Datasheet TDA7437 Datasheet (SGS Thomson Microelectronics)

Page 1
DIGITALLY CONTROLLED AUDIO PROCESSOR
INPUTMULTIPLEXER
- FOURSTEREO,ONEMONOINPUT,AND ONEDIFFERENTIAL INPUT
- SELECTABLEINPUT GAIN FOR OPTIMAL ADAPTATIONTO DIFFERENT SOURCES
FULLY PROGRAMMABLE LOUDNESS FUNCTION
VOLUME CONTROL IN 1dB STEPS INCLUD­ING GAIN UP TO 16dB
ZERO CROSSINGMUTE, SOFT MUTE AND DIRECT MUTE
BASS AND TREBLE CONTROL FOURSPEAKERATTENUATORS
- FOURINDEPENDENT SPEAKERS CONTROLIN 1dB STEPSFOR BALANCEAND FADER FACILITIES
PAUSE DETECTOR PROGRAMMABLE THRESHOLD
ALL FUNCTIONS PROGRAMMABLE VIA SE-
2
RIAL I
DESCRIPTION
The audioprocessor TDA7437 is an upgrade of the TDA731X audioprocessorfamily.
CBUS
TDA7437
PQFP44 and TQFP44
ORDERING NUMBERS: TDA7437 (PQFP44)
TDA7437T (TQFP44)
Due to a highly linear signal processing, using CMOS-switching techniques instead of standard bipolar multipliers, very low distortion and very low noise are obtained.Several new features like softmute, and zero-crossing mute are imple­mented. The soft Mute function can be activated in two ways:
1 Via serial bus(Mute byte, bit D0) 2 Directly on pin 28 through an I/O line of the
microcontroller
Very low DC stepping is obtained by use of a BICMOStechnology.
PIN CONNECTION
December 1999
TREB_R
IN_R
MUXOUT_R
LOUD_R
DIFFGND_R
DIFF_R STEREO4_R STEREO1_R STEREO2_R STEREO3_R
MONO
TREB-L
AGND
AVDD
DVDD
CREF
ADDR
SCL
SDA
44 43 42 41 3940 38 37 36 35 34
1 2 3 4 5 6 7 8 9
10
DIFF_L
STEREO4_L
STEREO1_L
171118 19 20 21 22
CSM
STEREO2_L
STEREO3_L
12 13 14 15 16
LOUD_L
DIFFGND_L
DGND
PAUSE
IN_L
MUXOUT_L
OUT_LF
33 32 31 30 29 28 27 26 25 24 23
D96AU435A
MID_LI
OUT_RF OUT_LR MID_RI MID_RO OUT_RR SMEXT BASS_RO BASS_RI BASS_LO BASS_LI MID_LO
1/23
Page 2
TDA7437
ABSOLUTE MAXIMUM RATINGS
Symbol Parameter Value Unit
,DV
AV
DD
T
amb
T
stg
THERMAL DATA
Symbol Parameter Value Unit
R
th j-amb
QUICK REFERENCE DATA
Symbol Parameter Min. Typ. Max. Unit
,DVDDSupply Voltage (AVDDand DVDDmust be at the same potential) 6 9 10.2 V
AV
DD
V
CL
THD Total Harmonic Distortion V = 1Vrms f= 1KHz 0.01 0.8 %
S/N Signal to Noise Ratio 111 dB
S
C
Operating Supply Voltage 10.5 V
DD
Operating Ambient Temperature -40 to 85 °C Storage Temperature Range -55 to 150 °C
Thermal ResistanceJunction-pins Max. 150 °C/W
Max. input signal handling 2.1 2.6 Vrms
Channel Separation f = 1KHz 95 dB Input Gain 1dB step 0 15 dB Volume Control 1dB step -63 16 dB Treble Control 2dB step -14 +14 dB Bass Control 2dB step -14 +14 dB Middle Control 2dB step -14 +14 dB Fader and BalanceControl 1dB step -79 0 dB Loudness Control 1dB step 0 20 dB Mute Attenuation 100 dB
2/23
Page 3
BLOCK DIAGRAM
TDA7437
5.6K
2.7K
100nF
18nF 100nF
5.6nF 22nF
BIN(L)BOUT(L)MIN(L)MOUT(L)
FLout
ATT
SPKR
RLout
ATT
SPKR
S-MUTE
ADDR
SDA
SCL
C BUS DECODER + LATCHES
2
I
DIGGND
RRout
ATT
SPKR
S-MUTE
FRout
ATT
SPKR
CONTROL
SOFT, ZERO
MUTE
D95AU249B
CSM
PAUSE
SMEXT
BIN(R)
100nF
BOUT(R)MIN(R)
18nF 100nF
22nF
(R)
MOUT
47nF47nF
5.6K
2.7K
TREBLE(R)
2.2µF 47nF
TREBLE(L)
LOUD(L)
IN_L
MUXOUT_L
STEREOIN1L
4 x 470nF
STEREOIN3L
STEREOIN2L
TREBLE BASSMIDDLE
VOLUME
+ LOUDN
INGAIN
DIFFINL
STEREOIN4L
2 x 4.7µF
MULTIPLEXER
MONO
DIFFINLGND
5 x 470nF
STEREOIN1R
STEREOIN2R
TREBLE BASSMIDDLE
VOLUME
+ LOUDN
INGAIN
STEREOIN3R
STEREOIN4R
DIFFINR
DIFFINRGND
2 x 4.7µF
SUPPLY
AVDD
DVDD
47nF 5.6nF
IN_R
CREF LOUD(R)
22µF
ANGND
2.2µF MUXOUT_R
3/23
Page 4
TDA7437
ELECTRICALCHARACTERISTICS (AVDD,DVDD= 9V; RL= 10KΩ;Rg=50Ω;T
amb
=25°C;
all gains= 0dB;f = 1KHz. Refer to the test circuit, unless otherwise specified.)
Symbol Parameter Test Condition Min. Typ. Max. Unit
INPUT SELECTOR (MONO AND STEREO INPUTS)
R
V
CL
S
I
R
L
G
I MIN
G
I MAX
G
step
E
a
V
DC
DIFFERENTIAL INPUT (Pin 5, 6, 13, 14)
R
CMRR Common Mode Rejection Ratio V
d Distortion V
IN
e
DIFF
G
VOLUME CONTROL
R
G
MAX
A
MAX
A
STEPC
E
A
E
t
V
DC
LOUDNESS CONTROL (Pin 4, 12)
R
A
MAX
A
step
ZERO CROSSING MUTE
V
TH
A
MUTE
V
DC
Input Resistance pin 7 to 11and 15 to 18 70 100 130 K
I
Clipping Level d 0.3% 2.1 2.6 V Input Separation 80 95 dB Output Load Resistance 2 K Minimum Input Gain -0.75 0 +0.75 dB Maximum Input Gain 14 15 16 dB Step Resolution 0.5 1.0 1.5 dB Set Error -1.0 0 1.0 dB DC Steps Adiacent GainSteps 0.5 10 mV
to G
G
IMIN
I
Input Resistance Input selector BIT D4 = 0 (0dB) 10 15 20 K
IMAX
3mV
Input selector BIT D4 = 1(-6dB) 14 20 26 K
CM
RMS
I
=1V
=1V
; f =1KHz 45 70 dB
RMS
0.01 0.08 % Input Noise 20Hz to 20KHz; Flat; D6 = 0 5 µV Differential Gain D4 = 0 -1 0 1 dB
D4 = 1 -7 -6 -5 dB
Input Resistance Pin 2 and 20 31 44 57 K
I
Maximum Gain 15 16 17 dB Maximum Attenuation 61 63.75 66.5 dB Step Resolution Coarse Atten. 0.5 1.0 1.5 dB Attenuation Set Error G = 16 to -20dB -1.0 0 1.0 dB
G = -20 to -63dB -2.75 2.75 dB Tracking Error 2dB DC Steps Adjacent GainSteps -5 +5 mV
Adjacent Attenuation Steps -3 +3 mV
From 0dB to A
Internal Resistor Loud = On 35 50 65 K
I
MAX
0.5 5 mV
Maximum Attenuation 19 20 21 dB Step Resolution 0.5 1 1.5 dB
Zero Crossing Threshold
WIN = 11 30 mV (note 1)
WIN = 10 60 mV
WIN = 01 110 mV
WIN = 00 220 mV Mute Attenuation 80 100 dB DC Step 0dB to Mute 0.1 3 mV
RMS
4/23
Page 5
TDA7437
ELECTRICALCHARACTERISTICS (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
SOFT MUTE
A
MUTE
T
DON
T
DOFF
R
INT
V
SMH
V
SML
BASS CONTROL
C
range
A
step
R
g
MIDDLE CONTROL
C
range
A
step
R
g
TREBLE CONTROL
C
RANGE
A
step
SPEAKER ATTENUATORS
C
RANGE
A
step
A
MUTE
E
A
V
DC
AUDIO OUTPUT
V
clip
R
L
R
O
V
DC
Mute Attenuation 50 65 dB ON Delay Time C
OFF Current V
CSM
=22nF;0 to-20dB; I =I
CSM
=22nF;0 to-20dB; I =I
C
V
CSM CSM
=0V;I= I =0V;I = I
MAX
MIN
MAX
0.8 1.5 2.0 ms
MIN
25 45 60 ms 20 40 60 µA
2 µA Pullup Resistor (pin 28) (note 2) 100 K (pin 28) Level High 3.5 V (pin 28) Level Low Soft Mute Active 1 V
Control Range ±11.5 ±14 ±16 dB Step Resolution 1 2 3 dB Internal Feedback Resistance 31 44 57 K
Control Range ±11.5 ±14 ±16 dB Step Resolution 1 2 3 dB Internal Feedback Resistance 17.5 25 32.5 K
Control Range ±13 ±14 ±15 dB Step Resolution 1 2 3 dB
Control Range 79 dB Step Resolution AV= 0to -40dB 0.5 1 1.5 dB Output Mute Attenuation Data Word = 1111XXXX 80 100 dB Attenuation Set Error AV= 0to -40dB 1.5 dB DC Steps Adjacent Attenuation Steps 0.1 3 mV
Clipping Level d = 0.3% 2.1 2.6 Vrms Output Load Resistance 2 K Output Impedance 50 90 140 DC Voltage Level 3.5 3.8 4.1 V
5/23
Page 6
TDA7437
ELECTRICALCHARACTERISTICS (continued)
Symbol Parameter Test Condition Min. Typ. Max. Unit
PAUSE DETECTOR
V
TH
I
DELAY
V
THP
GENERAL
V
CC
I
CC
PSRR Power SupplyRejection Ratio f = 1KHz 70 90 dB
e
NO
E
t
S/N Signal to Noise Ratio All Gains = 0dB; V
S
C
d Distortion V
Pause Threshold WIN = 11 30 mV
WIN = 10 60 mV WIN = 01 110 mV
WIN = 00 220 mV Pull-Up Current 15 25 35 µA Pause Threshold 3.0 V
Supply Voltage 6 9 10.2 V Supply Current 7 10 13 mA
Output Noise OutputMuted(B= 20to20kHzflat) 4 µV
All Gains0dB
615µV
(B=200to20kHzflat) Total Tracking Error AV= 0to -20dB 0 1 dB
= -20to -60dB 0 2 dB
A
V
= 2.1V
O
rms
111 dB
Channel Separation L- R 80 95 dB
=1V all gain = 0dB 0.01 0.08 %
IN
BUS INPUTS
V
IL
V
lN
I
lN
V
O
Note 1: WIN represents the MUTE programming bit pair D6,D5for the zero crossing window threshold Note 2: Internallpullup resistor toVs/2; ”LOW” = softmuteactive
Note: The ANGND and DIGGNDlayout wires must be kept separated. A 50resistor is recommended to be put as far as possible
from the device.
Input Low Voltage 1V Input High Voltage 3 V Input Current VIN = 0.4V -5 5 µA Output Voltage SDA
IO= 1.6mA 0.1 0.4 V Acknowledge
The CLD - andCDR- can be shortcircuitedin applicationsproviding3 wiresCD signal
L+
L-∼R-
CD TDA7437
=
R+
L+
L-
R-
R+
D00AU1125
CLD - = DIFFINLGND CDR - = DIFFINRGND
6/23
Page 7
TDA7437
2
C BUS INTERFACE
I
Data transmission from microprocessor to the TDA7437 and viceversa takes place thru the 2 wires I
2
C BUS interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be externallyconnected).
Data Validity
As shown in fig. 3, thedata on the SDA line must be stable during the high period of the clock. The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.
Start and Stop Conditions
As shown in fig.4 a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH. The stop condition is a LOW to HIGH tran­sition of the SDA line while SCL is HIGH. A STOP conditions must be sent before each START condition.
Byte Format
Every byte transferred to the SDA line must con­Figure 3: Data Validity on the I
2
CBUS
tain 8 bits. Each byte must be followed by an ac­knowledgebit. The MSB is transferredfirst.
Acknowledge
The master(µP)putsa resistiveHIGHlevelon the SDA line during the acknowledgeclock pulse (see fig. 5). The peripheral (audioprocessor) that ac­knowledges has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDAlineisstableLOWduringthis clockpulse. The audioprocessor which has been addressed hasto generateanacknowledgeafterthereception ofeachbyte, otherwisethe SDAlineremainsatthe HIGHlevelduringthe ninthclock pulsetime.In this case the master transmitter can generate the STOPinformation in orderto abortthetransfer.
Transmissionwithout Acknowledge
Avoiding to detect the acknowledge of the audio­processor, the µP can use a simplier transmis­sion: simply it waits one clock without checking the slave acknowledging, and sends the new data. This approach of course is less protected from misworkingand decreasesthe noise immunity.
Figure 4: Timing Diagram of I2CBUS
2
Figure 5: Acknowledge on the I
CBUS
7/23
Page 8
TDA7437
SOFTWARESPECIFICATION Interface Protocol
The interface protocol comprises:
A start condition (s)
read (=1)/write(=0)transmission) A subaddressbyte. A sequenceof data (N-bytes+ acknowledge) A stopcondition (P)
A chip address byte,(the LSB bit determines
CHIP ADDRESS SUBADDRESS DATA 1 to DATA n
MSB LSB MSB LSB MSB LSB
S100010AR/W
ACK X X X I A3 A2 A1 A0 ACK DATA ACK P
ACK = Acknowledge S = Start P = Stop I = Auto Increment X = Not used
MAX CLOCK SPEED500kbits/s ADDRpin open A = 0
ADDRpin close to Vs A = 1
AUTO INCREMENT
If bit I in the subaddressbyte is set to ”1”,the autoincrementof the subaddressis enabled
SUBADDRESS (receivemode)
MSB LSB FUNCTION
X X X I A3A2A1A0
0 0 0 0 Input Selector 0 0 0 1 Loudness 0 0 1 0 Volume 0 0 1 1 Bass, Treble 0 1 0 0 Speaker Attenuator LF 0 1 0 1 Speaker Attenuator LR 0 1 1 0 Speaker Attenuator RF 0 1 1 1 Speaker Attenuator RR 1 0 0 0 Input Gain Middle 1 0 0 1 Mute
TRANSMITTED DATA
Send Mode
MSB LSB
X X X X X SM ZM P
P = Pause(Active low) ZM = Zero crossingmuted (HIGH active) SM =Soft mute activated(HIGH active) X = Not used
The transmitted data is automaticallyupdated aftereach ACK. Transmissioncan be repeated without newchipaddress.
8/23
Page 9
DATA BYTE SPECIFICATION Input Selector
TDA7437
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
1000DIFFERENTIAL 1001STEREO 1 1010STEREO 2 1011STEREO 3 1100STEREO 4 1101MONO
X X X X 0 X X X DC CONNECT (1)
0 0 HALF-DIFF 0dB (*) 0 1 HALF-DIFF -6dB (*) 1 0 FULL-DIFF 0dB (**) 1 1 FULL-DIFF -6dB (**)
(*) Selected when using a 3 wires differential source (pins 5 and 13 shorted) (**) Selected when using 4 wires differential source (1) OUTR-INR (OUTL-INR) short circuited internally (no need external connection)
FUNCTION
Loudness
MSB LSB FUNCTION
D7 D6 D5 D4 D3 D2 D1 D0 LOUDNESS STEP
000000 0dB 000001 1dB 000010 2dB 000011 3dB 000100 4dB 000101 5dB 000110 6dB 000111 7dB 001000 8dB 001001 9dB 0 0 1 0 1 0 10dB 0 0 1 0 1 1 11dB 0 0 1 1 0 0 12dB 0 0 1 1 0 1 13dB 0 0 1 1 1 0 14dB 0 0 1 1 1 1 15dB 0 1 0 0 0 0 16dB 0 1 0 0 0 1 17dB 0 1 0 0 1 0 18dB 0 1 0 0 1 1 19dB 0 1 0 1 0 0 20dB 1 LOUDNESS OFF
FINE VOLUME 00 0dB 01 -0.25dB 10 -0.5dB 11 -0.75dB
9/23
Page 10
TDA7437
Mute
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
0 1 Soft Mute On 0 0 1 Soft Mute with fast slope 0 1 1 Soft Mute with slow slope
0 0 1 Zero Mute
1 Direct Mute
1 Reset 0 0 0 Zerocross window (220mV) 0 1 0 Zerocross window (110mV) 1 0 0 Zerocross window (60mV) 1 1 0 Zerocross window (30mV)
0 Nonsymmetrical Bass 1 Symmetrical Bass
Volume
FUNCTION
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
1 0 0 0 0dB 1 0 0 1 -1dB 1 0 1 0 -2dB 1 0 1 1 -3dB 1 1 0 0 -4dB 1 1 0 1 -5dB 1 1 1 0 -6dB 1 1 1 1 -7dB 1 1 0 0 0 0 16dB 10001 8dB 10010 0dB 1 0 0 1 1 -8dB 1 0 1 0 0 -16dB 1 0 1 0 1 -24dB 1 0 1 1 0 -32dB 1 0 1 1 1 -40dB 1 1 0 0 0 -48dB 1 1 0 0 1 -56dB 0 X X X X X X X MUTE
FUNCTION
10/23
Page 11
Speaker
TDA7437
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
000 0dB 001 -1dB 010 -2dB 011 -3dB 100 -4dB 101 -5dB 110 -6dB 111 -7dB
0000 0dB 0001 -8dB 0010 -16dB 0011 -24dB 0100 -32dB 0101 -40dB 0110 -48dB 0111 -56dB 1000 -64dB 1001 -72dB 1111XXX MUTE
FUNCTION
1.25dB step
11/23
Page 12
TDA7437
Bass Treble
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0111 0dB 1111 0dB 1110 2dB 1101 4dB 1100 6dB 1011 8dB 1 0 1 0 10dB 1 0 0 1 12dB 1 0 0 0 14dB
0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0111 0dB 1111 0dB 1110 2dB 1101 4dB 1100 6dB 1011 8dB 1 0 1 0 10dB 1 0 0 1 126B 1 0 0 0 14dB
FUNCTION
TREBLE STEP
BASS STEPS
12/23
Page 13
Input Stage Gain Middle
MSB LSB
D7 D6 D5 D4 D3 D2 D1 D0
0000 0dB 0001 1dB 0010 2dB 0011 3dB 0100 4dB 0101 5dB 0110 6dB 0111 7dB 1000 8dB 1001 9dB 1 0 1 0 10dB 1 0 1 1 11dB 1 1 0 0 12dB 1 1 0 1 13dB 1 1 1 0 14dB 1 1 1 1 15dB
0 0 0 0 -14dB 0 0 0 1 -12dB 0 0 1 0 -10dB 0 0 1 1 -8dB 0 1 0 0 -6dB 0 1 0 1 -4dB 0 1 1 0 -2dB 0111 0dB 1111 0dB 1110 2dB 1101 4dB 1100 6dB 1011 8dB 1 0 1 0 10dB 1 0 0 1 126B 1 0 0 0 14dB
FUNCTION
IN-GAIN STEP
MIDDLE STEP
TDA7437
13/23
Page 14
TDA7437
MUTE & PAUSEFEATURES
The TDA7437 provides three types of mute, con­trolledviaI2Cbus (seepag.10, MUTE BYTEregis­ter).
SOFT MUTE
Bit D0=1 Bit D0=0
SoftMute ON
Soft Mute OFF
It allows an automatic soft muting and unmuting of the signal. The time constant is fixed by an external capaci­tor Csm insertedbetweenpin Csm and ground.
Once fixed the external capacitor, two different slopes (timeconstant) are selectable by program­mationof bit D1.
Bit D1=0 Bit D1=1
fast slope (I=Imax)slowslope (I=Imin)
The soft mute generates a gradual signal de­creasing avoiding big click noise of an immediate high attenuation, without necessity to program a sequence of decreasing volume levels. A re­sponse example is reported in Fig.12 (mute) and Fig.13 (unmute). The final attenuation obtained with softmute ON is 60dBtypical. The used reference parameter is the delay time taken to reach 20dB attenuation (no matter what the signal levelis).
Using a capacitorCsm=22nF this delay is: d =1.8mswhenselectedFastslopemode(bitD1=0) d =25ms whenselectedSlowslopemode(bitD1=1 In application, the soft mute ON programmation
should be followed by programmationof DIRECT MUTE ON (see later) in order to achieve a final 100dB attenuation. Beside the I2C bus programmation,the Soft Mute ON can be generated in a fast way by forcing a LOW level at pin SMEXT (TTL Level compatible). This approach is recommended for fast RDS AF switching.
The Soft Mute status can be detected via I2C bus, reading the Transmitted Byte, bit SM (see data sheet pag. 8).
read bit SM = 1 soft mutestatusON read bit SM = 0 soft mutestatusOFF
DIRECT MUTE
bit D3 = 1 Direct mute ON bit D3 = 0 Direct nute OFF
The direct mute bit forces an internal immediate signal connectionto ground. It is located just before the Volume/Loudness stage, and givesa typical 100dB attenuation.
SPEAKERSMUTE
An additional direct mute function is included in the speakers attenuators stage.
The four output LF, RF, LR, RR can be separately muted by setting the speaker attenuator byte to the value 01111111binary.
Typical attenuationlevel 100dB. This mute is use­ful for fader and balance functions. It should not be applied for system mute/unmute, because it can generate noise due to the offset of previous stages (bass/ treble).
ZEROCROSSINGMUTE
bit D2=1 D4=0 zerocrossing mute ON bit D2=0 D4=0 zerocrossing mute OFF The mute activation/deactivationis delayed until
the signal waveform crosses the DC zero level (Vref level).
The detection works separately for the left and the right channels (see Figg. 14, 15). Four differ­ent windows threshold are software selectable by two dedicatedbits.
bit D6 bit D5 WINDOW
00Vref DC +/-220mV 01Vref DC +/-110mV 10Vref DC +/-60mV 11Vref DC +/-30mV
The zero crossing mute activation/deactivation starts when the AC signal level falls inside the se­lectedwindow(internalcomparator).
The ZEROCROSS Mute (and Pause) detector is always active. It can be disabled,if the feature is not used, by forcing the bit D4=1 Zero crossing and Pause detector reset.
In this way the internal comparator logic is stopped,eliminating itsswitching noise.
The zero cross mute status is detected reading the Transmitted Byte bit ZM.
bit ZM = 1 zerocross mute status ON bit ZM = 0 zerocross mute status OFF
PAUSEFUNCTION
On chip isimplementeda pause detectorblock. It uses the same 4 windows threshold selectable
for the zero crossing mute, bit D6,D5 byte MUTE (see above). The detector can be put in OFF by forcingbit D4=1, otherwiseit is active.
The Pause detector info is available at PAUSE pin. A capacitor must be connected between PAUSEpin and Ground.
When the incoming signal is detected to be out­side the selected window, the external capacitor is discharged. When the signal is inside the win­dow, the capacitor is integrating up (see Figg.16 and 17).
14/23
Page 15
TDA7437
a)by reading directly the Pausepin level.
TheON/OFFvoltagethresholdis 3.0V typical. PauseOFF = level low (< 3.0V) PauseON = levelhigh ( ; 3.0V)
2
b)by reading via I
CbustheTra nsmi tte dByte,bitP
P=0pauseactive. P=1no pause detected.
The external capacitor value fixes the time con­stant.
The pull up current is 25uVtypical With input signal
Vin = 1Vrm --; Vdc pin pause = 15mV Vin = 0Vrms--; Vdc pin pause = 5.62V For example choosing Cpause = 100nF the
charge up constant is about 22ms. Instead with Cpause = 15nF the charge up constant is about 360us.
The Pause detection is useful in applications like RDS, to perform noiseless tuning frequeny jumps avoiding to mutethe signal.
NO SYMMETRICALBASS CUT RESPONSE
bit D7=0 No symmetrical bit D7=1 Symmetrical The Bass stage has the option to generate an
unsymmetrical response, for cut mode settings (bass level from-2db to - 14dB)
For example using a T-type band pass externa The feature is useful for human ear equalization
in noisy enviromentslike carsetc. See examples in Fig. 18 (symmetrical response)
and Fig.19 (unsymmetricalresponse).
TRANSMITTED DATA (SENDMODE)
bit P=0 Pause active bit P=1 No pause detected
bit ZM = 1 Zerocross mute ON bit ZM = 0 Zerocross mute OFF
bit SM = 1 Soft mute ON bit SM = 0 Soft mute OFF
bit ST = 1 Stereosignaldetected(inputMPX) bit ST = 0 Mono signal detected(input MPX)
The TDA7437 allows thereadingof fourinfo bits. The type (Stereo/Mono) of received broadcasting
signal is easily checked and displayed by using
the ST bit. The P bit check is useful in tuning jumps without
signal muting. The SM soft mute statusbecomes active immedi-
ately, when bit D0 is set to 1 (soft mute ON, MUTE byte) and not when the signal level has reachedthe 60 dB final attenuation.
TDA7437 I
The protocol is standard I
2
C BUS PROTOCOL
2
C, using subaddress
byte plus data bytes(see pagg.8to 13). The optional Autoincrement mode allows to re-
fresh all the bytes registers with transmission of a single subaddress, reducing drastically the total transmission time.
Without autoincrement, subaddress bit I=0,to refresh all the bytes registers (10), it is necessary to transmit 10 times the chip address,the subad­dress and the data byte.
Working with a 100Kb/s clock speed the total time would be :
[(9*3+2)*10]bits*10us=2.9ms Instead using autoincrement mode, subaddress
bit I=1, the total time will be: (9*12+2)*10us=1.1ms. The autoincrementmode is useful also to refresh
partially the data. For example to refresh the 4 speakersattenuatorsit is possibleto programthe subaddress Spkr LF (code XX010100), followed by the data byte of SPKR LF, LR, RF, RR in se­quence.
Note: that the autoincrement mode has a module 16 counter, whereas the total used register bytes are
10. It is not correct to refresh all the 10 bytes starting
froma subaddressdifferent than XX010000. For example using subaddress XX010010 (vol-
ume) the registers from Volume to Mute (see pag. 8) are correctly updated but the next two transmitted bytes instead to refer to the wanted Input selector and Loudness are discharged. (the solution in this case is to send two separatedpat­tern in autoinc mode, the first composed by ad­dress, subaddress XX010010, 8 data bytes, and the second composed by address, subaddress XX010000,2 data bytes).
With autoincrement disabled, the protocol allows the transmission in sequenceof N data bytes of a specificregister, without necessity to resend each time the addressand subaddressbytes.
This feature can be implemented, for example, if a gradual Volume change has to be performed (the MCU has not to send the STOP condition, keepingactivethe TDA7437 communication).
15/23
Page 16
TDA7437
WARNING
The TDA7437 always needs to receive a STOP condition, before beginning a new START condi­tion. The device doesn’trecognize a START con­dition if a previously active communication was not endedby a STOPcondition.
2
C BUS READ MODE
I
The TDA7437 gives to the master a 1 byte ”TRANSMITTED INFO” via I2C bus in read mode. The read mode is Master activated by sending the chip address with LSB set to 1, fol­lowed byacknowledge bit.
The TDA7437 recognizes the request. At the fol­lowing master generated clocks bits, the TDA7437 issues the TRANSMITTED INFO byte on the SDA data bus line (MSB transmitted first).
At thenineth clockbit theMCU master can:
- acknowledge the reception, starting in this way the transmission of another byte from the TDA7437.
- no acknowledge, stopping the read mode communication.
LOUDNESSSTAGE
The previous SGS-THOMSON audioprocessors were implementing a fixed loudness response, only ON/OFFsw programmable.
No possibility to change the loud boost rate at a certain volume level. The TDA7437 implements a fully programmable loudnesscontrolin 20 steps of 1dB.
It allows a customized loudness response for each application. The external network connected to the loudness pins LOUD_Land LOUD_R fixes thetype of loud­ness response
1) SimpleCapacitor The loudness effect is only a boost of low fre­quencies.(see Fig.20)
2)Second order Loudness (boost of low and high frequencies).
3)Second order decreased type Loudness (lowerboost of low and high frequencies).
4)Second order modifiedtype Loudness(higher boost of low and high frequencies).
BASS & MID FILTERS
Severalbass filter types can be implemented. Normallyit is usedthebasi cT-typeBandpassFilter . Starting from the filter component values (R1 in­ternal and R2, C1, C2 external), the centre fre­quency Fc, the gain Av at max bass boost and the filter Q factor are computedas follows:
=
F
c
1
2 Π ⋅√(R1 R2 C1 C2)
R2⋅C2+R2⋅C1+R1⋅C1
A
=
v
R2 C1 +R2 C2
(R1⋅R2⋅C1⋅C2)
Q =
R2 C1 + R2 C2
Viceversa fixed Fc, Av, and R1 (internal typ.+/­30%), the external componentvaluesare:
A
1
v
Π ⋅R1⋅
2
Q Q C1
−1−Q⋅
A
v
−1−Q⋅
A
v
Q
Q
Q
(Av− 1) ⋅ Q
c
R2 =
2 Π C1 F
C1 =
C2
=
TREBLE STAGE
The Treble stage is a simplehigh pass filter which time constant is fixed by internalresistor (50Kohm typ) and an external capacitorconnectedbetween pins TREB_R/TREB_Land Ground.
IN-OUT PINS
The multiplexer output is available at OUT_R and OUT_L pins for optional connection of external graphic equalizer(TDA7316/TDA7317), surround chip (TDA7346) etc. The signal is fed in again at pins IN_L and IN-R. In case of applicationwithout external devices the pins OUT_L/OUT_R and IN_L/IN_R can be left unconnected if bit D3 byte input selector is forced= 0 (DC connect)insteadif bit D3 is kept =1 anexternaldecouplingcapacitor must be provided between OUTR/INR and OUTL/INR necessary to avoid signal DC jumps, generating”Clicking” output noise. The input impedance of the next volume stage is 44Kohm typical (minimum 31Kohm). A capacitor no lower than1µF shouldbe used.
INPUT SELECTOR
The multiplexer selector can choose one of the followinginputs:
- a differential CD stereo input.
- a mono input.
- fourstereoinput The signal fed to the input pins must be decou-
pled via series capacitors. The minimum allowed value depends on the correspondentinput imped­ance. For the CD diff input (Zi=10Kohm worst case) a Cin=4.7uFis recommended.
16/23
Page 17
TDA7437
Figure 8: Poweron Time Constant vs Cref
Capacitor C
V
(1V/div)
OUT LF
CREF
BWL TIME0.5s/DIV
REF
=4.7µF
D95AU380
2 1
Figure 10: Poweron Time Constant vs Cref Ca-
pacitor C
V
(1V)
REF
=22µF
D95AU382
Figure9: Poweron Time Constant vs Cref
Capacitor C
V
(1V/div)
OUT LF
CREF
BWL TIME0.5s/DIV
REF
=10µF
D95AU381
Figure12: SoftMute ON
2 1
OUT LF
CREF
BWL TIME1s/DIV
Figure 11: SVRRvs. Frequency
S
VRR
(dB)
-40
-50
-60
-70
-80
-90
47µF
22
µF
4.7µF
10
µ
F
D95AU383
VS=8V Ripple=0.2VRMS AV=-15dB
V
Main Menu
SOFT MUTE=ON SLOPE=FAST Vout=500mVrms
D95AU384
2 1
Pin Csm
V
Chan
= T/div
1ms 0.2V
Chan 1ms 2V
TIME
1ms
2
3
Vout
SOFT MUTE
CH1 9VDC CH1 0.5V
CH2 20mVx~ CH3 0.2V
CH4 20mV
x
~
10
10
x
=
10
x
10
-100 10 100 1K 10K Freq(Hz)
17/23
Page 18
TDA7437
Figure 13: SoftMute OFF
SOFT MUTE=OFF SLOPE=FAST Vout=500mVrms
V
Main Menu
Pin Csm
V
Vout
CH1 9V DC
SOFT MUTE
D95AU387
TIME
Chan
2
1ms 0.2V
Chan
1
1ms 2V
Figure14: Zero Crossing Mute ON
Panel
STATUS
Memory Save
PANEL Recall Auxiliary
Setups Memory
Card X-Y mode
Persistance mode
Return
ZERO CROSSING MUTE = ON
V
LEFT
RIGHT
CH2 528mV DC
D95AU389
Figure15: Zero Crossing MuteOFF
Main Menu
Zoom
Multi off
ZERO CROSSING MUTE = OFF
V
LEFT RIGHT
D95AU390
0.5ms 0.2V
x Chan 2
0.5ms 0.2V
TIME
x Chan 1
x Chan
0.2ms 1V
x Chan
0.2ms 0.5V
2
1
Figure 16: PauseDetector
PAUSE DETECTOR ZCW=160mV Cpause=100nF
V
Main Menu
18/23
Vout
CH2 4.12V DC
D95AU391
TIME
Chan
1
20ms 0.2V Chan
2
20ms 2V
2ms
CH1 2.7V DC
Figure17: Pause Detector
PAUSE DETECTOR ZCW=160mV Cpause=100nF
Main Menu
Vout
CH2 4.08V DC
BWL
TIME
D95AU392
CH1 20mV CH2 0.2Vx=
10
CH3 20mV CH4 5mV
10
Chan 2 20ms 2V Chan 3 20ms 0.2V
x
~
10
x
~
10
x
~ T/div 20ms
Page 19
TDA7437
Figure 18: Sym_Bass
(dB)
10
5
0
-5
-10
-15 10 100 1K 10K Freq(Hz)
Figure 20: Loudness
ATT (dB)
18 16 14 12 10
8 6 4 2 0
10 100 1K 10K Freq(Hz)
D95AU393
D98AU887
Figure19: Non_Sym_Bass
ATT (dB)
10
5 0
-5
-10
-15
-20
-25 10 100 1K 10K Freq(Hz)
D95AU394
19/23
Page 20
TDA7437
TEST BOARD DIAGRAM
CON1
GND V
CC
DIFG_R
DIFF_R
ST4_R
ST1_R
ST2_R
ST3_R
MONO
DIFG_L
DIFF_L
ST4_L
ST1_L
ST2_L
ST3_L
CON4
CON5
C17
22µF
C20 5.6nF
C21
2.2µF
C22 4.7nF
C23 4.7µF
C24 4.7µF
C25 470nF
C26 470nF
C27 470nF
C28 470nF
C29 470nF
C30 4.7nF
C31 4.7µF
C32 4.7µF
C33 470nF
C34 470nF
C35 470nF
C36 470nF
TRR
IN_R
O_R
LOUDR
DIFG_R
DIFF_R
ST4_R
ST1_R
ST2_R
ST3_R
MONO
LOUDR
DIFG_R
C18
100nF
C19
5.6nF
TRL
AGND43AVDD42DVDD41ADDR
44
1
2
3
4
5
6
7
8
9
10
11
12
13
14
DIFF_R
R4
2.7K
JP1JP2
C11
18nF
MIDRI30MIDRO27BASSRO26BASSRI
40 31
15
ST4_R
ST1_R
C10
22nF
16
17
ST2_R
ST3_R
C8
100nF
R3
5.6K
C7
100nF
CREF
39
25
24
23
22
20
21
38
28
37
36
34
33
18
19
CSM
PAUSE
C15
C1
10µF
2.2nF
32
29
35
OUTRR
BASSLO
BASSLI
MIDLO
MIDLI
I_L
O_L
SCL
SMEX
SDA
DGND
OUTLF
RF
LR
C16 22µF
C6 100nF
C5 100nF
C4 22nF
C3 18nF
C2
2.2µF
JP3
C14
C13
C12
C9
D98AU882
R5
R2
5.6K
R1
2.7K
CON2
SCL
SMEX
SDA
DGND
50
CON3
LF
RF
LR
RR
GND
20/23
Page 21
TDA7437
DIM.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 1.60 0.063
A1 0.05 0.15 0.002
0.006
A2 1.35 1.40 1.45 0.053 0.055 0.057
B 0.30 0.37 0.45 0.012 0.014 0.018 C 0.09 0.20 0.004
0.008
D 12.00 0.472 D1 10.00 0.394 D3 8.00 0.315
e 0.80 0.031
E 12.00 0.472 E1 10.00 0.394 E3 8.00 0.315
L 0.45 0.60 0.75 0.018 0.024 0.030
L1 1.00 0.039
K 0°(min.), 3.5°(typ.), 7°(max.)
OUTLINE AND
MECHANICAL DATA
TQFP44 (10 x 10)
D
D1
A1
2333
34
B
44
1
e
11
TQFP4410
22
E
E1
12
L
0.10mm .004
Seating Plane
B
K
A
A2
C
21/23
Page 22
TDA7437
DIM.
mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 2.45 0.096
A1 0.25
0.010
A2 1.95 2.00 2.10 0.077 0.079 0.083
B 0.30 0.45 0.012 0.018
c 0.13 0.23 0.005 0.009
D 12.95 13.20 13.45 0.51 0.52 0.53 D1 9.90 10.00 10.10 0.390 0.394 0.398 D3 8.00 0.315
e 0.80 0.031
E 12.95 13.20 13.45 0.510 0.520 0.530 E1 9.90 10.00 10.10 0.390 0.394 0.398 E3 8.00 0.315
L 0.65 0.80 0.95 0.026 0.031 0.037
L1 1.60 0.063
K0°(min.), 7°(max.)
OUTLINE AND
MECHANICAL DATA
PQFP44 (10 x 10)
D
D1
A1
33
34
B
44
1
e
23
11
PQFP44
22
L1
E
L
E3D3E1
12
0.10mm .004
Seating Plane
B
K
A
A2
C
22/23
Page 23
TDA7437
Purchase of I2C Componentsof STMicrolectronics, conveys a license under the Philips I2C Patent Rights to use these components in an I
2
C system, provided that the system conforms to the I2C
Standard Specificationsas definedby Philips.
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publicationsupersedes and replaces all informationpreviously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics
1999 STMicroelectronics – Printed in Italy – AllRights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China- Finland - France - Germany - HongKong - India - Italy - Japan - Malaysia - Malta- Morocco -
Singapore - Spain - Sweden - Switzerland - UnitedKingdom - U.S.A.
http://www.st.com
23/23
Loading...