Datasheet TDA5140A, TDA5140AT Datasheet (Philips)

Page 1
INTEGRATED CIRCUITS
DATA SH EET
TDA5140A
Product specification Supersedes data of March 1992 File under Integrated Circuits, IC02
Philips Semiconductors
April 1994
Page 2
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A

FEATURES

Full-wave commutation (using push/pull drivers at the output stages) without position sensors
Built-in start-up circuitry
Three push-pull outputs:
– 0.8 A output current (typ.)

APPLICATIONS

VCR
Laser beam printer
Fax machine
Blower
Automotive.
– low saturation voltage – built-in current limiter
Thermal protection
Flyback diodes
Tacho output without extra sensor
Position pulse stage for phase-locked-loop control

GENERAL DESCRIPTION

The TDA5140A is a bipolar integrated circuit used to drive 3-phase brushless DC motors in full-wave mode. The device is sensorless (saving of 3 hall-sensors) using the back-EMF sensing technique to sense the rotor position.
Transconductance amplifier for an external control transistor.

QUICK REFERENCE DATA Measured over full voltage and temperature range.

SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
V V
P VMOT
supply voltage note 1 4 18 V input voltage to the output
note 2 1.7 16 V
driver stages V I
DO
LIM
drop-out output voltage IO = 100 mA 0.93 1.05 V
current limiting V
= 10 V; RO= 3.9 0.7 0.8 1 A
VMOT
Notes
1. An unstabilized supply can be used.
2. V
= VP; +AMP IN = AMP IN = 0 V; all outputs IO = 0 mA.
VMOT

ORDERING INFORMATION

PACKAGE
EXTENDED TYPE NUMBER
PINS PIN POSITION MATERIAL CODE
TDA5140A 18 DIL plastic SOT102 TDA5140AT 20 SOL plastic SOT163A
April 1994 2
Page 3
Philips Semiconductors Product specification
B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
BBBBBBBBBBBBBB
B B B B B
BBBBBBBBBBBB
B B B B B B B
BBBBBBBBBBBBB
B B B
BBBBBBBBB
B B B B
BBBBBBBBBBBBB
B B B B B B B B
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBB B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BBBBBBBBBBBBBBBBBBBB
BBBBBBBBB
B B B
BBBBBBBBB
BBBBBBBBBBB
B B B B B B
BBBBBBBBBBB
B B B B B
B B B B B B
B B B B B B B B B B B B B B B B B B B B B
Brushless DC motor drive circuit TDA5140A

BLOCK DIAGRAM

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
April 1994 3
BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB
BBBBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB BBBBBBBBBBB
BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB BBBBBBBBBBBB
BBBBBBBB BBBBBBBB BBBBBBBB
BBBBBBBB BBBBBBBB BBBBBBBB
BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
BBBBBBBBBBBBB
Fig.1 Block diagram (SOT102; DIL18).
BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB BBBBBBBBBBBBBBBBBB
Page 4
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A

PINNING

SYMBOL
MOT1 1 1 driver output 1 TEST 2 2 test input/output n.c. 3 not connected MOT2 3 4 driver output 2 VMOT 4 5 input voltage for the output driver stages PG IN 5 6 position generator: input from the position detector sensor to the position
PG/FG 6 7 position generator/frequency generator: output of the rotation speed and position
GND2 7 8 ground supply return for control circuits V
P
CAP-CD 9 10 external capacitor connection for adaptive communication delay timing CAP-DC 10 11 external capacitor connection for adaptive communication delay timing copy CAP-ST 11 12 external capacitor connection for start-up oscillator CAP-TI 12 13 external capacitor connection for timing +AMP IN 13 14 non-inverting input of the transconductance amplifier
AMP IN 14 15 inverting input of the transconductance amplifier AMP OUT 15 16 transconductance amplifier output (open collector) MOT3 16 17 driver output 3 n.c. 18 not connected MOT0 17 19 input from the star point of the motor coils GND1 18 20 ground (0 V) motor supply return for output stages
PIN
DIL18
8 9 positive supply voltage
PIN
SO20
DESCRIPTION
detector stage (optional); only if an external position coil is used
detector stages (open collector digital output, negative-going edge is valid)
April 1994 4
Page 5
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
Fig.2 Pin configuration (SOT102; DIL18). Fig.3 Pin configuration (SOT163A; SO20L).

FUNCTIONAL DESCRIPTION

The TDA5140A offers a sensorless three phase motor drive function. It is unique in its combination of sensorless motor drive and full-wave drive. The TDA5140A offers protected outputs capable of handling high currents and can be used with star or delta connected motors. It can easily be adapted for different motors and applications. The TDA5140A offers the following features:
Sensorless commutation by using the motor EMF.
Built-in start-up circuit.
Optimum commutation, independent of motor type or
motor loading.
Built-in flyback diodes.
Three phase full-wave drive.
High output current (0.8 A).
Outputs protected by current limiting and thermal
protection of each output transistor.
Low current consumption by adaptive base-drive.
Accurate frequency generator (FG) by using the
motor EMF.
Amplifier for external position generator (PG) signal.
Suitable for use with a wide tolerance, external PG
sensor.
Built-in multiplexer that combines the internal FG and external PG signals on one pin for easy use with a controlling microprocessor.
Uncommitted operational transconductance amplifier (OTA), with a high output current, for use as a control amplifier.
April 1994 5
Page 6
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
V
P
V
I
V
VMOT
V
O
V
I
T
stg
T
amb
P
tot
V
es
supply voltage 18 V input voltage; all pins except
VI< 18 V −0.3 VP + 0.5 V
VMOT VMOT input voltage 0.5 17 V output voltage
AMP OUT and PG/FG GND V MOT1, MOT2 and MOT3 1V
input voltage CAP-ST, CAP-TI,
2.5 V
P VMOT
+ V
DHF
V V
CAP-CD and CAP-DC storage temperature 55 +150 °C operating ambient temperature 0 +70 °C total power dissipation see Figs 4 and 5 −− W electrostatic handling see “Handling” 500 V
o
T ( C)
amb
MBD535
P
(W)
tot
2.28
1.05
3
2
0
50
0 200
50 100 150
70
Fig.4 Power derating curve (SOT102; DIL18).

HANDLING

Every pin withstands the ESD test in accordance with
“MIL-STD-883C class 2”
3 pulses + and 3 pulses on each pin referenced to ground.
MBD536
o
T ( C)
amb
P (W)
1.38
3
tot
2
1
0
50
0 200
50 100 150
70
Fig.5 Power derating curve (SOT163A; SO20L).
. Method 3015 (HBM 1500 , 100 pF)
April 1994 6
Page 7
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A

CHARACTERISTICS

V
= 14.5 V; T
P
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Supply
V
P
I
P
V
VMOT
Thermal protection
T
SD
T reduction in temperature before
=25°C; unless otherwise specified.
amb
supply voltage note 1 4 18 V supply current note 2 3.7 5 mA input voltage to the output driver
see Fig.1 1.7 16 V
stages
local temperature at
130 140 150 °C temperature sensor causing shut-down
after shut-down T
30 K
SD
switch-on
MOT0; centre tap
V I
I
V V
I
CSW
CSW
input voltage 0.5 V input bias current 0.5 V < VI< V comparator switching level note 3 ±20 ±30 ±40 mV variation in comparator
switching levels
V
hys
comparator input hysteresis 75 −µV
MOT1, MOT2 and MOT3
V
V
DO
OL
drop-out output voltage IO = 100 mA 0.93 1.05 V
variation in saturation voltage between lower transistors
V
OH
variation in saturation voltage between upper transistors
I
LIM
V
DHF
V
DLF
I
DM
current limiting V diode forward voltage (diode DH)IO = 500 mA; notes 4
diode forward voltage (diode DL)IO = 500 mA; notes 4 and
peak diode current note 5 −− 1A
+AMP IN and AMP IN
V
I
input voltage 0.3 VP− 1.7 V differential mode voltage without
'latch-up'
I
b
C
I
V
offset
input bias current −− 650 nA input capacitance 4 pF input offset voltage −− 10 mV
V
1.5 V 10 0 µA
VMOT
VMOT
3 0 +3 mV
I
= 500 mA 1.65 1.80 V
O
IO = 100 mA −− 180 mV
IO = 100 mA −− 180 mV
= 10 V; RO= 6.8 0.7 0.8 1 A
VMOT
−− 1.5 V
and 5; see Fig.1
1.5 −−V
5; see Fig.1
−− ±V
P
V
April 1994 7
Page 8
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
AMP OUT (open collector)
I
I
V
sat
V
O
SR slew rate R G
tr
PG IN
V
I
I
b
R
I
V
CWS
V
hys
PG/FG (open collector)
V
OL
V
OH(max)
t
THL
δ duty factor 50 % t
PL
CAP-ST
I
sink
I
source
V
SWL
V
SWH
CAP-TI
I
sink
I
source
V
SWL
V
SWM
V
SWH
output sink current 40 −−mA saturation voltage II = 40 mA 1.5 2.1 V output voltage 0.5 +18 V
= 330 ; CL = 50 pF 60 mA/µs
L
transfer gain 0.3 −−S
input voltage 0.3 +5 V input bias current −− 650 nA input resistance 5 30 k comparator switching level 86 107 mV comparator input hysteresis −±8mV
LOW level output voltage IO = 1.6 mA −− 0.4 V maximum HIGH level output
V
P
−−V
voltage HIGH-to-LOW transition time CL = 50 pF; RL = 10 kΩ− 0.5 −µs ratio of PG/FG frequency and
1 : 2
commutation frequency
pulse width LOW after a PG IN pulse 5 7 18 µs
output sink current 1.5 2.0 2.5 µA output source current 2.5 2.0 1.5 µA LOW level switching voltage 0.20 V HIGH level switching voltage 2.20 V
output sink current 28 −µA output source current 0.05 V < V
0.3V<V
CAP-TI
< 0.3 V −−57 −µA
CAP-TI
< 2.2 V −−5−µA LOW level switching voltage 50 mV MIDDLE level switching voltage 0.30 V HIGH level switching voltage 2.20 V
April 1994 8
Page 9
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
CAP-CD
I
sink
I
source
I
sink/Isource
V
IL
V
IH
CAP-DC
I
sink
I
source
I
sink/Isource
V
IL
V
IH
Notes
1. An unstabilized supply can be used.
2. V
VMOT
3. Switching levels with respect to MOT1, MOT2 and MOT3.
4. Drivers are in the high-impedance OFF-state.
5. The outputs are short-circuit protected by limiting the current and the IC temperature.
output sink current 10.6 16.2 22 µA output source current 5.3 8.1 11 µA ratio of sink to source current 1.85 2.05 2.25 LOW level input voltage 850 875 900 mV HIGH level input voltage 2.3 2.4 2.55 V
output sink current 10.1 15.5 20.9 µA output source current 20.9 15.5 10.1 µA ratio of sink to source current 0.9 1.025 1.15 LOW level input voltage 850 875 900 mV HIGH level input voltage 2.3 2.4 2.55 V
= VP, all other inputs at 0 V; all outputs at VP; IO = 0 mA.

APPLICATION INFORMATION

(1) Value selected for 3 Hz start-up oscillator frequency.
Fig.6 Application diagram without use of the operational transconductance amplifier (OTA).
April 1994 9
Page 10
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
Introduction (see Fig.7)
Full-wave driving of a three phase motor requires three push-pull output stages. In each of the six possible states two outputs are active, one sourcing (H) and one sinking (L). The third output presents a high impedance (Z) to the motor which enables measurement of the motor back-EMF in the corresponding motor coil by the EMF comparator at each output. The commutation logic is responsible for control of the output transistors and selection of the correct EMF comparator. In Table 1 the sequence of the six possible states of the outputs has been depicted.
Table 1 Output states.
STATE MOT1
(1)
MOT2
(1)
MOT3
(1)
1ZLH 2HLZ 3HZL 4ZHL 5LHZ 6LZH
Note
1. H = HIGH state; L = LOW state; Z = high impedance OFF-state.
Because of high inductive loading the output stages contain flyback diodes. The output stages are also protected by a current limiting circuit and by thermal protection of the six output transistors.
The detected zero-crossings are used to provide speed information. The information has been made available on the PG/FG output pin. This is an open collector output and provides an output signal with a frequency that is half the commutation frequency. A VCR scanner also requires a PG phase sensor. This circuit has an interface for a simple pick-up coil. A multiplexer circuit is also provided to combine the FG and PG signals in time.
The system will only function when the EMF voltage from the motor is present. Therefore, a start oscillator is provided that will generate commutation pulses when no zero-crossings in the motor voltage are available.
A timing function is incorporated into the device for internal timing and for timing of the reverse rotation detection.
The TDA5140A also contains an uncommitted transconductance amplifier (OTA) that can be used as a control amplifier. The output is capable of directly driving an external power transistor.
The TDA5140A is designed for systems with low current consumption: use of I2L logic, adaptive base drive for the output transistors (patented), possibility of using a pick-up coil without bias current.
The zero-crossing in the motor EMF (detected by the comparator selected by the commutation logic) is used to calculate the correct moment for the next commutation, that is, the change to the next output state. The delay is calculated (depending on the motor loading) by the adaptive commutation delay block.
April 1994 10
Page 11
Philips Semiconductors Product specification
B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B B
BBBBBBBBBBB
B B B
BBBBBBBBB
B B B B B
BBBBBBBBBB
B
BBBBBBB
B B B
BBBBBBBBBB
B B B B B B B B B
BBBBBBBB
B B B B B B B B B B B B B B B B B B B
B B
BBBBBBB
BBBBBBBB
B B B B
BBBBBBBB
Brushless DC motor drive circuit TDA5140A
BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB BBBBBBBBBB
BBBBBBBBB BBBBBBBBB BBBBBBBBB
BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB BBBBBBB
BBBBBBBB BBBBBBBB BBBBBBBB
BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB BBBBBBBBB
BBBBBB
BBBBBB BBBBBB
BBBBBBB BBBBBBB BBBBBBB BBBBBBB
April 1994 11
Fig.7 Typical application of the TDA5140A as a scanner driver, with use of OTA.
BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB BBBBBBBBBBBBBBB
Page 12
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A

Adjustments

The system has been designed in such a way that the tolerances of the application components are not critical. However, the approximate values of the following components must still be determined:
The start capacitor; this determines the frequency of the
start oscillator.
The two capacitors in the adaptive commutation delay
circuit; these are important in determining the optimum moment for commutation, depending on the type and loading of the motor.
The timing capacitor; this provides the system with its
timing signals.
T
HE START CAPACITOR (CAP-ST)
This capacitor determines the frequency of the start oscillator. It is charged and discharged, with a current of 2 µA, from 0.05 to 2.2 V and back to 0.05 V. The time taken to complete one cycle is given by:
t
= (2.15 × C) s (with C in µF)
start
The start oscillator is reset by a commutation pulse and so is only active when the system is in the start-up mode. A pulse from the start oscillator will cause the outputs to change to the next state (torque in the motor). If the movement of the motor generates enough EMF the TDA5140A will run the motor. If the amount of EMF generated is insufficient, then the motor will move one step only and will oscillate in its new position. The amplitude of the oscillation must decrease sufficiently before the arrival of the next start pulse, to prevent the pulse arriving during the wrong phase of the oscillation. The oscillation of the motor is given by:
f
osc
=
1
---------------------------------- ­K
I× p×
t
---------------------- -
2π
J
where:
= torque constant (N.m/A)
K
t
I = current (A) p = number of magnetic pole-pairs J = inertia J (kg.m2)
Example: J = 72 × 10-6kg.m2, K = 25 × 10-3N.m/A, p = 6 and I = 0.5 A; this gives f
= 5 Hz. If the damping is high
osc
then a start frequency of 2 Hz can be chosen or t = 500 ms, thus C = 0.5/2 = 0.25 µF, (choose 220 nF).
T
HE ADAPTIVE COMMUTATION DELAY (CAP-CD AND
CAP-DC) In this circuit capacitor CAP-CD is charged during one
commutation period, with an interruption of the charging current during the diode pulse. During the next commutation period this capacitor (CAP-CD) is discharged at twice the charging current. The charging current is
8.1 µA and the discharging current 16.2 µA; the voltage range is from 0.9 to 2.2 V. The voltage must stay within this range at the lowest commutation frequency of interest, f
f 1.3×
6–
×
6231
------------ ­f
c1
(C in nF)
8.1 10
C
==
--------------------------
C1
If the frequency is lower, then a constant commutation delay after the zero-crossing is generated by the discharge
from 2.2 to 0.9 V at 16.2 µA. maximum delay = (0.076 × C) ms (with C in nF) Example: nominal commutation frequency = 900 Hz and
the lowest usable frequency = 400 Hz, so:
CAP-CD
6231
------------ ­400
(choose 18 nF)
15.6==
The other capacitor, CAP-DC, is used to repeat the same delay by charging and discharging with 15.5 µA. The same value can be chosen as for CAP-CD. Figure 8 illustrates typical voltage waveforms.
:
April 1994 12
Page 13
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
Fig.8 CAP-CD and CAP-DC typical voltage waveforms in normal running mode.
THE TIMING CAPACITOR (CAP-TI) Capacitor CAP-TI is used for timing the successive steps
within one commutation period; these steps include some internal delays.
The most important function is the watchdog time in which the motor EMF has to recover from a negative diode-pulse back to a positive EMF voltage (or vice versa). A watchdog timer is a guarding function that only becomes active when the expected event does not occur within a predetermined time.
The EMF usually recovers within a short time if the motor is running normally (<<ms). However, if the motor is motionless or rotating in the reverse direction, then the time can be longer (>>ms).
A watchdog time must be chosen so that it is long enough for a motor without EMF (still) and eddy currents that may stretch the voltage in a motor winding; however, it must be short enough to detect reverse rotation. If the watchdog
time is made too long, then the motor may run in the wrong direction (with little torque).
The capacitor is charged, with a current of 57 µA, from
0.2 to 0.3 V. Above this level it is charged, with a current of 5 µA, up to 2.2 V only if the selected motor EMF remains in the wrong polarity (watchdog function). At the end, or, if the motor voltage becomes positive, the capacitor is discharged with a current of 28 µA. The watchdog time is the time taken to charge the capacitor, with a current of 5 µA, from 0.3 to 2.2 V.
To ensure that the internal delays are covered CAP-TI must have a minimum value of 2 nF. For the watchdog function a value for CAP-TI of 10 nF is recommended.
To ensure a good start-up and commutation, care must be taken that no oscillations occur at the trailing edge of the flyback pulse. Snubber networks at the outputs should be critically damped.
Typical voltage waveforms are illustrated by Fig.9.
April 1994 13
Page 14
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
If the chosen value of CAP-TI is too small oscillations can occur in certain positions of a blocked rotor. If the chosen value is too large, then it is possible that the motor may run in the reverse direction (synchronously with little torque).
Fig.9 Typical CAP-TI and V
voltage waveforms in normal running mode.
MOT1

Other design aspects

There are other design aspects concerning the application of the TDA5140A besides the commutation function. They are:
Generation of the tacho signal FG
A built-in interface for a PG sensor
General purpose operational transconductance
amplifier (OTA)
Possibilities of motor control
Reliability.
FG
SIGNAL
The FG signal is generated in the TDA5140A by using the zero-crossing of the motor EMF from the three motor windings. Every zero-crossing in a (star connected) motor winding is used to toggle the FG output signal. The FG frequency is therefore half the commutation frequency. All transitions indicate the detection of a zero-crossing (except for PG). The negative-going edges are called FG pulses because they generate an interrupt in a controlling microprocessor.
The accuracy of the FG output signal (jitter) is very good. This accuracy depends on the symmetry of the motor's electromagnetic construction, which also effects the satisfactory functioning of the motor itself.
Example: A 3-phase motor with 6 magnetic pole-pairs at 1500 rpm and with a full-wave drive has a commutation frequency of 25 × 6 × 6 = 900 Hz, and generates a tacho signal of 450 Hz.
PG
SIGNAL
The accuracy of the PG signal in applications such as VCR must be high (phase information). This accuracy is obtained by combining the accurate FG signal with the PG signal by using a wide tolerance external PG sensor. The external PG signal (PG IN) is only used as an indicator to select a particular FG pulse. This pulse differs from the
other FG pulses in that it has a short LOW-time of 18 µs after a HIGH-to-LOW transition. All other FG pulses have a 50% duty factor (see Fig.10).
For more information also see
EIE/AN 93014”
.
“application note
April 1994 14
Page 15
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
Fig.10 Timing and the FG and PG IN signals.
The special PG pulse is derived from the negative-going zero-crossing from the MOT3 output (pin 16). The external PG signal (PG IN on pin 5) must sense a positive-going voltage (>80 mV) within 1.5 to 7.5 commutation periods before the negative-going zero-crossing in MOT3 (see Fig.10).
The voltage requirements of the PG IN input are such that an inexpensive pick-up coil can be used as a sensor (see Fig.11).
Example: If p = 6, then one revolution contains 6 × 6=36 commutations. The tolerance is 6 periods, that is 60 degrees (mechanically) or 6.67 ms at 1500 rpm.
If a PG sensor is not used, the PG IN input must be grounded, this will result in a 50% duty factor FG signal.
2.2 k
22 nF
MBD696
PG IN
GND2
Fig.11 Pick-up coil as PG sensor.
April 1994 15
Page 16
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
THE OPERATIONAL TRANSCONDUCTANCE AMPLIFIER (OTA) The OTA is an uncommitted amplifier with a high output
current (40 mA) that can be used as a control amplifier. The common mode input range includes ground (GND) and rises to VP− 1.7 V. The high sink current enables the OTA to drive a power transistor directly in an analog control amplifier.
Although the gain is not extremely high (0.3 S), care must be taken with the stability of the circuit if the OTA is used as a linear amplifier as no frequency compensation has been provided.
The convention for the inputs (inverting or not) is the same as for a normal operational amplifier: with a resistor (as load) connected from the output (AMP OUT) to the positive supply, a positive-going voltage is found when the non-inverting input (+AMP IN) is positive with respect to the inverting input (AMP IN). Confusion is possible because a 'plus' input causes less current, and so a positive voltage.
M
OTOR CONTROL
DC motors can be controlled in an analog manner using the OTA.
ELIABILITY
R
It is necessary to protect high current circuits and the
output stages are protected in two ways:
Current limiting of the 'lower' output transistors. The 'upper' output transistors use the same base current as the conducting 'lower' transistor (+15%). This means that the current to and from the output stages is limited.
Thermal protection of the six output transistors is achieved by each transistor having a thermal sensor that is active when the transistor is switched on. The transistors are switched off when the local temperature becomes too high.
It is possible, that when braking, the motor voltage (via the flyback diodes and the impedance on VMOT) may cause higher currents than allowed (>0.6 A). These currents must be limited externally.
For the control an external transistor is required. The OTA can supply the base current for this transistor and act as a control amplifier (see Fig.7).
April 1994 16
Page 17
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A

PACKAGE OUTLINES

seating plane
3.9
3.4
0.85 max
22.00
21.35
3.7
4.7
max
max
0.51 min
2.54 (8x)
1.4 max
18
1
0.53 max
10
0.254 M
6.48
6.14
9
0.32 max
8.25
7.80
7.62
9.5
8.3
MSA259
Dimensions in mm.
Fig.12 18-pin dual in-line; plastic (SOT102).
April 1994 17
Page 18
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
handbook, full pagewidth
S
pin 1
index
13.0
12.6
0.1 S
0.9
(4x)
0.4
1120
2.45
0.3
2.25
0.1
110
detail A
1.27
0.49
0.36
0.25 M
(20x)
7.6
7.4
10.65
10.00
1.1
0.5
1.1
1.0
0.32
0.23
0 to 8
MBC234 - 1
A
2.65
2.35
o
Dimensions in mm.
Fig.13 20-pin small-outline; plastic (SO20L; SOT163A).
April 1994 18
Page 19
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
SOLDERING Plastic dual in-line packages
Y DIP OR WAVE
B The maximum permissible temperature of the solder is
260 °C; this temperature must not be in contact with the joint for more than 5 s. The total contact time of successive solder waves must not exceed 5 s.
The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified storage maximum. If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.
R
EPAIRING SOLDERED JOINTS
Apply the soldering iron below the seating plane (or not more than 2 mm above it). If its temperature is below 300 °C, it must not be in contact for more than 10 s; if between 300 and 400 °C, for not more than 5 s.
Plastic small-outline packages
BYWAVE During placement and before soldering, the component
must be fixed with a droplet of adhesive. After curing the adhesive, the component can be soldered. The adhesive can be applied by screen printing, pin transfer or syringe dispensing.
Y SOLDER PASTE REFLOW
B
Reflow soldering requires the solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the substrate by screen printing, stencilling or pressure-syringe dispensing before device placement.
Several techniques exist for reflowing; for example, thermal conduction by heated belt, infrared, and vapour-phase reflow. Dwell times vary between 50 and 300 s according to method. Typical reflow temperatures range from 215 to 250 °C.
Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 min at 45 °C.
R
EPAIRING SOLDERED JOINTS (BY HAND-HELD SOLDERING
IRON OR PULSE
-HEATED SOLDER TOOL)
Fix the component by first soldering two, diagonally opposite, end pins. Apply the heating tool to the flat part of the pin only. Contact time must be limited to 10 s at up to 300 °C. When using proper tools, all other pins can be soldered in one operation within 2 to 5 s at between 270 and 320 °C. (Pulse-heated soldering is not recommended for SO packages.)
For pulse-heated solder tool (resistance) soldering of VSO packages, solder is applied to the substrate by dipping or by an extra thick tin/lead plating before package placement.
Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder bath is 10 s, if allowed to cool to less than 150 °C within 6 s. Typical dwell time is 4 s at 250 °C.
A modified wave soldering technique is recommended using two solder waves (dual-wave), in which a turbulent wave with high upward pressure is followed by a smooth laminar wave. Using a mildly-activated flux eliminates the need for removal of corrosive residues in most applications.
April 1994 19
Page 20
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A

DEFINITIONS

Data sheet status
Objective specification This data sheet contains target or goal specifications for product development. Preliminary specification This data sheet contains preliminary data; supplementary data may be published later. Product specification This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.
April 1994 20
Page 21
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
NOTES
April 1994 21
Page 22
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
NOTES
April 1994 22
Page 23
Philips Semiconductors Product specification
Brushless DC motor drive circuit TDA5140A
NOTES
April 1994 23
Page 24
Philips Semiconductors – a worldwide company
Argentina: IEROD, Av. Juramento 1992 - 14.b, (1428)
BUENOS AIRES, Tel. (541)786 7633, Fax. (541)786 9367
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. (02)805 4455, Fax. (02)805 4466
Austria: Triester Str. 64, A-1101 WIEN, P.O. Box 213,
Tel. (01)60 101-1236, Fax. (01)60 101-1211
Belgium: Postbus 90050, 5600 PB EINDHOVEN, The Netherlands,
Tel. (31)40 783 749, Fax. (31)40 788 399
Brazil: Rua do Rocio 220 - 5
CEP: 04552-903-SÃO PAULO-SP, Brazil. P.O. Box 7383 (01064-970). Tel. (011)821-2327, Fax. (011)829-1849
Canada: INTEGRATED CIRCUITS:
Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 601 Milner Ave, SCARBOROUGH, ONTARIO, M1B 1M8, Tel. (0416)292 5161 ext. 2336, Fax. (0416)292 4477
Chile: Av. Santa Maria 0760, SANTIAGO,
Tel. (02)773 816, Fax. (02)777 6730
Colombia: Carrera 21 No. 56-17, BOGOTA, D.E., P.O. Box 77621,
Tel. (571)217 4609, Fax. (01)217 4549
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. (032)88 2636, Fax. (031)57 1949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. (9)0-50261, Fax. (9)0-520971
France: 4 Rue du Port-aux-Vins, BP317,
92156 SURESNES Cedex, Tel. (01)4099 6161, Fax. (01)4099 6427
Germany: P.O. Box 10 63 23, 20095 HAMBURG ,
Tel. (040)3296-0, Fax. (040)3296 213
Greece: No. 15, 25th March Street, GR 17778 TAVROS,
Tel. (01)4894 339/4894 911, Fax. (01)4814 240
Hong Kong: 15/F Philips Ind. Bldg., 24-28 Kung Yip St.,
KWAI CHUNG, N.T. Tel. (0)4245 121, Fax. (0)4806 960
India: Philips Components Division,
A Block Shivsagar Estate Worli, Dr. Annie Besant Rd., Bombay 400 018 Tel. (022)4938 541, Fax. (022)4938 722
Indonesia: Philips House, Jalan H.R. Rasuna Said Kav. 3-4,
P.O. Box 4252, JAKARTA 12950, Tel. (021)5201 122, Fax. (021)5205 189
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. (01)640 000, Fax. (01)640 200
Italy: Viale F. Testi, 327, 20162 MILANO,
Tel. (02)6752.3358, Fax. (02)6752.3350
Japan: Philips Bldg13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,
Tel. (03)3740 5028, Fax. (03)3740 0580
Korea: (Republic of) Philips House, 260-199 Itaewon-dong,
Yongsan-ku, SEOUL, Tel. (02)794-5011, Fax. (02)798-8022
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,
SELANGOR, Tel. (03)750 5214, Fax. (03)757 4880
Mexico: Philips Components, 5900 Gateway East, Suite 200,
EL PASO, TX 79905, Tel. 9-5(800)234-7381, Fax. (708)296-8556
Netherlands: Postbus 90050, 5600 PB EINDHOVEN,
Tel. (040)78 37 49, Fax. (040)78 83 99
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. (09)849-4160, Fax. (09)849-7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. (022)74 8000, Fax. (022)74 8341
th
floor, Suite 51,
Pakistan: Philips Markaz, M.A. Jinnah Rd., KARACHI 3,
Tel. (021)577 039, Fax. (021)569 1832
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. (02)810 0161, Fax. (02)817 3474
Portugal: Av. Eng. Duarte Pacheco 6, 1009 LISBOA Codex,
Tel. (01)683 121, Fax. (01)658 013
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. (65)350 2000, Fax. (65)251 6500
South Africa: 195-215 Main Road, Martindale,
P.O. Box 7430,JOHANNESBURG 2000, Tel. (011)470-5911, Fax. (011)470-5494
Spain: Balmes 22, 08007 BARCELONA,
Tel. (03)301 6312, Fax. (03)301 42 43
Sweden: Kottbygatan 7, Akalla. S-164 85 STOCKHOLM,
Tel. (0)8-632 2000, Fax. (0)8-632 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. (01)488 2211, Fax. (01)481 7730
Taiwan: 23-30F, 66, Chung Hsiao West Road, Sec. 1,
P.O. Box 22978, TAIPEI 10446, Tel. (2)382 4443, Fax. (2)382 4444
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
60/14 MOO 11, Bangna - Trad Road Km. 3 Prakanong, BANGKOK 10260, Tel. (2)399-3280 to 9, (2)398-2083, Fax. (2)398-2080
Turkey: Talatpasa Cad. No. 5, 80640 GULTEPE/ISTANBUL,
Tel. (0212)279 2770, Fax. (0212)269 3094
United Kingdom: Philips Semiconductors Limited, P.O. Box 65,
Philips House, Torrington Place, LONDON, WC1E 7HD, Tel. (071)436 41 44, Fax. (071)323 03 42
United States:INTEGRATED CIRCUITS:
811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. (800)234-7381, Fax. (708)296-8556 DISCRETE SEMICONDUCTORS: 2001 West Blue Heron Blvd.,
P.O. Box 10330, RIVIERA BEACH, FLORIDA 33404, Tel. (800)447-3762 and (407)881-3200, Fax. (407)881-3300
Uruguay: Coronel Mora 433, MONTEVIDEO,
Tel. (02)70-4044, Fax. (02)92 0601
For all other countries apply to: Philips Semiconductors, International Marketing and Sales, Building BAF-1, P.O. Box 218, 5600 MD, EINDHOVEN, The Netherlands, Telex 35000 phtcnl, Fax. +31-40-724825
SCD30 © Philips Electronics N.V. 1994
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.
Printed in The Netherlands 9397 728 20011
Philips Semiconductors
Loading...