Page 1
Fast IGBT in NPT-technology
SGP07N120
SGB07N120
• 40lower E
• Short circuit withstand time – 10 µs
compared to previous generation
off
C
• Designed for:
- Motor controls
- Inverter
- SMPS
G
E
• NPT-Technology offers:
- very tight parameter distribution
- high ruggedness, temperature stable behaviour
- parallel switching capability
P-TO-220-3-1
(TO-220AB)
P-TO-263-3-2 (D²-PAK)
(TO-263AB)
• Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
SGP07N120 1200V 8A 0.7mJ
V
CE
I
C
E
off
T
j
150°C
Package Ordering Code
TO-220AB Q67040-S4272
SGB07N120 TO-263AB(D2PAK) Q67040-S4273
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage
DC collector current
= 25°C
T
C
= 100°C
T
C
Pulsed collector current, t p limited by T
jmax
Turn off safe operating area
V
≤ 1200V, T j ≤ 150 ° C
CE
Gate-emitter voltage
Avalanche energy, single pulse
= 8A, V
I
C
Short circuit withstand tim e
VGE = 15V, 100V ≤ V
= 50V, R
CC
= 25Ω , start at T j = 25°C
GE
1)
≤ 1200V, T j ≤ 150 ° C
CC
Power dissipation
T
= 25°C
C
Operating junction and storage temperature
V
CE
I
C
I
Cpuls
-
V
GE
E
AS
t
SC
P
tot
T
j
, T
stg
1200 V
16.5
7.9
27
27
± 20
40 mJ
10
125 W
-55...+150
A
V
µs
°C
Soldering temperature, 1.6mm (0.063 in.) from case for 10s - 260
1)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1J u l - 0 2
Page 2
SGP07N120
SGB07N120
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
R
thJC
junction – case
Thermal resistance,
R
thJA
TO-220AB 62
junction – ambient
SMD version, device on PCB
1)
R
thJA
TO-263AB(D2PAK) 40
Electrical Characteristic, at T j = 25 ° C, unless otherwise specified
Parameter Symbol Conditions
Static Characteristic
Collector-emitter breakdown voltage
Collector-emitter saturation voltage
Gate-emitter threshold voltage
Zero gate voltage collector current
Gate-emitter leakage current
Transconductance
V
(BR)CES
V
CE(sat)VGE
V
GE(th)
I
CES
I
GES
g
fs
VGE=0V, I C=500 µA
= 15V, I C=8A
=25°C
T
j
T
=150°C
j
IC=350µ A,VCE=V
VCE=1200V,VGE=0V
=25°C
T
j
T
=150°C
j
VCE=0V,VGE=20V
VCE=20V, IC=8A
Dynamic Characteristic
Input capacitance
Output capacitance
Reverse transfer capacitance
Gate charge
Internal emitter inductance
C
C
C
Q
L
iss
oss
rss
Gate
E
VCE=25V,
V
=0V,
GE
f=1MHz
VCC=960V, IC=8A
V
=15V
GE
TO-220AB - 7 - nH
measured 5mm (0.197 in.) from case
Short circuit collector current
2)
I
C(SC)
VGE=15V, t SC≤ 10 µ s
100V≤V
T
≤ 15 0° C
j
≤ 1200V,
CC
min. typ. max.
1200 - -
2.5
-
GE
345
-
-
- - 100 nA
6 - S
- 720 870
-6 07 5
-4 05 0
-7 09 0 n C
-7 5- A
1
Value
3.1
3.7
-
-
K/W
Unit
V
3.6
4.3
µ A
100
400
pF
1)
Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2 (one layer, 70µ m thick) copper area for
collector connection. PCB is vertical without blown air.
2)
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
2J u l - 0 2
Page 3
Switching Characteristic, Inductive Load, at T j=25 °C
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
Tj=25° C,
V
=800V,I C=8A,
CC
V
=15V/0V,
GE
R
=47Ω,
G
1)
=180nH,
L
σ
1)
=40pF
C
σ
Energy losses include
“tail” and diode
reverse recovery.
Switching Characteristic, Inductive Load, at T j=150 °C
Parameter Symbol Conditions
IGBT Characteristic
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Turn-on energy
Turn-off energy
Total switching energy
t
d(on)
t
r
t
d(off)
t
f
E
on
E
off
E
ts
Tj=150 °C
=800V,
V
CC
I
=8A,
C
V
=15V/0V,
GE
=47Ω,
R
G
1)
=180nH,
L
σ
1)
C
=40pF
σ
Energy losses include
“tail” and diode
reverse recovery.
SGP07N120
SGB07N120
Value
min. typ. max.
-2 73 5
-2 93 8
- 440 570
-2 12 7
-0 . 60 . 8
- 0.4 0.55
- 1.0 1.35
Value
min. typ. max.
-3 03 6
-2 63 1
- 490 590
-3 03 6
-1 . 01 . 2
-0 . 70 . 9
-1 . 72 . 1
Unit
ns
mJ
Unit
ns
mJ
1)
Leakage inductance Lσ and stray capacity Cσ due to dynamic test circuit in figure E.
Power Semiconductors
3J u l - 0 2
Page 4
35
30A
25A
SGP07N120
SGB07N120
I
c
10A
tp=5µ s
15µ s
50µ s
I
c
TC=80°C
TC=110°C
20A
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
10Hz 100Hz 1kHz 10kHz 100kHz
f , SWITCHING FREQUENCY VCE, COLLECTOR -EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(T
≤ 150° C, D = 0.5, V CE = 800V,
j
V
= +15V/0V, R G = 47Ω)
GE
125W
, COLLECTOR CURRENT
C
I
1A
0.1A
1V 10V 100V 1000V
Figure 2. Safe operating area
(D = 0, T
20A
= 25°C, T j ≤ 150° C)
C
200µ s
1ms
DC
100W
75W
50W
, POWER DISSIPATION
tot
P
25W
0W
25°C 50°C 75°C 100°C 125°C
TC, CASE TEMPERATURE T C, CASE TEMPERATURE
Figure 3. Power dissipation as a function
of case temperature
≤ 150° C)
(T
j
15A
10A
, COLLECTOR CURRENT
C
5A
I
0A
25°C 50°C 75°C 100°C 125°C
Figure 4. Collector current as a function of
case temperature
(V GE ≤ 15V, T j ≤ 150° C)
Power Semiconductors
4J u l - 0 2
Page 5
SGP07N120
SGB07N120
25A
20A
VGE=17V
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
0V 1V 2V 3V 4V 5V 6V 7V
15V
13V
11V
9V
7V
VCE, COLLECTOR -EMITTER VOLTAGE VCE, COLLECTOR -EMITTER VOLTAGE
Figure 5. Typical output characteristics
(T
= 25°C)
j
25A
20A
VGE=17V
15V
15A
10A
, COLLECTOR CURRENT
C
I
5A
0A
0V 1V 2V 3V 4V 5V 6V 7
13V
11V
9V
7V
Figure 6. Typical output characteristics
(T j = 150°C)
25
20A
15A
TJ=+150°C
TJ=+25°C
TJ=-40°C
10A
, COLLECTOR CURRENT
C
I
5A
0A
3V 5V 7V 9V 11
VGE, GATE -EMITTER VOLTAG E Tj, JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(V
= 20V)
CE
6V
5V
4V
3V
2V
1V
, COLLECTOR -EMITTER SATURATION VOLTAGE
CE(sat)
0V
V
-50°C 0°C 50°C 100°C 150°C
Figure 8. Typical collector-emitter
saturation voltage as a function of junction
temperature
(V
= 15V)
GE
IC=16A
IC=8A
IC=4A
Power Semiconductors
5J u l - 0 2
Page 6
t , SWITCHING TIMES
100ns
t
d(on)
SGP07N120
SGB07N120
000ns
t
d(off)
t
f
100ns
t, SWITCHING TIMES
t
d(on)
t
d(off)
t
f
t
r
10ns
0A 5
10A 15A 20A
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, T
V
= 800V, V GE = +15V/0V, R G = 47Ω,
CE
= 150°C,
j
dynamic test circuit in Fig.E )
t
d(off)
100ns
t
r
10ns
0Ω 20Ω 40Ω 60Ω 80Ω 100Ω
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, T
= 800V, V GE = +15V/0V, I C = 8A,
V
CE
= 150°C,
j
dynamic test circuit in Fig.E )
6V
5V
4V
3V
max.
typ.
2V
min.
t, SWITCHING TIMES
t
t
d(on)
t
f
10ns
-50°C 0°C 50°C 100°C 150°C
r
, GATE -EMITTER THRESHOLD VOLTAGE
GE(th)
V
1V
0V
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE Tj, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, V
V
= +15V/0V, I C = 8A, R G = 47Ω,
GE
= 800V,
CE
Figure 12. Gate-emitter threshold voltage
as a function of junction temperature
= 0.3mA)
(I
C
dynamic test circuit in Fig.E )
Power Semiconductors
6J u l - 0 2
Page 7
5mJ
4mJ
3mJ
*) E on and E ts include losses
due to diode recovery.
Ets*
Eon*
2.5mJ
2.0mJ
1.5mJ
SGP07N120
SGB07N120
*) E on and E ts include losses
due to diode recovery.
Ets*
Eon*
2mJ
1mJ
E , SWITCHING ENERG Y LOSSES
0mJ
0A 5
10A 15A 20A
IC, COLLECTOR CURRENT RG, GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, T
V
= 800V, V GE = +15V/0V, R G = 47Ω,
CE
= 150°C,
j
dynamic test circuit in Fig.E )
2.0mJ
*) E on and E ts include losses
due to diode recovery.
1.5mJ
1.0mJ
0.5mJ
E , SWITCHING ENERGY LOSSES
0.0mJ
-50°C 0°C 50°C 100°C 150°C
Tj, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, V
V
= +15V/0V, I C = 8A, R G = 47Ω,
GE
= 800V,
CE
dynamic test circuit in Fig.E )
E
off
Ets*
Eon*
E
E
off
E , SWITCHING ENERG Y LOSSES
1.0mJ
0.5mJ
0.0mJ
0Ω 20Ω 40Ω 60Ω 80Ω 100Ω
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, T
= 800V, V GE = +15V/0V, I C = 8A,
V
CE
= 150°C,
j
dynamic test circuit in Fig.E )
0
K/W
10
D =0.5
0.2
0.1
-1
10
K/W
0.05
0.02
off
10
-2
0.01
K/W
, TRANSIENT THERMAL IMPEDANCE
thJC
Z
single pulse
10-3K/W
1µs 10µs 100µs 1ms 10ms 100ms 1
R,(K/W)
0.1020 0.77957
0.40493 0.21098
0.26391 0.01247
0.22904 0.00092
R
1
C1=
1/ R1
C2=
τ
, (s) =
2/ R2
R
2
tp, PULSE WIDTH
Figure 16. IGBT transient thermal
impedance as a function of pulse width
(D = t
/ T)
p
Power Semiconductors
7J u l - 0 2
Page 8
20V
15V
1nF
SGP07N120
SGB07N120
C
iss
10V
, GATE -EMITTER VOLTAG E
5V
GE
V
0V
0nC 20nC 40nC 60nC 80nC
QGE, GATE CHARGE VCE, COLLECTOR -EMITTER VOLTAGE
Figure 17. Typical gate charge
(I
= 8A)
C
s
30
25
µs
µs
20
UCE=960V
C , CAPACITANCE
100pF
0V 10V 20V 30V
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(V
= 0V, f = 1MHz)
GE
150A
100A
C
oss
C
rss
µs
15
µs
10
, SHORT CIRCUIT WITHSTAND TIME
5
µs
sc
t
µs
0
10V 11V 12V 13V 14V 15V
VGE, GATE -EMITTER VOLTAG E VGE, GATE -EMITTER VOLTAG E
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(V
= 1200V, start at T j = 25°C)
CE
Power Semiconductors
50A
, SHORT CIRCUIT COLLECTOR CURRENT
C(sc)
I
0A
10V 12V 14V 16V 18V 20V
Figure 20. Typical short circuit collector
current as a function of gate-emitter voltage
(100V ≤ V CE ≤ 1200V, T C = 25°C, T j ≤ 150° C)
8J u l - 0 2
Page 9
SGP07N120
SGB07N120
TO-220AB
TO-263AB (D2Pak)
dimensions
symbol
A 9.70 10.30 0.3819 0.4055
B 14.88 15.95 0.5858 0.6280
C 0.65 0.86 0.0256 0.0339
D 3.55 3.89 0.1398 0.1531
E 2.60 3.00 0.1024 0.1181
F 6.00 6.80 0.2362 0.2677
G 13.00 14.00 0.5118 0.5512
H 4.35 4.75 0.1713 0.1870
K 0.38 0.65 0.0150 0.0256
L 0.95 1.32 0.0374 0.0520
M 2.54 typ. 0.1 typ.
N 4.30 4.50 0.1693 0.1772
P 1.17 1.40 0.0461 0.0551
T 2.30 2.72 0.0906 0.1071
symbol
A 9.80 10.20 0.3858 0.4016
B 0.70 1.30 0.0276 0.0512
C 1.00 1.60 0.0394 0.0630
D 1.03 1.07 0.0406 0.0421
E 2.54 typ. 0.1 typ.
F 0.65 0.85 0.0256 0.0335
G 5.08 typ. 0.2 typ.
H 4.30 4.50 0.1693 0.1772
K 1.17 1.37 0.0461 0.0539
L 9.05 9.45 0.3563 0.3720
M 2.30 2.50 0.0906 0.0984
N 15 typ. 0.5906 typ.
P 0.00 0.20 0.0000 0.0079
Q 4.20 5.20 0.1654 0.2047
R 8° max 8° max
S 2.40 3.00 0.0945 0.1181
T 0.40 0.60 0.0157 0.0236
U 10.80 0.4252
V 1.15 0.0453
W 6.23 0.2453
X 4.60 0.1811
Y 9.40 0.3701
Z 16.15 0.6358
[mm] [inch]
min max min max
dimensions
[mm] [inch]
min max min max
Power Semiconductors
9J u l - 0 2
Page 10
SGP07N120
SGB07N120
i,v
+
di /dt
F
I
F
t=t t
rr S F
Q=Q Q
rr S F
t
rr
t
S
+
t
F
Figure A. Definition of switching times
Q
I
rrm
S
Figure C. Definition of diodes
switching characteristics
2
2
p(t)
1
rrrr
1
T(t)
j
12 n
Figure D. Thermal equivalent
circuit
Q
F
90% I
10% I
di /dt
rr
rrm
n
n
r r
rrm
t
V
R
T
C
Figure B. Definition of switching losses Figure E. Dynamic test circuit
Leakage inductance L
and stray capacity C
Power Semiconductors
10 Jul-02
=180nH,
σ
=40pF.
σ
Page 11
SGP07N120
SGB07N120
Published by
Infineon Technologies AG i Gr.,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 1999
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
11 Jul-02