Datasheet TDA8046 Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
TDA8046
Multi-mode QAM demodulator
Product specification Supersededs data of 1996 Jul 23 File under Integrated Circuits, IC02
1996 Nov 19
Page 2
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
CONTENTS
1 FEATURES 2 APPLICATION 3 QUICK REFERENCE DATA 4 ORDERING INFORMATION 5 BLOCK DIAGRAM 6 PINNING 7 FUNCTIONAL DESCRIPTION
7.1 Functional description of the individual blocks
7.1.1 Quadrature demodulator and half Nyquist filter
7.1.2 Equalizer
7.1.3 Lock detector
7.1.4 Carrier recovery
7.1.5 Clock recovery
7.1.6 AGC
7.1.7 Offset control
7.1.8 Loop amplifiers
7.1.9 Output formatter
7.1.10 Boundary scan
7.1.11 I2C-bus interface
7.1.12 I2C-bus write parameters
7.1.13 I2C-bus read parameters 8 LIMITING VALUES 9 THERMAL CHARACTERISTICS 10 DEMODULATOR AND HALF NYQUIST
FILTER CHARACTERISTICS 11 LOCK DETECTOR CHARACTERISTICS 12 CARRIER RECOVERY CHARACTERISTICS 13 CLOCK RECOVERY CHARACTERISTICS 14 AGC CHARACTERISTICS 15 INTEGRATED LOOP AMPLIFIERS
CHARACTERISTICS 16 CHARACTERISTICS OF DIGITAL INPUTS
AND OUTPUTS 17 PACKAGE OUTLINE 18 SOLDERING
18.1 Introduction
18.2 Reflow soldering
18.3 Wave soldering
18.4 Repairing soldered joints 19 DEFINITIONS 20 LIFE SUPPORT APPLICATIONS 21 PURCHASE OF PHILIPS I2C COMPONENTS
Page 3
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
1 FEATURES
Different modulation schemes: 4, 16, 32,
64 and 256-QAM
Digital demodulator and square root raised cosine
Nyquist filter with roll-off of 15% or 20%
High performance adaptive equalizer (no training
sequence needed)
Digital detectors for generation of required control
voltages for carrier recovery, clock recovery and AGC
Input format: Straight binary or 2’s complement (up to 9 bits, TTL compatible)
Output format: 8-bit wide bus (CMOS compatible)
2
C-bus interface to initialize and monitor the
I demodulator. When no I2C-bus usage; 64-QAM, 20% roll-off factor in default mode
5 V peripheral and analog supply voltage
3.3 V core supply voltage
Boundary scan test.
Digital-to-analog converters and operational amplifiers
allowing high flexibility for selection of the (PLL) loop
2 APPLICATION
time constants
High maximum symbol rate (r
) of 7 Msymbols/s
s
Demodulation for digital cable TV and cable modem.
3 QUICK REFERENCE DATA
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V
DDD(core)
V
DDD
V
DDA
I
DDD(core)
I
DDD
I
DDA
r
s
core supply voltage 3.00 3.30 3.60 V digital peripheral supply voltage 4.75 5.00 5.25 V analog supply voltage 4.75 5.00 5.25 V core supply current V digital peripheral supply current V analog supply current V
DDD(core) DDD DDA
= 3.3 V; note 1 100 mA = 5 V; note 1 14 mA = 5 V; note 1 16 mA
symbol rate −−7 Msym/s IL implementation loss note 2 0.7 dB α Nyquist roll-off (programmable) 15 or 20 % SNR
lock
signal-to-noise ratio for locking a
21 −−dB
64-QAM constellation
signal-to-noise ratio for locking a
27 −−dB
256-QAM constellation
Notes
1. The supply currents are specified for the maximum symbol frequency.
2. The implementation loss (IL) of the demodulator is defined as the distance between the measured and theoretical BER curve as function of signal-to-noise ratio at a BER = 10 This performance depends on the chosen loop parameters (see
6
for a back-to-back measurement at the IF frequency.
Application notes
).
4 ORDERING INFORMATION
TYPE
NUMBER
NAME DESCRIPTION VERSION
TDA8046H QFP64 plastic quad flat package; 64 leads (lead length 1.95 mm);
PACKAGE
SOT319-2
body 14 × 20 × 2.8 mm
Page 4
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
5 BLOCK DIAGRAM
book, full pagewidth
SSD1 to 12
V
DDD1 to 9
V
TMS
TDO
TDI
TRST
TCK
TEST3
TEST2
TEST1
7, 12, 14, 17,
24, 26, 31, 34,
46, 50, 61, 64
6, 13, 16, 
25, 33, 38, 
45, 51, 63
44
47
48
42
SCAN TEST
BOUNDARY
43
39
40
41
C-BUS 
2
I
TDA8046
CONTROL
DO0
DO7 to
27 to 30
20 to 23
FINE AGC
CONTROL
OFFSET
CONTROL
SQUARE ROOT
to DACs
internal clock for
digital processing
srs
2r
s
CLOCK GENERATOR
4r
CLKSDV
CLKOUT
32
18
OUTPUT
FORMATTER
FINE AGC
EQUALIZER
OFFSET
PHASE
DIGITAL
ROTATOR
SQUARE ROOT
RAISED COSINE
RAISED COSINE
DEMODULATOR
INPUT
TATION
REPRESEN-
CARRIER
RECOVERY
NCO
CONTROL
CLOCK
RECOVERY
AGC
COARSE
ref
ref3
I
V
DAC
ref1Iref2Iref3
I
BIAS
GENERATOR
ref
ANALOG SECTION
V
ref
ref2
I
V
DAC
ref
ref1
I
V
DAC
565552
5857
59
60
5453
MGG198
CARREC
V
CARTC
V
BIAS
I
CLKREC
V
CLKTC
V
SSA
V
DDA
V
AGC
V
AGCTC
V
Fig.1 Block diagram.
15
35
36
37
SCL
SDA
62
A0
CLK
CLKADC
1 to 5,
8 to 11
DIN0
to
DIN8
1996 Nov 19 4
49
PRESET
19
CLKT
Page 5
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
6 PINNING
SYMBOL PIN I/O DESCRIPTION
DIN0 1 I digital input bit 0 (LSB) DIN1 2 I digital input bit 1 DIN2 3 I digital input bit 2 DIN3 4 I digital input bit 3 DIN4 5 I digital input bit 4 V
DDD1
V
SSD1
DIN5 8 I digital input bit 5 DIN6 9 I digital input bit 6 DIN7 10 I digital input bit 7 DIN8 11 I digital input bit 8 (MSB) V
SSD2
V
DDD2
V
SSD3
CLKADC 15 O clock output to ADC (4 × r V
DDD3
V
SSD4
CLKSDV 18 O clock symbol data valid output CLKT 19 I for test purpose only DO7 20 O parallel data output (bit 7) DO6 21 O parallel data output (bit 6) DO5 22 O parallel data output (bit 5) DO4 23 O parallel data output (bit 4) V
SSD5
V
DDD4
V
SSD6
DO3 27 O parallel data output (bit 3) DO2 28 O parallel data output (bit 2) DO1 29 O parallel data output (bit 1) DO0 30 O parallel data output (bit 0) V
SSD7
CLKOUT 32 I output formatter clock output V
DDD5
V
SSD8
SCL 35 I serial clock input (I SDA 36 I/O serial data input/output (I A0 37 I hardware address input (I V
DDD6
TEST3 39 I test input 3 (normally connected to ground) TEST2 40 I test input 2 (normally connected to ground)
6 supply digital peripheral supply voltage 1 (+5 V) 7 supply digital ground 1; for input peripheral and core
12 supply digital ground 2; for core and clock buffers 13 supply digital supply voltage 2; for core and clock buffers (+3.3 V) 14 supply digital peripheral ground 3
)
s
16 supply digital peripheral supply voltage 3 (+5 V) 17 supply digital ground 4; for core
24 supply digital peripheral ground 5 25 supply digital peripheral supply voltage 4 (+5 V) 26 supply digital ground 6; for core
31 supply digital peripheral ground 7
33 supply digital peripheral supply voltage 5 (+5 V) 34 supply digital peripheral ground 8
2
C-bus)
2
C-bus)
2
C-bus)
38 supply digital peripheral supply voltage 6 (+5 V)
Page 6
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
SYMBOL PIN I/O DESCRIPTION
TEST1 41 I test input 1 input (normally connected to ground) TRST 42 I optional asynchronous reset input TCK 43 I dedicated test clock input TMS 44 I input control signal V
DDD7
V
SSD9
TDO 47 O serial test data output TDI 48 I serial test data input PRESET 49 I set device into default mode input V
SSD10
V
DDD8
I
BIAS
V
AGCTC
V
AGC
V
CARTC
V
CARREC
V
CLKTC
V
CLKREC
V
SSA
V
DDA
V
SSD11
CLK 62 I clock input (4 × r V
DDD9
V
SSD12
45 supply digital supply voltage 7; for core (+3.3 V) 46 supply digital ground 9; for core
50 supply digital ground 10; for the digital section of the analog block 51 supply digital supply voltage 8; for the digital section of the analog block (+5 V) 52 I input bias current for DACs 53 O inverted operational amplifier input voltage for loop filtering 54 O analog output voltage for AGC 55 O inverted operational amplifier input voltage for carrier recovery loop
filtering 56 O analog output voltage for carrier recovery 57 O inverted operational amplifier input voltage for clock recovery loop
filtering 58 O analog output voltage for clock recovery 59 supply analog ground 60 supply analog supply voltage (+5 V) 61 supply digital ground 11; for clock
)
s
63 supply digital supply voltage 9; for clock 64 supply digital peripheral ground 12
Page 7
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
DDD9
handbook, full pagewidth
DIN0 DIN1
DIN2 DIN3
DIN4
V
DDD1
V
SSD1
DIN5 DIN6 DIN7 DIN8
V
SSD2
V
DDD2
V
SSD3
CLKADC
V
DDD3
V
SSD4
CLKSDV
CLKT
SSD12
V
V 64
63 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19
20
21
CLK
62
22
SSD11
V 61
23
DDA
V 60
TDA8046
24
SSA
V 59
25
CLKREC
V
V 58
57
26
27
CLKTC
V 56
28
CARREC
CARTC
V 55
29
AGC
V 54
30
AGCTC
V 53
31
BIAS
I 52
32
51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
MGG197
V
DDD8
V
SSD10
PRESET TDI TDO V
SSD9
V
DDD7
TMS TCK TRST TEST1 TEST2 TEST3 V
DDD6
A0 SDA SCL V
SSD8
V
DDD5
DO7
DO6
DO5
DO4
SSD5
V
DDD4
V
Fig.2 Pin configuration.
SSD6
V
DO3
DO2
DO1
DO0
SSD7
V
CLKOUT
Page 8
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7 FUNCTIONAL DESCRIPTION
Figure 3 shows the application of the TDA8046 multi-mode QAM demodulator. The frequency of the IF signal (IF
) is down converted to a frequency that
QAM
equals the symbol rate (rs) by a mixer which is driven from a local oscillator with a frequency of f
CAR=fIF+rs
. After low pass filtering this baseband signal is applied to an external 8 or 9-bit ADC.
For 256-QAM, a 9-bit ADC is preferred, for the other modes an 8-bit ADC is sufficient.
The multi-mode QAM demodulator has digital detectors for AGC, carrier recovery and clock recovery. The on-chip DACs translate the detector values to analog control
handbook, full pagewidth
IF
RF
signal
SAWTUNER
QAM
currents which are then integrated by a loop filter. To perform this loop filtering, an operational amplifier is integrated after each DAC.
The carrier recovery consists of a two-loop system. The outer loop is shown in Fig.3, and controls both phase and frequency at a low speed. The inner loop controls the carrier phase at a high speed (wide loop bandwidth).
The AGC also consists of two loops; the outer loop is the coarse AGC and one inner loop is the fine AGC.
The recovered symbols are converted into bits according to a demapping scheme and represented at the output in an 8-bit parallel output format. The QAM demodulator can
2
be initialized and monitored by the I
8 or 9 bits
f
clk
f
CAR
= fIF + r
LPF ADC
s
C-bus interface.
clock recovery
carrier recovery
AGC
TDA8046
2
I
C-BUS
Fig.3 Application with multi-mode QAM demodulator.
DO7 to DO0 CLKOUT CLKSDV
MGG167
Page 9
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1 Functional description of the individual blocks
The functional block diagram of the multi-mode QAM demodulator is illustrated in Fig.1. This section describes the individual blocks in the demodulator. After adaptation for the used input format (2’s complement or binary), the input signal is demodulated in the I and Q baseband signals which are applied to the inputs of the half-Nyquist filter (equals square root raised cosine). To avoid overloading of the ADC, an AGC detector is placed after the adaptation for the input format. The control value for the clock recovery is generated after half Nyquist filtering. The echoes created in the cable network are reduced significantly in the equalizer.
The equalizer produces a ‘clean’ constellation diagram from which the information for the carrier recovery is derived. This constellation is also applied to the output formatter which demaps the transmitted symbols in corresponding bits. The carrier recovery and lock detection functions are based on the equalizer output. The output of the equalizer is applied to an output formatter, which translates the symbol bits to a FEC input format. The digital outputs of the clock recovery, AGC, and carrier recovery section are converted into currents which are integrated by the loop filters. To make these loop filters active, operational amplifiers are integrated on the chip.
The TDA8046 can handle five different digital modulation schemes; 4, 16, 32, 64 and 256-QAM. These schemes
2
are selectable via the I
7.1.1 Q
UADRATURE DEMODULATOR AND HALF NYQUIST
FILTER
C-bus interface.
Quadrature demodulation is accomplished after selection of the appropriate input format via the I2C-bus. The in-phase and quadrature components are both applied to a half Nyquist filter. In default mode, this filter gives a 20% roll-off half Nyquist shaping. The basic schematic of the quadrature demodulator followed by the half Nyquist filter is shown in Fig.4. The signs of the multiplication factors in the Q-branch can be inverted (I2C-bus bit INVD).
When using an 8-bit ADC the LSB of the 9-bit input word should be connected to the positive supply (V
DDD
). This ensures a symmetrical 2’s complement representation which can be multiplied by 1 in a correct (2’s complement) way. The overall transfer function of the square root raised cosine filters is shown in Figs 5 and 6.
For characteristics see Chapter 10.
handbook, full pagewidth
9
COMPLEMENT
BINARY OR
TWO's
I2C-BUS
+1, 0, 1, 0 0, 1, 0, +1
I2C-BUS
DIN8
to
DIN0
Fig.4 Schematic diagram of the quadrature demodulator and half Nyquist filter.
9
I
9
Q
2
I
C-BUS
HALF NYQUIST
FILTER
HALF NYQUIST
FILTER
2
C-BUS
I
MGG168
Page 10
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
5 0
5
relative
gain (dB)
15
25
35
45
55
010.25 0.5 0.75 1.751.51.25 relative frequency
Fig.5 Half Nyquist receiver filter transfer function (20% roll-off).
MBG987
f )
(
2
r
s
handbook, full pagewidth
0
relative
gain (dB)
10
20
30
40
50
0 0.5 1 1.50.25 0.75 1.25 1.75
Fig.6 Half Nyquist receiver filter transfer function (15% roll-off).
relative frequency
MGG169
f )
(
2
r
s
1996 Nov 19 10
Page 11
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1.2 EQUALIZER This function is realized with a T spaced 12 or 14 taps
(selected via the I2C-bus) adaptive filter with a feedback part. The equaliser is based on a Decision Feedback Equalizer (DFE) structure with Least Mean Square (LMS) coefficient updating algorithm. No training sequence is required. The block schematic of the total equalizer is shown in Fig.8. The main tap of the equalizer is adjustable for fine AGC function (6 dB AGC range). The settings of the equalizer taps can be read via the I2C-bus. If the
2
equalizer diverges, an alarm bit is set (I
C-bus bit ALEQ) and an automatic reset of the taps can be performed (I2C-bus bit EAR).
To improve acquisition time, the convergence steps of the FFE/DFE parts of the equalizer are programmable via the I2C-bus. When the system locks, the steps are automatically modified for optimum performances.
Besides reading the equalizer tap values, the main tap of the equalizer can also be programmed. After setting the main tap, the other coefficients can be set to zero. The equalizer settings can also be frozen via the I2C-bus.
The equalizer has been proven to work correctly under bad channel conditions as indicated in Table 1. It is guaranteed that all loops (including equalizer) converge at a SNR of 21 dB for a 64-QAM modulation format and 27 dB for a 256-QAM modulation format.
Table 1 Channel echo profile
DELAY AMPLITUDE PHASE
3
⁄8× T
1
1
2 × T
5
4
7
6
⁄8× T
⁄8× T ⁄8× T
sym
sym
sym
sym sym
0.08 130°
0.20 60°
0.05 310°
0.10 200°
0.03 200°
Figure 7 represents the QAM spectrum seen by the equalizer. It corresponds (in the frequency domain) to the multiplication of a full nyquist spectrum by the impulse response of the channel specified in Table 1.
handbook, full pagewidth
1
relative
gain (dB)
1
3
5
7
9
11
0.5 0.5
0.375 0.3750.125 0.1250.25 0.250
Fig.7 QAM spectrum with echo profile as seen by the equalizer.
relative frequency
MGD636
f )
(
r
s
1996 Nov 19 11
Page 12
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
input
FEED
FORWARD
EQUALIZER
TAPS CALCULATION
Fig.8 DFE equalizer structure.
7.1.3 LOCK DETECTOR The lock detector indicates whether all algorithms in the
demodulator are converged or not. For a symbol error rate (at the input of the demodulator) smaller than 2 × 10−2, the detector will give the indication ‘LOCK’ (I2C-bus bit LK = 1). For larger symbol error rates, the detector will generate the ‘UNLOCK’ signal (I2C-bus bit LK = 0). It should ne noted that this ‘UNLOCK’ signal is generated before any other part of the demodulator loses lock. The lock detector is part of the carrier recovery loop, see Fig.9. The Lock Detector Threshold (LDT) can be changed
2
with the help of the I
C-bus. The estimation algorithm used in the lock detector also provides information about the SER ratio which can be read out via the I2C-bus interface.
For characteristics see Chapter 11.
7.1.4 C
ARRIER RECOVERY
The carrier recovery detector consists of a Phase-Frequency Detector (PFD) and Phase Detector (PD). Depending on the mode of operation, the carrier recovery is switched either between the phase frequency (no lock) or the phase detector (lock). The carrier recovery consists of the following two loops:
DECISION
FEEDBACK
EQUALIZER
TAPS CALCULATION
decision
+
MGG170
output
1. The outer loop; this loop controls the phase and frequency of the incoming QAM signal at the IF frequency in such a way that the constellation is optimally positioned for detection.
2. The inner loop; the bandwidth of this loop can be large and can therefore reduce the influence of large bandwidth phase noise.
A fully digital carrier recovery function is also possible and can be selected via the I
2
C-bus. Should this configuration be used, then the external components of the loop filter will not have to be implemented.
Four different maximum DAC output currents can be selected via the I2C-bus. The output currents of the DAC are defined in such a way that a VCO with a behaviour as shown in Fig.9 can be connected directly to the output of the integrated operational amplifier. Should the VCO slope be negative then the sign of the current can be inverted by the I2C-bus. Figure 10 defines the DAC output currents.
For characteristics see Chapter 12.
1996 Nov 19 12
Page 13
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
IF
QAM
VCO
LPF
ADC
external
DAC
I
CAR
V
I2C-BUS
DEMODULATION
AND
FILTERING
I2C-BUS
ref
DIGITAL
INNER LOOP
r
EQUALIZER
I
s
ref1
lock
LOCK
PHASE
FREQUENCY
DETECTOR
PHASE
DETECTOR
lock
Fig.9 Schematic diagram of the carrier recovery.
I2C-BUS
I2C-BUS
0
2
I
C-BUS
MGG171
1996 Nov 19 13
Page 14
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
CARI = 1
I
= positive output current.
pos
I
= negative output current.
neg
I
()
posIneg
I
=
------------------------------ -
O
I
-------------------------------- -
O
2
I
+()
posIneg
()
I
posIneg
I
CAR
DAC output
current
f
VCO
CARI = 0
1
/
I
CAR
2
V
CARREC
MGG180
−1/
I
I
2
CAR
digital input
CAR
100×=
Fig.10 Definition of the DAC currents and the expected frequency behaviour of the VCO.
1996 Nov 19 14
Page 15
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1.5 CLOCK RECOVERY The clock recovery function uses the unequalized I and Q
signals, i.e. the half Nyquist filter outputs (see Fig.4). The clock recovery section generates a control value each symbol period. As this algorithm is based on the energy maximization, both main and mid symbols are required at the input. Consequently, the input data rate is twice the symbol rate. The schematic diagram of this detector is illustrated in Fig.11.
handbook, full pagewidth
I
Q
external
CLOCK
RECOVERY
DETECTOR
DAC
rsI
The clock generator generates the required internal clocks from the VCXO clock signal at 4 × r
. The input stage
s
amplifier of this generator enables the designer to supply a low amplitude oscillator signal to the TDA8046. The DAC output current range (I
) can be varied via the I2C-bus.
CLK
The sign of the output current can also be inverted to adjust for the correct sign of the VCXO slope.
For characteristics see Chapter 13.
to
VCXO
ref3
I
CLK
V
ref
4r
s
2r
s
r
s
2 4
Fig.11 Schematic diagram of the clock recovery.
from
VCXO
MGG172
1996 Nov 19 15
Page 16
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
CLKI = 1
I
= positive output current; I
pos
I
= negative output current; I
neg
I
()
oCLK
posIneg
=
------------------------------ -
I
posIneg
-------------------------------- ­I
2
posIneg
I
oCLK
I
CLK
+()
100×=
()
CLK
I
CLK
DAC output
current
f
VCXO
CLKI = 0
1
/
I
CLK
2
digital input
1
/
I
CLK
2
I
CLK
V
CLKREC
MGG181
.
.
Fig.12 The definition of the DAC currents and the expected frequency behaviour of the VCXO for clock recovery.
1996 Nov 19 16
Page 17
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
2
C-bus data on address 08 is a factor 16 smaller than
7.1.6 AGC The AGC estimates the mean power based on the digital
input signal and relates this to a peak value for a given constellation. To avoid overloading of the ADC, this estimation of the peak signals is used to control the AGC loop. The implemented AGC covers a range of ±20 dB in gain variance. A schematic diagram of the AGC is illustrated in Fig.13.
If the SAW filter does not have sufficient adjacent channel attenuation, the AGC threshold can be varied to avoid clipping of the ADC. To do this, the threshold is made
2
programmable via the I
C-bus (byte ATH). Table 2 shows that for each mode, a new ATH value (on address 08) must be set with the help of the I2C-bus.
Table 2 AGC threshold values
MODE ATH (AGC THRESHOLD) I
256, 64, 16 and 4-QAM 2040 7F 32-QAM 1442 5A
The I the used AGC threshold ATH.
The DAC output current range can be varied via the I2C-bus interface (bits AGCA and AGCB) and the sign of the current can be inverted (bit AGCI). The definition of the DAC currents and the expected frequency behaviour of the AGC is illustrated in Fig.14.
For characteristics see Chapter 14.
2
C-BUS DATA FOR ADDRESS 08
handbook, full pagewidth
2
C-BUS
I
DIN8 DIN0
I
BIAS
external
to
AGC
DETECTOR
I2C-BUS
BIAS
GENERATOR
I
r
s
ref2
DAC
I
ref2
I
AGC
to AGC
amplifier
V
ref
ADC
I2C-BUS
MGG173
Fig.13 AGC schematic diagram.
1996 Nov 19 17
Page 18
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
AGCI = 1
I
= positive output current; I
pos
I
= negative output current; I
neg
I
()
oAGC
posIneg
=
------------------------------ -
I
posIneg
-------------------------------- ­I
posIneg
2
I
oAGC
I
CLK
+()
100×=
()
1
CLK
DAC output
I
AGC
current
gain
AGCI = 0
/
I
AGC
14
digital input
1
/
I
ACG
14
I
AGC
V
AGC
MGG182
.
.
Fig.14 Definition of the DAC currents and the expected frequency behaviour of the AGC.
1996 Nov 19 18
Page 19
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1.7 OFFSET CONTROL To compensate offsets in the I and Q branch, due to
spurious signals at the symbol frequency at the ADC input, an offset compensation loop is included. This loop forces the constellation to be symmetrically distributed over its four quadrants. This function can be switched off by I2C-bus bit OFFS.
7.1.8 L
OOP AMPLIFIERS
Analog switches are integrated to discharge the loop filter capacitors or for test purposes on application boards (a reference voltage equal to the half of the positive supply voltage V
is available at the output of the amplifier
DDA
when the switches are closed). The I2C-bus bit ANAS controls the three switches simultaneously. A schematic diagram of the loop amplifier and analog switch is illustrated in Fig.15.
For characteristics see Chapter 15.
andbook, halfpage
external
7.1.9 OUTPUT FORMATTER The output formatter transforms the detected symbols into
bits in accordance with the selected mapping. The TDA8046 has four possible mapping formats which can be selected via the I2C-bus interface. The demapping procedure and the corresponding bits are defined in Fig.16. After demapping the bits are allocated to the output. This output allocation corresponds to one of the selected demapping schemes.
By using the I2C-bus, it is possible to obtain the following output formats:
8 bits parallel
semi-serial
I and Q 8 bits multiplexed.
The implemented demapping formats and output bit allocation are illustrated in Figs 17 to 30.
7.1.10 B
OUNDARY SCAN
The TDA8046H offers the possibility of boundary scan test. The IEEE Standard Test Access Port and Boundary Scan Architecture allows board manufacturers to test board interconnections by using the boundary scan functions.
I2C-BUS
DAC
V
ref
MGG174
Fig.15 Loop amplifier and analog switch.
Complete information on boundary scan test is available in
“Application note AN96048”
.
1996 Nov 19 19
Page 20
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
8
I
Q
I2C-BUS
8
DEMAPPING
SCHEMES
1 to 4
MUX
Fig.16 Schematic diagram of the output formatter.
7.1.10.1 Demapping scheme 1; differential decoding
handbook, full pagewidth
Q
010100011100001100000100
A quadrant
PARALLEL
AND
SEMI-SERIAL
b5 b4
DO7 to DO0 CLKSCV
DO1 to DO0 CLKSCV CLKOUT
DO7 to DO0 CLKSCV CLKOUT
MGG175
b3 b2 b1 b0
100100101100111100110100
010101011101001101000101
010111011111001111000111
010110011110001110000110
010010011010001010000010
010011011011001011000011
010001011001001001000001
010000011000001000000000
Bit allocation for 256-QAM: b5, b4, b3, b2, b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
Fig.17 Demapping scheme 1; bit allocation: 256-QAM.
1996 Nov 19 20
100101101101111101110101
100111101111111111110111
100110101110111110110110
100010101010111010110010
100011101011111011110011
100001101001111001110001
100000101000111000110000
MGG193
I
Page 21
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
b5
handbook, full pagewidth
B quadrant
Q
A quadrant
b4 b3 b2
1 0 0 01 0 0 11 0 1 11 0 1 0
1 1 0 01 1 0 11 1 1 11 1 1 0
0 1 0 00 1 0 10 1 1 10 1 1 0
0 0 0 00 0 0 10 0 1 10 0 1 0
0 0 0 00 1 0 01 1 0 01 0 0 0
0 0 0 10 1 0 11 1 0 11 0 0 1
0 0 1 10 1 1 11 1 1 11 0 1 1
0 0 1 00 1 1 01 1 1 01 0 1 0
D quadrantC quadrant
Bit allocation for 4-QAM: b5 = b4 = b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3). Bit allocation for 64-QAM: b5, b4, b3 and b2; b0 = b1 = 0; b7 and b6 differentially decoded (see Table 3).
Fig.18 Demapping scheme 1; bit allocation: 4-QAM and 64-QAM.
1 0 1 01 1 1 00 1 1 00 0 1 0
1 0 1 11 1 1 10 1 1 10 0 1 1
1 0 0 11 1 0 10 1 0 10 0 0 1
1 0 0 01 1 0 00 1 0 00 0 0 0
0 0 1 00 0 1 10 0 0 10 0 0 0
0 1 1 00 1 1 10 1 0 10 1 0 0
1 1 1 01 1 1 11 1 0 11 1 0 0
1 0 1 01 0 1 11 0 0 11 0 0 0
I
MGG183
Q
handbook, full pagewidth
Bit allocation for 16-QAM: b5 and b4; b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3). Bit allocation for 32-QAM: not implemented.
B quadrant
1 01 1
0 00 1
0 01 0
0 11 1
A quadrant
D quadrantC quadrant
b5
1 10 1
1 00 0
0 10 0
1 11 0
Fig.19 Demapping scheme 1; bit allocation: 16-QAM and 32-QAM.
1996 Nov 19 21
b4
I
MGG184
Page 22
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1.10.2 Demapping scheme 2; direct translation
handbook, full pagewidth
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
0 0 0 0
Bit allocation for 256-QAM: b7, b6, b5, b4, b3, b2, b1, b0.
0 1 0 1
0 1 1 0
Q
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
b6b7 b5 b4
1 1 1 1
1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0
0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 0
b3 b2 b1 b0
I
MGG195
Fig.20 Demapping scheme 2; bit allocation: 256-QAM.
1996 Nov 19 22
Page 23
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
Bit allocation for 64-QAM: b7, b6, b5, b3, b2, b1; b4 = b0 = 0. Bit allocation for 32-QAM: not implemented.
Q
0 1 10 1 00 0 10 0 0 1 1 11 1 01 0 11 0 0
b7 b6 b5
1 1 1
1 1 0
1 0 1
1 0 0
0 1 1
0 1 0
0 0 1
0 0 0
MGG185
b3 b2 b1
I
Fig.21 Demapping scheme 2; bit allocation: 64-QAM and 32-QAM.
1 1
1 0
0 1
0 0
b7 b6
b3 b2
I
MGG186
handbook, full pagewidth
Q
0 1
b7
b3
1
Q
0 10 0 1 11 0
I
0
a. Bit allocation for 4-QAM: b7 and b3; b6 = b5 = b4 = b2 = b1 = b0 = 0. b. Bit allocation for 16-QAM: b7, b6, b3 and b2; b5 = b4 = b1 = b0 = 0.
Fig.22 Demapping scheme 2; bit allocation: 4-QAM and 16-QAM.
1996 Nov 19 23
Page 24
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1.10.3 Demapping scheme 3; differential decoding: Draft prETS 429: 1994
b5 b4
andbook, full pagewidth
Q
A quadrant
b3 b2 b1 b0
100100100101100001100000
100110100111100011100010
101110101111101011101010
101100101101101001101000
001100001101001001001000
001110001111001011001010
000110000111000011000010
000100000101000001000000
Bit allocation for 256-QAM: b5, b4, b3, b2, b1, b0; b7 and b6 differentially decoded (see Table 3).
Fig.23 Demapping scheme 3; bit allocation: 256-QAM.
110000110001110101110100
110010110011110111110110
111010111011111111111110
111000111001111101111100
011000011001011101011100
011010011011011111011110
010010010011010111010110
010000010001010101010100
MGG194
I
1996 Nov 19 24
Page 25
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
b4 b3 b2
handbook, full pagewidth
B quadrant
Q
A quadrant
b5
0 1 0 00 1 1 01 1 1 01 1 0 0
0 1 0 10 1 1 11 1 1 11 1 0 1
0 0 0 10 0 1 11 0 1 11 0 0 1
0 0 0 00 0 1 01 0 1 01 0 0 0
0 0 0 00 0 0 10 1 0 10 1 0 0
0 0 1 00 0 1 10 1 1 10 1 1 0
1 0 1 01 0 1 11 1 1 11 1 1 0
1 0 0 01 0 0 11 1 0 11 1 0 0
D quadrantC quadrant
Bit allocation for 4-QAM: b5 = b4 = b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3). Bit allocation for 64-QAM: b5, b4, b3 and b2; b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
Fig.24 Demapping scheme 3; bit allocation: 4-QAM and 64-QAM.
1 1 0 01 1 0 11 0 0 11 0 0 0
1 1 1 01 1 1 11 0 1 11 0 1 0
0 1 1 00 1 1 10 0 1 10 0 1 0
0 1 0 00 1 0 10 0 0 10 0 0 0
1 0 0 01 0 1 00 0 1 00 0 0 0
1 0 0 11 0 1 10 0 1 10 0 0 1
1 1 0 11 1 1 10 1 1 10 1 0 1
1 1 0 01 1 1 00 1 1 00 1 0 0
I
MGG187
handbook, full pagewidth
Bit allocation for 16-QAM: b5 and b4; b3 = b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
B quadrant
Q
A quadrant
0 11 1
0 01 0
0 00 1
1 01 1
D quadrantC quadrant
b5
1 11 0
0 10 0
1 00 0
1 10 1
Fig.25 Demapping scheme 3; bit allocation: 16-QAM.
1996 Nov 19 25
b4
I
MGG188
Page 26
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
Bit allocation for 32-QAM: b5, b4 and b3; b2 = b1 = b0 = 0; b7 and b6 differentially decoded (see Table 3).
B quadrant
Q
0 1 11 1 1
0 0 1 1 0 10 1 0
0 0 01 0 01 1 0
0 0 00 0 10 1 1
1 0 01 0 11 1 1
1 1 00 1 0
A quadrant
0 1 01 1 0
1 1 10 1 1
D quadrantC quadrant
Fig.26 Demapping scheme 3; bit allocation: 32-QAM.
7.1.10.4 Demapping scheme 4; direct translation: HP8782B/K03
b4 b3
b5
1 1 11 0 11 0 0
0 1 10 0 10 0 0
1 1 01 0 00 0 0
0 1 01 0 10 0 1
I
MGG189
handbook, full pagewidth
1 1 1 0
1 1 1 1
Bit allocation for 256-QAM: b7, b6, b5, b4, b3, b2, b1, b0.
1 1 0 1
Fig.27 Demapping scheme 4; bit allocation: 256-QAM.
1 1 0 0
1 0 1 1
1 0 1 0
1 0 0 1
Q
1 0 0 0
0 1 1 1
0 1 1 0
0 1 0 1
0 1 0 0
0 0 1 1
0 0 1 0
0 0 0 1
b2b3 b1 b0
0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1
1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1
b4 b5 b6 b7
I
MGG196
1996 Nov 19 26
Page 27
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
Bit allocation for 64-QAM: b7, b6, b5, b4, b3 and b2; b1 = b0 = 0.
Fig.28 Demapping scheme 4; bit allocation: 64-QAM.
Q
1 0 01 0 11 1 01 1 1 0 0 00 0 10 1 00 1 1
b2 b3 b4
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
MGG190
b5 b6 b7
I
handbook, full pagewidth
Bit allocation for 32-QAM: b7, b6, b5, b4 and b3; b2 = b1 = b0 = 0.
B quadrant
Q
0 1 0 1 10 1 1 1 1
0 1 0 0 10 1 1 0 10 1 1 1 0
0 1 0 0 00 1 1 0 00 1 0 1 0
1 1 0 0 01 1 0 0 11 1 0 1 1
1 1 1 0 01 1 1 0 11 1 1 1 1
1 1 0 1 01 1 1 1 0
Fig.29 Demapping scheme 4; bit allocation: 32-QAM.
1996 Nov 19 27
A quadrant
0 0 1 1 00 0 0 1 0
1 0 1 1 11 0 0 1 1
D quadrantC quadrant
b7
0 0 1 1 10 0 1 0 10 0 1 0 0
0 0 0 1 10 0 0 0 10 0 0 0 0
1 0 0 1 01 0 1 0 01 0 0 0 0
1 0 1 1 01 0 1 0 11 0 0 0 1
b6 b5 b4 b3
I
MGG191
Page 28
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
0 0
0 1
1 0
1 1
b4 b5
b6 b7
I
MGG192
handbook, full pagewidth
b6
Q
1 0
a. Bit allocation for 4-QAM: b7 and b6; b5 = b4 = b3 = b2 = b1 = b0 = 0. b. Bit allocation for 16-QAM: b7, b6, b5 and b4; b3 = b2 = b1 = b0 = 0.
b7
0
I
1
Q
1 01 1 0 00 1
Fig.30 Demapping scheme 4; bit allocation: 4-QAM and 16-QAM.
Table 3 Definition of two MSB’s in modulation schemes 1 and 3
QUADRANT OF
CURRENTLY
RECEIVED SYMBOL
QUADRANT OF
PREVIOUSLY
RECEIVED SYMBOL
PHASE
CHANGE
(DEGREES)
CURRENT OUTPUT BITS
SCHEME 1 SCHEME 3
b7 b6 b7 b6
A A 0 0000 A B 270 1001 A C 180 1111 A D 90 0110 B A 90 0110 B B 0 0000 B C 270 1001
B D 180 1111 C A 180 1111 C B 90 0110 C C 0 0000 C D 270 1001 D A 270 1001 D B 180 1111 D C 90 0110 D D 0 0000
Tables 4 and 5 give the output format of the data for semi-serial mode operations.
1996 Nov 19 28
Page 29
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
Table 4 Semi-serial format 256, 64 and 32-QAM; see note 1
SLOT
256-QAM 64-QAM 32-QAM
DO1 DO0 CLKSDV DO1 DO0 CLKSDV DO1 DO0 CLKSDV
0S 1S 2S 3S 4S 5S 6S 7S
(7) S
n-1
(5) S
n-1
(3) S
n-1
(1) S
n-1
(7) Sn(6) 1 Sn(5) Sn(4) 1 S
n
(5) Sn(4) 1 Sn(3) Sn(2)1S
n
(3) Sn(2) 1 Sn(1) Sn(0)1S
n
(1) Sn(0) 1 X X 0 X X 0
n
(6) 1 S
n-1
(4) 1 S
n-1
(2) 1 S
n-1
(0) 1 X X 0 X X 0
n-1
(5) S
n-1
(3) S
n-1
(1) S
n-1
(4) 1 S
n-1
(2) 1 S
n-1
(0) 1 X X 0
n-1
(4) S
n-1
(2) S
n-1
(0) Sn(4) 1
n-1
(3) Sn(2) 1
n
(1) Sn(0) 1
n
(3) 1
n-1
(1) 1
n-1
Note
1. The semi-serial format is only valid for demapping schemes 1, 3 and 4.
Table 5 Semi-serial format 16-QAM and 4-QAM; see note 1
16-QAM 4-QAM
SLOT
DO1 DO0 CLKSDV DO1 DO0 CLKSDV
0S 1S
(3) S
n-1
(1) S
n-1
(2) 1 S
n-1
(0) 1 X X 0
n-1
(1) S
n-1
(0) 1
n-1
2XX 0 XX 0 3XX 0 XX 0 4S 5S
(3) Sn(2) 1 Sn(1) Sn(0) 1
n
(1) Sn(0) 1 X X 0
n
6XX 0 XX 0 7XX 0 XX 0
Note
1. The semi-serial format is only valid for demapping schemes 1, 3 and 4.
1996 Nov 19 29
Page 30
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1.11 I2C-BUS INTERFACE The TDA8046 is controlled by an I2C-bus. For programming, there is one module address (7 bits) and the R/W bit for
selecting READ or WRITE mode. It should be noted that the TDA8046 starts up in accordance with to the settings defined in Tables 7, 8 and 9.
Table 6 Slave address
A6 A5 A4 A3 A2 A1 A0 R/
000111A0X
Table 7 WRITE (R/
FUNCTION ADD D7 D6 D5 D4 D3 D2 D1 D0
DAC current inversion/general
Demodulator 01 INP RLF OUTB OUTA INVD CONC CONB CONA DAC/OFFS/switch 02 ANAS OFFS AGCB AGCA CLKB CLKA CARB CARA Digital test/output
formatter Digital loop filter
B.W. Digital loop filter
B.W. Lock detector
threshold Lock detector
window size AGC detector
threshold Equalizer mode 09 −−EAR FFEL EDFE EFFE EFC PRESET Equalizer tap FFEI 0A FFEI07 FFEI06 FFEI05 FFEI04 FFEI03 FFEI02 FFEI01 FFEI00 Equalizer steps 0B FSTP2 FSTP1 FSTP0 DSTP2 DSTP1 DSTP0
W=0)
00 AGCI CLKI CARI OUTE DEM NYQ DPHR RST
03 −− − −OUTF TSEL2 TSEL1 TSEL0
04 DCA7 DCA6 DCA5 DCA4 DCA3 DCA2 DCA1 DCA0
05 FSOL −−−−DCB2 DCB1 DCB0
06 LDT7 LDT6 LDT5 LDT4 LDT3 LDT2 LDT1 LDT0
07 −− − −− −WS1 WS0
08 ATH7 ATH6 ATH5 ATH4 ATH3 ATH2 ATH1 ATH0
W
1996 Nov 19 30
Page 31
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
Table 8 Default settings after reset
FUNCTION ADD D7 D6 D5 D4 D3 D2 D1 D0
DAC current inversion/ general
Demodulator 01 1 1 0 0 0 0 1 1 DAC/OFFS/switch 02 0 1 0 1 0 1 0 1 Digital test/output
formatter Digital loop filter B.W. 04 0 1 0 0 0 0 0 0 Digital loop filter B.W. 05 1 −−−−100 Lock detector
threshold Lock detector window
size AGC detector
threshold Equalizer mode 09 −−010000 Equalizer tap FFEI 0A 0 1 0 0 0 0 0 0 Equalizer steps 0B 000000
0001011100
03 −−−−0000
0600011000
07 −−−−−−00
0801111111
Table 9 READ (R/
W=1)
FUNCTION ADD D7 D6 D5 D4 D3 D2 D1 D0
V
CARREC
V
CLKREC
V
AGC
Alarm equalizer/
(4 bits) 00 −−−−CR03 CR02 CR01 CR00
(4 bits) 01 −−−−CL03 CL02 CL01 CL00
(4 bits) 02 −−−−AG03 AG02 AG01 AG00
03 −−−ALEQ −−−LK
lock detector SER estimation 04 LE7 LE6 LE5 LE4 LE3 LE2 LE1 LE0 FFEI3 05 b7 b6 b5 b4 b3 b2 b1 b0
.... ... b7 b6 b5 b4 b3 b2 b1 b0
FFEI0 08 b7 b6 b5 b4 b3 b2 b1 b0 DFEI1 09 b7 b6 b5 b4 b3 b2 b1 b0
.... ... b7 b6 b5 b4 b3 b2 b1 b0
DFEI7 0F b7 b6 b5 b4 b3 b2 b1 b0 DFEI8 10 b7 b6 b5 b4 b3 b2 b1 b0 FFEQ3 11 b7 b6 b5 b4 b3 b2 b1 b0
.... ... b7 b6 b5 b4 b3 b2 b1 b0
FFEQ0 14 b7 b6 b5 b4 b3 b2 b1 b0 DFEQ1 15 b7 b6 b5 b4 b3 b2 b1 b0
.... ... b7 b6 b5 b4 b3 b2 b1 b0
DFEQ8 1C b7 b6 b5 b4 b3 b2 b1 b0 FFEI5 1D b7 b6 b5 b4 b3 b2 b1 b0 FFEQ5 1E b7 b6 b5 b4 b3 b2 b1 b0
1996 Nov 19 31
Page 32
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
FUNCTION ADD D7 D6 D5 D4 D3 D2 D1 D0
FFEI4 1F b7 b6 b5 b4 b3 b2 b1 b0 FFEQ4 20 b7 b6 b5 b4 b3 b2 b1 b0 IF_frequency_shift 21 FS7 FS6 FS5 FS4 FS3 FS2 FS1 FS0 IF_frequency_shift 22 −−−−FS11 FS10 FS9 FS8
7.1.12 I2C-BUS WRITE PARAMETERS
Table 10 I2C-bus write parameters; 1-bit values
PARAMETER BIT VALUE DESCRIPTION
Input format INP 0 2’s complement
1 straight binary
Inversion demodulator INVD 0 Q-branch = 0 1, 0, +1
1 Q-branch = 0 + 1, 0, 1
Demodulator DEM 0 by-pass mode
1 normal mode
Half Nyquist filter NYQ 0 filter in by-pass mode
1 half Nyquist filter on
Roll-off factor RLF 0 15% roll-off
1 20% roll-off
Digital phase rotator DPHR 0 off: pass through mode
1on
General reset RST 0 normal operation
1 reset (with automatic return to normal operation)
Offset OFFS 0 off
1on
Outer loop activation (carrier recovery)
Analog switches ANAS 0 open
1st and 2nd-order loop (inner loop)
DAC current inversion CARI 0 no inversion
OUTE 0 outer loop inactive
1 outer loop active
1 closed
FSOL 0 1st-order loop
1 2nd-order loop
1 inversion
CLKI 0 no inversion
1 inversion
AGCI 0 no inversion
1 inversion
1996 Nov 19 32
Page 33
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
PARAMETER BIT VALUE DESCRIPTION
Equalizer PRESET 0 normal operation
1 coefficient to zero (main tap to 1)
EDFE 0 normal operation
1 freeze coefficients of DFE part
EFFE 0 normal operation
1 freeze coefficients of FFE part
EFC [fine AGC (equalizer freeze centre tap)]
EAR 0 automatic reset switched OFF
FFEL 0 5 taps in FFE part
0 normal operation 1 freeze centre tap, no fine AGC
1 automatic reset switched ON
1 3 taps in FFE part
Table 11 I2C write parameters; 2-bit values
PARAMETER BITS DESCRIPTION
Window size (lock detector) WS1 WS0
0 0 256 symbols 0 1 512 symbols 1 0 1024symbols 1 1 2048symbols
Output format OUTB OUTA
0 0 scheme 1 0 1 scheme 2 1 0 scheme 3 1 1 scheme 4
DAC carrier recovery (maximum current)
DAC clock recovery (maximum current)
DAC AGC (maximum current)
CARB CARA
0050µA 0 1 100 µA 1 0 150 µA 1 1 200 µA
CLKB CLKA
0050µA 0 1 100 µA 1 0 150 µA 1 1 200 µA
AGCB AGCA
0050µA 0 1 100 µA 1 0 150 µA 1 1 200 µA
1996 Nov 19 33
Page 34
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
Table 12 I2C-bus write parameters; 3-bit values
PARAMETER
BITS
CONC CONB CONA
Constellation 0 0 0 4-QAM
0 0 1 16-QAM 0 1 0 32-QAM 0 1 1 64-QAM 1 0 0 256-QAM
Table 13 Convergence step for the equalizer (DFE and FFE parts)
DSTP2 FSTP2 DSTP1 FSTP1 DSTP0 FSTP0
CONVERGENCE STEP
000 2 001 2 010 2 011 2 100 2 101 2 110 2 111 2
(LOCK = 0)
-13
-13
-13
-12
-12
-12
-12
-11
DESCRIPTION
CONVERGENCE STEP
(LOCK = 1)
-15
2
-14
2
-13
2
-15
2
-14
2
-13
2
-12
2
-15
2
2
Table 14 I
C-bus write parameters; 4-bit values
BITS
PARAMETER
OUTF TSEL2 TSEL1 TSEL0
Output format 0 0 0 0 8 bits in parallel
0 1 1 1 I/Q 8 bits multiplexed (equalizer output) 1 x x x semi-serial
Special test modes
0 x 0 1 DO7 to DO4 = carrier recovery DAC input;
DO3 to DO0 = AGC DAC input
0 x 1 0 DO7 to DO6 = fine AGC;
DO5 to DO0 = clock recovery DAC input
0 0 1 1 DO7 to DO0 = I and Q equal input
(I/Q 8 bits multiplexed format)
0 1 1 1 DO7 to DO0 = I and Q equal output
(I/Q 8 bits multiplexed format)
DESCRIPTION
1996 Nov 19 34
Page 35
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
7.1.13 I2C-BUS READ PARAMETERS
Table 15 I2C-bus read parameter; 1-bit values
PARAMETER BIT VALUE DESCRIPTION
Lock detect LK 0 no lock
1 lock
Alarm equalizer ALEQ 0 normal operation (alarm off)
1 divergence detected (alarm on)
Table 16 I
2
C-bus read parameter; ADC carrier recovery; 4-bit value
PARAMETER BITS DESCRIPTION
ADC carrier recovery
CR03 CR02 CR01 CR00
b3 b2 b1 b0 carrier recovery: V
CARREC
= 0.25 +1⁄16V
(8b3 + 4b2 + 2b1 + b0) V
2
Table 17 I
C-bus read parameter; ADC clock recovery; 4-bit value
PARAMETER BITS DESCRIPTION
ADC clock recovery
CL03 CL02 CL01 CL00
b3 b2 b1 b0 clock recovery: V
CLKREC
= 0.25 +1⁄16V
DDD
(8b3 + 4b2 + 2b1 + b0) V
2
Table 18 I
C-bus read parameter; ADC AGC; 4-bit value
PARAMETER BITS DESCRIPTION
ADC AGC AG03 AG02 AG01 AG00
Table 19 I
b3 b2 b1 b0 AGC: V
2
C-bus read parameter; 8-bit value
= 0.25 +1⁄16V
AGC
(8b3 + 4b2 + 2b1 + b0) V
DDD
PARAMETER BITS DESCRIPTION
SER
(1)
LE7 LE6 LE5 LE4 LE3 LE2 LE1 LE0
b7 b6 b5 b4 b3 b2 b1 b0 SER = f (b7 to b0)
DDD
Note
1. The bits LE7 to LE0 give the number of symbols falling inside the lock detector active areas. The count is made during an observation period (256 to 2048 symbols). To obtain more details about the SER estimation, refer to
2
Table 20 I
C-bus read parameter; 12-bit value
“Application Note AN96048”
.
PARAMETER BITS DESCRIPTION
IF_FREQ_SHIFT
(1)
FS11 to FS0 frequency shift = f (FS11 to FS0)
Note
1. The bits FS11 to FS0 indicate the remaining frequency shift of the QAM spectrum (IF spectrum). This data is useful
2
if the TDA8046H does not use the outer loop of carrier recovery (bit ‘OUTE’ of the I To obtain more details about the frequency shift calculation, refer to the
“Application Note AN96048”
C-bus table set to 0).
.
1996 Nov 19 35
Page 36
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
8 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
DDD
V
max
P
tot
T
stg
T
amb
9 THERMAL CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS VALUE UNIT
R
th j-a
10 DEMODULATOR AND HALF NYQUIST FILTER CHARACTERISTICS
digital supply voltage 0.3 6.0 V maximum voltage on all pins 0 V total power dissipation T
=70°C 1.4 W
amb
DDD
V
storage temperature 55 +150 °C operating ambient temperature 0 70 °C
thermal resistance from junction to ambient in free air 50 K/W
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
α roll-off 15 or 20 %
pass-band ripple 0.05 dB stop-band ripple see Figs 5 and 6
ISI
power
power inter-symbol interference (15% roll-off filter) note 1 −−43 dB power inter-symbol interference (20% roll-off filter) note 1 −−44 dB
Note
1. Definition of the power inter-symbol interference:
N
1–()2
ISI
power
Where N
conv
2C
×
=
dB()10 log
is the number of coefficients C
conv
k1=
--------------------------------------------------------------------­C
conv
(0)
conv
2
(4k)
conv
2
. C
(k) represent the coefficient resulting from the convolution of
conv
the transmission and reception filters (K indicates the Kth coefficient). The power ISI specified in Table 1 has been calculated on a filter resulting from the convolution of the TDA8046 filters
and a truncated half-Nyquist filter with 57 T/4 taps for the 15% roll-off filter and 41 T/4 taps for the 20% roll-of filter (see “
Application note AN96048”
- Appendix B).
1996 Nov 19 36
Page 37
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
11 LOCK DETECTOR CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
SNR
lock
signal-to-noise ratio to lock the demodulator
12 CARRIER RECOVERY CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Carrier recovery detector
ARRIER RECOVERY: BIAS CURRENT FOR DACS SET TO 37.5 µA
C K
d
f
CAR
f
n(inner)
f
n(outer)
I
zero
I
CAR
detector constant SNR = 21 dB for
frequency range ±0.017rs−−MHz loop bandwidth of inner loop rs= 5 Msym/s 10 −−kHz loop bandwidth of outer loop −− 0.3f zero current of DAC 100 +100 nA maximum DAC output current
(programmable)
f
DAC
DAC sampling rate r CARRIER RECOVERY DAC OUTPUT CURRENTS DURING LOCK I
oCARlock
I
oCARlock
mean output current
matching of output currents 2.5 +2.5 % CARRIER RECOVERY DAC OUTPUT CURRENTS DURING UNLOCK I
oCARunlock
I
oCARunlock
mean output current I
matching of output currents 2.5 +2.5 %
4-QAM 8 −−dB 16-QAM 15 −−dB 32-QAM 18 −−dB 64-QAM 21 −−dB 256-QAM 27 −−dB
3I
CAR
−µA/rad
64-QAM constellation SNR = 27 dB for
6.05I
−µA/rad
CAR
256-QAM constellation
n(inner)
kHz
50 200 µA
s
1
CAR
⁄2I
CAR
MHz
−µA
−µA
1996 Nov 19 37
Page 38
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
13 CLOCK RECOVERY CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Clock recovery detector
C
LOCK RECOVERY: BIAS CURRENT FOR DACS SET TO 37.5 µA
K
d
f
CLK
f
n
I
CLK(max)
detector constant SNR = 21 dB for
frequency range 100 −−ppm
natural frequency 400 Hz
maximum DAC output current
(programmable) f
DAC
LOCK RECOVERY DAC output currents
C I
oCLKlock
I
oCLKlock
DAC sample rate r
mean output current I
matching of output currents 2.5 +2.5 %
64-QAM constellation; SNR = 27 dB for 256-QAM constellation
0.24I
−µA/rad
CLK
50 200 µA
s
CLK
MHz
−µA
14 AGC CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
AGC detector
DETECTOR: BIAS CURRENT FOR DACS SET TO 37.5 µA
AGC R
AGC
I
zero
I
AGC(max)
AGC range of detector ±20 −−dB
zero current 100 +100 nA
maximum DAC output current
50 200 µA
(programmable) f
DAC
DAC sample rate r
s
MHz AGC DAC output currents I
oAGC
I
oAGC
mean output current in lock
unlock I
matching of output current 5+5%
1
AGC
⁄14I
AGC
−µA
−µA
1996 Nov 19 38
Page 39
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
15 INTEGRATED LOOP AMPLIFIERS CHARACTERISTICS
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Integrated loop amplifiers
LOOP AMPLIFIERS G
OL
G
B
V
ref
V
o
R
L(VSSD)
R
L(VDDD)
ANALOG SWITCHES Z
SW
open loop gain 60 dB gain bandwidth product 1 MHz reference voltage 2.5 V output voltage 0.1V
0.9V
DDA
DDA
V load to ground 5 −−k load to supply 6.5 −−k
switch impedance closed 5 k
open 10 −−M
16 CHARACTERISTICS OF DIGITAL INPUTS AND OUTPUTS
V
DDD=VDDA
=5V; V
DDD(core)
= 3.3 V; T
=25°C; unless otherwise specified.
amb
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Clock outputs: CLKADC and CLKSDV
V
OL
V
OH
T
CLK
t
w
t
r
t
f
R
L
LOW level output voltage 0 0.1V HIGH level output voltage 0.9V
DDD
V
DDD
DDD
cycle time 35 −−ns pulse width 40 : 60 duty cycle 14 −−ns rise time CL=30pF −−6ns fall time CL=30pF −−6ns load resistance 1 −−k
Clock input: CLK
V T t
w
R
i(rms) CLK
source
input voltage level (RMS value) sine wave 100 −−mV cycle time 35 −−ns pulse width 40 : 60 duty cycle 14 −−ns source resistance −−50
Digital inputs: DIN8 to DIN0
V
IL
V
IH
t
SU
t
HD
C
L
LOW level input voltage −−0.8 V High level input voltage 2.0 −−V set-up time 15 −−ns hold time 0 −−ns load capacitance −−10 pF
V V
1996 Nov 19 39
Page 40
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Digital outputs: DO1 to DO0 with respect to CLKOUT for semi-serial mode
V
OL
V
OH
t
od
t
oHD
C
L
LOW level output voltage 0 0.1V HIGH level output voltage 0.9V
DDD
output delay time −−7ns output hold time −−10 ns load capacitance additional 2 30 pF
Digital outputs: DO7 to DO0 with respect to CLKSDV for 8-bit parallel mode
V V t
od
t
oHD
C
OL OH
L
LOW level output voltage 0 0.1V HIGH level output voltage 0.9V
DDD
output delay time −−22 ns output hold time −−22 ns load capacitance additional 2 30 pF
Digital outputs: DO7 to DO0 with respect to CLKOUT for I/Q multiplexed mode
V V t
od
t
oHD
OL OH
LOW level output voltage 0 0.1V HIGH level output voltage 0.9V
DDD
output delay time −−22 ns output hold time −−22 ns
Loop amplifier
V
o
G
v
G
B
R
L
output voltage level 0.1V
DDA
DC voltage gain (open loop) 60 dB gain bandwidth product 1 −−MHz load resistance 5 −−K
V
V
V
DDD
DDD
DDD
0.9V
DDD
DDD
DDD
DDA
V V
V V
V V
1996 Nov 19 40
Page 41
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
BER
no convergence
measured
4
10
theory
MBG989
implementation
loss
SNR (dB)
Fig.31 Definition of the Implementation Loss.
handbook, full pagewidth
CLKADC
DIN 0 to
DIN 8
t
t
r
90% 90%
10% 10%
t
w
SU; DAT
t
HD; DAT
Fig.32 CMOS input data timing diagram.
1996 Nov 19 41
t
t
f
CLK
V
V
V
V
MGG176
OH
OL
IH
IL
Page 42
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
CLKOUT
DO1 to DO0
CLKSDV
T
sym
t
oHD
t
od
Fig.33 CMOS semi-serial mode timing diagram.
V
OH
V
OL
V
OH
slot 3slot 2slot 1slot 0
V
OL
V
OH
V
MGG179
OL
handbook, full pagewidth
CLKSDV
DATA
OUTPUT
t
oHD
Fig.34 CMOS 8-bit symbol in parallel mode timing diagram
1996 Nov 19 42
T
sym
V
OH
V
OL
V
OH
V
t
od
OL
MGG177
Page 43
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
handbook, full pagewidth
DO7 to DO0
CLKOUT
CLKSDV
T
sym
t
oHD
t
od
IQ
Fig.35 CMOS I and Q multiplexed timing diagram.
V
OH
V
OL
V
OH
V
OL
V
OH
V
OL
MGG178
1996 Nov 19 43
Page 44
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
17 PACKAGE OUTLINE
QFP64: plastic quad flat package; 64 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm
c
y
X
51 33
52
pin 1 index
64
1
32
Z
e
w M
b
p
20
19
A
E
A
H
E
E
2
A
A
1
detail X
Q
L
p
L
SOT319-2
(A )
3
θ
w M
b
e
p
Z
D
D
H
D
0 5 10 mm
scale
DIMENSIONS (mm are the original dimensions)
mm
A
max.
3.20
0.25
0.05
2.90
2.65
0.25
UNIT A1A2A3b
cE
p
0.50
0.25
0.35
0.14
(1)
(1) (1)(1)
D
20.1
19.9
eH
14.1
13.9
24.2
1
23.6
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
OUTLINE VERSION
IEC JEDEC EIAJ
REFERENCES
SOT319-2
1996 Nov 19 44
v M
A
B
v M
B
H
D
LLpQZywv θ
E
18.2
17.6
1.0
0.6
1.4
1.2
0.2 0.10.21.95
EUROPEAN
PROJECTION
Z
D
1.2
1.2
0.8
0.8
ISSUE DATE
E
o
7
o
0
92-11-17 95-02-04
Page 45
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
18 SOLDERING
18.1 Introduction
There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our
“IC Package Databook”
18.2 Reflow soldering
Reflow soldering techniques are suitable for all QFP packages.
The choice of heating method may be influenced by larger plastic QFP packages (44 leads, or more). If infrared or vapour phase heating is used and the large packages are not absolutely dry (less than 0.1% moisture content by weight), vaporization of the small amount of moisture in them can cause cracking of the plastic body. For more information, refer to the Drypack chapter in our
Reference Handbook”
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at 45 °C.
(order code 9398 652 90011).
“Quality
(order code 9397 750 00192).
18.3 Wave soldering
Wave soldering is not recommended for QFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.
If wave soldering cannot be avoided, the following conditions must be observed:
A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering technique should be used.
The footprint must be at an angle of 45° to the board
direction and must incorporate solder thieves downstream and at the side corners.
Even with these conditions, do not consider wave soldering the following packages: QFP52 (SOT379-1), QFP100 (SOT317-1), QFP100 (SOT317-2), QFP100 (SOT382-1) or QFP160 (SOT322-1).
During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.
A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.
18.4 Repairing soldered joints
Fix the component by first soldering two diagonally­opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 °C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 °C.
1996 Nov 19 45
Page 46
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
19 DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
20 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
21 PURCHASE OF PHILIPS I
Purchase of Philips I components in the I2C system provided the system conforms to the I2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.
2
C COMPONENTS
2
C components conveys a license under the Philips’ I2C patent to use the
1996 Nov 19 46
Page 47
Philips Semiconductors Product specification
Multi-mode QAM demodulator TDA8046
NOTES
1996 Nov 19 47
Page 48
Philips Semiconductors – a worldwide company
Argentina: see South America Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466 Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 1 60 101, Fax. +43 1 60 101 1210 Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands Brazil: see South America Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America Czech Republic: see Austria Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 1949 Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427 Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300 Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722
Indonesia: see Singapore Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200 Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,
Tel. +972 3 645 0444, Fax. +972 3 649 1007 Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557 Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077 Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415 Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880 Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399 New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811 Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341 Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA, Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain Romania: see Italy Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 247 9145, Fax. +7 095 247 9144 Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria Slovenia: see Italy South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil, Tel. +55 11 821 2333, Fax. +55 11 829 1849
Spain: Balmes 22, 08007 BARCELONA, Tel. +34 3 301 6312, Fax. +34 3 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM, Tel. +46 8 632 2000, Fax. +46 8 632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH, Tel. +41 1 488 2686, Fax. +41 1 481 7730
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66, Chung Hsiao West Road, Sec. 1, P.O. Box 22978, TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd., 209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260, Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 800 234 7381
Uruguay: see South America Vietnam: see Singapore Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
© Philips Electronics N.V. 1996 SCA52 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Internet: http://www.semiconductors.philips.com
Printed in The Netherlands 537021/1200/02/pp48 Date of release: 1996 Nov 19 Document order number: 9397 750 01499
Loading...