VERY SMALL CONDUCTION LOSSES
LOW SWITCHING LOSSES ALLOWING HIGH
■
FREQUENCY OPERATION
INSULATED PACKAGE: TO-220FPAB
■
Insulated voltage: 2000V DC
Capacitance: 12 pF
AVALANCHE CAPABILITY SPECIFIED
■
DESCRIPTION
Dual center tap Schottky barrier rectifier designed
for highfrequencySwitchedModePowerSupplies
and high frequency DC to DC converters.
Packaged in TO-220AB and TO-220FPAB, these
devices are intended for use in low voltage, high
frequency converters, free-wheeling and polarity
protection applications.
ABSOLUTE RATINGS (limiting values, per diode)
2x8A
45 V
STPS16L45CT/CFP
A1
K
A2
A2
K
A1
TO-220AB
STPS16L45CT
TO-220FPAB
STPS16L45CFP
A1
A2
K
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
I
FSM
I
RRM
I
RSM
P
ARM
T
stg
Tj
dV/dt
dPtot
*:
Repetitive peak reverse voltage
RMS forward current
Average forward current
Surge non repetitive forward currenttp = 10 ms sinusoidal
Repetitive peak reverse currenttp=2 µs square F=1kHz
Non repetitive peak reverse currenttp = 100 µs square
Repetitive peak avalanche powertp = 1µsTj = 25°C
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
<
dTjRth ja
July 2003 - Ed : 3C
TO-220AB
TO-220FPAB
Tc = 140°C
δ = 0.5
Tc = 125°C
δ = 0.5
Per diode
Per device
Per diode
Per device
thermal runaway condition for a diodeon its own heatsink
−1()
45V
30A
8
16
8
16
180A
1A
2A
4000W
-65 to+150°C
150°C
10000V/µs
A
A
1/5
Page 2
STPS16L45CT/CFP
THERMAL RESISTANCES
SymbolParameterValueUnit
R
th(j-c)
Junction to caseTO-220AB
TO-220FPAB
When the diodes 1 and 2 areused simultaneously :
∆ Tj(diode 1) = P(diode1) x R
(Per diode) + P(diode 2) x R
th(j-c)
STATIC ELECTRICAL CHARACTERISTICS (per diode)
SymbolParameterTests ConditionsMin.Typ.Max.Unit
*
I
R
V
F
Reverse leakage
current
*
Forward voltage dropTj = 25°CI
Tj = 25°CV
Tj = 125°C
Tj = 125°CI
Tj=25°CI
Tj = 125°CI
Pulse test : * tp = 380 µs, δ <2%
R=VRRM
=8A
F
=8A
F
=16A
F
=16A
F
Per diode
Total
Coupling
Per diode
Total
Coupling
th(c)
2.2
°C/W
1.3
0.3
4.5
3.5
2.5
0.2mA
65130mA
0.5V
0.390.45
0.63
0.550.64
To evaluate the conduction losses use the following equation :
P=0.26xI
Fig. 1: Average forward power dissipation versus
average forward current (per diode).
PF(av)(W)
6.0
5.5
5.0
4.5
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0.0
012345678910
Fig. 3: Normalized avalanche power derating
versus pulse duration.
P(t)
ARM p
P(1µs)
ARM
1
0.1
0.01
0.001
+ 0.024 I
F(AV)
δ = 0.1
δ = 0.05
0.10.011
F2(RMS)
δ = 0.2
IF(av) (A)
t (µs)
p
δ = 0.5
δ = 1
T
=tp/T
δ
101001000
tp
Fig.2:Averagecurrentversusambient
temperature (δ = 0.5) (per diode).
IF(av)(A)
9
8
7
6
5
4
3
2
1
=tp/T
δ
0
0255075100125150
Fig. 4: Normalized avalanche power derating
versus junction temperature.
P(t)
ARM p
P(25°C)
ARM
1.2
1
0.8
0.6
0.4
0.2
0
0255075100125150
Rth(j-a)=Rth(j-c)
Rth(j-a)=15°C/W
T
tp
Tamb(°C)
T (°C)
j
TO-220AB
TO-220FPAB
2/5
Page 3
STPS16L45CT/CFP
Fig. 5-1:Nonrepetitivesurgepeak forward current
versus overload duration (maximum values per
diode, TO-220AB).
IM(A)
120
100
80
60
40
IM
20
0
1E-31E-21E-11E+0
δ=0.5
t
t(s)
Tc=25°C
Tc=75°C
Tc=125°C
Fig. 6-1: Relative variation of thermal impedance
junctiontocaseversuspulseduration
(TO-220AB).
Zth(j-c)/Rth(j-c)
1.0
Fig. 5-2: Non repetitive surgepeak forward current
versus overload duration (maximum values per
diode, TO-220FPAB).
IM(A)
100
90
80
70
60
Tc=25°C
50
40
30
IM
20
10
0
1E-31E-21E-11E+0
δ=0.5
t
t(s)
Tc=50°C
Tc=100°C
Fig. 6-2: Relative variation of thermal impedance
junctiontocaseversuspulseduration
(TO-220FPAB).
Zth(j-c)/Rth(j-c)
1.0
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
0.0
Single pulse
tp(s)
1E-41E-31E-21E-11E+0
δ
=tp/T
T
tp
Fig. 7: Reverse leakage current versus reverse
voltage applied (typical values) (per diode).
IR(mA)
2E+2
1E+2
1E+1
1E+0
1E-1
1E-2
051015202530354045
Tj=150°C
Tj=125°C
Tj=75°C
Tj=25°C
VR(V)
0.8
δ = 0.5
0.6
0.4
δ = 0.2
δ = 0.1
0.2
Single pulse
0.0
1E-31E-21E-11E+01E+1
tp(s)
δ
=tp/T
T
tp
Fig. 8: Junction capacitance versus reverse
voltage applied (typical values) (per diode).
Informationfurnished is believed to be accurate andreliable.However, STMicroelectronics assumes no responsibility for theconsequences of
useof such information nor for anyinfringement of patents or other rightsof third parties which may resultfrom its use. No license isgranted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics