Axial and Surface Mount Power Schottky rectifier
suited for Switch Mode Power Supplies and high
frequency DC to DC converters. Packaged in
DO-201AD, DO-15 and SMB, this device is
intended for use in low voltage, high frequency
inverters and small battery chargers.
Repetitive peak reverse voltage
RMS forward current
Average forward currentTL= 105°C δ = 0.5
60V
10A
3A
(DO-201AD, SMB)
T
= 75°C δ = 0.5
L
(DO-15)
I
FSM
P
ARM
T
stg
T
j
dV/dt
Surge non repetitive forward currenttp= 10 ms Sinusoidal
Repetitive peak avalanche powertp = 1µsTj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
100A
2000W
- 65 to + 150°C
150°C
10000V/µs
dPtot
*:
<
dTjRth ja
July 2003 - Ed: 5A
thermal runaway condition for a diode on its ownheatsink
−1()
1/6
Page 2
STPS3L60/Q/U
THERMAL RESISTANCES
SymbolParameterValueUnit
R
th(j-l)
Junction to leadsLead length = 10 mmDO-201AD
SMB
DO-15
STATIC ELECTRICAL CHARACTERISTICS
SymbolParameterTests conditionsMin.Typ.Max.Unit
I
*
R
V
F
Pulse test : * tp = 380 µs, δ <2%
Reverse leakage currentTj= 25°CVR=V
= 100°C
T
j
= 125°C
T
j
*
Forward voltage dropTj= 25°CIF=3A
= 100°C
T
j
= 125°C
T
j
= 25°CIF=6A
T
j
= 100°C
T
j
= 125°C
T
j
RRM
20°C/W
20
35
150µA
415mA
1430
0.62V
0.530.61
0.510.59
0.79
0.620.71
0.60.69
To evaluate the maximum conduction losses use the following equation:
P=0.44xI
Fig. 1: Average forward power dissipation versus
average forward current.
P(W)
F(AV)
2.5
2.0
1.5
1.0
0.5
0.0
0.00.51.01.52.02.53.03.54.0
F(AV)
δ = 0.05
+0.05xI
δ = 0.1
δ = 0.2
I(A)
F(AV)
F2(RMS)
δ = 0.5
δ
=tp/T
δ = 1
T
Fig. 2-1: Average forward current versus ambient
temperature (δ = 0.5) (DO-201AD, SMB).
I(A)
F(AV)
3.5
3.0
2.5
2.0
1.5
1.0
tp
0.5
0.0
T
=tp/T
δ
0255075100125150
tp
R=R
th(j-a) th(j-I)
R =80°C/W
th(j-a)
T(°C)
amb
2/6
Page 3
STPS3L60/Q/U
Fig. 2-2: Average forward current versus ambient
temperature (δ = 0.5) (DO-15).
I(A)
F(AV)
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
R=R
th(j-a) th(j-I)
R =100°C/W
th(j-a)
T
T(°C)
=tp/T
δ
0255075100125150
tp
amb
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P(25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0255075100125150
T (°C)
j
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P(1µs)
ARM
1
0.1
0.01
t (µs)
0.001
0.10.011
p
101001000
Fig. 5-1: Non repetitive surge peak forward
current versus overload duration (maximum
values) (DO-201AD, SMB).
I (A)
M
12
10
T =25°C
8
6
4
IM
2
0
1E-31E-21E-11E+0
δ=0.5
t
t(s)
a
T =50°C
a
T =100°C
a
Fig. 5-2: Non repetitive surge peak forward
current versus overload duration (maximum
values) (DO-15).
I (A)
M
11
10
9
8
7
6
5
4
3
IM
2
1
0
1.E-031.E-021.E-01
δ=0.5
t
t(s)
T =25°C
a
T =50°C
a
T =100°C
a
Fig. 6-1: Relative variation of thermal impedance
junction toambient versus pulseduration
(DO-201AD, SMB).
Z/R
th(j-a) th(j-a)
1.0
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
0.0
1E-11E+01E+11E+21E+3
Single pulse
t (s)
p
δ
=tp/T
T
tp
3/6
Page 4
STPS3L60/Q/U
Fig. 6-2: Relative variation of thermal impedance
junctiontoambient versus pulseduration(DO-15).
Z/R
th(j-a) th(j-a)
1.0
0.9
0.8
0.7
0.6
δ = 0.5
0.5
0.4
0.3
δ = 0.2
0.2
δ = 0.1
0.1
0.0
1.E-011.E+001.E+011.E+021.E+03
Single pulse
t (s)
p
δ
=tp/T
T
tp
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values).
C(pF)
500
200
100
F=1MHz
T=25°C
j
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values).
I (mA)
R
5E+1
T=125°C
1E+1
1E+0
1E-1
1E-2
1E-3
05101520 253035 404550 5560
j
T=100°C
j
T=25°C
j
V (V)
R
Fig. 9-1: Forward voltage drop versus forward
current (high level, maximum values).
I (A)
FM
30
10
(maximum values)
T=100°C
j
(typical values)
T=100°C
j
T=25°C
j
50
20
V (V)
10
110100
R
Fig. 9-2: Forward voltage drop versus forward
current (low level, maximum values).
I (A)
FM
5
4
3
(typical values)
2
1
0
0.00.10.20.30.40.50.60.70.80.91.0
T=100°C
j
T=100°C
j
(maximum values)
V (V)
FM
T=25°C
j
V (V)
1
0.00.51.01.52.02.5
FM
Fig. 10: Thermal resistance junction to ambient
versus copper surface under each lead (Epoxy
printed circuit board FR4, Cu: 35µm) (SMB).
Informationfurnished is believedto be accurateandreliable. However, STMicroelectronicsassumes no responsibilityfor the consequencesof
useof such informationnor for anyinfringement of patentsor other rightsof third partieswhich may resultfrom its use.No license isgranted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics