Datasheet SM9103BM Datasheet (NPC)

Page 1
SM9403BM
NIPPON PRECISION CIRCUITS—1
NIPPON PRECISION CIRCUITS INC.
DVDRAM Servo-amplifier LSI
The SM9403BM is a DVDROM and DVDRAM servo preprocessor LSI, designed for double-speed format DVDROM and DVDRAM drives.
The SM9403BM is fabricated using a BiCMOS process, and incorporates an analog signal processing circuit that generates signals needed by the digital servo processor, a DPD signal processing circuit (DVDROM), and a CAPA (Complementary Allocated Pit Address) detection circuit (DVDRAM) all in a single chip. It operates from a single 5 V supply, and is available in 36-pin plastic SSOP packages.
FEATURES
DPD signal processor
Tracking error signal output
Focus error signal output
Tracking error signal sample-and-hold
Focus error signal sample-and-hold
CAPA detection function
Track count pulse generator
Off-track detection
2V and 4V reference voltage generator
Serial interface for setting internal parameters
Sleep-mode function
Single 5 V supply
36-pin plastic SSOP
APPLICATIONS
Double-speed DVDROM drives
Double-speed DVDRAM drives
ORDERING INFORMATION
PINOUT
36-pin SSOP (Top View)
De vice Pack ag e
SM9403BM 36-pin SSOP
1NC 2NC 3FER 4FHOLD 5FSUB 6ISET 7DPDD 8DPDC
9DPDB 10DPDA 11AGND 12MMTI 13CAPAN 14CAPAP 15CAPLFC 16TSUB 17THOLD 18TRE 19 VREF4
20 VREF2
21 TROFF
22 TRP
23 CAPAREA
24 CAPOUT
25 AVCC
26 CAPIN
27 CAPSEL
28 CAPSEEK
29 DVCC
30 SENB
31 SDATA
32 SCLK
33 DGND
34 DEFECT
35 DPDI
36 DPDG
SM9403BM
NPC
Page 2
SM9403BM
NIPPON PRECISION CIRCUITS—2
PACKAGE DIMENSIONS
(Unit: mm)
BLOCK DIAGRAM
2.44 to 2.64
0.85
15.20 to 15.40
7.40 to 7.60
0.29 to 0.39
0.80
0.10 to 0.30
0.51 to 1.01
10.11 to 10.51
0.63 ± 0.10
0 to 8°
0.23 to 0.32
0.51 ± 0.20 45°
R0.63 to 0.89
Phase
comparator
LPF
Voltage
reference
S / H
LPF
Serial
interface
S / H control
DPDI
DPDG
ISET
VREF2
VREF4
FER
FHOLD
FSUB
TSUB
THOLD
CAPAP
CAPAN
CAPLFC
CAPIN
CAPOUT
CAPAREA
CAPSEL
CAPSEEK
TRP TROFF
TRE
SENB
SDATA
SCLK
DGND
DVCC
AGND
AVCC
VREF2
DPDA DPDB
DPDC
DPDD
Mono-multiviblator
Equalizer
Delay
LPF
Analog signal
processor
S / H
MMTI
SWB
Track Pulse
Generator
SWA
DEFECT
*
*
*
Page 3
SM9403BM
NIPPON PRECISION CIRCUITS—3
PIN DESCRIPTION
Number Name I/O
1
1. I = input, Ipd = Input with built-in pull-down resistor, I/O = input/output (N-channel open-drain when output), O = output
Function
1 N C O No connection 2 N C O No connection 3 F E R O Focus error signal output 4 FHOLD Focus error hold capacitor connection 5 FSUB I Focus error signal input 6 ISET I DPD signal equalizer, reference current set resistor connection 7 DPDD I DPD signal input D 8 DPDC I DPD signal input C
9 DPDB I DPD signal input B 10 D P DA I DPD signal input A 11 AG ND Analog circuit ground 12 MMTI I Mono-multivibrator time-constant set resistor connection 13 C APAN I ID data signal differential inverting input 14 C APAP I ID data signal differential non-inver ting input 15 CAPLFC Slice-level detect capacitor connection 16 TSUB I Tracking error signal input 17 THOLD Tracking error hold capacitor connection 18 T R E O Tracking error signal output 19 VREF4 O 4V reference voltage output 20 VREF2 O 2V reference voltage output 21 TROF F O Off-trac k detect signal output. L OW when off-tra ck. 22 TRP O Track count pulse output. HIGH-level pulse for land to outer tracking. 23 CAPAREA O ID interval detect signal output. ID interval detected when HIGH. 24 CAPOUT O Outer offset ID detect signal output. Outer offset ID interval detected when HIGH. 25 AVCC Analog circuit pow er supply 26 CAPIN O Inner offset ID detect signal output. Inner offset ID interval detected when HIGH. 27 CAPSEL Ipd ID interval signal input. ID interva l selected when HIGH. 28 CAPSEEK Ipd Seek operation signal input. Seek operation selected when HIGH. 29 DVC C Logic circuit pow er supply 30 SENB I Serial interface enable input. Enabled when HIGH. 31 SDA TA I/O Serial interface data input/ackno wledge output 32 SCLK I Serial interface clock input 33 DGND Logic circuit ground 34 DEFECT Ipd Defect position signal input. Defect position indicated when HIGH. 35 DPDI I DPD signal hold delay set resistor connection 36 DPDG I DPD signal phase difference to voltage converter coefficient set resistor connection
Page 4
SM9403BM
NIPPON PRECISION CIRCUITS—4
SPECIFICATIONS
Absolute Maximum Ratings
GND = 0 V
Recommended Operating Conditions
GND = 0 V
Recommended External Components
Parameter Symbol Condition Rating Unit
Supply voltage range V
CC
0.5 to 7.0 V
Input voltage range V
IN
0.5 to VCC + 0.5 V
Operating temperature range T
opr
0 to 70
°
C
Storage temperature range T
stg
40 to 125
°
C
Po w er dissipation P
D
250 m W
Soldering temperature T
sld
260
°
C
Soldering time t
sld
10 s
Parameter Symbol Condition Rating Unit
Specifications supply voltage range V
CC
4.75 to 5.25 V
Operating supply voltage range V
CC
4.5 to 5.5 V
Operating temperature range T
opr
0 to 70
°
C
Pin No. Pin name Component Tolerance
4 FHOLD 1000pF capacitor K (±10%)
6 ISET
47kΩ resistor ± 1%
0.01µF capacitor Z (+80% to −20%) 12 MMTI 120kΩ resistor ± 1% 15 CAPLFC 0.01µF capacitor Z (+80% to −20%) 17 THOLD 1000pF capacitor K (±10%) 19 VREF4 0.1µF capacitor Z (+80% to −20%) 20 VREF2 0.1µF capacitor Z (+80% to −20%) 35 DPDI 47kΩ resistor ± 1% 36 DPDG 33k
resistor ± 1%
Page 5
SM9403BM
NIPPON PRECISION CIRCUITS—5
DC Electrical Characteristics
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Parameter Symbol Condition
Rating
Unit
min typ ma x
Current consumption
1
1. 33kΩ resistor connected between DPDG and AGN D 47kΩ resistor connected between DPDI and AGN D 120kΩ resistor connected between MMTI and AGN D 47kΩ resistor connected between ISET and AGN D 1000pF capacitor connected between FHOLD and AGN D 1000pF capacitor connected between THOLD and AG ND
0.1µF capacitor connected between VREF4 and AG ND 0.1µF capacitor connected between VREF2 and AG ND
0.01µF capacitor connected between CAPLFC and AGN D 0.01µF capacitor connected between ISET and AGN D CA PAP, CAPAN, DPDA, DPDB, DPDC, DPDD, FSUB, TSUB connected to VREF2 or other 2V supply. SENB, SDATA, SCLK connected to GND; All other pins (excluding supply and ground pins) open circuit. Sleep mode 1: DPD system only in sleep condition. Sleep mode 2: All block s except reference supply voltage generator in sleep condition. Sleep mode 3: All blocks i n sleep condition.
I
CC1
Operating mode 28 34
mA
I
CC2
Sleep mode 1 17 21
I
CC3
Sleep mode 2 2.0 2.6
I
CC4
Sleep mode 3 1.0
I
CCICC1
− I
CC2
9––
CAPSEEK, CAPSEL, DEFECT, SENB, SDATA, SCLK HIGH-level input voltage
V
IH
0.8V
CC
––V
CAPSEEK, CAPSEL, DEFECT, SENB, SDATA, SCLK LOW-level input voltage
V
IL
0.2V
CC
V
CAPSEEK, CAPSEL, DEFECT HIGH-level input current
I
IH1
VIN = V
CC
50 100 200 µ A
SENB, SDATA, SCLK HIGH-level input current I
IH2
VIN = V
CC
––3µA
CAPSEEK, CAPSEL, DEFECT, SENB, SDATA, SCLK LOW-level input current
I
IL
VIN = GND
3– –µA
CA PAREA, CAPIN, CAPOUT, TR P, TROFF HIGH-level output voltage
V
OHIOH
= −0.2mA VCC − 0.2 V
CA PAREA, CAPIN, CAPOUT, TR P, TROFF L O W-level output voltage
V
OL1IOL
= 0.8mA 0.4 V
S D ATA L OW -level output voltage V
OL2IOL
= 7mA 1.0 V
Page 6
SM9403BM
NIPPON PRECISION CIRCUITS—6
Focus Sample-and-Hold, Low-pass Filter Characteristics (FSUB → FER)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C, FSUB and FER signals in phase
Tracking Sample-and-Hold, Low-pass Filter Characteristics (TSUB → TRE)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C, TSUB and TRE signals in phase
Parameter Condition
Rating
Unit
min typ ma x
FSUB input signal range VREF2 reference
1.25 0 +1.25 V
FER output voltage range VREF2 reference
1.25 0 +1.25 V
FER output offset voltage VREF2 reference, VIN = V
REF2
±8.0 m V FER output offset voltage temperature drift VREF2 reference ±45 µV/°C FER output signal slew rate LPF off 1 V/µs FER output load regulation I
OUT
= ±3mA, VIN = V
REF2
±10 mV
FSUB input impedance 100 k
FER output signal gain
0.17 0 +0.17 dB
FER output signal bandwidth
1
1. CL = 20pF, RL = 500
VIN = 1.5Vp-p,
3dB from DC
LPF off (FFE = HIGH) 500
kHz
LPF on (FFE = LOW) 11 5 160 23 0
FER output gain peaking
1
DC to −3dB frequency
3 +0.5 dB
Hold time FER output droop characteristic VIN = 200mVp-p, C
FHOLD
= 1000pF 0.025 %/µs
S/H acquisition time
VIN = 200mV, target value ± 10% 1 µs FER output hold error With respect to the previous value ±4 mV Pow er-down state FER output impedance 1 M
Parameter Condition
Rating
Unit
min typ ma x
TSUB input signal range VREF2 reference
1.25 0 +1.25 V
TRE output voltage range VREF2 reference
1.25 0 +1.25 V
TRE output offset voltage VREF2 reference, VIN = V
REF2
±8.0 m V
TRE output offset voltage temperature drift VREF2 reference ±45 µV/
°
C
TRE output load regulation I
OUT
= ±3mA, VIN = V
REF2
±10 mV
TSUB input impedance 100 k
TRE output signal gain
0.17 0 +0.17 dB
TRE output signal bandwidth
1
1. CL = 20pF, RL = 500
VIN = 1.5Vp-p,
3dB from DC
TFE = HIGH 24 35 50
kHz
TFE = LOW 115 160 230
TRE output gain peaking
1
DC to −3dB frequency
3 +0.5 dB
Hold time TRE output droop characteristic VIN = 200mVp-p, C
THOLD
= 1000pF 0.025 %/µs
S/H acquisition time
VIN = 200mV, target value ±10% 1 µs TRE output hold error With respect to the previous value ±4 mV Power-down state TRE output impedance 1 M
Page 7
SM9403BM
NIPPON PRECISION CIRCUITS—7
DPD Error Signal Detector Characteristics (DPDA/DPDB/DPDC/DPDD → TRP)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Parameter
1
1. The tracking error signal TRE is positive with respect to VREF2 if the (DPDA + DPDC) signal phase difference is leading. The detected phase difference is the difference between the point when one internal comparator output changes (from CMA and CMB both HIGH or both LOW) until the second output changes before the first changes again. The phase difference is conver ted to a voltage and sampled for output. Other signals are held constant in the output stage when a phase difference is detected.
Condition
Rating
Unit
min typ ma x
DP DA/DPDB/DPDC/DPDD input voltage range
VREF2 reference
0.55 +1 V
DP DA/DPDB/DPDC/DPDD input impedance
1––M
Signal gain relative accuracy
Gain relative to DP DA, DPDB, DPDC, DPDD inputs
±0.17 d B
Equalizer gain
1MHz setting
DG2 =LOW 1.2 1.6 2.3
dB
DG2 = HIGH 1.8 2.2 2.9
5MHz setting
DG2 =LOW 5.5 6.1 6.6 DG2 = HIGH 6.1 6.7 7.2
Equalizer frequency response
Peak gain frequency (EQE = HIGH) 3.75 5.0 6.25
MHz
3dB frequency (EQE = LOW) 11 22 33
Equalizer frequency response relative accuracy
f
peak
, (A + C) vs. (B + D) ±1.5 %
AC coupling time circuit
3dB frequency
Time constant 1 DG2 = LOW 56 84 109
kHz
Time constant 2 DG2 = HIGH 17 24 32
AC coupling time constant relative accuracy
3dB frequency, (A + C) vs. (B + D) ±2 %
Delay control range See table 4. See table 4. ns Phase difference detector minimum time DG1 = DG2 = LOW 2 ns Phase difference detector maximum time DG1 = DG2 = HIGH 1 µs Phase difference detector minimum
repeat time
Input pulse interval 12 0 n s
Phase difference to voltage conversion coefficient
DG1 = DG2 = LOW See table 5. typ ± 20% mV/ns
Phase difference to voltage conversion coefficient change accuracy
See table 8. ±1 d B
Phase difference output offset voltage VREF2 reference ±0.1 V Phase difference output offset voltage
temperature drift
VREF2 reference ±570 µV/
°
C
DEFECT signal response time 1 µs DPD enable response time DPE flag 2 µs Abnormal waveform TRP droop
characteristic
V
OUT
= V
REF2
± 200mV, VREF2 reference 0.1 %/µs
TRP output voltage range VREF2 reference
1.25 0 +1.25 V
TRP output signal frequency response−3dB frequency 500 kHz
Page 8
SM9403BM
NIPPON PRECISION CIRCUITS—8
Header Position Detector Characteristics (CAPAP/N CAPAREA, CAPIN, CAPOUT)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Sample-and-Hold Control Signal Generator Characteristics
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Tracking Error Signal Switching Characteristics (SWA, SWB)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Parameter Condition
Rating
Unit
min typ ma x
C A PAP/N input voltage range 1 3 V Analog signal processor frequency
response
V
IN
= V
REF2
± 0.5V, −3dB from DC 13 M Hz
Analog signal quantization slice level See table 9. typ ± 15% V Mono-multivibrator time constant typ
5% See table 10. typ + 45% µs
Mono-multivibrator time constant switching accuracy
––±5%
Mono-multivibrator time-constant block interval accurac y
±2.5 %
CAPIN, CAPOUT, CAPAREA output r ise time and fall time
C
L
= 20pF 15 n s
Parameter Condition
Rating
Unit
min typ ma x
FER, TRE output response time
1
1. FSHCNT and TSHCNT are the focus and tracking sample-and-hold internal control signals, respectively.
Mono-multivibrator/CAPSEL/CAPSEEK
FSHCNT/TSHCNT
100 ns
Serial interface (HRE, FHE, THE, HAE)
FSHCNT/TSHCNT
––2µs
Parameter Condition
Rating
Unit
min typ ma x
Switching response time Serial interface timing 1 µs
Page 9
SM9403BM
NIPPON PRECISION CIRCUITS—9
Track Count Pulse Generator Characteristics (TSUB TRP , TROFF)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Reference Voltage Generator Characteristics (VREF2, VREF4)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Parameter Condition
Rating
Unit
min typ ma x
TSUB input signal range VREF2 reference
1.25 +1.25 V TSUB signal limiter voltage level VREF2 reference ±1.0 V TSUB signal amplifier gain f = 5kHz 5.83 6.0 6.17 d B Quantization level offset set value typ − 15 % See table 15 typ + 15% m V TRP output comparator hysteresis
1
1. TRP has the same polarity as TRE (i.e. TRP is HIGH when TRE > VREF2). T ROFF is HIGH when the input signal is inside the window , and LOW when outside the window.
typ − 10 % See table 16 typ + 10% m V
TRP output comparator hysteresis response time
Minimum hysteresis, target value ± 10% 600 n s
TRP output comparator hysteresis switching response time
Minimum
maximum hysteresis value 2 µs
TR OFF output comparator window typ
10 % See table 17 typ + 10% m V
TR OFF output comparator window switching response time
Minimum
maximum window value 5 µs
Parameter Condition
Rating
Unit
min typ ma x
VREF4 output voltage
V
CC
= 5V, Ta = 25°C, I
OUT
= 0
3.84 4.0 4.16 V VREF2 output voltage 1.92 2.0 2.08 V VREF4 output voltage temperature drift
VCC = 5V, Ta = 0 to 70°C, I
OUT
= 0
±400 µV/°C VREF2 output voltage temperature drift ±200 µV/°C VREF4 output voltage supply voltage
dependency
V
CC
= 5V ± 5%, Ta = 25°C, I
OUT
= 0
––±6mV
VREF2 output voltage supply voltage dependency
––±3mV
VREF4 output voltage load regulation
V
CC
= 5V,
Ta = 25°C
I
OUT
= 0 to 8mA
20 m V
VREF2 output voltage load regulation I
OUT
= 0 to ±5mA ± 10 m V
Relative output voltage accuracy
1
1. De fined as (VREF2 − (VREF4 ÷ 2)).
VCC = 5V, I
OUT
= 0 ± 20 m V
Relative output voltage temperature drift VCC = 5V, Ta = 0 to 70°C, I
OUT
= 0 ± 10 µ V/°C
Relative output-voltage supply-voltage dependency
V
CC
= 5V ± 5%, Ta = 25°C, I
OUT
= 0 ±1 mV
VREF4 power-down output impedance 13 k VREF2 power-down output impedance 1 M
Page 10
SM9403BM
NIPPON PRECISION CIRCUITS—10
Serial Interface Characteristics (SCLK, SDATA, SENB)
VCC = 5V ± 5%, GND = 0V, Ta = 0 to 70°C
Parameter Symbol Condition
Rating
Unit
min typ ma x
SCLK pulse cycle t
cySCK
100 ns
SCLK HIGH-level pulsewidth t
whSCK
40 ns
SCLK LOW-level pulsewidth t
wlSCK
40 ns
SENB setup time t
sSEN
20 ns
SENB hold time t
hSEN
40 ns
S DATA setup time t
sSDA
15 ns
S DATA hold time t
hSDA
15 ns
ACK setup time
1
1. A CK is the ackno wledge output (n-channel open-drain). LOW -level output when the data received is valid. S DATA load capacitance is 15pF.
t
sACK
0–20ns
ACK hold time
1
t
hACK
––50ns
SENB interval t
inSEN
100 ns
SENB
SCLOCK
SDATA
Controller
SDATA
Port
tsSEN twhSCK twlCLK
tcySCK
tsSDA
thSDA
tsACK
thACK
tinSEN
thSEN
bit 0 bit 1
bit 15
LSB MSB
ACK
High Impedance
Page 11
SM9403BM
NIPPON PRECISION CIRCUITS—11
FUNCTIONAL DESCRIPTION
Serial Interface
The SM9403BM uses a serial interface comprising 5 ports to control and set all functions. The address and bit configuration of each port is shown in table 1
Serial data is input on SDATA with the LSB first, in sync with the falling edge of the SCLK clock. After the 16th SCLK falling edge and 16 bits of valid data has been input, the SDATA n-channel open-drain output goes LOW as an acknowledge signal.
If the number of SCLK cycles which occur when SENB (serial interface enable) is HIGH is less than
16, the received data is ignored and the internal port is not updated. If the number of SCLK cycles is greater than 16, the data is still considered value up to the 16th SCLK falling edge, the data is latched into the internal port, and the acknowledge signal is output. The acknowledge signal is held until SENB goes LOW again.
Focus Sample-and-Hold/Low-pass Filter (FSUB FER)
This stage, the signal which is generated from the header position detector signal samples and holds the focus error signal. The output then passes through a low-pass filter. This low-pass filter can be turned ON or OFF using the serial interface control bit FFE.
Tracking Sample-and-Hold/Low-pass Filter (TSUB TRE)
This stage, the signal which is generated from the header position detector signal samples and holds the tracking error signal. The output then passes through a low-pass filter . This lo w-pass filter cutof f frequenc y can be switched using the serial interface control bit TFE.
Table 1. Port address and bit configuration
1
Bit number
1514131211109876543210
Data Ad dress
MSB LSB
DPE HAE FFE TFE SWB SWA SL2 SL1
×
LOW LOW LOW HIGH LOW
××
OF3 OF2 OF1 WD2 WD 1 HS3 HS2 HS1
×
LOW LOW LOW HIGH HIGH
××
THE FHE HRE MM 2 M M1 LS3 LS2 LS1
×
LOW LOW HIGH LOW LOW
××
EQE CG3 CG 2 CG1 DL4 DL3 DL2 DL1
×
LOW LOW HIGH LOW HIGH
××
TS3 TS2 TS1 D G2 DG 1
×
LOW LOW HIGH HIGH LOW
××
1.× = don’t care, – = unassigned
Table 2. Focus low-pass filter ON/OFF control
FFE Lo w-pass filter
1
LOW ON
HIGH OFF
1. D efault is ON
Table 3. Tracking low-pass filter cutoff frequency
TFE Lo w-pass filter
1
LOW fC = 160kHz
HIGH fC = 35kHz
1. D efault is 160kHz
Page 12
SM9403BM
NIPPON PRECISION CIRCUITS—12
DPD Error Signal Detector (DPDA/DPDB/DPDC/DPDD TRP)
This stage compares the DPD signals, passes the comparator output through a low-pass filter to obtain the DPD tracking error signal.
The DPD signals are first added, (DPDA + DPDC) and (DPDB + DPDD), then passed to an equalizer. A relative time delay is added for offset correction. The signals are then converted to a pulse waveform by comparators with hysteresis characteristics.
The phase comparator then compares the phase of the pulse waveforms to obtain a time signal equiva­lent to the tracking error. The time signal is then con­verted to a voltage.
The converted voltage is passed to the output stage, undergoes sampling timing compensation before being integrated to generate the tracking error signal output.
The phase comparator incorporates a detector func­tion which prevents abnormal waveform signals get­ting to the output by holding the output constant.
In addition, serial interface control bit DPE and input DEFECT can be used to force the tracking error sig­nal to the reference voltage VREF2. These controls can be used when powering up a system or to prevent output saturation from occurring during periods when the input signal is unstable.
The relative time delay setting and time-to-voltage conversion coefficient can be controlled using serial interface control bits. Also, the equalizer used to compensate for the previous stage can be turned ON or OFF using serial interface control.
Page 13
SM9403BM
NIPPON PRECISION CIRCUITS—13
Table 4. DPD delay time settings
DG2 DG1 DL4 DL3 DL2 DL1
DPD delay (ns)
1
min typ max
LOW LOW
LOW LOW LOW LOW 0 0 0 LOW LOW LOW HIGH−2.2−3.0−3.3 LOW LOW HIGH LOW−4.2−5.6−6.4 LOW LOW HIGH HIGH−6.0−8.0−9.5 LOW HIGH LOW LOW−7.5−11−13 LOW HIGH LOW HIGH−10−14−16 LOW HIGH HIGH LOW−12−17−20 LOW HIGH HIGH HIGH−14−20−24 HIGH LOW LOW LOW +17 +24 +29 HIGH LOW LOW HIGH +14 +20 +23 HIGH LOW HIGH LOW +12 +17 +19 HIGH LOW HIGH HIGH +10 +13 +15 HIGH HIGH LOW LOW +7.5 +1 1 +13 HIGH HIGH LOW HIGH +5.6 +7.7 +9.0 HIGH HIGH HIGH LOW +3.7 +5.5 +6.2 HIGH HIGH HIGH HIGH +2.0 +3.0 +3.4
LOW HIGH
LOW LOW LOW LOW 0 0 0 LOW LOW LOW HIGH−3.8−4.5−6.0 LOW LOW HIGH LOW−7.0−8.5−11 LOW LOW HIGH HIGH−11−13−17 LOW HIGH LOW LOW−16−18−24 LOW HIGH LOW HIGH−20−23−32 LOW HIGH HIGH LOW−26−30−42 LOW HIGH HIGH HIGH−34−38−55 HIGH LOW LOW LOW +44 +49 +74 HIGH LOW LOW HIGH +33 +37 +52 HIGH LOW HIGH LOW +25 +29 +38 HIGH LOW HIGH HIGH +20 +22 +29 HIGH HIGH LOW LOW +15 +17 +22 HIGH HIGH LOW HIGH +10 +12 +17 HIGH HIGH HIGH LOW +7.0 +7.9 +11 HIGH HIGH HIGH HIGH +3.6 +4.3 +5.6
HIGH LOW
LOW LOW LOW LOW 0 0 0 LOW LOW LOW HIGH−7.0−8.5−13 LOW LOW HIGH LOW−15−17−24 LOW LOW HIGH HIGH−22−27−36 LOW HIGH LOW LOW−32−37−50 LOW HIGH LOW HIGH−43−48−65 LOW HIGH HIGH LOW−55−62−83
LOW HIGH HIGH HIGH−70−78−108 HIGH LOW LOW LOW +90 +100 +136 HIGH LOW LOW HIGH +70 +78 +102 HIGH LOW HIGH LOW +55 +61 +76 HIGH LOW HIGH HIGH +42 +47 +60 HIGH HIGH LOW LOW +31 +36 +45 HIGH HIGH LOW HIGH +22 +26 +34 HIGH HIGH HIGH LOW +14 +17 +23 HIGH HIGH HIGH HIGH +7.2 +8.2 +12
HIGH HIGH
LOW LOW LOW LOW 0 0 0
LOW LOW LOW HIGH−9.5−11−17
LOW LOW HIGH LOW−19−22−32
LOW LOW HIGH HIGH−30−35−49
LOW HIGH LOW LOW−42−48−74
LOW HIGH LOW HIGH−60−67−105
LOW HIGH HIGH LOW−80−90−150
LOW HIGH HIGH HIGH−110−122−205 HIGH LOW LOW LOW +124 +167 +210 HIGH LOW LOW HIGH +108 +120 +194 HIGH LOW HIGH LOW +80 +88 +130 HIGH LOW HIGH HIGH +58 +65 +90 HIGH HIGH LOW LOW +42 +47 +64 HIGH HIGH LOW HIGH +29 +33 +45 HIGH HIGH HIGH LOW +18 +21 +31 HIGH HIGH HIGH HIGH +9.0 +10 + 16
1. De fault is 0 ns (DL4 = DL3 = DL2 = DL1 = LOW) The DPD delay is positive when (A+C) leads (B+D).
Table 4. DPD delay time settings (Continued)
DG2 DG1 DL4 DL3 DL2 DL1
DPD delay (ns)
1
min typ max
Page 14
SM9403BM
NIPPON PRECISION CIRCUITS—14
Table 5. Phase difference to voltage converter coefficient
CG3 CG2 CG1
Coefficient
(mV/ns)
1
LO W L OW L OW 5.38 LOW L OW HIGH 7.58 LOW HIGH LOW 10.7
LOW HIGH HIGH 15.2 HIGH LOW LOW 21.4 HIGH LOW HIGH 30.3 HIGH HIGH LOW 42.7 HIGH HIGH HIGH 60.6
1. D efault is 15.2 mV/ns
Table 6. Equalizer control
EQ E Equalizer
1
LOW OFF
HIGH O N
1. D efault is OFF
Table 7. DPD output control
DPE DEFECT DPD output
1
LOW
×
Forced to VREF2
×
HIGH Forced to VREF2
HIGH LOW Active
1. D e f ault is VREF2 (DPE = LOW)
Table 8. DPD delay time coefficient, phase diff erence to v oltage converter coefficient, AC coupling time constant
DG2 DG1
Phase to voltage coefficient (relative to values in table 5)
1
DPD-AC coupling time
constant circuit −3dB
frequency
Selected media
LOW LOW
×
1
100 kHz
8-times CD, DVD-RAM
LOW HIGH
×
1/2 4-times CD
HIGH L OW
×
1/4
25 kHz
2-times CD
HIGH HIGH
×
1/8 1-times CD
1. Default is DG2 = DG1 = LOW
Page 15
SM9403BM
NIPPON PRECISION CIRCUITS—15
Header Position Detector (CAPAP/N CAPAREA, CAPIN, CAPOUT)
This stage converts a high-speed push-pull signal (CAPAP/CAPAN) to single-ended signals, passes the outputs through low-pass filters to form quan­tized logic levels which are used as reference signals. These reference signals are level shifted to form plus and minus signals for use by comparators. The amount of level shift can be controlled by serial interface control bits.
After quantization logic conversion, retriggerable mono-multivibrators conv ert the pulse strings to con-
tinuous signals. This creates inner shifted header CAPIN and an outer shifted header CAPOUT output signals.
In addition, the single-ended signal is also passed through a high-pass filter, which similarly converts to quantized logic signals. Retriggerable mono-mul­tivibrators then convert the pulse strings to continu­ous signals to create a header area CAPAREA signal. The mono-multivibrator time constants are con­trolled by serial interface control bits.
Table 9. Slice level shift voltages
LS3 LS2 LS1
Le vel shift
(mV)
1
1. D efault is ±25 mV
LOW LOW LOW ±25 LOW LOW HIGH ±50 LOW HIGH L OW ±75
LOW HIGH HIGH ±100 HIGH LOW LOW ±125 HIGH LOW HIGH ±150 HIGH HIGH LOW ±200 HIGH HIGH HIGH ±250
Table 10. Mono-multivibrator time constants
MM2 MM1
CAPOUT/CAPIN
output (µs)
1
1. Def ault is 4 µs and (8 + α), where α ≈ 6 × ln(2VLS/VH), VH = input sig­nal amplitude, V
LS
= slice level absolute value shown in table 9.
CA PAREA (µs)
1
L O W L O W 4 8 +
α
LOW HIGH 8 16 +
α
HIGH LOW 12 24 +
α
HIGH HIGH 16 32 +
α
Table 11. CAPOUT/CAPIN/CAPAREA logic
CAPARE
A
HAE
1
1. Default is LOW
CAPOUT CAPIN
LOW LOW
Header signal
output
Header signal
output
LOW HIGH LOW LOW
HIGH L OW
Header signal
output
Header signal
output
HIGH HIGH
Header signal
output
Header signal
output
Page 16
SM9403BM
NIPPON PRECISION CIRCUITS—16
Sample-and-Hold Control Signal Generator
This stage takes the OR-logic of the CAPIN and CAPOUT signals, generated by the header position detector, the CAPSEL and CAPSEEK input signals, and the serial interface control bit HRE and uses them to create a sample-and-hold circuit control sig­nal SHCNT.
The SHCNT is then used in conjunction with serial interface select bits FHE and THE to form the focus sample-and-hold (FSHCNT) and tracking sample­and-hold (TSHCNT) signals.
×
= don’t care.
×
= don’t care.
Tracking Error Signal Switching (SWA, SWB)
This stage performs tracking error signal switching during DVDRAM write/read and DVDROM and CD
playback. Switching is controlled by serial interface control bits.
Table 12. Sample-and-hold logic
CAPIN CAPOUT CAPSEL CAPSEEK HRE
1
SHCNT
HIGH
××
LOW HIGH HIGH
×
HIGH
×
LOW HIGH HIGH
LOW LOW
×
LOW
×
LOW
HIGH
××
LOW LOW LOW
×
HIGH
×
LOW LOW LOW
××
HIGH HIGH
×
HIGH
××
LOW HIGH
×
LOW
1. Default is LOW
Table 13. Sample-and-hold signal control logic
FHE
1
1. Default is LOW
THE
1
FSHCNT
2
2. FSHCNT is the focus sample-and-hold control signal, and TSHCNT is the trac king sample-and-hold control signal.
TSHCNT
2
LOW
×
LOW
×
×
LOW
×
LOW
HIGH
×
SHCNT
×
×
HIGH
×
SHCNT
Table 14. Tracking error signal select
SWA SWB
Tracking error
signal select
1
1. Def ault is S/H
LOW LOW S/H
HIGH HIGH DPD
Page 17
SM9403BM
NIPPON PRECISION CIRCUITS—17
Track Count Pulse Generator (TSUB TRP , TROFF)
This stage filters the tracking error signal through a 6th-order Butterworth low-pass filter which effec­tively filters off header signal leakage effects. An of f­set voltage is added and the signal passes through a comparator with hysteresis to generate a track count pulse signal output on TRP. Simultaneously, the win­dow comparator corresponding to the tracking error signal is output as the off-track signal on TROFF (LOW for off-track).
The offset voltage, hysteresis level and window width are controlled by serial interface bits.
Sleep Mode
The SM9403BM features 3 sleep modes which can be used when the device is not operating to signifi-
cantly reduce current consumption. The sleep modes are controlled by serial interface bits.
Preset Function
When power is applied or in sleep modes 2 and 3, all serial interface flags are reset to their default values with the exception of the sleep mode flags SL2 and SL1 (see the section “Serial Interface”). However,
when writing data to SL2 and SL1 to cancel sleep mode, other flags in the same data word have prece­dence when writing to the port.
Table 15. Offset voltage setting
OF 3 OF 2 OF 1 Offset voltage (mV)
1
1. D efault is 0 mV
LOW LOW LOW 0 LOW LOW HIGH
200
LOW HIGH LOW
400
LOW HIGH HIGH
600 HIGH LOW LOW +800 HIGH LOW HIGH +600 HIGH HIGH LOW +400 HIGH HIGH HIGH +200
Table 16. TRP comparator hysteresis
HS 3 H S 2 H S1 Hysteresis (mV)
1
LOW L OW L OW ±100 LOW LOW HIGH ±200 LOW HIGH LOW ±300 LOW HIGH HIGH ±400 HIGH LOW LOW ±500 HIGH LOW HIGH 500 HIGH HIGH LOW 500 HIGH HIGH HIGH 500
1. D efault is ±100 mV
Table 17. TROFF comparator window
WD2 WD1
Comparator
window (mV)
1
LOW LOW ±125
LOW HIGH ±250 HIGH LOW ±375 HIGH HIGH ±475
1. D efault is ±125 mV
Table 18. Sleep mode settings
SL2 SL 1 Mode description
1
1. De fault is OFF (SL2 = SL1 = LOW)
LO W LO W Sleep mode OFF (normal operation) LOW HIGH DPD in sleep condition
HIGH LOW
All except reference voltage supply in sleep condition
HIGH HIGH All blocks i n sleep condition
Page 18
SM9403BM
NIPPON PRECISION CIRCUITS—18
NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies.
NIPPON PRECISION CIRCUITS INC. 4-3, Fukuzumi 2-chome
Koto-ku, Tokyo 135-8430, Japan Telephone: 03-3642-6661 Facsimile: 03-3642-6698
NC9813AE 1999.09
NIPPON PRECISION CIRCUITS INC.
Loading...