Single Schottky rectifier suited for switch mode
power supplies and high frequency DC to DC
converters.
Packaged in SOD-123, this device is intended for
use in low voltage, high frequency inverters, free
wheeling and polarity protection applications. Due
to the small size of the package this device fits
GSM and PCMCIA requirements.
ABSOLUTE RATINGS (limiting values)
SOD-123
SymbolParameterValueUnit
V
RRM
I
F(RMS)
I
F(AV)
Repetitive peak reverse voltage20V
RMS forward current2A
Average forward current
Ta=25°C0.5A
δ=0.5
I
FSM
Surge non repetitive forward currenttp=10ms
5.5A
sinusoidal
dV/dtCritical rate of rise of reverse voltage10000V/µs
T
Storage temperature range- 65 to + 125°C
stg
TjMaximum operating junction temperature *125°C
TLMaximum temperature for soldering during 10s260°C
dPtot
*:
<
dTjRth ja
January 2002 - Ed : 2B
thermal runaway condition for a diode on its own heatsink
−1()
1/5
Page 2
STPS0520Z
THERMAL RESISTANCE
SymbolParameterValueUnit
R
th (j-a)
Junction to ambient430 (*)
210 (**)
(*) Mountedonepoxy board with recommended Pad Layout.
(**) Mounted on epoxy board with 50mm2 copper area.
STATIC ELECTRICAL CHARACTERISTICS
Value
SymbolParameterTests conditions
typ.max.
I
*Reverseleakage currentTj = 25°CVR=10V60µA
R
Tj = 100°C2.55mA
Tj = 25°CV
R=VRRM
Tj = 100°C4.38mA
V
**Forwardvoltage dropTj = 25°CIF= 0.1 A0.3V
F
Tj = 100°C0.180.22
Tj = 25°CI
= 0.5 A0.385
F
°C/W
UnitSTPS0520Z
150µA
Tj=100°C0.290.32
Pulse test :* tp=5ms,δ<2%
** tp = 380 µs, δ <2%
To evaluate the maximum conduction losses use the following equation :
P=0.23xI
F(AV)
+0.18xI
F2(RMS)
2/5
Page 3
STPS0520Z
Fig. 1: Average forward power dissipation versus
average forward current
PF(av)(W)
0.25
δ = 0.05
δ = 0.1
δ = 0.2
δ = 0.5
0.20
0.15
δ = 1
0.10
0.05
T
0.00
IF(av) (A)
0.00.10.20.30.40.50.6
δ
=tp/T
tp
Fig. 3: Non repetitive surge peak forward current
versus overload duration (maximum values).
IM(A)
3.0
2.5
2.0
1.5
Ta=25°C
Ta=50°C
Ta=75°C
Fig. 2: Average forward current versus ambient
temperature (δ = 0.5)
IF(av)(A)
0.6
0.5
0.4
0.3
0.2
0.1
0.0
0255075100125
δ
=tp/T
T
tp
Tamb(°C)
Fig. 4: Relative variation of thermal impedance
junction to ambient versus pulse duration (Epoxy
printed circuit board FR4 with recommended pad
layout).
Zth(j-a)/Rth(j-a)
1E+0
δ = 0.5
δ = 0.2
δ = 0.1
1E-1
1.0
IM
0.5
0.0
1E-31E-21E-11E+0
δ=0.5
t
t(s)
Fig. 5: Reverse leakage current versus reverse
voltage applied (typical values).
IR(mA)
2E+1
1E+1
1E+0
1E-1
1E-2
1E-3
0 2 4 6 8 101214161820
Tj=125°C
Tj=100°C
Tj=70°C
Tj=25°C
VR(V)
1E-2
Single pulse
tp(s)
1E-3
1E-31E-21E-11E+01E+11E+2
δ
=tp/T
T
tp
Fig. 6: Relative variation of reverse leakage current versus junction temperature (typical values).
IR[Tj] / IR[Tj=25°C]
1E+3
1E+2
1E+1
1E+0
VR=VRRM
Tj(°C)
1E-1
0255075100125
3/5
Page 4
STPS0520Z
Fig. 7: Junction capacitance versus reverse volt-
age applied (typical values).
C(pF)
200
F=1MHz
Tj=25°C
100
50
20
VR(V)
10
1251020
Fig. 8-2:Forward voltage drop versus forwardcurrent (maximum values, high level)
IFM(A)
5.0
Tj=100°C
Typical values
Fig. 8-1:Forward voltage drop versus forwardcurrent (maximum values, low level)
IFM(A)
0.5
Tj=100°C
0.4
0.3
Typical values
Tj=100°C
Tj=25°C
0.2
0.1
VFM(V)
0.0
0.00.10.20.30.40.5
Fig. 9: Variation of thermal resistance junction to
ambient versus copper surface under each lead
(Printed circuit board FR4, e(Cu) = 35µm).
Informationfurnished is believedto be accurateand reliable. However,STMicroelectronics assumes noresponsibility for theconsequencesof
useof such informationnor for anyinfringement of patentsor other rightsof third partieswhich may resultfrom its use.No license isgranted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics