Datasheet SSD0817Z Datasheet (Solomon Systech)

Page 1
TABLE OF CONTENTS
LCD SEGMENT / COMMON DRIVER WITH CONTROLLER ..................................................................... 1
FEATURES ................................................................................................................................................... 1
ORDERING INFORMATION ........................................................................................................................2
BLOCK DIAGRAM ....................................................................................................................................... 3
DIE PAD ARRANGEMENT .......................................................................................................................... 4
DIE PAD ARRANGEMENT .......................................................................................................................... 4
PIN DESCRIPTION.......................................................................................................................................6
MSTAT.....................................................................................................................................................6
M .............................................................................................................................................................. 7
CL ............................................................................................................................................................7
DOF DOF.................................................................................................................................................. 7
1CS , CS2 ................................................................................................................................................ 7
RES RES ................................................................................................................................................. 7
SA0, SCL, SDA
VDD...........................................................................................................................................................7
VSS............................................................................................................................................................7
V
..........................................................................................................................................................7
SS1
VEE............................................................................................................................................................7
C1P, C1N, C2N, C
VL2, VL3, VL4 and VL5................................................................................................................................8
, SDAin........................................................................................................................ 7
and C4N................................................................................................................. 7
2P C3N
VL6............................................................................................................................................................8
M/ S .........................................................................................................................................................8
VF.............................................................................................................................................................8
CLS .......................................................................................................................................................... 8
1IIC , IIC2 ................................................................................................................................................. 8
i
Page 2
C1, C0 ...................................................................................................................................................... 9
ROW0 - ROW63 ...................................................................................................................................... 9
SEG0 - SEG103....................................................................................................................................... 9
ICONS......................................................................................................................................................9
IRS ...........................................................................................................................................................9
TEST0-TEST7 .........................................................................................................................................9
NC/T0 – T6 .............................................................................................................................................. 9
FUNCTIONAL BLOCK DESCRIPTIONS ...................................................................................................11
IIC Communication Interface .............................................................................................................. 11
Command Decoder ..............................................................................................................................11
Graphic Display Data RAM (GDDRAM) .............................................................................................. 11
LCD Driving Voltage Generator and Regulator ................................................................................ 13
Oscillator Circuit ..................................................................................................................................15
Reset Circuit ......................................................................................................................................... 16
Display Data Latch............................................................................................................................... 16
HV Buffer Cell (Level Shifter).............................................................................................................. 16
Level Selector....................................................................................................................................... 16
LCD Panel Driving Waveform ............................................................................................................. 17
COMMAND TABLE ....................................................................................................................................17
COMMAND TABLE ....................................................................................................................................18
I2C-bus Write data and read register status ...................................................................................... 21
COMMAND DESCRIPTIONS .....................................................................................................................24
Set Lower Column Address ................................................................................................................ 24
Set Higher Column Address ...............................................................................................................24
Set Internal Regulator Resistors Ratio .............................................................................................. 24
Set Power Control Register ................................................................................................................24
Set Display Start Line ..........................................................................................................................24
Set Contrast Control Register ............................................................................................................24
Set Segment Re-map ...........................................................................................................................25
ii
Page 3
Set LCD Bias ........................................................................................................................................25
Set Entire Display On/Off .................................................................................................................... 25
Set Normal/Inverse Display ................................................................................................................ 25
Set Display On/Off ...............................................................................................................................25
Set Page Address ................................................................................................................................25
Set COM Output Scan Direction ......................................................................................................... 25
Set Read-Modify-Write Mode ..............................................................................................................25
Software Reset ..................................................................................................................................... 26
Set End of Read-Modify-Write Mode..................................................................................................26
Set Indicator On/Off ............................................................................................................................. 26
NOP .......................................................................................................................................................26
Set Test Mode....................................................................................................................................... 26
Set Power Save Mode.......................................................................................................................... 26
EXTENDED COMMANDS..................................................................................................................... 26
Set Multiplex Ratio............................................................................................................................... 27
Set Bias Ratio....................................................................................................................................... 27
Set Temperature Coefficient (TC) Value ............................................................................................27
Modify Oscillator Frequency .............................................................................................................. 27
Set 1/4 Bias Ratio................................................................................................................................. 27
Set Total Frame Phases ......................................................................................................................27
Set Display Offset ................................................................................................................................ 28
Enable Band Gap Reference Circuit ..................................................................................................28
MAXIMUM RATINGS .................................................................................................................................30
DC CHARACTERISTICS............................................................................................................................ 31
AC CHARACTERISTICS............................................................................................................................ 33
APPLICATION EXAMPLES ....................................................................................................................... 36
INITIALIZATION ROUTINE ........................................................................................................................39
iii
Page 4
SOLOMON SYSTECH LIMITED
SOLOMON SYSTECH LIMITED
SOLOMON SYSTECH LIMITEDSOLOMON SYSTECH LIMITED
SEMICONDUCTOR TECHNICAL DATA
SSD0817
Advance Information
CMOS
LCD Segment / Common Driver with Controller
SSD0817 is a single-chip CMOS LCD driver with controllers for dot-matrix graphic liquid crystal display system. It consists of 169 high-voltage driving outputs for driving maximum 104 Segments, 64 Commons and 1 icon line.
SSD0817 consists of 104 x 65 bits Graphic Display Data RAM (GDDRAM). Data/Commands are sent from common MCU through I SSD0817 embeds DC-DC Converter with booster capacitors, On-Chip Oscillator and Bias Divider so as to reduce the number of external components. With the advanced design for low power consumption, stable LCD operating voltage and flexible die layout, SSD0817 is suitable for any portable battery-driven applications requiring long operation period with compact size.
2
C-bus Interface.
FEATURES
104 x 64 + 1 Icon Line Single Supply Operation, 2.4 V - 3.5V Minimum -12.0V LCD Driving Output Voltage Low Current Sleep Mode On-Chip Voltage Generator or External LCD Driving Power Supply Selectable 2X / 3X / 4X/ 5X On-Chip DC-DC Converter On-Chip Oscillator On-Chip Bias Divider Programmable bias ratio [1/4 – 1/9]
2
I
C-bus Interface On-Chip 104 X 65 Graphic Display Data RAM Row Re-mapping and Column Re-mapping Vertical Scrolling Display Offset Control 64 Levels Internal Contrast Control & External Contrast Control Programmable MUX ratio [2-64 MUX] (Partial display mode) Programmable LCD Driving Voltage Temperature Coefficients Available in Gold Bump Die
This document contains information on a new product. Specification and information herein are subject to change without notice.
Copyright 2003 SOLOMON Systech Limited
Rev 1.3 01/2003
Page 5
ORDERING INFORMATION
Table 1 - Ordering Information
Ordering Part
Number
SSD0817Z 104 64 + 1 1/9, 1/7 Gold Bump Die
SEG COM Default Bias Package Form Reference
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
2
Page 6
BLOCK DIAGRAM
ICONS
ROW0 ~
SEG0 ~SEG103
MSTAT
M
DOF
M/S
CL
CLS
V
V
C
0
C
1
SS
DD
HV Buffer Cell Level Shifter
Display
Timing
Generator
Oscillator
Display Data Latch
GDDRAM
104 X 65 Bits
Command Decoder
Level
Selector
LCD Driving
Voltage
Generator
2X/ 3X/ 4X/ 5X
DC/ DC Converter,
Voltage Regulator,
Contrast Control, Bias Divider with
integrated
capacitors,
Temperature
Compensation
V
L6
V
L5
V
L4
V
L3
V
L2
V
DD
V
F
V
EE
V
SS1
C
4N
C
3N
C
1P
C
1N
C
2N
C
2P
IRS
Test pins (TEST0 -TEST7),
3
SSD0817 Series
(T0 - T6)
Rev 1.3 01/2003
/CS1
IIC communication interface
/RES /IIC1
CS2
Figure 1 – SSD0817 Block Diagram
IIC2
SA 0 SCL SDA inSDA out
SOLOMON
Page 7
t
X
X
Size: 88.2 x 88.2
DIE PAD ARRANGEMENT
NC ROW11
ROW12
ROW13
ROW14
ROW15
ROW16
ROW17
ROW18
ROW19
126
ROW10
SEG100 SEG101 SEG102 SEG103
ROW32 ROW33 ROW34 ROW35 ROW36 ROW37 ROW38 ROW39 ROW40 ROW41 ROW42 ROW43
ROW9 ROW8 ROW7 ROW6 ROW5 ROW4 ROW3 ROW2 ROW1 ROW0
ICONS
SEG0 SEG1 SEG2 SEG3 SEG4 SEG5 SEG6 SEG7 SEG8
SEG9 SEG10 SEG11 SEG12 SEG13 SEG14 SEG15 SEG16 SEG17 SEG18 SEG19 SEG20 SEG21 SEG22 SEG23 SEG24 SEG25 SEG26 SEG27 SEG28 SEG29 SEG30 SEG31 SEG32 SEG33 SEG34 SEG35
SEG92 SEG93 SEG94 SEG95 SEG96 SEG97 SEG98 SEG99
125
(2755.725, 237.475)
Center: -3876.1625,
(-3878.7, 237.475)
254 255
323.6625
Center: 2751.9625, 323.6625
Center: -3875.55, 149.275
277
26.25 26.25 26.25
ROW20
ROW21
ROW22
ROW23
ROW24
ROW25
ROW26
ROW27
ROW28
ROW29
ROW30
ROW31
NC
26.25 26.25 26.25
26.25 26.25 26.25
26.25 52.5
104 103
276
T5 T4 VF IIC2 VSS IRS VDD C1 VSS
Center (-3876.1625, 323.6625)
C0 VDD /IIC1 TEST7 VSS CLS M/S VDD T6 VL6 VL6 VL6 VL5 VL5 VL5 VL4 VL4 VL4 VEE VL3 VL3 VL3 VL2 VL2 VL2 VEE C4N C4N C4N C2P C2P C2P C2N C2N C2N VEE C1N C1N C1N C1P C1P C1P C3N C3N C3N T2 VEE VEE VEE VEE VEE VEE VSS1 VSS1 VSS1 VSS1 VSS1 VSS VSS VSS T1 T0 VDD VDD VDD VDD VDD VDD VDD TEST6 TEST5 SA0 SCL TEST4 TEST3 SDA in SDA out VDD TEST2 TEST1 VSS TEST0 VEE VEE /RES VDD CS2 /CS1 VSS /DOF
1
CL M MSTAT
(-3878.7, 237.475)
Note:
Die Size: 8.66 mm X 1.48 mm Die Thickness: 550 +/- 25 um Bump Pitch: 60 um [Min] Bump Height: Nominal 18 um Tolerance < 4 um within die
35
1. The gold bumps face up in this diagram
2. All dimensions in µm and (0,0) is the center of the chip
< 8 um within lot
Gold Bump Alignment Mark
This alignment mark contains gold bump for IC bumping process alignment and IC identifications. No conductive tracks should be laid underneath this mark to avoid shor circuit.
16.8 13.65
PIN #1
Center (2751.9625, 323.6625)
8.75
(2755.725, 237.475)
16.8 13.65 12.6
Center (3875.55, 149.275)
35
12.6
73.5
SOLOMON
73.5
Figure 2 – SSD0817 Pin Assignment
Rev 1
.3
SSD0817 Series
01/2003
4
Page 8
Table 2 – SSD0817 Series Bump Die Pad Coordinates (Bump center)
Pad # Signal X-pos Y-pos Pad # Signal X-pos Y-pos Pad # Signal X-pos Y-pos
1 MSTAT -3873.80 -581.35 51 C3N -27.48 -581.35 101 T4 3799.95 -581.35 2 M -3797.50 -581.35 52 C1P 48.83 -581.35 102 T5 3876.25 -581.35 3 CL -3721.20 -581.35 53 C1P 125.13 -581.35 103 NC 4178.48 -655.03 4 /DOF -3644.90 -581.35 54 C1P 201.43 -581.35 104 ROW31 4178.48 -594.83 5 VSS -3568.60 -581.35 55 C1N 277.73 -581.35 105 ROW30 4178.48 -534.63 6 /CS1 -3492.30 -581.35 56 C1N 354.03 -581.35 106 ROW29 4178.48 -474.43 7 CS2 -3416.00 -581.35 57 C1N 430.33 -581.35 107 ROW28 4178.48 -414.23 8 VDD -3339.70 -581.35 58 VEE 506.63 -581.35 108 ROW27 4178.48 -354.03
9 /RES -3263.40 -581.35 59 C2N 582.93 -581.35 109 ROW26 4178.48 -293.83 10 VEE -3178.35 -581.35 60 C2N 659.23 -581.35 110 ROW25 4178.48 -233.63 11 VEE -3102.05 -581.35 61 C2N 735.53 -581.35 111 ROW24 4178.48 -173.43 12 TEST0 -3017.00 -581.35 62 C2P 811.83 -581.35 112 ROW23 4178.48 -113.23 13 VSS -2940.70 -581.35 63 C2P 888.13 -581.35 113 ROW22 4178.48 -53.03 14 TEST1 -2864.40 -581.35 64 C2P 964.43 -581.35 114 ROW21 4178.48 7.18 15 TEST2 -2788.10 -581.35 65 C4N 1040.73 -581.35 115 ROW20 4178.48 67.38 16 VDD -2711.80 -581.35 66 C4N 1117.03 -581.35 116 ROW19 4178.48 127.58 17 SDA out -2635.50 -581.35 67 C4N 1193.33 -581.35 117 ROW18 4178.48 187.78 18 SDA in -2557.63 -581.35 68 VEE 1269.63 -581.35 118 ROW17 4178.48 247.98 19 TEST3 -2481.33 -581.35 69 VL2 1345.93 -581.35 119 ROW16 4178.48 308.18 20 TEST4 -2403.10 -581.35 70 VL2 1422.23 -581.35 120 ROW15 4178.48 368.38 21 SCL -2325.23 -581.35 71 VL2 1498.53 -581.35 121 ROW14 4178.48 428.58 22 SA0 -2248.93 -581.35 72 VL3 1574.83 -581.35 122 ROW13 4178.48 488.78 23 TEST5 -2172.63 -581.35 73 VL3 1651.13 -581.35 123 ROW12 4178.48 548.98 24 TEST6 -2096.33 -581.35 74 VL3 1727.43 -581.35 124 ROW11 4178.48 609.18 25 VDD -2020.03 -581.35 75 VEE 1803.73 -581.35 125 NC 4178.48 663.25 26 VDD -1943.73 -581.35 76 VL4 1880.03 -581.35 126 ROW10 3834.60 587.83 27 VDD -1867.43 -581.35 77 VL4 1956.33 -581.35 127 ROW9 3774.40 587.83 28 VDD -1791.13 -581.35 78 VL4 2032.63 -581.35 128 ROW8 3714.20 587.83 29 VDD -1714.83 -581.35 79 VL5 2108.93 -581.35 129 ROW7 3654.00 587.83 30 VDD -1638.53 -581.35 80 VL5 2185.23 -581.35 130 ROW6 3593.80 587.83 31 VDD -1562.23 -581.35 81 VL5 2261.53 -581.35 131 ROW5 3533.60 587.83 32 T0 -1485.93 -581.35 82 VL6 2337.83 -581.35 132 ROW4 3473.40 587.83 33 T1 -1409.63 -581.35 83 VL6 2414.13 -581.35 133 ROW3 3413.20 587.83 34 VSS -1333.33 -581.35 84 VL6 2490.60 -581.35 134 ROW2 3353.00 587.83 35 VSS -1257.03 -581.35 85 T6 2566.73 -581.35 135 ROW 1 3292.80 587.83 36 VSS -1180.73 -581.35 86 VDD 2651.78 -581.35 136 ROW0 3232.60 587.83 37 VSS1 -1095.68 -581.35 87 M/S 2728.08 -581.35 137 ICONS 3172.40 587.83 38 VSS1 -1019.38 -581.35 88 CLS 2804.38 -581.35 138 SEG0 3112.20 587.83 39 VSS1 -943.08 -581.35 89 VSS 2880.68 -581.35 139 SEG1 3052.00 587.83 40 VSS1 -866.78 -581.35 90 TEST7 2956.98 -581.35 140 SEG2 2991.80 587.83 41 VSS1 -790.48 -581.35 91 /IIC1 3033.28 -581.35 141 SEG3 2931.60 587.83 42 VEE -714.18 -581.35 92 VDD 3109.58 -581.35 142 SEG4 2871.40 587.83 43 VEE -637.88 -581.35 93 C0 3185.88 -581.35 143 SEG5 2811.20 587.83 44 VEE -561.58 -581.35 94 VSS 3262.18 -581.35 144 SEG6 2751.00 587.83 45 VEE -485.28 -581.35 95 C1 3338.48 -581.35 145 SEG7 2690.80 587.83 46 VEE -408.98 -581.35 96 VDD 3414.78 -581.35 146 SEG8 2630.60 587.83 47 VEE -332.68 -581.35 97 IRS 3491.08 -581.35 147 SEG9 2570.40 587.83 48 T2 -256.38 -581.35 98 VSS 3567.38 -581.35 148 SEG10 2510.20 587.83 49 C3N -180.08 -581.35 99 IIC2 3643.68 -581.35 149 SEG11 2450.00 587.83 50 C3N -103.78 -581.35 100 VF 3723.65 -581.35 150 SEG12 2389.80 587.83
5
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 9
Pad # Signal X-pos Y-pos Pad # Signal X-pos Y-pos Pad # Signal X-pos Y-pos
151 SEG13 2329.60 587.83 201 SEG63 -680.40 587.83 251 ROW41 -3690.40 587.83 152 SEG14 2269.40 587.83 202 SEG64 -740.60 587.83 252 ROW42 -3750.60 587.83 153 SEG15 2209.20 587.83 203 SEG65 -800.80 587.83 253 ROW43 -3810.80 587.83 154 SEG16 2149.00 587.83 204 SEG66 -861.00 587.83 254 NC -4178.48 663.25 155 SEG17 2088.80 587.83 205 SEG67 -921.20 587.83 255 ROW44 -4178.48 609.18 156 SEG18 2028.60 587.83 206 SEG68 -981.40 587.83 256 ROW45 -4178.48 548.98 157 SEG19 1968.40 587.83 207 SEG69 -1041.60 587.83 257 ROW46 -4178.48 488.78 158 SEG20 1908.20 587.83 208 SEG70 -1101.80 587.83 258 ROW47 -4178.48 428.58 159 SEG21 1848.00 587.83 209 SEG71 -1162.00 587.83 259 ROW48 -4178.48 368.38 160 SEG22 1787.80 587.83 210 SEG72 -1222.20 587.83 260 ROW49 -4178.48 308.18 161 SEG23 1727.60 587.83 211 SEG73 -1282.40 587.83 261 ROW50 -4178.48 247.98 162 SEG24 1667.40 587.83 212 SEG74 -1342.60 587.83 262 ROW51 -4178.48 187.78 163 SEG25 1607.20 587.83 213 SEG75 -1402.80 587.83 263 ROW52 -4178.48 127.58 164 SEG26 1547.00 587.83 214 SEG76 -1463.00 587.83 264 ROW53 -4178.48 67.38 165 SEG27 1486.80 587.83 215 SEG77 -1523.20 587.83 265 ROW54 -4178.48 7.18 166 SEG28 1426.60 587.83 216 SEG78 -1583.40 587.83 266 ROW55 -4178.48 -53.03 167 SEG29 1366.40 587.83 217 SEG79 -1643.60 587.83 267 ROW56 -4178.48 -113.23 168 SEG30 1306.20 587.83 218 SEG80 -1703.80 587.83 268 ROW57 -4178.48 -173.43 169 SEG31 1246.00 587.83 219 SEG81 -1764.00 587.83 269 ROW58 -4178.48 -233.63 170 SEG32 1185.80 587.83 220 SEG82 -1824.20 587.83 270 ROW59 -4178.48 -293.83 171 SEG33 1125.60 587.83 221 SEG83 -1884.40 587.83 271 ROW60 -4178.48 -354.03 172 SEG34 1065.40 587.83 222 SEG84 -1944.60 587.83 272 ROW61 -4178.48 -414.23 173 SEG35 1005.20 587.83 223 SEG85 -2004.80 587.83 273 ROW62 -4178.48 -474.43 174 SEG36 945.00 587.83 224 SEG86 -2065.00 587.83 274 ROW63 -4178.48 -534.63 175 SEG37 884.80 587.83 225 SEG87 -2125.20 587.83 275 ICONS -4178.48 -594.83 176 SEG38 824.60 587.83 226 SEG88 -2185.40 587.83 276 NC -4178.48 -655.03 177 SEG39 764.40 587.83 227 SEG89 -2245.60 587.83 277 NC -3875.55 149.28 179 SEG41 644.00 587.83 229 SEG91 -2366.00 587.83 180 SEG42 583.80 587.83 230 SEG92 -2426.20 587.83 181 SEG43 523.60 587.83 231 SEG93 -2486.40 587.83 182 SEG44 463.40 587.83 232 SEG94 -2546.60 587.83 183 SEG45 403.20 587.83 233 SEG95 -2606.80 587.83 184 SEG46 343.00 587.83 234 SEG96 -2667.00 587.83 185 SEG47 282.80 587.83 235 SEG97 -2727.20 587.83 186 SEG48 222.60 587.83 236 SEG98 -2787.40 587.83 PAD# X [um] Y [um] 187 SEG49 162.40 587.83 237 SEG99 -2847.60 587.83 1 – 102 50.05 50.05 188 SEG50 102.20 587.83 238 SEG100 -2907.80 587.83 103 – 124 66.675 40.95 189 SEG51 42.00 587.83 239 SEG101 -2968.00 587.83 125 66.675 28.7 190 SEG52 -18.20 587.83 240 SEG102 -3028.20 587.83 126 – 253 40.95 66.675 191 SEG53 -78.40 587.83 241 SEG103 -3088.40 587.83 254 66.675 28.7 192 SEG54 -138.60 587.83 242 ROW32 -3148.60 587.83 255 – 276 66.675 40.95 193 SEG55 -198.80 587.83 243 ROW33 -3208.80 587.83 277 88.2 88.2 195 SEG57 -319.20 587.83 245 ROW35 -3329.20 587.83 196 SEG58 -379.40 587.83 246 ROW36 -3389.40 587.83 197 SEG59 -439.60 587.83 247 ROW37 -3449.60 587.83 198 SEG60 -499.80 587.83 248 ROW38 -3509.80 587.83 199 SEG61 -560.00 587.83 249 ROW39 -3570.00 587.83 200 SEG62 -620.20 587.83 250 ROW40 -3630.20 587.83
Bump Size
PIN DESCRIPTION
MSTAT
This pin is the static indicator driving output. It is only active in master operation. The frame signal output pin, M, should be used as the back plane signal for the static indicator. overlapping can be programmable. in slave mode. Please see the Extended Command Table for reference.
SOLOMON
This pin, MSTAT, becomes high impedance if the chip is operating
.3
Rev 1 01/2003
The duration of
SSD0817 Series
6
Page 10
M
This pin is the frame signal input/output. In master mode, this pin supplies the frame signal to slave devices. In slave mode, this pin receives the frame signal from the master device.
CL
This pin is the system clock input/output. When both the internal oscillator (CLS pin pulled high) and the master mode (M/S pin pulled high) are enabled, the CL pin will supplies system clock signal to the slave device. When both internal oscillator and the slave mode are enabled, the CL pin receives system clock signal from either the master device or the external clock source.
DOF DOF
This pin is the display blanking signal control pin. In master mode, the DOF pin supplies “display on”
or “display off” signal (blanking signal) to the slave devices. In slave mode, the “display on” or “display off” signal from the master device.
1CS , CS2
These pins are the chip selection inputs. The chip is enabled for MCU communication only
when
1CS is pulled low and CS2 is pulled high.
DOF pin receives
RES RES
This pin is the reset signal input. Initialization of the chip is started once the reset pin is pulled low. The minimum pulse width for completion of the reset procedure is 5 -10 us.
SA0, SCL, SDA
These pins are bi-directional data bus to be connected to the MCU in I2C-bus interface. Please refer to the section: I
, SDAin
out
2
C Communication interface on page 11 for detail pin descriptions.
VDD
The VDD is the Chip’s Power Supply pins. VDD is also acted as a reference level of both the DC-DC Converter and the LCD driving output.
VSS
The Vss is the grounding of the chip. Vss is also acted as a reference level of the logic input/output.
V
SS1
The V converter, V V
SS1
is the input of the internal DC-DC converter. The generated voltage from the internal DC-DC
SS1
, is equal to the multiple factors (2X, 3X, 4X, 5X) times the potential different between
EE
, and VDD. The multiple factors, 2X, 3X, 4X or 5X are selected by different arrangements of the external boosting capacitors. Note: the potential at this input pin must lower than or equal to V
SS
.
VEE
This is the most negative voltage supply pin of the chip. It can be supplied externally or generated by the internal DC-DC converter. If the internal DC-DC converter generates the voltage level at V voltage level is used for internal referencing only. The voltage level at V
pins is not used for driving
EE
external circuitry.
EE
, the
C1P, C1N, C2N, C
2P C3N
and C
4N
When internal DC-DC voltage converter is used, external capacitor(s) is/are connected between these pins. Different connections result in different DC-DC converter multiple factors, for example, 2X, 3X, 4X or 5X. Please refer to the voltage converter section in the functional block description for detail description.
7
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 11
VL2, VL3, VL4 and VL5
These pins are outputs with voltage levels equal to the LCD driving voltage. All these voltage levels are referenced to V
. The voltage levels can be supplied externally or generated by the internal bias
DD
divider. The bias divider is turned on once the output op-amp buffers are enabled. Please refer to the Set Power Control Register command for detail description. The voltage potential relationship is given as: V
> VL2 > VL3 > VL4 > VL5 > VL6
DD
In addition, assume the bias factor is known as a, VL2 - VDD = 1/a * (VL6 - VDD) VL3 - VDD = 2/a * (VL6 - VDD) VL4 - VDD = (a-2)/a * (VL6 - VDD) VL5 - VDD = (a-1)/a * (VL6 - VDD)
VL6
This pin outputs the most negative LCD driving voltage level. The VL6 can be supplied externally or generated by the internal regulator. Please refer to the Set Power Control Register command for detail description.
M/ S
This pin is the master/slave mode selection input. When this pin is pulled high, master mode is selected. CL, M, MSTAT and
When this pin is pulled low, slave mode is selected. CL, M,
DOF signals are received from the master device. The MSTAT pin will stay at high impedance state.
DOF signals will become output pins of the slave devices.
DOF will become input pins. The CL, M,
VF
This pin is the input of the built-in voltage regulator for generating VL6. When external resistor network is selected (IRS pulled low) to generate the LCD driving level, V added. R
should be connected between VDD and VF. R2 should be connected between VF and V
1
, two external resistors should be
L6
L6.
CLS
This pin is the internal clock enable pin. When this pin is pulled high, the internal clock is enabled. The internal clock will be disabled when CLS is pulled low. Under such circumstances, an external clock source must be fed into the CL pin.
1IIC , IIC2
These pins are I2C-bus interface selection inputs. The IIC communication interface is enabled only
when
1IIC is pulled low and IIC2 is pulled high.
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
8
Page 12
C1, C0
These two pins are the Chip Mode Selection input. The chip mode is determined by multiplex ratio. Altogether there are four chip modes. Please see the following list for reference.
C1 C0 Chip Mode 0 0 48 MUX Mode 0 1 54 MUX Mode 1 0 32 MUX Mode 1 1 64 MUX Mode
ROW0 - ROW63
These pins provide the driving signals, COMMON, to the LCD panel. Please refer to the Table 3 on Page 10 for the COM signal mapping in different MUX.
SEG0 - SEG103
These pins provide the LCD driving signals, SEGMENT, to the LCD panel. The output voltage level of these pins is V
during sleep mode or standby mode.
DD
ICONS
There are two ICONS pins (pin137 and 275) on the chip. Both pins output exactly the same signal. The duplicated ICON pins will enhance the flexibility of the LCD layout.
IRS
This is the input pin to enable the internal resistors network for the voltage regulator. When this pin is pulled high, the internal feedback resistors of the internal regulator for generating V
will be enabled.
L6
When it is pulled low, external resistors, R1 should be connected to VDD and VF. R2 should be connected between V
and VL6, respectively.
F
TEST0-TEST7
These are input pins that reserved for testing purpose. These pins should be connected to VDD.
NC/T0 – T6
These are the No Connection pins. These pins should be left open and they are prohibited to have any connections with one another.
9
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 13
Table 3 - Example of ROW pin assignment for different programmable MUX of SSD0817
48 MUX Mode 54 MUX Mode 32 MUX Mode 64 MUX Mode ROW0 COM0 COM0 COM0 COM0 ROW1 COM1 COM1 COM1 COM1 ROW2 COM2 COM2 COM2 COM2 ROW3 COM3 COM3 COM3 COM3 ROW4 COM4 COM4 COM4 COM4 ROW5 COM5 COM5 COM5 COM5 ROW6 COM6 COM6 COM6 COM6 ROW7 COM7 COM7 COM7 COM7 ROW8 COM8 COM8 COM8 COM8 ROW9 COM9 COM9 COM9 COM9
ROW10 COM10 COM10 COM10 COM10 ROW11 COM11 COM11 COM11 COM11 ROW12 COM12 COM12 COM12 COM12 ROW13 COM13 COM13 COM13 COM13 ROW14 COM14 COM14 COM14 COM14 ROW15 COM15 COM15 COM15 COM15 ROW16 COM16 COM16 NC COM16 ROW17 COM17 COM17 NC COM17 ROW18 COM18 COM18 NC COM18 ROW19 COM19 COM19 NC COM19 ROW20 COM20 COM20 NC COM20 ROW21 COM21 COM21 NC COM21 ROW22 COM22 COM22 NC COM22 ROW23 COM23 COM23 NC COM23 ROW24 NC COM24 NC COM24 ROW25 NC COM25 NC COM25 ROW26 NC COM26 NC COM26 ROW27 NC NC NC COM27 ROW28 NC NC NC COM28 ROW29 NC NC NC COM29 ROW30 NC NC NC COM30 ROW31 NC NC NC COM31 ROW32 COM24 COM27 COM16 COM32 ROW33 COM25 COM28 COM17 COM33 ROW34 COM26 COM29 COM18 COM34 ROW35 COM27 COM30 COM19 COM35 ROW36 COM28 COM31 COM20 COM36 ROW37 COM29 COM32 COM21 COM37 ROW38 COM30 COM33 COM22 COM38 ROW39 COM31 COM34 COM23 COM39 ROW40 COM32 COM35 COM24 COM40 ROW41 COM33 COM36 COM25 COM41 ROW42 COM34 COM37 COM26 COM42 ROW43 COM35 COM38 COM27 COM43 ROW44 COM36 COM39 COM28 COM44 ROW45 COM37 COM40 COM29 COM45 ROW46 COM38 COM41 COM30 COM46 ROW47 COM39 COM42 COM31 COM47 ROW48 COM40 COM43 NC COM48 ROW49 COM41 COM44 NC COM49 ROW50 COM42 COM45 NC COM50 ROW51 COM43 COM46 NC COM51 ROW52 COM44 COM47 NC COM52 ROW53 COM45 COM48 NC COM53 ROW54 COM46 COM49 NC COM54 ROW55 COM47 COM50 NC COM55 ROW56 NC COM51 NC COM56 ROW57 NC COM52 NC COM57 ROW58 NC COM53 NC COM58 ROW59 NC NC NC COM59 ROW60 NC NC NC COM60 ROW61 NC NC NC COM61 ROW62 NC NC NC COM62 ROW63 NC NC NC COM63
(Note: X - output non-selected COM signal)
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
10
Page 14
FUNCTIONAL BLOCK DESCRIPTIONS
IIC communication Interface
The IIC communication interface consists of slave address bit (SA0), I2C-bus data signal (SDA) and
2
C-bus clock signal (SCL). Both the SDA and the SCL must be connected to pull-up resistors. There
I
are also five input signals including, device.
a) Slave address bit (SA0)
SSD0817 have to recognize the slave address before transmitting or receiving any information by the I
2
C-bus. The device will responds to the slave address following by the
slave address bit (“SA0” bit) and the read/write select bit (“ format, b
7 b6 b5 b4 b3 b2 b1
b
0
0 1 1 1 1 0 SA0 R/W “SA0” bit provides an extension bit for the slave address. Either “0111100” or “0111101”, can be selected as the slave address of SSD0817.
R/W ” bit determines the I
“ mode.
2
C-bus data signal (SDA)
b) I
SDA acts as a communication channel between the transmitter and the receiver. The data and the acknowledgement are sent through the SDA. If SDA in is connected to the “SDA out”, the device becomes fully IIC bus compatible. It should be noticed that the ITO track resistance and the pulled-up resistance at “SDA” pin becomes a voltage potential divider. As a result, the acknowledgement would not be possible to attain a valid logic 0 level in “SDA”. The “SDA out” pin may be disconnected from the “SDA in” pin. With such arrangement, the acknowledgement signal will be ignored in the I
2
C-bus clock signal (SCL)
c) I
The transmission of information in the I transmission of data bit is taken place during a single clock period of SCL.
RES , 1CS , IIC1, CS2, IIC2, which is used for the initialization of
R/W ” bit) with the following byte
2
C-bus interface is operating at either write mode or read status
2
C-bus.
2
C-bus is following a clock signal, SCL. Each
Command Decoder
Input is directed to the command decoder based on the input of control byte which consists of a
D/ C bit and a R/W bit. For further information about the control byte, please refer to the section “I
bus Write data and read register status” on page 21. If both the D/ C bit and the R/W bit are low, the input signal is interpreted as a Command. It will be decoded and written to the corresponding
command register. If the
D/ C bit is high and the R/W bit is low, input signal is written to Graphic
Display Data RAM (GDDRAM).
2
C-
Graphic Display Data RAM (GDDRAM)
The GDDRAM is a bit mapped static RAM holding the bit pattern to be displayed. The size of the RAM is 104 x 65 = 6760 bits. Table 4 on Page 12 is a description of the GDDRAM address map. For mechanical flexibility, re-mapping on both Segment and Common outputs can be selected by software. During the vertical scrolling of the display, an internal register (display start line register) stores the address of the display start line. The re-mapping operation can be started at the address of the display start line according to the internal register. Table 4 on Page 12 shows the case in which the display start line register is set to 38h. For those GDDRAM out of the display common range, they can be accessed for either the preparation of vertical scrolling data or the system usage.
11
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 15
Row
00h D0 (LSB) • • • • • • 8 39 8 45 8 23 8 55
01h D1 • • • • • • 9 38 9 44 9 22 9 54
02h D2 1037104310211053
03h D3 1136114211201152
04h D4 1235124112191251
05h D5 1334134013181350
06h D6 1433143914171449
07h D7 (MSB) • • • • • • 15 32 15 38 15 16 15 48
08h D0 (LSB) • • • • • • 16 31 16 37 16 15 16 47
09h D1 1730173617141746
0Ah D2 1829183518131845
0Bh D3 1928193419121944
0Ch D4 2027203320112043
0Dh D5 2126213221102142
0Eh D6 • • • • • • 22 25 22 31 22 9 22 41
0Fh D7 (MSB) • • • • • • 23 24 23 30 23 8 23 40
10h D0 (LSB) • • • • • • 24 23 24 29 24 7 24 39
11h D1 • • • • • • 25 22 25 28 25 6 25 38
12h D2 • • • • • • 26 21 26 27 26 5 26 37
13h D3 • • • • • • 27 20 27 26 27 4 27 36
14h D4 • • • • • • 28 19 28 25 28 3 28 35
15h D5 • • • • • • 29 18 29 24 29 2 29 34
16h D6 • • • • • • 30 17 30 23 30 1 30 33
17h D7 (MSB) • • • • • • 31 16 31 22 31 0 31 32
18h D0 (LSB) • • • • • • 32 15 32 21 X X 32 31
19h D1 • • • • • • 33 14 33 20 X X 33 30
1Ah D2 • • • • • • 34 13 34 19 X X 34 29
1Bh D3 • • • • • • 35 12 35 18 X X 35 28
1Ch D4 • • • • • • 36 11 36 17 X X 36 27
1Dh D5 • • • • • • 37 10 37 16 X X 37 26
1Eh D6 • • • • • • 38 9 38 15 X X 38 25
1Fh D7 (MSB) • • • • • • 39 8 39 14 X X 39 24
20h D0 (LSB) • • • • • • 40 7 40 13 X X 40 23
21h D1 • • • • • • 41 6 41 12 X X 41 22
22h D2 • • • • • • 42 5 42 11 X X 42 21
23h D3 • • • • • • 43 4 43 10 X X 43 20
24h D4 • • • • • • 44 3 44 9 X X 44 19
25h D5 • • • • • • 45 2 45 8 X X 45 18
26h D6 • • • • • • 46 1 46 7 X X 46 17
27h D7 (MSB) • • • • • • 47 0 47 6 X X 47 16
28h D0 (LSB) • • • • • • X X 48 5 X X 48 15
29h D1 • • • • • • X X 49 4 X X 49 14
2Ah D2 • • • • • • X X 50 3 X X 50 13
2Bh D3 • • • • • • X X 51 2 X X 51 12
2Ch D4 • • • • • • X X 52 1 X X 52 11
2Dh D5 • • • • • • X X 53 0 X X 53 10
2Eh D6 XXXXXX549
2Fh D7 (MSB) XXXXXX558
30h D0 (LSB) XXXXXX567
31h D1 XXXXXX576
32h D2 XXXXXX585
33h D3 XXXXXX594
34h D4 XXXXXX603
35h D5 XXXXXX612
36h D6 XXXXXX621
37h D7 (MSB) XXXXXX630
38h D0 (LSB) • • • • • • 0 47 0 53 0 31 0 63
39h D1 • • • • • • 1 46 1 52 1 30 1 62
3Ah D2 • • • • • • 2 45 2 51 2 29 2 61
3Bh D3 • • • • • • 3 44 3 50 3 28 3 60
3Ch D4 • • • • • • 4 43 4 49 4 27 4 59
3Dh D5 • • • • • • 5 42 5 48 5 26 5 58
3Eh D6 • • • • • • 6 41 6 47 6 25 6 57
3Fh D7 (MSB) • • • • • • 7 40 7 46 7 24 7 56
Remapped 67h 66h 65h 64h • • • • • • 03h 02h 01h 00h
Page 0
Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8 D0 (LSB) • • • • • • ICONS ICONS I CONS ICONS ICONS ICONS ICONS ICO NS
Segment Pins 0 1 2 3 • • • • • • 100 101 102 103
Normal 00h 01h 02h 03h • • • • • • 64h 65h 66h 67h
RAM
RAM
Column
48 MUX Mode 54 MUX Mo de 32 MUX Mode 64 MUX M ode
Normal Remapped
Normal Remapped Normal Remapped
Common Pins
Normal Remapped
Remarks : DB0 – DB7 represent the data bit of the GDDRAM
Table 4 - Graphic Display Data RAM (GDDRAM) Address Map with Display Start Line
set to 38h LCD Driving Voltage Generator and Regulator
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
12
Page 16
g
g
+
g
g
g
g
g
g
LCD Driving Voltage Generator and Regulator
This module generates the LCD voltage required for display driving output. With reference to VDD, it takes a single supply input, V of:
1. 2X, 3X, 4X and 5X DC-DC voltage converter The built-in DC-DC voltage converter is used to generate the negative voltage with reference to VDD from the voltage input (VSS1). For SSD0817, it is possible to produce 2X, 3X, 4X or 5X boosting from the potential different between V boosting multiples are given in Figure 3.
V
V
SS1
EE
C
+
C1
5X Boostin
, and generates all the necessary voltage levels. This block consists
SS
- VDD. Detailed configurations of the DC-DC converter for different
SS1
SSD0817
C
1P
3N
C
+
Confi
1N
C
C
C
2N
2P
C1C1 C1
4N
++
C1
uration
V
SS1
+
C1
4X Boostin
SSD0817
+
+
C1
Confi
SSD0817
+
C1
3X Boostin
+
Confi
SSD0817
+
C1
2X Boostin
Remarks:
1. C1= 0.47 – 4.7uF
2. Boosting input from VSS1
3. VSS1 should be lower potential than or equal to VSS
4. All voltages are referenced to VDD
+ C1
Confi
uration
uration
uration
+
C1C1
C1C1
+
Figure 3 - DC-DC Converter Configurations
2. Voltage Regulator (Voltages referenced to V
DD
) Internal (IRS pin = H) feedback gain can control the LCD driving contrast curves. If internal resistor network is enabled, eight settings can be selected through software command. If external control is selected, external resistors are connected between V between V
3. Contrast Control (Voltage referenced to V
and VL6 (R2).
F
DD
)
and VF (R1), and
DD
Software control of the 64-contrast voltage levels at each voltage regulator feedback gain. The equation of calculating the LCD driving voltage is given as:
13
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 17
VL6 –VDD = Gain * [1 + (18 + α)] * V
ref
α stands for the contrast set (0 to 63)
81 Gain = (1 + Rb/Ra), the reference value is shown in table 5. Register ratio
D2 D1 D0
Thermal Gradient
= -0.07 %/
o
C 0 0 0 2.92 0 0 1 3.40 0 1 0 3.89 0 1 1 4.37 1 0 0 4.85 1 0 1 5.23 1 1 0 5.72 1 1 1 6.19
Table 5 Gain value at different register ratio and thermal gradient settings
is a fixed IC–internal voltage supply and its voltage at room temperature (25 oC) is shown in table
V
ref
6 for reference.
Type Thermal
V
ref
Gradient
TC 0 -0.07 %/oC -1.08V
TC 2 -0.13 %/oC -1.12V
TC 4 -0.26 %/oC -1.09V
TC 7 -0.29 %/oC -1.10V
External resistor
-0.07 %/
o
C -1.08V
gain mode [Gain =
5.00] @ TC0
Table 6 V
values at different thermal gradient settings
ref
The voltage regulator output for different gain/contrast settings is shown in figure 4.
Figure 4 – Voltage Regulator Output for different Gain/Contrast Settings
4. Bias Ratio Selection circuitry The bias ratios can be software selected from 1/4, 1/5, 1/6, 1/7, 1/8 and 1/9. Since there will be slightly different in command pattern for different MUX, please refer to Command Descriptions section of this data sheet. If the output op-amp buffer option in Set Power Control Register command is enabled, this circuit block will divide the regulator output (V driving levels (V
~ VL5). A low power consumption circuit design in this bias divider saves most of the
L2
) to give the LCD
L6
display current comparing to the traditional design. Stabilizing Capacitors (0.1uF ~ 0.47uF) are
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
14
Page 18
required to be connected between these voltage level pins (VL2 ~ VL5) and (VDD). If the LCD panel loading is heavy, four additional resistors are suggested to add to the application circuit as follows:
V
DD
V
R3 R1
V
DD
+
Remark : 1. C1 ~ C5 = 0.01 ~ 0.47u F
Remark: 1. C1 ~ C5 = 0.1uF ~ 0.47uF
2. R1 ~ R4 = 100k ~1M
2. R1 ~ R4 = 100k~ 1M
5. Self adjust temperature compensation circuitry This block provides 4 different compensation settings to satisfy various liquid crystal temperature grades by software control. The default temperature coefficient (TC) setting is TC0.
SSD0817
SSD1 815 B
C5
V
R4
+
L2
C4
V
L4
+
L3
C3
R2
V
L5
+
C2
V
L6
+
C1
Oscillator Circuit
This module is an On-Chip low power RC oscillator circuitry (Figure 5). The oscillator generates the clock for the DC-DC voltage converter. This clock is also used in the Display Timing Generator.
Oscillator enable
enable
Oscillation Circuit
Internal resistor
OSC2OSC1
Figure 5 - On-Chip low power RC oscillator circuitry
enable
Buffer
(CL)
15
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 19
Reset Circuit
This block includes Power On Reset (POR) circuitry and the hardware reset pin, RES . The POR and
Hardware reset performs the same reset function. Once
RES receives a reset pulse, all internal
circuitry will start to initialize. Minimum pulse width the reset sequence is 5 -10us. Status of the chip after reset is given by: Display is turned OFF Default Display Mode 64 MUX: 104 x 64 + 1 Icon Line Normal segment and display data column address mapping (Seg0 mapped to Row address 00h) Read-modify-write mode is OFF Power control register is set to 000b Register data clear in I
2
C-bus interface Bias ratio is set to default 64 MUX: 1/9 Static indicator is turned OFF Display start line is set to GDDRAM column 0 Column address counter is set to 00h Page address is set to 0 Normal scan direction of the COM outputs Contrast control register is set to 20h Test mode is turned OFF Temperature Coefficient is set to TC0
Display Data Latch
This block is a series of latches carrying the display signal information. These latches hold the data, which will be fed to the HV Buffer Cell and Level Selector to output the required voltage level. The numbers of latches of different members are given by: 64 MUX: 104 + 65 = 169
HV Buffer Cell (Level Shifter)
HV Buffer Cell works as a level shifter which translates the low voltage output signal to the required driving voltage. The output is shifted out with reference to the internal FRM clock which comes from the Display Timing Generator. The voltage levels are given by the level selector which is synchronized with the internal M signal.
Level Selector
Level Selector is a control of the display synchronization. Display voltage levels can be separated into two sets and used with different cycles. Synchronization is important since it selects the required LCD voltage level to the HV Buffer Cell, which in turn outputs the COM or SEG LCD waveform.
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
16
Page 20
LCD Panel Driving Waveform
Figure 6 is an example of how the Common and Segment drivers may be connected to a LCD panel. The waveforms illustrate the desired multiplex scheme.
COM0 COM1 COM2
COM3 COM4 COM5 COM6
COM7
COM0
COM1
SEG0
1 2 3 4 5 6 7 8 9
*
N+1
1 2 3 4 5 6 7 8 9
. . .
TIME SLOT
*
N+1
. .
1 2 3 4 5 6 7 8 9
. .
*
N+1
1 2 3 4 5 6 7 8 9
G1G2G3G
4
0
G
*
N+1
. . .
V
DD
V
L2
V
L3
V
L4
V
L5
V
L6
V
DD
V
L2
V
L3
V
L4
V
L5
V
L6
V
DD
V
L2
V
L3
V
L4
V
L5
V
L6
SEG1
M
* Note 1: N+1 is the number of multiplex ratio including Icon.
Figure 6 - LCD Driving Waveform for Displaying "0"
17
SSD0817 Series
Rev 1.3 01/2003
V
DD
V
L2
V
L3
V
L4
V
L5
V
L6
SOLOMON
Page 21
COMMAND TABLE
Bit Pattern Command Description
Set the lower nibble of the column address register
0000X3X2X1X0 Set Lower Column Address
0001X3X2X1X0 Set Higher Column Address
00100X2X1X0 Set Internal Regulator Resistor Ratio
00101X2X1X0 Set Power Control Register
01X5X4X3X2X1X0 Set Display Start Line
10000001 ** X
5X4X3X2X1X0
Set Contrast Control Register
1010000X0 Set Segment Re-map
1010001X0 Set LCD Bias
1010010X0 Set Entire Display On/Off
1010011X0 Set Normal/Inverse Display
1010111X0 Set Display On/Off
1011X3X2X1X0 Set Page Address
1100X3 * * * Set COM Output Scan Direction
11100000 Set Read-Modify-Write Mode
11100010 Software Reset Initialize internal status registers
11101110 Set End of Read-Modify-Write Mode
1010110X0 Indicator Display Mode This second byte command is required ONLY when
using X3X2X1X0 as data bits. The lower nibble of column address is reset to 0000b after POR Set the higher nibble of the column address register using X3X2X1X0 as data bits. The higher nibble of column address is reset to 0000b after POR. Feedback gain of the internal regulator generating VL6 increases as X2X1X0 increased from 000b to 111b. After POR, X
=0: turns off the output op-amp buffer (POR)
X
0
X
=1: turns on the output op-amp buffer
0
X
=0: turns off the internal regulator (POR)
1
X
=1: turns on the internal regulator
1
X
=0: turns off the internal voltage booster (POR)
2
X
=1: turns on the internal voltage booster
2
2X1X0
= 100b
Set GDDRAM display start line register from 0-63 using X
5X4X3X2X1X0
. Display start line register is reset to 000000 after POR. Select contrast level from 64 contrast steps. Contrast increases (VL6 decreases) as X
5X4X3X2X1X0
is increased from 000000b to 111111b. X
5X4X3X2X1X0
=0: column address 00h is mapped to SEG0
X
0
= 100000b after POR
(POR) X
=1: column address 67h is mapped to SEG0
0
Refer to Table 4 on page 12 for example.
=0: POR default bias
X
0
48 MUX Mode: 1/8 54 MUX Mode: 1/8.4 32 MUX Mode: 1/6 64 MUX Mode: 1/9 X
=1: alternate bias
0
48 MUX Mode: 1/6 54 MUX Mode: 1/6 32 MUX Mode: 1/5 64 MUX Mode: 1/7
For other bias ratio settings, see “Set 1/4 Bias Ratio” and “Set Bias Ratio” in Extended Command Set. X
=0: normal display (POR)
0
X
=1: entire display on
0
X
=0: normal display (POR)
0
X
=1: inverse display
0
X
=0: turns off LCD panel (POR)
0
X
=1: turns on LCD panel
0
Set GDDRAM Page Address (0-8) for read/write using X X X
3X2X1X0
=0: normal mode (POR)
3
=1: remapped mode,
3
COM 0 to COM [N-1] becomes COM [N-1] to COM 0 when Multiplex ratio is equal to N. See Figure 5 on page 17 for detail mapping. Read-Modify-Write mode will be entered in which the column address will not be increased during display data read. After POR, Read-modify-write mode is turned OFF.
Exit Read-Modify-Write mode. RAM Column address before entering the mode will be restored. After POR, Read-modify-write mode is OFF.
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
18
Page 22
* * * * * * X
Set Indicator On/Off
“Set Indicator On” command is sent.
X
= 0: indicator off (POR, second command byte is
0
1X0
not required) X
= 1: indicator on (second command byte
0
required) X
= 00: indicator off
1X0
X
= 01: indicator on and blinking at ~1 second
1X0
interval X
= 10: indicator on and blinking at ~1/2 second
1X0
interval X
= 11: indicator on constantly
1X0
11100011 NOP Command result in No Operation 11110000 Test Mode Reset Reserved for IC testing. Do NOT use
1111 * * * * Set Test Mode
Reserved for IC testing. Do NOT use.
(Standby or Sleep) Standby or sleep mode
10101110 10100101
Set Power Save Mode
will be entered using compound commands. Issue compound commands “Set Display Off” followed by “Set Entire Display On”.
Table 7 - Write Command Table (D/ C =0, R/W=0)
Bit Pattern Command Description
To select multiplex ratio N from 2 to the maximum multiplex ratio (POR value) for each member
10101000 00X
5X4X3X2X1X0
10101001 X
7X6X5X4X3X2X1X0
Set Multiplex Ratio
Set Bias Ratio (X
Set TC Value (X
Modify Osc. Freq. (X
1X0
4X3X2
)
)
7X6X5
)
(including icon line). Max. MUX ratio: 64 MUX: 65 N = X
5X4X3X2X1X0
+ 2, e.g. N = 001111b + 2 = 17 For 64 MUX Mode X
=
1X0
00(POR) 01 10 11 1/9 or 1/7 1/5 1/6 1/8
For 54 MUX Mode X
=
1X0
00(POR) 01 10 11 1/8.4 or 1/6 1/5 1/6 1/8
For 48 MUX Mode X
=
1X0
00(POR) 01 10 11 1/8 or 1/6 1/5 1/6 1/8
For 32 MUX Mode X
=
1X0
00(POR) 01 10 11 1/6 or 1/5 1/5 1/6 1/8
X
= 000: (TC0) Typ. –0.07%/oC
4X3X2
X
= 010: (TC1) Typ. –0.13%/oC
4X3X2
X
= 100: (TC5) Typ. –0.26%/oC
4X3X2
X
= 111: (TC7) Typ. –0.29%/oC
4X3X2
X
= 001, 011, 101, 110: Reserved
4X3X2
Increase the value of X
will increase the
7X6X5
oscillator frequency and vice versa.
Default Mode: X
= 011
7X6X5
(POR for 48 MUX Mode, 54 MUX Mode) : Typ. 31.5kHz
X
= 011
7X6X5
(POR for 32 MUX Mode, 64 MUX Mode) : Typ. 18.7Hz
19
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 23
1010101X0 Set 1/4 Bias Ratio
11010100 00X
0000
5X4
11010011 00X
5X4X3X2X1X0
11010110 001111X
1X0
Set Total Frame Phases
Set Display Offset
Enable Band Gap Reference Circuit
Remarks: By software program the multiplex ratio, the typical oscillator frequency is listed above.
= 0: use normal setting (POR)
X
0
X
= 1: fixed at 1/4 bias regardless of other bias
0
setting commands
The On/Off of the Static Icon is given by 3 phases / 1 phase overlapping of the M and MSTAT signals. This command set total phases of the M/MSTAT signals for each frame. The more the total phases, the less the overlapping time and thus the lower the effective driving voltage. X
= 00: 5 phases
5X4
X
= 01: 7 phases
5X4
= 10: 9 phases (POR)
X
5X4
X
= 11: 16 phases
5X4
After POR, X
5X4X3X2X1X0
= 0 After setting MUX ratio less than default value, data will be displayed at Center of display matrix. To move display towards Row 0 by L, X
5X4X3X2X1X0
= L To move display away from Row 0 by L, X
5X4X3X2X1X0
= 64-L Note: max. value of L = (POR default MUX ratio – display MUX)/2
X
=
1X0
00 01 10 11(POR) 100 ms 200 ms 400 ms 800 ms Approx. band gap clock period
This command should execute if divider is used without capacitor at VL2 to VL5.
Recommendation: set the band gap clock period to approx. 200ms
Table 8 - Extended Command Table
Note: Command patterns other than that given in Command Table and Extended Command Table are prohibited. Otherwise, unexpected result will occur.
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
20
Page 24
A
A
A
A
A
A
A
A
I2C-bus Write data and read register status
The I2C-bus interface gives access to write data and command into the device. Please refer to figure 7 for the write mode of I
Write mode
SA0
S
0 1 1 1 1 0
0 1 1 1 1 0
R/W
Slave Address
Read mode
S
0 1 1 1 1 0
SA0
R/W
Slave Address
CK
CK
Co
2
C-bus in chronological order.
D/C
Control byte Data byte
Status bytes
CK
m 0 words n 0 bytes
P
CK
Note: Co – Continuation bit
D/ C – Data / Command Selection bit
ACK – Acknowledgement SA0 – Slave address bit
R/W – Read / Write Selection bit
S – Start Condition / P – Stop Condition
Co
D/C
CK
Control byte
1 byte
0 1 1 1 1 0
SSD0817
Slave Address
Co
D/C
0 0 0 0 0 0
Control byte
SA0
CK
Data byte
MSB ……………….LSB
R/W
CK
P
CK
Figure 7 I2C-bus data format
Write mode
1) The master device initiates the data communication by a start condition. The definition of the start condition is shown in figure 8 on page 22. The start condition is established by pulling the SDA from high to low while the SCL stays high.
2) The slave address is following the start condition for recognition use. For the SSD0817, the slave address is either “b0111100” or “b0111101” by changing the SA0 to high or low.
3) The write mode is established by setting the
R/W bit to logic “0”.
4) An acknowledgement signal will be generated after receiving one byte of data, including the slave address and the
R/W bit. Please refer to the figure 9 on page 22 for the graphical
representation of the acknowledge signal. The acknowledge bit is defined as the SDA line is pulled down during the high period of the acknowledgement related clock pulse.
5) After the transmission of the slave address, either the control byte or the data byte may be sent across the SDA. A control byte mainly consists of Co and
D/ C bits following by six “0” ‘s.
a. If the Co bit is set as logic “0”, the transmission of the following information will
contain data bytes only.
21
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 25
b. The D/ C bit determines the next data byte is acted as a command or a data. If the
D/ C bit is set to logic “0”, it defines the following data byte as a command. If the
D/ C bit is set to logic “1”, it defines the following data byte as a data which will be
stored at the GDDRAM. The GDDRAM column address pointer will be increased by one automatically after each data write.
6) Acknowledge bit will be generated after receiving each control byte or data byte.
7) The write mode will be finished when a stop condition is applied. The stop condition is also defined in figure 8 on page 22. The stop condition is established by pulling the “SDA in” from low to high while the “SCL” stays high.
TDH,
START
TDS,
STOP
SDA
SCL
S
START condition
P
STOP condition
SDA
SCL
Figure 8 Definition of the start and stop condition
DATA OUTPUT
DATA OUTPUT
SCL FROM
S
START
Condition
1 8 9
2
Figure 9 Definition of the acknowledgement condition
Please be noted that the transmission of the data bit has some limitations.
1. The data bit, which is transmitted during each SCL pulse, must keep at a stable state within the “high” period of the clock pulse. Please refer to the figure 10 for graphical representations. Except in start or stop conditions, the data line can be switched only when the SCL is low.
2. Both the data line (SDA) and the clock line (SCL) should be pulled up by external resistors.
Non-acknowledge
Acknowledge
Clock pulse for
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
22
Page 26
Figure 10 Definition of the data transfer condition
Read mode (Read status register)
1) The master device firstly initiates the data communication by a start condition. The definition of the start condition is shown in figure 8 on page 22.
2) The slave address is following the start condition for recognition use. For the SSD0817, the slave address is either “b0111100” or “b0111101”.
3) The read mode is established by setting to monitor the internal status of the chip.
4) An acknowledgement signal will be generated after sending one byte of data, including the slave address and the
representation of the acknowledge signal.
5) The status of the register will be read at the next status byte. Please refer to the Table 9 for the explanation of the status byte.
6) The read mode will be finished when a stop condition is applied. The stop condition is also defined in figure 8 on page 22.
S7S6S5S4S3S2S1S
SDA
SCL
R/W bit. Please refer to the figure 9 on page 22 for the graphical
Status Register Read
0
data line is
stable; data is
valid
Change
of data is
allowed
R/W bit to logic “1”. The read mode allows the MCU
S7=0: indicates the driver is ready for command. S
=1: indicates the driver is Busy.
7
S
=0: indicates reverse segment mapping with
6
column address. S
=1: indicates normal segment mapping with
6
column address. S
=0: indicates the display is ON.
5
S
=1: indicates the display is OFF.
5
S
=0: initialization is completed.
4
S
=1: initialization process is in progress after
4
RES or software reset. S
3S2S1S0
= 1001, the 4-bit is fixed to 1001 which could be used to identify as Solomon-Systech Device.
Table 9 - Read Command Table (R/Wbit =1)
23
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 27
COMMAND DESCRIPTIONS
Set Lower Column Address
This command specifies the lower nibble of the 8-bit column address of the display data RAM. The column address will be increased by each data access after it is pre-set by the MCU.
Set Higher Column Address
This command specifies the higher nibble of the 8-bit column address of the display data RAM. The column address will be increased by each data access after it is pre-set by the MCU.
Set Internal Regulator Resistors Ratio
This command is to enable any one of the eight internal resistor sets for different regulator gain when using internal regulator resistor network (IRS pin pulled high). In other words, this command is used to select which contrast curve from the eight possible selections. Please refer to Functional Block Descriptions section for detail calculation of the LCD driving voltage.
Set Power Control Register
This command turns on/off the various power circuits associated with the chip. There are three related power sub-circuits could be turned on/off by this command. Internal voltage booster is used to generate the negative voltage supply (VEE) from the voltage input
- VDD). An external negative power supply is required if this option is turned off.
(V
SS1
Internal regulator is used to generate the LCD driving voltage, V
.
V
EE
Output op-amp buffer is the internal divider for dividing the different voltage levels (V from the internal regulator output, V
. External voltage sources should be fed into this driver if this
L6
circuit is turned off.
, from the negative power supply,
L6
, VL3, VL4, VL5)
L2
Set Display Start Line
This command is to set Display Start Line register to determine starting address of display RAM to be displayed by selecting a value from 0 to 63. With value equals to 0, D0 of Page 0 is mapped to COM0. With value equals to 1, D1 of Page0 is mapped to COM0 and so on. Display start line values of 0 to 63 are assigned to Page 0 to 7. Please refer to Table 4 on Page 12 as an example for display start line set to 56 (38h).
Set Contrast Control Register
This command adjusts the contrast of the LCD panel by changing the LCD driving voltage, VL6, provided by the On-Chip power circuits. V
is set with 64 steps (6-bit) in the contrast control register
L6
by a set of compound commands. See Figure 11 for the contrast control flow.
Set Contrast Control Register
Contrast Level Data
No
Figure 11 - Contrast Control Flow
Changes
Complete?
Yes
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
24
Page 28
Set Segment Re-map
This command changes the mapping between the display data column addresses and segment drivers. It allows flexibility in mechanical layout of LCD glass design. Please refer to Table 4 on Page 12 for example.
Set LCD Bias
This command is used to select a suitable bias ratio required for driving the particular LCD panel in use. The selectable values of this command for 64 MUX are 1/9 or 1/7. For other bias ratio settings, extended commands should be used.
Set Entire Display On/Off
This command forces the entire display, including the icon row, to be illuminated regardless of the contents of the GDDRAM. In addition, this command has higher priority than the normal/inverse display. This command is used together with “Set Display ON/OFF” command to form a compound command for entering power save mode. See “Set Power Save Mode” later in this section.
Set Normal/Inverse Display
This command turns the display to be either normal or inverse. In normal display mode, a RAM data of 1 indicates an illumination on the corresponding pixel. In inverse display mode, a RAM data of 0 will turn on the pixel. command.
It should be noted that the icon line is not affect. The icon line is not inversed by this
Set Display On/Off
This command is used to turn the display on or off. When display off is issued with entire display is on, power save mode will be entered. See “Set Power Save Mode” later in this section for details.
Set Page Address
This command enters the page address from 0 to 8 to the RAM page register for read/write operations. Please refer to Table 4 on Page 12 for detail mapping.
Set COM Output Scan Direction
This command sets the scan direction of the COM output allowing layout flexibility in LCD module assembly. See Table 4 on Page 12 for the relationship between turning on or off of this feature. In addition, the display will have immediate effect once this command is issued. That is, if this command is sent during normal display, the graphic display will have vertical flipping effect.
Set Read-Modify-Write Mode
This command puts the chip in read-modify-write mode in which:
1. The column address is saved before entering the mode
2. The column address is increased only after display data write but not after display data read. This Read-Modify-Write mode is used to save the MCU ’s loading when a very portion of display area is being updated frequently. As reading the data will not change the column address, it could be get back from the chip and do some operation in the MCU. Then the updated data could be written back to the GDDRAM with automatic address increment. After updating the area, “Set End of Read-Modify-Write Mode” is sent to restore the column address and ready for next update sequence.
25
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 29
Software Reset
Issuing this command causes some of the chip’s internal status registers to be initialized: Read-Modify-Write mode is off Static indicator is turned OFF Display start line register is cleared to 0 Column address counter is cleared to 0 Page address is cleared to 0 Normal scanning direction of the COM outputs Internal regulator resistors Ratio is set to 4 Contrast control register is set to 20h
Set End of Read-Modify-Write Mode
This command relieves the chip from read-modify-write mode. The column address before entering read-modify-write mode will be restored no matter how much modification during the read-modify­write mode.
Set Indicator On/Off
This command turns on or off the static indicator driven by the M and MSTAT pins. When the “Set Indicator On” command is sent, the second command byte “Indicator Display Mode” must be followed. However, the “Set Indicator Off” command is a single byte command and no second byte command is required. The status of static indicator also controls whether standby mode or sleep mode will be entered, after issuing the power save compound command. See “Set Power Save Mode” later in this section.
NOP
A command causing the chip takes No Operation.
Set Test Mode
This command forces the driver chip into its test mode for internal testing of the chip. Under normal operation, users should NOT use this command.
Set Power Save Mode
The Standby or Sleep Mode operation should be executed by a compound command. The compound command is composed of “Set Display ON/OFF” and “Set Entire Display ON/OFF” commands. When the “Set Entire Display” is ON and the “Set display” is OFF, either Standby Mode or Sleep Mode will be entered. The status of the Static Indicator will determine which power save mode is entered. If static indicator is off, the Sleep Mode will be entered: Internal oscillator and LCD power supply circuits are stopped Segment and Common drivers output VDD level The display data and operation mode before sleep are held Internal display RAM can still be accessed If the static indicator is on, the chip enters Standby Mode, which is similar to sleep mode except addition with: Internal oscillator is on Static drive system is on Please also be noted that during Standby Mode, if the “software reset” command is issued, Sleep Mode will be entered. Both power save modes can be exited by the issue of a new software command
or by pulling Low at hardware pin
RES .
EXTENDED COMMANDS
These commands are used, in addition to basic commands, to trigger the enhanced features designed for the chip.
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
26
Page 30
Set Multiplex Ratio
This command switches default multiplex ratio to any multiplex mode from 2 to the maximum multiplex ratio (POR value), including the icon line. Max. MUX ratio: 65 The chip pins ROW0-ROW63 will be switched to corresponding COM signal output, see Table 10 on Page 29 for examples of 18 multiplex (including icon line) settings with and without 7 lines display offset for different MUX. Remarks: After changing the display multiplex ratio, the bias ratio may be adjusted in order to make display contrast consistent.
Set Bias Ratio
Except the 1/4 bias, all other available bias ratios could be selected using this command plus the “Set LCD Bias” command. For detail setting values and POR default, please refer to the extended command table, Table 8 on Page 19.
Set Temperature Coefficient (TC) Value
One out of four different temperature coefficient settings is selected by this command in order to match various liquid crystal temperature grades. Please refer to the extended command table, Table 8 on Page 19, for detailed TC values.
Modify Oscillator Frequency
The oscillator frequency can be fine tuned by applying this command. Since the oscillator frequency will be affected by some other factors, this command is not recommended for general usage. Please contact SOLOMON-Systech Limited application engineers for more detail explanation on this command.
Set 1/4 Bias Ratio
This command sets the bias ratio directly to 1/4. This bias ratio is especially designed for use in under 12 MUX display. In order to restore to other bias ratio, this command must be executed, with LSB=0, before the “Set Multiplex ratio” or “Set LCD Bias” command is sent.
Set Total Frame Phases
The total number of phases for one display frame is set by this command. The Static Icon is generated by overlapping the M and the MSTAT signals. These two pins output either V To turn on the Static Icon, 3 phases overlapping is applied to these signals, while 1 phase overlapping is given to the “Off “status. With the increase in the total number of phases in a single frame, the overlapping time decreases. Thus the lower the effective driving voltage at the Static Icon on the LCD panel.
or VDD at same frequency but with phase different.
SS
27
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 31
Set Display Offset
This command should be sent ONLY when the multiplex ratio is set less than the default value. When a lesser multiplex ratio is set, the display will be mapped in the middle (y-direction) of the LCD, see the no offset columns on Table 10 on Page 29. Use this command could move the display vertically within the 64 commons. To make the Reduced-MUX Com 0 (Com 0 after reducing the multiplex ratio) towards the Row 0 direction for L lines, the 6-bit data in second command should be given by L. An example for 7 lines moving towards to Com0 direction is given on Table 10 on Page 29. To move in the other direction by L lines, the 6-bit data should be given by 64-L. Please note that the display is confined within the default multiplex value. That is the maximum value of L is given by the half of the default value minus the reduced-multiplex ratio. For an odd display MUX after reduction, moving away from Row 0 direction will has 1 more step.
Enable Band Gap Reference Circuit
This command enables or disables the band gap reference circuit. It should be noticed that this command should be executed if divider is used without capacitor at VL2 to VL5. There are four selections on the band gap clock period. We recommended to set the band gap clock period to 200ms in normal operation.
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
28
Page 32
48 MUX Mode 54 MUX Mode 32 MUX Mode 64 MUX Mode No Offset 7 lines
Offset ROW0 X X X X X COM0 X X ROW1 X X X X X COM1 X X ROW2 X X X X X COM2 X X ROW3 X X X X X COM3 X X ROW4 X X X X X COM4 X X ROW5 X X X X X COM5 X X ROW6 X X X X X COM6 X X ROW7 X X X X COM0 COM7 X X ROW8 X COM0 X X COM1 COM8 X X ROW9 X COM1 X X COM2 COM9 X X ROW10 X COM2 X X COM3 COM10 X X ROW11 X COM3 X COM0 COM4 COM11 X X ROW12 X COM4 X COM1 COM5 COM12 X X ROW13 X COM5 X COM2 COM6 COM13 X X ROW14 X COM6 X COM3 COM7 COM14 X X ROW15 COM0 COM7 X COM4 COM8 COM15 X X ROW16 COM1 COM8 X COM5 NC NC X COM0 ROW17 COM2 COM9 X COM6 NC NC X COM1 ROW18 COM3 COM10 COM0 COM7 NC NC X COM2 ROW19 COM4 COM11 COM1 COM8 NC NC X COM3 ROW20 COM5 COM12 COM2 COM9 NC NC X COM4 ROW21 COM6 COM13 COM3 COM10 NC NC X COM5 ROW22 COM7 COM14 COM4 COM11 NC NC X COM6 ROW23 COM8 COM15 COM5 COM12 NC NC COM0 COM7 ROW24 NC NC COM6 COM13 NC NC COM1 COM8 ROW25 NC NC COM7 COM14 NC NC COM2 COM9 ROW26 NC NC COM8 COM15 NC NC COM3 COM10 ROW27 NC NC NC NC NC NC COM4 COM11 ROW28 NC NC NC NC NC NC COM5 COM12 ROW29 NC NC NC NC NC NC COM6 COM13 ROW30 NC NC NC NC NC NC COM7 COM14 ROW31 NC NC NC NC NC NC COM8 COM15 ROW32 COM9 COM16 COM9 COM16 COM9 COM16 COM9 COM16 ROW33 COM10 X COM10 X COM10 X COM10 X ROW34 COM11 X COM11 X COM11 X COM11 X ROW35 COM12 X COM12 X COM12 X COM12 X ROW36 COM13 X COM13 X COM13 X COM13 X ROW37 COM14 X COM14 X COM14 X COM14 X ROW38 COM15 X COM15 X COM15 X COM15 X ROW39 COM16 X COM16 X COM16 X COM16 X ROW40 X X X X X X X X ROW41 X X X X X X X X ROW42 X X X X X X X X ROW43 X X X X X X X X ROW44 X X X X X X X X ROW45 X X X X X X X X ROW46 X X X X X X X X ROW47 X X X X X X X X ROW48 X X X X NC NC X X ROW49 X X X X NC NC X X ROW50 X X X X NC NC X X ROW51 X X X X NC NC X X ROW52 X X X X NC NC X X ROW53 X X X X NC NC X X ROW54 X X X X NC NC X X ROW55 X X X X NC NC X X ROW56 NC NC X X NC NC X X ROW57 NC NC X X NC NC X X ROW58 NC NC X X NC NC X X ROW59 NC NC NC NC NC NC X X ROW60 NC NC NC NC NC NC X X ROW61 NC NC NC NC NC NC X X ROW62 NC NC NC NC NC NC X X ROW63 NC NC NC NC NC NC X X
No Offset 7 lines
Offset
No Offset 7 lines
Offset
No Offset 7 lines
Offset
Table 10 - ROW pin assignment for COM signals for SSD0817 in
an 18 MUX display (including icon line) without/with 7 lines display offset towards ROW0
Note: X-Row pin will output non-selected COM signal
29
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 33
MAXIMUM RATINGS
Table 11 - Maximum Ratings (Voltage Referenced to VSS)
Symbol Parameter Value Unit
VDD -0.3 to +4.0 V VEE
Vin Input Voltage
I
Current Drain Per Pin Excluding V
TA Operating Temperature -30 to +85
T
Storage Temperature -65 to +150
stg
Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions to be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that Vin and VEE be constrained to the range VSS < or = (Vin or Vout) < or = VDD. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.
Supply Voltage
V
SS
DD
and
0 to –12.0 V
VSS-0.3 to
VDD+0.3
V
25 mA
o
C
o
C
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
30
Page 34
DC CHARACTERISTICS
Table 12 - DC Characteristics (Unless otherwise specified, Voltage Referenced to V
3.5V, T
= -30 to 85°C)
A
, VDD = 2.4 to
SS
Symbol Parameter Test Condition Min Typ Max Unit
VDD
IAC
Logic Circuit Supply Voltage Range
Access Mode Supply Current Drain (V
Pins)
DD
Recommend Operating Voltage Possible Operating Voltage V
= 2.7V, Voltage Generator
DD
On, 4X DC-DC Converter Enabled, Write accessing, Tcyc =3.3MHz, Typ. Osc. Freq.,
2.4 2.7 3.5
V V
- 480 600 µA
Display On, no panel attached.
= 2.7V, VEE = -8.1V, Voltage
V
DD
I
DP1
Display Mode Supply Current Drain (V
Pins)
DD
Generator Disabled, Halt, Typ. Osc. Freq., Display On, V
- VDD = -9V, no panel
L6
R/W(WR )
- 50 100 µA
attached. V
= 2.7V, VEE = -8.1V, Voltage
DD
Generator On, 4x DC-DC
I
DP2
Display Mode Supply Current Drain (V
Pins)
DD
Converter Enabled, Halt, Typ. Osc. Freq., Display On, V
- VDD = -9V, no panel
L6
R/W(WR )
- 120 200 µA
attached. V
= 2.7V, LCD Driving
DD
Waveform Off, Typ. Osc. Freq.,
R/W(WR ) halt.
V
= 2.7V, LCD Driving
DD
Waveform Off, Oscillator Off,
R/W(WR ) halt.
- 5 10 µA
- 1 5 µA
ISB
I
SLEEP
Standby Mode Supply Current Drain (V
Sleep Mode Supply Current Drain (V
Pins)
DD
Pins)
DD
Display On, Voltage Generator Enabled, DC-DC Converter Enabled, Typ. Osc. Freq., Regulator Enabled, Divider
-12.0 - -2.4 V
VEE
LCD Driving Voltage Generator Output (V
EE
Pin)
Enabled.
V
LCD
V
Logic High Output Voltage Iout=-100mA 0.9*VDD - VDD V
OH1
V
Logic Low Output Voltage Iout=100mA 0 -
OL1
VL6
VL6
V
Logic High Input voltage 0.8*VDD - VDD V
IH1
V
Logic Low Input voltage
IL1
LCD Driving Voltage Input
Pin)
(V
EE
LCD Driving Voltage Source
Pin)
(V
L6
LCD Driving Voltage Source
Pin)
(V
L6
Voltage Generator Disabled. -12.0 - -2.4 V
0.1* V
V
DD
Regulator Enabled (V depends on Int/Ext Contrast
voltage
L6
-0.5 - VDD V
V
EE
Control)
Regulator Disable - floating - V
0 -
0.2*
V
DD
V
31
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 35
- V
L6
- V
L6
- V
L6
- V
L6
V
L5
VL2 V
L3
V
L4
V
L5
V
L6
VL2 V
L3
V
L4
V
L5
V
L6
IOH
IOL
IOZ
- 1/a*V
- 2/a*VL6 - V
LCD Display Voltage Output
, VL3, VL4, VL5, VL6 Pins)
(V
L2
Voltage reference to V Divider Enabled, 1:a bias ratio
, Bias
DD
-
-
(a-2)/a *V (a-1)/a *V
- V VL3 - VDD V
LCD Display Voltage Input
, VL3,VL4, VL5, VL6 Pins)
(V
L2
Voltage reference to V External Voltage Generator, Bias Divider Disabled
DD
,
Logic High Output Current Source Logic Low Output Current Drain Logic Output Tri-state Current Drain Source
Vout = V
Vout = 0.4V - - -50 µA
-1 - 1 µA
-0.4V 50 - - µA
DD
VL4 - VL2 V VL5 - VL3 V VL6 - VL4 V
-12V - V
IIL/IIH Logic Input Current -1 - 1 µA
CIN
Logic Pins Input Capacitance
- 5 7.5 pF
Regulator Enabled, Internal
VL6
Variation of V is fixed)
Output (VDD
L6
Contrast Control Enabled, Set Contrast Control Register = 0
-3 0 3 %
Temperature Coefficient
TC0
Compensation
Flat Temperature Coefficient
0 -0.07 -0.11 %/
Voltage Regulator Enabled
o
C
(POR) TC2 Temperature Coefficient 2* -0.11 -0.13 -0.15 %/oC TC4 Temperature Coefficient 4* -0.15 -0.26 -0.28 %/oC TC7 Temperature Coefficient 7*
-0.28 -0.29 -0.30 %/oC
The formula for the temperature coefficient is:
TC(%) = V
at 50oC – V
ref
50
at 0 oC x 1 x 100 %
ref
o
C – 0 oC V
at 25 oC
ref
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
32
Page 36
AC CHARACTERISTICS
Table 13 - AC Characteristics (Unless otherwise specified, Voltage Referenced to V
3.5V, T
= -30 to 85°C)
A
, VDD = 2.4 to
SS
Symbol Parameter Test Condition Min Typ Max Unit
Fosc Oscillation Frequency of
Display Timing Generator
64 Mux Mode
54 Mux Mode
F
Frame Frequency
FRM
64 Mux Mode
54 Mux Mode
48 Mux Mode
32 Mux Mode
Internal Oscillator Enabled (default), VDD = 2.7V Remark: Oscillator Frequency vs. Temperature change (-20°C to 70°C): -0.5%/°C *
104 x 64 Graphic Display Mode, Display ON, Internal Oscillator Enabled
104 x 64 Graphic Display Mode, Display ON, Internal Oscillator Disabled, External clock with freq., Fext, feeding to CL pin.
104 x 54 Graphic Display Mode, Display ON, Internal Oscillator Enabled
104 x 54 Graphic Display Mode, Display ON, Internal Oscillator Disabled, External clock with freq., Fext, feeding to CL pin.
104 x 48 Graphic Display Mode, Display ON, Internal Oscillator Enabled
104 x 48 Graphic Display Mode, Display ON, Internal Oscillator Disabled, External clock with freq., Fext, feeding to CL pin.
104 x 32 Graphic Display Mode, Display ON, Internal Oscillator Enabled
104 x 32 Graphic Display
15.9
26.4
18.7
31.5
Fosc 4x65
Fext
4x65
Fosc
8x54
Fext
8x54
Fosc 8x49
Fext
4x49
Fosc 8x33
Fext
4x33
25.7
42.72
kHz
kHz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Hz
Mode, Display ON, Internal Oscillator Disabled, External clock with freq., Fext, feeding
to CL pin. Remarks: Fext stands for the frequency value of external clock feeding to the CL pin Fosc stands for the frequency value of internal oscillator Frequency limits are based on the software command: set multiplex ratio to 32/48/54/64
Table 14 - I
(Unless otherwise specified, Voltage Referenced to VSS, VDD = 2.4 to 3.5V, TA = 25°C)
2
C-bus timing Characteristics
33
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 37
Symbol Parameter Min Typ Max Unit
F
I
SCL
T
I
CLKL
T
CLKH
T
I
DSW
T
I
DHW
2
C-bus Clock frequency, SCL 0 - 500 kHz
2
C-bus Clock Low period, SCL 960 - - ns
2
C-bus Clock high period, SCL 960 - - ns
I
2
C-bus Data Setup time, SDA 120 - - ns
2
C-bus Data Hold time, SDA 0 - 0.98 us TR Rise time between SDA & SCL 32 - 350 ns TF Fall time between SDA & SCL 32 - 350 ns C
Capacitive loadings at each I2C-bus channel - - 400 pF
BUS
T
DH, START
T
DS, STOP
I2C-bus Setup time, START condition 180 - - ns
I2C-bus Hold time, STOP condition 180 - - ns
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
34
Page 38
SDA
SCL
Symbol Parameter Min Typ Max Unit
T
Clock Cycle Time 2.0 - - us
cycle
T
Write Data Setup Time 120 - - ns
DSW
T
Write Data Hold Time 0 - 0.98 us
DHW
T
Clock Low Time 960 - - ns
CLKL
T
Clock High Time 960 - - ns
CLKH
TR Rise Time - 200 350 ns TF Fall Time - 200 350 ns T
DH, START
T
DS, STOP
Table 15 - Interface Timing Characteristics (VDD - VSS = 2.4 to 3.5V, TA = 25°C)
Hold time, start condition 0.18 2.5 - us
Setup time, stop condition 0.18 2.5 - us
T
DH, STA RT
T
T
DSW
DHW
T
Cyc le
T
R
T
CLK H
T
F
T
CLK L
T
DS, STOP
Figure 12 – IIC data bus Interface driving waveform
35
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 39
APPLICATION EXAMPLES
Remapped COM
Logic pin connections not specified above:
Pins connected to VDD: IRS, CS2, M/ S , CLS, IIC2, TEST0 - TEST7
ICONS COM0 : : COM10 COM11 : : COM30 COM31
DISPL AY P ANE L SIZE
104 x 64 + 1 ICONS LINE
SEG0................................SEG103
Segment Remapped
[Command: A1]
COM43.......COM32 SEG 103............................................................................SEG0 ICONS C OM0 ....
COM44 COM45 : : : : :
SCAN Direct iion
[Com mand: C 8]
COM63 ICONS
SCL
/RES
VEE
SDA in
VSS[GND ]
Ext ernal Vneg =
-9.5V
SDA out
SSD0817IC
64 MUX
Capacitor value: 0.1uF ~ 0.47 uF
COM32 COM33
COM63
ICONS
COM10 COM11 : : COM18 COM19 : : COM30 COM31
VL2VL3VL4VL5VL6
VDD = 2.775V
: : : :
Remapped COM
SCAN D irect iion
[Com mand: C 8]
Pins connected to VSS: VSS1,
Pins floating:
DOF , CL, T0-T6
1CS , IIC1
Pin connected to either VDD or VSS by user defined: C0, C1 and SA0 SDA in & SCL should be pulled high by a pair of resistors: 100k ohm
Figure 13 - Application Circuit of 104 x 64plus an icon line using SSD0817, configured with: external VEE, internal regulator, divider mode enabled (Command: 2B), IIC data bus interface, internal oscillator and master mode
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
36
Page 40
Remapped COM
Optional for SDAin & SDAout are shor ted
Logic pin connections not specified above:
Pins connected to VDD:, M/ S , CS2, CLS, IIC2, IRS, TEST0-TEST7
ICONS COM0 : : COM10 COM11 : : COM30
DISPLAY PANEL SIZE
104 x 64 + 1 ICONS LINE
COM31
SEG0.................................SEG103
Segment Remapped
[Command: A1]
COM43..........COM32 SEG103........................................................................SEG0 ICONS C OM0 ...
COM44 COM45 : : : : :
SCAN Direct iion
[Command: C8]
COM63 ICONS
SDAin SC L
VSS VEE C3N C1P C1N C2N C2P C4N
0.47 - 1uF x 5
SDAout
5X boosting
VSS [GN D]
SSD0817 IC
64 MUX
(DIE FACE UP)
/RES
Capacitor value: 0.1uF ~ 0.47 uF
COM32 COM33
COM63
ICONS
VL2
VL3VL4VL5VL6
VDD = 2.775V
COM10 COM11 : : COM18 COM19 : : COM30 COM31
: : : :
Remapped COM
SCAN Direct iion
[Com mand: C 8]
: V
Pins connected to V
Pins floating:
DOF , CL, T0 - T6
SS
, IIC1, 1CS
SS1
Pin connected to either VDD or VSS by user defined :SA0 Pin connected together: SDA
& SDA
in
out
SDA in and SCl should be pulled high by a pair of resistors: value = 100 k ohm
Figure 14 - Application Circuit of 104 x 64plus an icon line using SSD0817, configured with all internal power control circuit enabled, fully IIC data bus interface, internal oscillator and master mode.
37
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 41
ICONS COM0 : : COM10 COM11 : : COM30 COM31
DISPLAY PANEL SIZE
104 x 64 + 1 ICONS LINE
Remapped C OM
COM43.......COM32 SEG103..............................................................................SEG0 ICONS COM0 ....
COM44 COM45 : : : : :
SCAN Direc tiion
[Command: C8]
COM63 ICONS
SEG0.................................SEG103
Segment Remapped
[Command: A1]
SSD0817 IC
64 MUX
(DIE FACE UP)
/RES
SDAin
SCL
VSS [GN D]
Capacitor value: 0.1uF ~ 0.47 uF
VEE = -9.5V
Logic pin connections not specified above:
Pins connected to VDD: CS2, M/ S , CLS, IIC2, D2, D3, D6, D7, IRS
COM32 COM33
COM63
ICONS
VL2
VL3VL4VL5VL6
VDD = 2.775V
COM10 COM11 : : COM18 COM19 : : COM30 COM31
: : : :
Remapped COM
SCAN D irect iion
[Command: C8]
: V
Pins connected to V
Pins floating:
DOF , CL, T0 - T6
SS
, IIC1, TEST0 - TEST7, 1CS
SS1
Pin connected to either VDD or VSS by user defined :SA0 Pin connected together: SDAin & SDAout SDA in and SCl should be pulled high by a pair of resistors: value = 100 k ohm
Figure 15 - Application Circuit of 104 x 64plus an icon line using SSD0817, configured with all external power control circuit enabled, fully IIC data bus interface, internal oscillator, internal contrast gain and master mode. (Minimum pin outlets)
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
38
Page 42
Initialization Routine
(Refer to Figure 11: All internal power control circuit enable)
Command (Hex)
(Refer to Figure 12: External VEE, Internal
1 E2 E2 Software Reset 2 2F 2B Set power control register 3
24 24
4 81
20
5
D6 2D
6
7
8
9
A0 A0
C0 C0
A4 A4
A6 A6
10 AF AF Set Display On
Example Internal booster, regulator and divider
are enabled. V
= approx. -8.735V with reference
OP
to V
DD
External booster, Internal regulator and divider are enabled. V
OP
reference to V
Command (Hex)
regulator and divider enable)
81 20
D6 2D
= approx. -8.593V with
DD
Description
Set internal resistor gain = 24h
Set contrast level = 20h
Enable band gap reference circuit Set band gap clock period = 200ms Set Column address is map to SEG0 Set Row address is map to COM0 Set entire display on/off = Normal display Set normal / reverse display = Normal display
39
SSD0817 Series
Rev 1.3 01/2003
SOLOMON
Page 43
Solomon Systech reserves the right to make changes without further notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Sys­tech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part.
SOLOMON
.3
Rev 1 01/2003
SSD0817 Series
40
Loading...