Datasheet TDA8765H-5-C1, TDA8765H-4-C1 Datasheet (Philips)

Page 1
DATA SH EET
Preliminary specification Supersedes data of 1998 May 08 File under Integrated Circuits, IC02
1999 Jan 06
INTEGRATED CIRCUITS
TDA8765
Page 2
1999 Jan 06 2
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
FEATURES
10-bit resolution
Sampling rate up to 55 MHz
•−3 dB bandwidth of 200 MHz
5 V power supplies
Binary or twos-complement CMOS outputs
In-range CMOS-compatible output
TLL- CMOS-compatible static digital inputs
3 to 5 V CMOS-compatible digital outputs
Differential clock input; Positive Emitter Coupled Logic
(PECL) compatible
Power dissipation 325 mW (typical)
Low analog input capacitance (typical 2 pF), no buffer
amplifier required
Integrated sample-and-hold amplifier
Differential analog input
External amplitude range control
Voltage controlled regulator included.
APPLICATIONS
High-speed analog-to-digital conversion for – Video signal digitizing – High Definition TV (HDTV) – Imaging (camera scanner) – Medical imaging – Telecommunication – Base-station receiver.
GENERAL DESCRIPTION
The TDA8765 is a bipolar 10-bit Analog-to-Digital Converter (ADC) optimized for telecommunications and professional imaging. It converts the analog input signal into 10-bit binary coded digital words at a maximum sampling rate of 55 MHz. All static digital inputs (SH,
CE and OTC) are TTL and CMOS compatible and all outputs are CMOS compatible. A sine wave clock input signal can also be used.
QUICK REFERENCE DATA
ORDERING INFORMATION
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
CCA
analog supply voltage 4.75 5.0 5.25 V
V
CCD
digital supply voltage 4.75 5.0 5.25 V
V
CCO
output supply voltage 3.0 3.3 5.25 V
I
CCA
analog supply current 33 tbf mA
I
CCD
digital supply current 30 tbf mA
I
CCO
output supply current f
CLK
= 4 MHz; fi= 400 kHz 3.2 tbf mA
INL integral non-linearity f
CLK
= 4 MHz; fi= 400 kHz −±0.5 ±1.75 LSB
DNL differential non-linearity f
CLK
= 4 MHz; fi= 400 kHz −±0.3 ±0.5 LSB
f
CLK(max)
maximum clock frequency
TDA8765H/4 40 −−MHz TDA8765H/5 55 −−MHz
P
tot
total power dissipation 325 tbf mW
TYPE
NUMBER
PACKAGE
SAMPLING
FREQUENCY (MHz)
NAME DESCRIPTION VERSION
TDA8765H/4
QFP44
plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 × 10 × 1.75 mm
SOT307-2
40
TDA8765H/5 55
Page 3
1999 Jan 06 3
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
BLOCK DIAGRAM
Fig.1 Block diagram.
handbook, full pagewidth
MGK801
MSB
data outputs
19
D9 D8 D7 D6 D5 D4 D3
43 42
39
11
V
ref
SH
1, 5 to 8, 12 to 14, 16, 31 and 32
n.c.
D2
21 22 23 24 25 26 27 28
29 30
D1 D0
LSB
V
CCO
33
IR
34
20
18
CMOS
OUTPUTS
LATCHES
ANALOG-TO-DIGITAL
CONVERTER
CLOCK DRIVER
15
V
CCD2
37
V
CCD1
41
V
CCA4
3
V
CCA3
9
V
CCA2
2
V
CCA1
36
CLK
35
CLK
CMOS
OUTPUT
OGND
OVERFLOW/
UNDERFLOW
LATCH
CEOTC
sample-
and-hold
TDA8765
17
DGND2
38
DGND1
40
AGND4
4
AGND3
10
AGND2
44
AGND1
V
I
V
I
AMP
Page 4
1999 Jan 06 4
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
PINNING
SYMBOL PIN DESCRIPTION
n.c. 1 not connected V
CCA1
2 analog supply voltage 1 (+5 V)
V
CCA3
3 analog supply voltage 3 (+5 V) AGND3 4 analog ground 3 n.c. 5 not connected n.c. 6 not connected n.c. 7 not connected n.c. 8 not connected V
CCA2
9 analog supply voltage 2 (+5 V) AGND2 10 analog ground 2 V
ref
11 reference voltage input n.c. 12 not connected n.c. 13 not connected n.c. 14 not connected V
CCD2
15 digital supply voltage 2 (+5 V) n.c. 16 not connected DGND2 17 digital ground 2 OTC
18
control input twos complement output; active HIGH
CE
19
chip enable input
(CMOS level; active LOW) IR 20 in-range output D9 21 data output; bit 9 (MSB) D8 22 data output; bit 8
D7 23 data output; bit 7 D6 24 data output; bit 6 D5 25 data output; bit 5 D4 26 data output; bit 4 D3 27 data output; bit 3 D2 28 data output; bit 2 D1 29 data output; bit 1 D0 30 data output; bit 0 (LSB) n.c. 31 not connected n.c. 32 not connected V
CCO
33 output supply voltage (3 to 5.25 V) OGND 34 output ground CLK
35
complementary clock input; active
LOW CLK 36 clock input V
CCD1
37 digital supply voltage 1 (+5 V) DGND1 38 digital ground 1 SH 39 sample-and-hold enable input
(CMOS level; active HIGH) AGND4 40 analog ground 4 V
CCA4
41 analog supply voltage 4 (+5 V)
V
I
42 positive analog input voltage
V
I
43 negative analog input voltage
AGND1 44 analog ground 1
SYMBOL PIN DESCRIPTION
Page 5
1999 Jan 06 5
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
Fig.2 Pin configuration.
handbook, full pagewidth
TDA8765H
MGK800
1 2 3 4 5 6 7 8
9 10 11
33 32 31 30 29 28 27 26 25 24 23
12
13
14
15
16
17
18
19
20
21
22
44
43
42
41
40
39
38
37
36
35
34
n.c.
n.c. n.c.
n.c. n.c.
V
CCA1
V
CCA3
V
CCA2
V
ref
AGND3
AGND2
n.c.
n.c.
n.c.
n.c.
IR
D9
D8
DGND2
V
CCD2
CE
OTC
n.c.
n.c.
OGND
DGND1
AGND4
AGND1
V
CCD1
V
CCA4
CLK
V
CCO
CLK
SH
D7
D6
D5
D4
D3
D2
D1
D0
VIV
I
Page 6
1999 Jan 06 6
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
Note
1. The supply voltages V
CCA
, V
CCD
and V
CCO
may have any value between 0.3 and +7.0 V provided that the supply
voltage differences VCC are respected.
HANDLING
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling integrated circuits.
THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
CCA
analog supply voltage note 1 0.3 +7.0 V
V
CCD
digital supply voltage note 1 0.3 +7.0 V
V
CCO
output supply voltage note 1 0.3 +7.0 V
V
CC
supply voltage difference
V
CCA
V
CCD
1.0 +1.0 V
V
CCD
V
CCO
1.0 +4.0 V
V
CCA
V
CCO
1.0 +4.0 V
V
I
input voltage at pins 42 and 43 referenced to AGND 0.3 V
CCA
V
V
i(p-p)
input voltage at pins 35 and 36 for differential clock drive (peak-to-peak value)
V
CCD
V
I
O
output current 10 mA
T
stg
storage temperature 55 +150 °C
T
amb
operating ambient temperature 0 +85 °C
T
j
junction temperature 150 °C
SYMBOL PARAMETER CONDITION VALUE UNIT
R
th(j-a)
thermal resistance from junction to ambient in free air 75 K/W
Page 7
1999 Jan 06 7
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
CHARACTERISTICS
V
CCA=V2
to V44, V9to V10, V3to V4 and V41to V40= 4.75 to 5.25 V; V
CCD=V37
to V38and V15to V17= 4.75 to 5.25 V;
V
CCO=V33
to V34= 3.0 to 5.25 V; AGND and DGND shorted together; T
amb
= 0 to 85 °C; typical values measured at
V
CCA=VCCD
= 5 V and V
CCO
= 3.3 V, T
amb
=25°C, V
I(p-p)
V
I(p-p)
= 2.0 V and CL= 10 pF; unless otherwise specified.
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supply
V
CCA
analog supply voltage 4.75 5.0 5.25 V
V
CCD
digital supply voltage 4.75 5.0 5.25 V
V
CCO
output supply voltage 3.0 3.3 5.25 V
I
CCA
analog supply current 33 45 mA
I
CCD
digital supply current 30 37 mA
I
CCO
output supply current f
CLK
= 4 MHz; fi= 400 kHz 3.2 tbf mA
f
CLK
= 40 MHz;
fi= 4.43 MHz
11 tbf mA
Inputs
CLK
AND CLK (REFERENCED TO DGND)
V
IL
LOW-level input voltage V
CCD
= 5 V; note 1 3.19 3.52 V
V
IH
HIGH-level input voltage V
CCD
= 5 V; note 1 3.83 4.12 V
I
IL
LOW-level input current V
CLK
or V
CLK
= 3.19 V 10 −−µA
I
IH
HIGH-level input current V
CLK
or V
CLK
= 3.83 V −−10 µA
Z
i
input impedance f
CLK
= 40 MHz 2 −−k
C
i
input capacitance f
CLK
= 40 MHz −−2pF
V
CLK(p-p)
differential AC input voltage for switching (V
CLK
V
CLK
;
peak-to-peak value)
DC voltage level = 2.5 V 0.5 2.0 V
OTC, SH AND CE (REFERENCED TO DGND); see Tables 2 and 3 V
IL
LOW-level input voltage 0 0.8 V
V
IH
HIGH-level input voltage 2.0 V
CCD
V
I
IL
LOW-level input current VIL= 0.8 V 20 −−µA
I
IH
HIGH-level input current VIH= 2.0 V −−20 µA
V
I
AND V
I
(REFERENCED TO AGND; see Table 1); V
REF
=V
CCA
1.825 V
I
IL
LOW-level input current 10 −µA
I
IH
HIGH-level input current 10 −µA
R
i
input resistance fi= 4.43 MHz 100 −−k
C
i
input capacitance fi= 4.43 MHz −−2pF
V
I(CM)
common mode input voltage VI= VI; output code 511
V
CCA
= 5 V tbf 3.6 tbf V
V
CCA
= 4.75 V tbf 3.35 tbf V
V
CCA
= 5.25 V tbf 3.85 tbf V
Page 8
1999 Jan 06 8
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
Voltage controlled regulator input V
ref
(referenced to AGND); note 2
V
ref
full-scale fixed voltage V
CCA
=5V 3.175 V
V
I(p-p)
V
I(p-p)
input voltage amplitude (peak-to-peak value)
V
ref=VCCA
1.825 V 2.0 V
I
ref
input current at V
ref
0.5 10 µA
Outputs (referenced to OGND)
D
IGITAL OUTPUTS D11 TO D0 AND IR (REFERENCED TO OGND)
V
OL
LOW-level output voltage IOL=2mA 0 0.5 V
V
OH
HIGH-level output voltage IOH= 0.4 mA V
CCO
0.5 V
CCO
V
I
o
output current in 3-state output level between 0.5 V
and V
CCO
20 +20 µA
Switching characteristics
C
LOCK FREQUENCY f
CLK
; see Fig.5
f
CLK(min)
minimum clock frequency SH = HIGH −−1 MHz
SH = LOW −−1 kHz
f
CLK(max)
maximum clock frequency
TDA8765H/4 40 −−MHz TDA8765H/5 55 −−MHz
t
CLKH
clock pulse width HIGH 8.5 −−ns
t
CLKL
clock pulse width LOW 8.5 −−ns
Analog signal processing; 50% clock duty factor; V
I
VI= 2.0 V; V
ref=VCCA
1.825 V; see Table 1
L
INEARITY
INL integral non-linearity f
CLK
= 4 MHz; fi= 400 kHz −±0.5 ±1.75 LSB
DNL differential non-linearity f
CLK
= 4 MHz; fi= 400 kHz;
no missing code
−±0.3 ±0.5 LSB
E
offset
offset error V
CCA=VCCD=VCCO
=5V;
T
amb
=25°C; VI= VI;
output code = 511
tbf 11 tbf mV
E
G
gain error amplitude; spread from device to device
V
CCA=VCCD=VCCO
=5V;
T
amb
=25°C;
V
I(p-p)
V
I(p-p)
= 2.0 V
5 +5 %FS
BANDWIDTH (f
CLK
= 55 MHz); note 3
B analog bandwidth 3 dB; full-scale input tbf 200 MHz
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 9
1999 Jan 06 9
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
HARMONICS (f
CLK
= 40 MHz)
H
fund(FS)
fundamental harmonics (full scale)
fi= 4.43 MHz −−0dB
H
tot(FS)
harmonics (full scale); all components
fi= 4.43 MHz
second harmonic −−75 dB third harmonic −−70 dB
THD total harmonic distortion f
i
= 4.43 MHz; note 4 −−66 dB THERMAL NOISE N
th(rms)
thermal noise (RMS value) grounded input;
f
CLK
= 40 MHz
0.2 tbf LSB
SPURIOUS FREE DYNAMIC RANGE DR
sf
spurious free dynamic range fi= 4.43 MHz tbf 71 dB
f
i
= 10 MHz tbf 68 dB
f
i
= 20 MHz tbf 67 dB SIGNAL-TO-NOISE RATIO; note 5 S/N signal-to-noise ratio without harmonics;
f
CLK
= 40 MHz;
fi= 4.43 MHz
59 dB
EFFECTIVE NUMBER OF BITS; see Figs 3 and 4 and note 5 N
bit
effective number of bits TDA8765H/4 (f
CLK
= 40 MHz)
fi= 4.43 MHz 9.0 9.6 bits f
i
=10MHz 9.6 bits
f
i
=15MHz 9.5 bits
effective number of bits TDA8765H/5 (f
CLK
= 55 MHz)
fi= 4.43 MHz 9.6 bits f
i
=10MHz 9.4 bits
f
i
=15MHz 9.3 bits
f
i
=20MHz 9.1 bits INTERMODULATION; note 6 TTIR two-tone intermodulation
rejection
f
CLK
= 40 MHz tbf 66 dB
d
3
third-order intermodulation distortion
f
CLK
= 40 MHz tbf 67 dB
BIT ERROR RATE BER bit error rate f
CLK
= 40 MHz; fi= 4.43 MHz; VI= ±16 LSB at code 511
10
15
tbf times/
sample
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Page 10
1999 Jan 06 10
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
Notes
1. The circuit has two clock inputs: CLK and CLK. There are four modes of operation: a) PECL mode 1 (DC level varies equal to DC level of V
CCD
): CLK and CLK inputs are at differential PECL levels.
b) PECL mode 2 (DC level varies equal to DC level of V
CCD
): CLK input is at PECL level and sampling is taken on the falling edge of the clock input signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a 100 nF capacitor.
c) PECL mode 3 (DC level varies equal to DC level of V
CCD
): CLK input is at PECL level and sampling is taken on the rising edge of the clock input signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a 100 nF capacitor.
d) AC driving mode 4: when driving the CLK input directly and with any AC signal of minimum 0.5 V (p-p) and with
a DC level of 2.5 V, the sampling takes place at the falling edge of the clock signal. When driving the CLK input with the same signal, sampling takes place at the rising edge of the clock signal. It is recommended to decouple the CLK or CLK input to DGND via a 100 nF capacitor.
2. It is possible with an external reference connected to pin V
ref
to adjust the ADC input range. This voltage has to be
referenced to V
CCA
. For V
CCA
1.825 V, the differential input voltage amplitude is 2 V (p-p).
3. The 3 dB analog bandwidth is determined by the 3 dB reduction in the reconstructed output, the input being a full-scale sine wave.
4. THD (total harmonic distortion) is obtained with the addition of the first five harmonics:
where F is the fundamental harmonic referenced at 0 dB for a full-scale sine wave input.
5. Effective number of bits are obtained via a Fast Fourier Transform (FFT). The calculation takes into account all harmonics and noise up to half of the clock frequency (Nyquist frequency). Conversion to SNR: SNR = N
bit
× 6.02 + 1.76 dB.
6. Intermodulation measured relative to either tone with analog input frequencies of 4.43 and 4.53 MHz. The two input signals have the same amplitude and the total amplitude of both signals provides full-scale to the converter (6dB below full scale for each input signal). d3 is the ratio of the RMS-value of either input tone to the RMS-value of the worst case third order intermodulation product.
7. Output data acquisition: the output data is available after the maximum delay of td.
Timing (C
L
= 10 pF); see Fig.5 and note 7
t
d(s)
sampling delay time −−2ns
t
h
output hold time 4 −−ns
t
d
output delay time V
CCO
= 5.25 V 10 15 ns
V
CCO
= 3.0 V 13 18 ns 3-state output delay times; see Fig.6 t
dZH
enable HIGH 14 18 ns
t
dZL
enable LOW 16 20 ns
t
dHZ
disable HIGH 16 20 ns
t
dLZ
disable LOW 14 18 ns
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
THD 20log
F
(2nd)2(3rd)2(4th)2(5th)2(6th)
2
++++
---------------------------------------------------------------------------------------------------------------=
Page 11
1999 Jan 06 11
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
Table 1 Output coding with differential inputs (typical values to AGND); V
i(p-p)
V
i(p-p)
= 2.0 V; V
ref=VCCA
1.825 V
Table 2 Mode selection
Note
1. X = don’t care.
Table 3 Sample-and-hold selection
CODE V
i(p-p)
V
i(p-p)
IR
BINARY OUTPUTS
TWOS COMPLEMENT
OUTPUTS
D9 TO D0 D9 TO D0
Underflow <3.1 >4.1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 3.1 4.1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 00 1 −−1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1
↓−−↓
511 3.6 3.6 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
↓−−↓
1022 −−1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1023 4.1 3.1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
Overflow >4.1 <3.1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
OTC
CE D0 TO D9 AND IR
0 0 binary; active 1 0 twos complement; active
X
(1)
1 high impedance
SH SAMPLE-AND-HOLD
1 active 0 inactive; tracking mode
Page 12
1999 Jan 06 12
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
Fig.4 Typical fast Fourier transform (f
CLK
= 50 MHz; fi= 21.4 MHz).
Effective bits: 9.12; THD = 62.5 dB. Harmonic levels (dB): 2nd = 73.0; 3rd = 63.4; 4th = 80.9; 5th = 78.1; 6th = 74.4.
handbook, full pagewidth
0
160
140
0 5 10 15
f (MHz)
amplitude
(dB)
2520
80
60
40
20
120
100
MGL431
Fig.3 Typical fast Fourier transform (f
CLK
= 40 MHz; fi= 4.43 MHz).
Effective bits: 9.68; THD = 70.8 dB. Harmonic levels (dB): 2nd = 80.3; 3rd = 74.5; 4th = 87.7; 5th = 76.4; 6th = 78.6.
handbook, full pagewidth
0
160
140
0 5 10 15
f (MHz)
amplitude
(dB)
20
80
60
40
20
120
100
MGL430
Page 13
1999 Jan 06 13
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
Fig.5 Timing diagram.
handbook, full pagewidth
t
d(s)
sample N + 1
sample N
CLK
MBH427
sample N + 2
DATA
D0 to D9
t
d
t
h
HIGH
LOW
HIGH
LOW
50%
DATA
N + 1
DATA
N
DATA
N 1
DATA
N 2
50%
t
CLKH
t
CLKL
V
I
Fig.6 Timing diagram and test conditions of 3-state output delay time.
fCE= 100 kHz.
handbook, full pagewidth
MBH423
50 %
50 %
HIGH
LOW
t
dZH
t
dHZ
50 %
HIGH
LOW
t
dZL
t
dLZ
10 %
90 %
output data
V
CCD
output data
3.3 k
15 pF
S1
V
CCD
TDA8765
CE
CE
TEST
t
dLZ
t
dZL
t
dHZ
S1
V
CCD
V
CCD DGND DGND
t
dZH
0 V
Page 14
1999 Jan 06 14
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
APPLICATION INFORMATION
Fig.7 Application diagram.
The analog, digital and output supplies should be separated and decoupled. (1) Single-ended clock signals can be applied if required. (2) R1 and R2 must be determined in order to obtain a middle voltage of 3.6 V; see common mode input voltage.
In addition, the minimum current into these resistors should be about 1 mA in order to ensure a sufficient analog input stability.
(3) V
ref
must be decoupled to V
CCA
.
handbook, full pagewidth
MGK802
1
R1
1 : 1
R2
V
CCA
2
3 4 5 6 7 8 9 10 11
12
n.c.
n.c.
n.c. n.c.
13 14 15 16 17 18 19 20 21 22
IR
D9
(MSB)
D8
TDA8765
44 43 42 41 40 39 38 37 36 35 34
33 32 31 30 29 28
26 25 24 23
27
n.c.
n.c
5 V
100 nF
5 V
100 nF
100 nF
10 nF4.7 µF
220 nF
100 nF
100
output format select
chip select input
5 V
100 nF
V
ref
(3)
5 V
n.c.
n.c.
n.c.
n.c.
IN
n.c.
CLK
CLK
(1)
100 nF
100 nF
5 V5 V SH
mode
100
D2
D1
D0 (LSB)
D3 D4 D5 D6 D7
V
I
V
I
Page 15
1999 Jan 06 15
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
PACKAGE OUTLINE
UNIT A1A2A3bpcE
(1)
eH
E
LL
p
Zywv θ
REFERENCES
OUTLINE
VERSION
EUROPEAN
PROJECTION
ISSUE DATE
IEC JEDEC EIAJ
mm
0.25
0.05
1.85
1.65
0.25
0.40
0.20
0.25
0.14
10.1
9.9
0.8 1.3
12.9
12.3
1.2
0.8
10
0
o
o
0.15 0.10.15
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.95
0.55
SOT307-2
95-02-04 97-08-01
D
(1) (1)(1)
10.1
9.9
H
D
12.9
12.3
E
Z
1.2
0.8
D
e
E
B
11
c
E
H
D
Z
D
A
Z
E
e
v M
A
X
1
44
34
33 23
22
12
y
θ
A
1
A
L
p
detail X
L
(A )
3
A
2
pin 1 index
D
H
v M
B
b
p
b
p
w M
w M
0 2.5 5 mm
scale
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm
SOT307-2
A
max.
2.10
Page 16
1999 Jan 06 16
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
SOLDERING Introduction to soldering surface mount packages
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“Data Handbook IC26; Integrated Circuit Packages”
(document order number 9398 652 90011). There is no soldering method that is ideal for all surface
mount IC packages. Wave soldering is not always suitable for surface mount ICs, or for printed-circuit boards with high population densities. In these situations reflow soldering is often used.
Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, infrared/convection heating in a conveyor type oven. Throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface temperature of the packages should preferable be kept below 230 °C.
Wave soldering
Conventional single wave soldering is not recommended for surface mount devices (SMDs) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically developed.
If wave soldering is used the following conditions must be observed for optimal results:
Use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave.
For packages with leads on two sides and a pitch (e): – larger than or equal to 1.27 mm, the footprint
longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board;
– smaller than 1.27 mm, the footprint longitudinal axis
must be parallel to the transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
For packages with leads on four sides, the footprint must be placed at a 45° angle to the transport direction of the printed-circuit board. The footprint must incorporate solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C.
When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
Page 17
1999 Jan 06 17
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
Suitability of surface mount IC packages for wave and reflow soldering methods
Notes
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the Drypack information in the
“Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”
.
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink (at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction. The package footprint must incorporate solder thieves downstream and at the side corners.
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
DEFINITIONS
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
PACKAGE
SOLDERING METHOD
WAVE REFLOW
(1)
BGA, SQFP not suitable suitable HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable
(2)
suitable
PLCC
(3)
, SO, SOJ suitable suitable
LQFP, QFP, TQFP not recommended
(3)(4)
suitable
SSOP, TSSOP, VSO not recommended
(5)
suitable
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Page 18
1999 Jan 06 18
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
NOTES
Page 19
1999 Jan 06 19
Philips Semiconductors Preliminary specification
10-bit high-speed Analog-to-Digital Converter (ADC)
TDA8765
NOTES
Page 20
Internet: http://www.semiconductors.philips.com
Philips Semiconductors – a worldwide company
© Philips Electronics N.V. 1999 SCA61 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Middle East: see Italy Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919 Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO, SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381, Fax. +1 800 943 0087
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 62 5344, Fax.+381 11 63 5777
For all other countries apply to: Philips Semiconductors, International Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381, Fax. +1 800 943 0087
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,
Tel. +45 33 29 3333, Fax. +45 33 29 3905 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615 800, Fax. +358 9 6158 0920 France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 2353 60, Fax. +49 40 2353 6300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 489 4339/4239, Fax. +30 1 481 4240
Hungary: see Austria India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025, Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510, Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3, 20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905, Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087
Printed in The Netherlands 545104/750/02/pp20 Date of release: 1999Jan 06 Document order number: 9397 750 04716
Loading...