for UCB1510
Bit 5: If 1 then Slot #10 is valid - should be 0 for UCB1510
Bit 4: If 1 then SLot #11 s valid - should be 0 for UCB1510
Bit3: If 1 then Slot #12 (I/O Control) is valid
Bit 2: Unused, set to 0
Bit 1: Codec ID A1
SLOT #1
Bit 17: Register index[5]
Bit 19: Read/Write (1-> read)
Bit 18: Register index[6]
Bit 0: Codec ID A0
Bit 16: Register index[4]
Bit 15: Register index[3]
BIT_CLK
SDIN
(bit numbers)
1514131211109876 543210
0
SLOT #0
Bit 15: If 1 then Valid Frame; if 0 then frame can be ignored
Bit 14: If 1 then Slot #1 (CMD_ADDR) is valid
Bit 13: If 1 then Slot #2 (CMD_DATA) is valid
Bit 12: 0
Bit 11: 0
Bit 10: If 1 then Slot #5 is valid
Bit 9: 0
Bit 8: 0
Bit7: I0
Bit 6: 0
Bit 5: 0
Bit 4: 0
Bit3: If 1 then Slot #12 (I/O Control) is valid
19 18 17 16 15
SLOT #1
Bit 17: Register index[5]
Bit 19: Register_read
Bit 2: Unused, set to 0
Bit 1: 0
Bit 18: Register index[6]
Bit 0: 0
Bit 16: Register index[4]
Bit 15: Register index[3]
Fig 8. Tag slot bit definition (codec to controller)
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 17 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 18
Philips Semiconductors
UCB1510
AC97 digital modem codec

12.2 Codec addressing

Table 28: Codec addressing examples
CMD ADDR CMD DATA Codec ID
slot #0 bit 14
0 0 00 x idle No register data is transferred, slots1
1 x 00 1 primary read Read for primary codec register 1 1 00 0 primary write Write to a primary codec register x x 01 1 secondary read Read from the 01 secondary codec
x x 11 0 secondary write Write to a 11 secondary codec register
slot #0 bit 13
(A1, A0) slot #0
bits 1 and 0
12.2.1 Primary codec addressing
For addressing a primary codec, bits 1 and 0 of the Tag slot (codec ID A1 and A0) should be 0. The bits 13 and 14 are used for register data transfer. When the controller is not sending/receiving control data, it should be addressing the primary codec. When writing to a register, the bits 14 and 13 (ADDR and DATA valid) should be set to 1. When reading from a register, only the bit 14 is required to be 1.
Read/Write Transfer Description
slot #1 bit 19
and 2 are not valid
register
12.2.2 Secondary codec addressing
When the Codec ID (A1,A0) is not 00, the controller is addressing a secondary codec in a read or write sequence. The direction is defined in the slot 1 read/write bit (bit
19).

12.3 PCM sample transfer

Since the AClink frame frequency is defined to be 48kHz, exchanging samples with the controller at a different sampling rate requires the support of on demand sample transfer (slot request). The UCB1510 will send samples to the controller and assert the slot 5 valid bit in the slot#0 (bit10)of the AClink frame. When it needs a new sample from the controller, it will put a 0 on the slot5req bit in the slot#1 (bit9) of the AClink frame. When the slot5req bit is 1, it indicates to the controller that no new sample is needed. When the DAC is not active, the slot5req bit is kept at 0.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 18 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 19
Philips Semiconductors

12.4 Interrupt request from UCB1510

MLNK
BIT_CLK
SDIN
Fig 9. Setting the SDIN for interrupt request
12.4.1 When BIT_CLK is running
The AClink is active and the interrupt request is transmitted by setting the interrupt bit of slot 12 in the AClink frame.
UCB1510
AC97 digital modem codec
Interrupt request
Interrupt request is enabled
If UCB1510 is configured as a primary codec, this is the case when MLNK is set to 0. If UCB1510 is configured as a secondary codec, this is the case whether MLNK is set
to 0 or 1.
12.4.2 When BIT_CLK is stopped
In order to request an interrupt, the UCB1510 will assert the SDIN pin, if MLNK is set to 1. BIT_CLK is not needed for this to happen. This applies when UCB1510 is used as a primary or secondary codec.
If UCB1510 is configured as a primary codec, BIT_CLK is stopped as a result of MLNK being set to 1.
If UCB1510 is configured as a secondary codec, BIT_CLK is stopped when the controller shuts down the primary codec. For UCB1510 to generate interrupt while BIT_CLK is stopped, MLNK has to be set to 1 before BIT_CLK is stopped.
After BIT_CLK is stopped, SDIN will be brought to 0, unless an interrupt asserts it to 1. It is recommended that a level triggered interrupt detection is used in case the interrupt request is asserted at the same time BIT_CLK is stopped.

12.5 Wake-up request to the UCB1510

A cold reset will program the registers to their default value and will wake up the AClink.
When the AClink is not active (no BIT_CLK present), a rising SYNC will cause a warm reset. If MLNK is set to 1, a rising RESET will also cause a warm reset. After a warm reset, MLNK will be reset to 0.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 19 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 20
Philips Semiconductors

13. General purpose I/O

The UCB1510 has 8 programmable digital input/output (I/O) pins. These pins can be independently programmed for polarity, value, direction and interrupt through the GPIO control registers.

14. Interrupt generation

The UCB1510 contains a programmable interrupt control block. The internal interrupt signal presents the 'OR' function of all interrupt status bits and
can be used to give an interrupt to the system controller using the AClink interrupt protocol
The interrupt controller is implemented asynchronously. This provides the possibility to generate interrupts when BIT_CLK is stopped, e.g. an interrupt can be generated in power down mode, when the state of one of the IO pins changes (e.g. ring detect).

15. Reset circuit and mode selection

UCB1510
AC97 digital modem codec
The AC97 specification rev 2.1 describes a number of states and reset functions for a modem codec either in primary or secondary codec.

15.1 Resets

15.1.1 Pulling the PON pin LOW
The PON pin acts as a hardware reset and is typically connected to a power detection circuit.
15.1.2 Activating the RESET pin
Pulling the RESET pin low will start a cold or a warm reset sequence. If the circuit is active (MLNK = 0). A cold reset is started. The reset sequence will end
after the rising edge of RESET. Only then will the AClink be available. Vendor test modes are inactive as soon as the reset sequence starts so that mode sensing is possible.
If the MLNK bit is set when the RESET pin is pulled low, a warm reset is activated when RESET goes high again.
15.1.3 Activating the SYNC pin when AClink is inactive
When the AClink is not active (no BIT_CLK present), a rising SYNC will cause a warm reset.
15.1.4 Writing reg 0x3C
When written, the reg 0x3C will initiate a register reset. All registers are set to their default values.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 20 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 21
Philips Semiconductors

15.2 Vendor test modes

When starting a RESET pin induced cold reset, the AClink pins are sensed for Vendor Test mode selection. BIT_CLK does not need to be running at that moment
Table 29: Mode selection with AC pins
SYNC SDOUT Mode
0 0 Normal mode, the AClink is operating properly. 0 1 ATE test mode. All AClink pins are set to input thus allowing
1 0 Vendor test mode. 1 1 ATE test mode.
When the vendor test mode is activated, the vendor test register takes action. This mode is for test only and should not be used in normal operation. Exiting this mode requires a cold reset.

15.3 Primary/secondary codec selection

UCB1510
AC97 digital modem codec
board level JTAG testing.

16. Limiting values

Secondary codec implementation is selected by wiring the A0 pin low. When A0 is low (A0 is 1), the XTAL_IN is used as A1 thus allowing ‘01’ and ‘11’ as
secondary addresses. ‘10’ is not possible. The ID register will then reflect the A1,A0. Details can be found in the description of register 0x3C.
When the UCB1510 is a secondary codec, it derives its internal clock from BIT_CLK. BITCLK is therefore configured as input.
Table 30: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
V
DD
V
i
V
o
I
i(d)
I
o(d)
I
o
T
stg
[1] Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the
device. This is a stress rating only and functional operation of the device at these or any conditions other than those described in the Absolute Maximum Rating section of this specification is not implied
[2] Parameters are valid over the ambient operating temperature unless otherwise specified. All voltages
are with respect to V
supply voltage 0.5 +4.0 V DC input voltage 0.5 VDD+ 0.5 V DC output voltage VDD+ 0.5 V diode input current 10 mA diode output current 10 mA continuous output current,
digital outputs storage temperature 55 +150 °C
, unless otherwise noted.
SSD
4mA
[1].[2]
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 21 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 22
Philips Semiconductors
UCB1510
AC97 digital modem codec

17. Thermal characteristics

Table 31: Thermal characteristics
Symbol Parameter Conditions Value Unit
R
th(j-a)
thermal resistance from junction
55 K/W
to ambient in free air

18. Static characteristics

Table 32: Static characteristics
V
SSD=VSSA1
Symbol Parameter Conditions Min Typ Max Unit
V
DDD
V
DDA1
I
DDD
I
DDA1
I
DDA2
V
IL
V
IH
V
OL
V
OH
f
BIT_CLK
T
amb
=0V; T
=25°C; all voltages referenced to V
amb
; unless otherwise specified.
SSD
digital supply voltage 3.0 3.3 3.6 V analog supply voltage 3.0 3.3 3.6 V digital supply current digital supply current full functionality analog supply current Power down,
[1]
19 mA
[1]
−−mA t.b.d.
only oscillator is on LOW level input voltage 0.5 +0.2V HIGH level input voltage 0.8V
DDD
0.5V
DDD
DDD
V
V LOW level output voltage IOL=4mA −−0.4 V HIGH level output voltage IOH= 4 mA 0.8V
DDD
−−V serial interface clock frequency 12.288 MHz operating ambient temperature 20 70 °C
[1] Indicative value measured during the initial characterization.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 22 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 23
Philips Semiconductors
UCB1510
AC97 digital modem codec

19. Dynamic characteristics

Table 33: Dynamic characteristics
V
SSD=VSSA
specified.
Symbol Parameter Conditions Min Typ Max Unit
Telecom input
f
st
V
i(rms)
V
i(bias)
α
i
Z
i
S/N signal-to-noise ratio 60 75 dB THD total harmonic distortion −−75 60 dB LE
(d)(ADC)
RES codec resolution 14 bit PBRR pass-band ripple rejection f
SBR
vti
SBR
sht
D
offset
S
sup
Telecom output
f
st
V
o(rms)
V
o(bias)
RES codec resolution 14 bit S/N signal-to-noise ratio 60 75 dB THD total harmonic distortion −−75 dB PBRR pass-band ripple rejection SBR stop-band rejection f OBR
(rms)
Z
o(load)
E
offset
=0V; V
[1]
DDD=VDDA
= 3.3 V±10%; T
=25°C; V
amb
I(ref)
= 1.2 V; f
BIT_CLK
= 12.288 MHz; unless otherwise
sample frequency 8 kHz input voltage (RMS value) differentially applied to TINN
330 370 410 mV and TINP;ADC[3:2] = 1 (6 dB) in register 0x46
DC bias voltage TINN/TINP 1.2 1.6 V input gain 0 6 18 dB input gain step size 2 LSBs ignored, Bit 3 step 468dB input impedance 25 −−k
ADC differential linearity
−−2 LSB
error
plt<fsig<fpht
f
vht<fsig<fpht
; no voice filter
; voice filter
[3],[6]
−−1.2 dB
[3],[6]
−−1.2 dB
activated
stop-band rejection f
sig<fvti
f
sht<fsig
; voice filter activated
[3],[6]
30 −−dB
[3],[6]
50 −−dB
digital offset no signal applied to input −−50 LSB sidetone suppression
effectiveness
600 line impedance; 1:1 transformer with 156
20 −−dB
winding resistance
[2]
sample frequency 8 kHz output voltage (RMS value) differentially measured
1.35 1.85 V
between TOUTP and TOUTN
DC bias voltage TOUTP/TOUTN; telecom O/P
1.2 1.6 V
path enabled
[4],[6]
−−1.2 dB
[4],[6]
50 −−dB
−−25 mV
out-of-band rejection (RMS
sht
f>f
<f<f
st
st
value) load impedance 600 −−Ω offset error
[5]
−−100 mV
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 23 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 24
Philips Semiconductors
UCB1510
AC97 digital modem codec
Table 33: Dynamic characteristics
V
SSD=VSSA
=0V; V
DDD=VDDA
…continued
= 3.3 V±10%; T
=25°C; V
amb
I(ref)
= 1.2 V; f
BIT_CLK
= 12.288 MHz; unless otherwise
specified.
Symbol Parameter Conditions Min Typ Max Unit
On-chip reference circuit
V
i(ref)
reference voltage applied to
1.0 1.2 1.4 V
VREFBYP
t
STRTU
start-up time of internal
−−1000 ns
reference voltage circuit
Xtal oscillator
f Z
xtal
xtal
Operating frequency 12.288 MHz start-up time of internal
10 k
reference voltage circuit
AClink control register data transfer
f
acclk
D
acclk
CLK input frequency 0 12.288 MHz CLK duty factor 50 %
Reset circuit
t
W(NRESET)
t
W(rst)
[1] Additional test conditions: Fsample = 8 kHz; input signal 1 kHz, 300 mV (RMS); Line1_ADC_ON = 1; TEL_VOICE_ENA = 0,
input gain +6 dB [2] Additional test conditions: Fsampling 8 kHz; 0 dB output attenuation; 90% of digital full scale input voltage; 1200 load. [3] See Figure 10. [4] See Figure 11. [5] Deviation of the analog output from 0, with 0 code input to telecom output path. [6] All curves repeat around the sample frequency fsa or fst for telecom codec.
RESET pulse width 5 −−ns internal reset pulse width 32 t
CLK
ns
0dB
SBRvti
SBRsht
Fplt
Fvlt Fvht
PBRR
Voice filter enabled
Fpht
Fsht
f f f f f
plt
pht
sht
vlt
vht
0.0016 fst×=
0.42 fst×=
0.6 fst×=
0.018 fst×=
0.05 fst×=
Fig 10. Telecom input frequency response
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 24 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 25
Philips Semiconductors
UCB1510
AC97 digital modem codec
0dB
SBR
Fplt Fpht
Fig 11. Telecom output frequency response
PBRR
Frequency [Hz]
f f f
plt
pht
sht
0.0016 fst×=
0.42 fst×=
0.6 fst×=
Fsht
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 25 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 26
Philips Semiconductors

20. Package outline

UCB1510
AC97 digital modem codec
SSOP28: plastic shrink small outline package; 28 leads; body width 5.3 mm
D
c
y
Z
28 15
A
2
A
pin 1 index
1
SOT341-1
E
H
E
Q
L
p
L
(A )
A
X
v M
A
A
3
θ
114
b
e
DIMENSIONS (mm are the original dimensions)
UNIT A1A2A
Note
1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.
A
max.
0.21
mm
2.0
OUTLINE VERSION
SOT341-1 MO-150AH
0.05
1.80
1.65
IEC JEDEC EIAJ
0.25
b
0.38
0.25
p
cD
0.20
0.09
3
p
0 2.5 5 mm
(1)E(1) (1)
10.4
10.0
REFERENCES
Fig 12. SSOP28 package; SOT341-1.
detail X
w M
scale
eHELLpQZywv θ
5.4
0.65 1.25
5.2
7.9
7.6
1.03
0.63
0.9
0.7
EUROPEAN
PROJECTION
0.13 0.10.2
1.1
0.7
ISSUE DATE
93-09-08 95-02-04
o
8
o
0
9397 750 06856
© Philips Electronics N.V. 2000. All rights reserved.
Preliminary specification Rev. 01 — 4 February 2000 26 of 32
Page 27
Philips Semiconductors

21. Soldering

21.1 Introduction to soldering surface mount packages

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
Packages
There is no soldering method that is ideal for all surface mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.
21.2 Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.
UCB1510
AC97 digital modem codec
Data Handbook IC26; Integrated Circuit
(document order number 9398 652 90011).
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.

21.3 Wave soldering

Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically developed.
If wave soldering is used the following conditions must be observed for optimal results:
Use a double-wave soldering method comprising a turbulent wave with high
upward pressure followed by a smooth laminar wave. For packages with leads on two sides and a pitch (e):
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be
parallel to the transport direction of the printed-circuit board;
– smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the
transport direction of the printed-circuit board. The footprint must incorporate solder thieves at the downstream end. For packages with leads on four sides, the footprint must be placed at a 45° angle
to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 27 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 28
Philips Semiconductors
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

21.4 Manual soldering

Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.
When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.

21.5 Package related soldering information

Table 34: Suitability of surface mount IC packages for wave and reflow soldering
Package Soldering method
BGA, LFBGA, SQFP, TFBGA not suitable suitable HBCC, HLQFP, HSQFP, HSOP, HTQFP,
HTSSOP, SMS PLCC LQFP, QFP, TQFP not recommended SSOP, TSSOP, VSO not recommended
UCB1510
AC97 digital modem codec
methods
Wave Reflow
not suitable
[3]
, SO, SOJ suitable suitable
[2]
[3] [4] [5]
suitable
suitable suitable
[1]
[1] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the
Circuit Packages; Section: Packing Methods
[2] These packages are not suitable for wavesoldering as a solder joint between the printed-circuit board
and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
[3] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave
direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[4] Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger
than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
[5] Wave soldering is only suitablefor SSOP and TSSOP packages with apitch(e)equal to or larger than
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.

22. Revision history

Table 35: Revision history
Rev Date CPCN Description
01 991111 - Converted to DBII format.
The format of this specification has been redesigned to comply with Philips Semiconductors’ new presentation and information standard.
Data Handbook IC26; Integrated
.
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 28 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 29
Philips Semiconductors
AC97 digital modem codec

23.Data sheet status

UCB1510
Datasheet status Product status Definition
Objective specification Development This data sheet contains the design target or goal specifications for product development. Specification may
change in any manner without notice.
Preliminary specification Qualification This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips
Semiconductors reserves the right to make changes at any time without notice in order to improve design and
supply the best possible product.
Product specification Production This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any
time without notice in order to improve design and supply the best possible product.
[1] Please consult the most recently issued data sheet before initiating or completing a design.
24.Definitions
Short-form specification —Thedatainashort-formspecificationis
extractedfromafulldatasheetwiththesametypenumberandtitle.For detailed information see the relevant data sheet or data handbook.
Limiting values definition —Limitingvaluesgivenareinaccordancewith theAbsoluteMaximumRatingSystem(IEC60134).Stressaboveoneor moreofthelimitingvaluesmaycausepermanentdamagetothedevice. Thesearestressratingsonlyandoperationofthedeviceattheseoratany otherconditionsabovethosegivenintheCharacteristicssectionsofthe specificationisnotimplied.Exposuretolimitingvaluesforextendedperiods may affect device reliability.
Application information —Applicationsthataredescribedhereinforany oftheseproductsareforillustrativepurposesonly.PhilipsSemiconductors makenorepresentationorwarrantythatsuchapplicationswillbesuitablefor the specified use without further testing or modification.
[1]
25.Disclaimers
Life support —Theseproductsarenotdesignedforuseinlifesupport
appliances,devices,orsystemswheremalfunctionoftheseproductscan reasonablybeexpectedtoresultinpersonalinjury.PhilipsSemiconductors customersusingorsellingtheseproductsforuseinsuchapplicationsdoso attheirownriskandagreetofullyindemnifyPhilipsSemiconductorsforany damages resulting from such application.
Right to make changes —PhilipsSemiconductorsreservestherightto makechanges,withoutnotice,intheproducts,includingcircuits,standard cells,and/orsoftware,describedorcontainedhereininordertoimprove design and/or performance. Philips Semiconductors assumes no responsibilityorliabilityfortheuseofanyoftheseproducts,conveysno licenceortitleunderanypatent,copyright,ormaskworkrighttothese products,andmakesnorepresentationsorwarrantiesthattheseproducts arefreefrompatent,copyright,ormaskworkrightinfringement,unless otherwise specified.
9397 750 06856
© Philips Electronics N.V. 2000 All rights reserved.
Preliminary specification Rev. 01 — 4 February 2000 29 of 32
Page 30
Philips Semiconductors
AC97 digital modem codec
Philips Semiconductors - a worldwide company
UCB1510
Argentina: see South America Australia: Tel.+61297048141,Fax.+61297048139 Austria: Tel. +43160101, Fax.+431601011210 Belarus: Tel. +37517 220 0733, Fax.+37517 220 0773 Belgium: see The Netherlands Brazil:see South America Bulgaria: Tel. +359268 9211, Fax.+359268 9102 Canada: Tel. +18002347381 China/Hong Kong: Tel. +852 2 3197888, Fax.+8522 3197700 Colombia: see South America Czech Republic: see Austria Denmark: Tel. +453 2882636, Fax.+453 1570044 Finland: Tel. +3589615800, Fax.+358961580920 France: Tel. +33140996161, Fax.+33140996427 Germany: Tel. +4940235360, Fax.+49402353 6300 Hungary: see Austria India: Tel. +91224938541, Fax.+91224938722 Indonesia: see Singapore Ireland: Tel. +35317640000, Fax.+35317640200 Israel: Tel. +97236450444, Fax.+97236491007 Italy: Tel. +390392036838,Fax +390392036800 Japan: Tel. +81337405130, Fax.+81337405057 Korea: Tel. +8227091412, Fax.+8227091415 Malaysia: Tel. +60 37505214, Fax.+6037574880 Mexico: Tel. +9-58002347381 Middle East: see Italy
Netherlands: Tel. +31402782785, Fax.+31402788399 New Zealand: Tel. +6498494160, Fax.+6498497811 Norway: Tel. +4722748000, Fax.+4722748341 Philippines: Tel. +6328166380, Fax.+6328173474 Poland: Tel. +48225710000, Fax.+48225710001 Portugal: see Spain Romania: see Italy Russia: Tel. +70957556918, Fax.+70957556919 Singapore: Tel. +653502538, Fax.+652516500 Slovakia: see Austria Slovenia: see Italy South Africa: Tel. +27114715401, Fax.+27114715398 South America: Tel. +55118212333, Fax.+55118291849 Spain: Tel. +3433016312, Fax.+3433014107 Sweden: Tel. +4686322000, Fax.+4686322745 Switzerland: Tel. +4114882686, Fax.+4114817730 Taiwan: Tel. +886221342865, Fax.+886221342874 Thailand: Tel. +6627454090, Fax.+6623980793 Turkey: Tel. +902165221500, Fax.+902165221813 Ukraine: Tel. +380442642776, Fax.+380442680461 United Kingdom: Tel. +442087305000, Fax.+442087548421 United States: Tel. +18002347381 Uruguay: see South America Vietnam: see Singapore Yugoslavia: Tel. +38111625344, Fax.+38111635777
For all other countries apply to: Philips Semiconductors,
InternationalMarketing&SalesCommunications, BuildingBE, P.O.Box218, 5600MDEINDHOVEN, TheNetherlands,Fax.+31402724825
Internet:http://www.semiconductors.philips.com
(SCA68)
9397 750 06856
Preliminary specification Rev. 01 — 4 February 2000 31 of 32
© Philips Electronics N.V. 2000. All rights reserved.
Page 31
Philips Semiconductors
AC97 digital modem codec
Contents
UCB1510
1 Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
4 Ordering information. . . . . . . . . . . . . . . . . . . . . 2
5 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2
6 Pinning information. . . . . . . . . . . . . . . . . . . . . . 3
6.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
6.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3
7 Functional description . . . . . . . . . . . . . . . . . . . 5
8 Telecom codec. . . . . . . . . . . . . . . . . . . . . . . . . . 5
8.1 Digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
8.2 Analog interface . . . . . . . . . . . . . . . . . . . . . . . . 7
9 On-chip reference circuit . . . . . . . . . . . . . . . . . 8
10 Power supply strategy. . . . . . . . . . . . . . . . . . . . 8
11 Register definition. . . . . . . . . . . . . . . . . . . . . . . 9
11.1 Supported registers . . . . . . . . . . . . . . . . . . . . . 9
11.2 Register detail. . . . . . . . . . . . . . . . . . . . . . . . . . 9
11.2.1 Extended Modem ID. . . . . . . . . . . . . . . . . . . . . 9
11.2.2 Extended Modem Status and Control. . . . . . . 10
11.2.3 Line 1 Sample Rate . . . . . . . . . . . . . . . . . . . . 10
11.2.4 Line 1 DAC/ADC Level. . . . . . . . . . . . . . . . . . 11
11.2.5 GPIO Pin Configuration . . . . . . . . . . . . . . . . . 11
11.2.6 GPIO Pin Polarity . . . . . . . . . . . . . . . . . . . . . . 11
11.2.7 GPIO Pin Sticky . . . . . . . . . . . . . . . . . . . . . . . 12
11.2.8 GPIO Wake-up Mask . . . . . . . . . . . . . . . . . . . 12
11.2.9 GPIO Pin Status. . . . . . . . . . . . . . . . . . . . . . . 12
11.2.10 Miscellaneous Modem AFE Status and Control13
11.2.11 Vendor Specific Codec Control. . . . . . . . . . . . 14
11.2.12 Vendor Specific Mode Control . . . . . . . . . . . . 14
11.2.13 Vendor specific Test Control. . . . . . . . . . . . . . 14
11.2.14 Vendor ID1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.2.15 Vendor ID2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.3 Register reset modes . . . . . . . . . . . . . . . . . . . 15
11.3.1 Warm reset. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.3.2 Cold reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
11.3.3 Register reset. . . . . . . . . . . . . . . . . . . . . . . . . 15
12 AC97 interface . . . . . . . . . . . . . . . . . . . . . . . . . 16
12.1 Control register data transfer . . . . . . . . . . . . . 16
12.2 Codec addressing. . . . . . . . . . . . . . . . . . . . . . 18
12.2.1 Primary codec addressing . . . . . . . . . . . . . . . 18
12.2.2 Secondary codec addressing. . . . . . . . . . . . . 18
12.3 PCM sample transfer . . . . . . . . . . . . . . . . . . . 18
12.4 Interrupt request from UCB1510. . . . . . . . . . . 19
12.4.1 When BIT_CLK is running . . . . . . . . . . . . . . . 19
12.4.2 When BIT_CLK is stopped. . . . . . . . . . . . . . . 19
12.5 Wake-up request to the UCB1510 . . . . . . . . . 19
13 General purpose I/O. . . . . . . . . . . . . . . . . . . . . 20
14 Interrupt generation. . . . . . . . . . . . . . . . . . . . . 20
15 Reset circuit and mode selection. . . . . . . . . . 20
15.1 Resets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
15.1.1 Pulling the
15.1.2 Activating the
PON pin LOW. . . . . . . . . . . . . . . . 20
RESET pin . . . . . . . . . . . . . . . . 20
15.1.3 Activating the SYNC pin when AClink is
inactive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
15.1.4 Writing reg 0x3C. . . . . . . . . . . . . . . . . . . . . . . 20
15.2 Vendor test modes . . . . . . . . . . . . . . . . . . . . . 21
15.3 Primary/secondary codec selection . . . . . . . . 21
16 Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 21
17 Thermal characteristics. . . . . . . . . . . . . . . . . . 22
18 Static characteristics. . . . . . . . . . . . . . . . . . . . 22
19 Dynamic characteristics . . . . . . . . . . . . . . . . . 23
20 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 26
21 Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
21.1 Introduction to soldering surface mount
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
21.2 Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 27
21.3 Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 27
21.4 Manual soldering. . . . . . . . . . . . . . . . . . . . . . . 28
21.5 Package related soldering information . . . . . . 28
22 Revision history. . . . . . . . . . . . . . . . . . . . . . . . 28
23 Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 29
24 Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
25 Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
© Philips Electronics N.V. 2000. Printed in the U.S.A.
Allrightsarereserved.Reproductioninwholeorinpartisprohibitedwithouttheprior written consent of the copyright owner.
Theinformationpresentedinthisdocumentdoesnotformpartofanyquotationor contract,isbelievedtobeaccurateandreliableandmaybechangedwithoutnotice.No liabilitywillbeacceptedbythepublisherforanyconsequenceofitsuse.Publication thereofdoesnotconveynorimplyanylicenseunderpatent-orotherindustrialor intellectual property rights.
Date of release: 4 February 2000 Document order number: 9397 750 06856
Loading...