Datasheet TC4420, TC4429 Datasheet

TC4420/TC4429
5-Pin TO-220
V
DD
GND
INPUT
GND
OUTPUT
TC4420 TC4429
Tab is Common to V
DD
8-Pin CERDIP/
1 2 3 4
V
DD
5
6
7
8
OUTPUT
GND
V
DD
INPUT
NC
GND
OUTPUT
TC4420 TC4429
TC4420 TC4429
V
DD
OUTPUT
GND
OUTPUT
PDIP/SOIC
Note 1: Duplicate pins must both be connected for proper operation.
2: Exposed pad of the DFN package is electrically isolated.
8-Pin DFN
(2)
V
DD
INPUT
NC
GND
2 3 4
5
6
7
8
1
TC4420 TC4429
V
DD
OUTPUT
GND
OUTPUT
TC4420 TC4429
V
DD
OUTPUT
GND
OUTPUT
6A High-Speed MOSFET Drivers
Features
• Latch-Up Protected: Will Withstand >1.5A Reverse Output Current
• Logic Input Will Withstand Negative Swing Up To 5V
• ESD Protected: 4 kV
- 25 ns (2500 pF load)
• High Peak Output Current: 6A
• Wide Input Supply Voltage Operating Range:
- 4.5V to 18V
• High Capacitive Load Drive Capability: 10,000pF
• Short Delay Time: 55 ns (typ.)
• CMOS/TTL Compatible Input
• Low Supply Current With Logic ‘1’ Input:
-450µA (typ.)
• Low Output Impedance: 2.5
• Output Voltage Swing to Within 25 mV of Ground or V
DD
• Space-Saving 8-Pin SOIC and 8-Pin 6x5 DFN Packages
Applications
General Description
The TC4420/TC4429 are 6A (peak), single-output MOSFET drivers. The TC4429 is an inverting driver (pin-compatible with the TC429), while the TC4420 is a non-inverting driver. These drivers are fabricated in CMOS for lower power and more efficient operation versus bipolar drivers.
Both devices have TTL/CMOS compatible inpu ts that can be driven as high a s V without upset or damage to th e device. T his elimi nates the need for external level-shifting circuitry and its associated cost and size. The output swing is rail-to-rail, ensuring better dri ve voltage margin, espe cially during power-up/power-down sequencing. Propagational delay time is only 55 ns (typ.) and the output rise and fall times are only 25 ns (typ.) into 2500 pF across the usable power supply range.
Unlike other drivers, the TC4420/TC4429 are virtually latch-up proof. They replace three or more discrete components, saving PCB area, parts and improving overall system reliability.
+ 0.3V or as low as –5V
DD
• Switch-Mode Power Supp lie s
• Motor Controls
• Pulse Transformer Driver
• Class D Switching Amplifiers
(1)
Package Types
2002-2012 Microchip Technology Inc. DS21419D-page 1
TC4420/TC4429
Effective
Input
TC4420
Output
Input
GND
V
DD
300 mV
4.7V
C = 38 pF
TC4429
500 µA
Non-Inverting
Inverting
Functional Block Diagram
DS21419D-page 2 2002-2012 Microchip Technology Inc.
TC4420/TC4429
1.0 ELECTRICAL
CHARACTERISTICS
Absolute Maximum Ratings†
Supply Voltage.....................................................+20V
Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
Input Voltage..................................– 5V to VDD + 0.3V
Input Current (VIN > VDD)...................................50 mA
Power Dissipation (T
70°C)
A
5-Pin TO-220....................................................1.6W
CERDIP.......................................................800 mW
DFN............................................ ...................Note 2
PDIP............................................................730 mW
SOIC............................................................470 mW
Package Power Dissipation (T
25°C)
A
5-Pin TO-220 (With Heatsink) ........................12.5W
Thermal Impedances (To Case)
5-Pin TO-220 R
......................................10°C/W
J-C
DC CHARACTERISTICS
Electrical Specifications: Unless otherwise noted, TA = +25°C with 4.5V VDD 18V.
Parameters Sym Min Typ Max Units Conditions
Input
Logic ‘1’, High Input Voltage
Logic ‘0’, Low Input Voltage V Input Voltage Range V Input Current I
Output
High Output Voltage V Low Output Voltage V Output Resistanc e, Hi gh R Output Resistanc e, Low R Peak Output Current I Latch-Up Protection
Withstand Reverse Current Switching Time (Note 1) Rise Time t Fall Time t Delay Time t Delay Time t
Power Supply
Power Supply Current I
Operating Input Voltage V
Note 1: Switching times ensured by design.
2: Package power dissipation is dependent on the copper pad area on the PCB.
V
I
REV
IH
IL IN
IN
OH
OL
OH
OL
PK
2.4 1.8 V
—1.30.8V –5 VDD+0.3 V
–10 +10 µA 0VVINV
VDD – 0.025 V DC TEST
0.025 V DC TEST —2.12.8 I —1.52.5 I —6.0—AV — > 1.5 A Duty cycle2%, t 300 µsec
R
F D1 D2
S
DD
—2535nsFigure 4-1, CL = 2,500 pF —2535nsFigure 4-1, CL = 2,500 pF —5575nsFigure 4-1 —5575nsFigure 4-1
— —
0.45 55
1.5
150
mAµAVIN = 3V
4.5 18 V
OUT OUT
V
DD
IN
= 0V
DD
= 10 mA, VDD = 18V = 10 mA, VDD = 18V
= 18V
2002-2012 Microchip Technology Inc. DS21419D-page 3
TC4420/TC4429
DC CHARACTERISTICS (OVER OPERATING TEMPERATURE RANGE)
Electrical Specifications: Unless otherwise noted, over operating temperature range with 4.5V VDD 18V.
Parameters Sym Min Typ Max Units Conditions
Input
Logic ‘1’, High Input Voltage
Logic ‘0’, Low Input Voltage V Input Voltage Range V Input Current I
Output
High Output Voltage V Low Output Voltage V Output Resistanc e, Hi gh R Output Resistanc e, Low R Switching Time (Note 1) Rise Time t Fall Time t Delay Time t Delay Time t
Power Supply
Power Supply Current I
Operating Input Voltage V Note 1: Switching times ensured by design.
V
IH
IL IN
IN
OH OL OH
OL
R
F D1 D2
S
DD
2.4 V
——0.8V –5 VDD + 0.3 V
–10 +10 µA 0VVINV
VDD – 0.025 V DC TEST
0.025 V DC TEST —35 I —2.35 I
—3260nsFigure 4-1, CL = 2,500 pF —3460nsFigure 4-1, CL = 2,500 pF —50100nsFigure 4-1 —65100nsFigure 4-1
— —
0.45 60
3
400
4.5 18 V
= 10 mA, VDD = 18V
OUT
= 10 mA, VDD = 18V
OUT
mAµAVIN = 3V
V
= 0V
IN
DD
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise noted, all parameters apply with 4.5V V
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Specified Temperature Range (C) T Specified Temperature Range (I) T Specified Temperature Range (E) T Specified Temperature Range (V) T Maximum Junction Temperature T Storage Temperature Range T
Package Thermal Resistances
Thermal Resistance, 5L-TO-220 Thermal Resistance, 8L-CERDIP Thermal Resistance, 8L-6x5 DFN
Thermal Resistance, 8L-PDIP Thermal Resistance, 8L-SOIC
A A A A J A
JA JA JA
JA JA
0—+7C –25 +85 °C –40 +85 °C –40 +125 °C
+150 °C
–65 +150 °C
—71—°C/W —150—°C/W — 33.2 °C/W Typical four-layer board
—125—°C/W —155—°C/W
18V.
DD
with vias to ground plane.
DS21419D-page 4 2002-2012 Microchip Technology Inc.
TC4420/TC4429
V = 12V
DD
V = 5V
DD
60
40
20
10
1000
10,000
Capcitive Load (pF)
V = 18V
DD
80
100
Time (nsec)
50
40
30
20
10
0
–60 –20 20 60 100
140
TA (°C)
Delay Time (nsec)
D1
t
D2
t
C = 2200 pF
L
V = 18V
DD
0

2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and ta bles provided followi ng thi s n ote are a statistical s umm ar y based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, TA = +25°C with 4.5V  VDD 18V.
120
100
C = 10,000 pF
80
60
Time (nsec)
40
20
0
579111315
Supply Voltage (V)
L
C = 4700 pF
L
C = 2200 pF
L

FIGURE 2-1: Rise Time vs. Supply Voltage.

100
80
C = 10,000 pF
60
40
Time (nsec)
20
0
57 9111315
Supply Voltage (V)
L
C = 4700 pF
L
C = 2200 pF
L

FIGURE 2-4: Fall Time vs. Supply Voltage.

100
80
60
40
V = 5V
DD
V = 12V
Time (nsec)
20
10
1000
DD
Capacitive Load (pF)
V = 18V
DD
10,00

FIGURE 2-2: Rise Time vs. Capacitive Load.

FIGURE 2-3: Propagation Delay Time vs. Temperature.

2002-2012 Microchip Technology Inc. DS21419D-page 5

FIGURE 2-5: Fall Time vs. Capacitive Load.

84
V = 15V
DD
70
56
42
28
Supply Current (mA)
14
0
0 100 1000
500 kHz
200 kHz
Capacitive Load (pF)
20 kHz
10,000

FIGURE 2-6: Supply Current vs. Capacitive Load.

TC4420/TC4429
–60 –20 20 60 100
140
TA (°C)
t
RISE
t
50
40
30
20
10
0
Time (nsec)
C = 2200 pF V = 18V
DD
FALL
L
65
60
55
50
45
40
35
Delay Time (nsec)
4 6 81012141618
Supply Voltage (V)
t
D2
t
D1
100
0
0 100 1000
10,000
Frequency (kHz)
Supply Current (mA)
10
1000
18V
10V
5V
C = 2200 pF
L
5
200
160
120
80
40
0
Delay Time (nsec)
567 11 13
15
Load = 2200 pF
Input 2.4V
Input 3V
Input 5V
Input 8V and 10V
8 9 10 12 14
V (V)
DD
Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.
5

FIGURE 2-7: Rise and Fall Times vs. Temperature.

100 mA
10 mA
5913
7111
Supply Voltage (V)
50 mA
OUT
R ( )Ω
4
3
2

FIGURE 2-10: High-State Output Resistance vs Supply Voltage.

FIGURE 2-8: Propagation Delay Time vs. Supply Voltage.

FIGURE 2-9: Supply Current vs. Frequency.

DS21419D-page 6 2002-2012 Microchip Technology Inc.

FIGURE 2-11: Effect of Input Amplitude on Propagation Delay.

2.5
2
OUT
R ( )Ω
1.5
1
5913
71115
Supply Voltage (V)
100 mA
50 mA
10 mA

FIGURE 2-12: Low-State Output Resistance vs. Supply Voltage.

Note: Unless otherwise indicated, TA = +25°C with 4.5V VDD 18V.
4
3
2
1
0
Crossover Area (A•S) x 10
-8
567 11 13
15
8 9 10 12 14
Supply Voltage (V)
The values on this graph represent the loss seen by the driver during one complete cycle. For a single transition, divide the value by 2.

FIGURE 2-13: Crossover Energy.

TC4420/TC4429
2002-2012 Microchip Technology Inc. DS21419D-page 7
Loading...
+ 15 hidden pages