Datasheet RF2938PCBA, RF2938TR13 Datasheet (RF Micro Devices)

2-1
11
TRANSCEIVERS
Product Description
Ordering Information
Typical Applications
Features
Functional Block Diagram
Tel (336)664 1233
Fax (336)664 0454
http://www.rfmd.com
Optimum Technology Matching® Applied
Si BJT GaAs MESFETGaAs HBT Si Bi-CMOS
ü
SiGe HBT
Si CMOS
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
48 454647 44 43 42 41 40 39 38 37
13 161514 17 18 19 20 21 22 23 24
TX IF IN
RX IF IN
VCC1
TX EN
RX EN
PD
NC
NC
VCC9
TX VGC
IF LO
VCC8
NC
NC
NC
NC
NC
NC
NC
NC
NC
RF OUT
RF OUT
VCC6
PA IN
VCC5
RF LO
RF OUT
IF1 OUT-
RXQ DATA
QOUT
RXI DATA
IOUT
VCC4
TXQ DATA
TXQ BP
TXI DATA
TXI BP
IF1 OUT+
RSSI
DCFB I
DCFB Q
VCC3
VREF 2
BW CTRL
VCC2
VREF 1
RX VG C
Σ
I
Q
I
Q
TX_EN
RX_EN
RX
TX
+45°
-45°
Β2
RF2938
2.4GHZ SPREAD-SPECTRUM TRANSCEIVE R
•WirelessLANs
• Wireless Local Loop
• Secure Communication Links
• Inventory Tracking
• Wireless Security
• Digital Cordless Telephones
The RF2938 is a monolithic integrated circuit specifically designed for direct-sequence spread-spectrum systems operating in the 2.4GHz ISM band. The part includes a direct conversion from IF receiver, quadrature demodula­tor, I/Q baseband amplifiers with gain control and RSSI, on-chip programmable baseband filters, dual data com­parators. For the transmit side, a QPSK modulator and upconverter are provided. The design reuses the IF SAW filter for transmit and receive reducing the number of SAW filters required. Two cell or regulated three cell (3.6V maximum) battery applications are supported by thepart.Thepartisalsodesignedtobepartofa2.4GHz chip set consisting of the RF2444 LNA/Mixer and one of the many RFMD high efficiency GaAs HBT PA’s and a dual frequency synthesizer.
• 45MHz to 500MHz IF Quad Demod
• On-Chip Variable Baseband Filters
• Quadrature Modulator and Upconverter
• 2.7V to 3.6V Operation
• Part of 2.4GHz Radio Chipset
• 2.4GHz PA Driver
RF2938TR13 2.4GHz Spread-Spectrum Transceiver (Tape & Reel) RF2938 PCBA Fully Assembled EvaluationBoard
2
Rev A8 010418
Dimensions in mm
9.00
+0.10
9.00
+0.20
0.22
+0.05
7° MAX
0° MIN
0.17 MAX.
0.60
0.15
0.10
+
0.10
0.00
1.00
+0.10
-A-
0.50
7.00
+0.10sq.
4.57
+0.10sq.
NOTES:
1. Shaded lead is Pin 1.
2. Lead coplanarity - 0.08with respect todatum "A".
3. Leadframe material: EFTEC 64Tcopper orequivalent, 0.127 mm(0.005) thick.
4. Solder plating (85/15) onexposed area.
Exposed pad pro trusion
0.0000 to 0. 0127 (see note 4).
Package Style: TQFP-48 EDF, 9x9
2-2
RF2938
Rev A8 010418
11
TRANSCEIVERS
Absolute Maximum Ratings
Parameter Rating Unit
Supply Voltage -0.5 to +3.6 V
DC
Control Voltages -0.5 to +3.6 V
DC
Input RF Level +12 dBm LO Input Levels +5 dBm Operating Ambient Temperature -40 to +85 °C Storage Temperature -40 to +150 °C Moisture Sensitivity JEDEC Level 5 @ 220°C
Parameter
Specification
Unit Condition
Min. Typ. Max.
Overall Receiver
T=25°C, VCC=3.3V, Freq=280MHz, R
BW
=10k
RX Frequency Range 45 500 MHz Cascaded Voltage Gain 8 to 93 dB Dependent upon RX VGC Cascaded Noise Figure 5 dB At maximum gain. Cascaded Input IP
3
30 dBµVVGC<1.2V
Cascaded Input IP
3
105 dBµVVGC>2.0 V
RSSI Dynamic Range 60 dB At V
GC
=1.4V
RSSI Output Voltage Compli-
ance
1.1 to 2.3 V Maximum RSSI is 2.5V or VCC-0.3,which­ever is less. V
GC
=1.4V
IF LO Leakage -68 dBm f=280MHz, LO Power=-10dBm Quadrature Phase Variation ±2 ±5 ° With expected LO amplitude and harmonic
content. R1=270kΩ.
Quadrature Amplitude Offset +0.25 dB Q >I Quadrature Amplitude Variation ±0.25 +
0.5 dB
IF AMP and Quad Demod
Gain Control Range 43 dB VGC <1.2V max gain, VGC>2.0V=min gain Noise Figure 5 dB Single Sideband IF Input Impedance 230-j400 Single ended. 280MHz
75-j350 Single ended. 3 7 4MHz
Input IP
3
-68 dBm VGC<1.2V
-8 dBm V
GC
>2.0V
RX Baseband Amplifiers
THD 3 % At maximum gain setting
3 % At minimum gain setting
Gain Control Range 30 dB V
GC
<1.2V=maxgain,
V
GC
>2.0V=min gain
Output Voltage 500 mV
PP
RL>5kΩ,CL<5pF
DC Output Voltage 1.7 V
RX Baseband Filters
Baseband Filter 3 dB Bandwidth 1 35 MHz 5th order Bessel LPF. Set by BW CTRL Passband Ripple 0.1 dB Baseband Filter 3dB Frequency
Accuracy
±10 ±30 %
Group Delay 15 ns At 35MHz, increasing as bandwidth
decreases.
Group Delay 400 ns At 2MHz. Baseband Filter Ultimate Rejec-
tion
>80 dB
Output Impedance 20 Designed to drive>5k,<5pF load.
Caution! ESD sensitive device.
RF Micro Devices believes the furnished information is correct and accurate at the time of this printing. However,RF Micro Devices reserves the right to make changes to its products without notice. RF Micro Devices does not assume responsibility for the use of the described product(s).
Refer to “Handling of PSOP and PSSOP Products” on page 16-15 for special handling information.
Refer to “Soldering Specifications” on page 16-13 for special solder­ing information.
2-3
RF2938
Rev A8 010418
11
TRANSCEIVERS
Parameter
Specification
Unit Condition
Min. Typ. Max.
Data Amplifiers
Bandwidth 40 MHz Gain (Limiting mode) 60 dB Open Loop. Rise and Fall Time 2 5 ns 5pF load. Logic High Output V
CC
-0.3V V
CC
V Source Current 1mA
Logic Low Output 0.3 V Sink Current 1mA. Hysteresis 30 mV
Transmit Modulator and LPF
Filter Gain 0 dB Any setting Baseband Filter 3dB Bandwidth 1 35 MHz 5th order Bessel LPF, Set by BW CTRL Passband Ripple 0.1 dB Group Delay 15 ns At 35MHz, increasing as bandwidth
decreases. Group Delay 400 ns At 2MHz. Ultimate Rejection >80 dB Input Impedance 3 k Single ended Input AC Voltage 200 mV
p-p
Linear, Single ended. Input DC Offset Requirement 1.6 1.7 1.8 V For correct operation.
IF Frequency Range 45 500 MHz Output Impedance 2 k Open Collector when TX on, hi-Z when off I/Q Phase Balance ±2 ±5 I/Q Gain Balance 0.5±0.25 1.0 dB Conversion Voltage Gain 1.1 V/V With Current Combination into 50single-
ended load Output P1dB -6 dBm With Current Combination into 50single-
ended load Carrier Output -30 dBm Without external offset adjustm ents.
280 MHz Harmonic Outputs -30 dBc
Transmit VGA and Upconverter
VGA Gain Range 17 dB VGA Input Voltage Range 1.0 to 2.0 V Positive Slope VGA Gain Sensitivity 17 dB/V VGA Input Impedance 230-j400 280MHz
75-j350 374MHz RF Mixer Output Impedance 50 With matching elements. VGA/Mixer Conversion Gain +10 to +27 dB With 50match on the output. VGA/Mixer Output Power -9 dBm 1dB compression - Single Side Band,
TX GC=1.0V
VGA/Mixer Output Power -4 dBm 1dB compression - Single Side Band,
TX GC=2.0V
2-4
RF2938
Rev A8 010418
11
TRANSCEIVERS
Parameter
Specification
Unit Condition
Min. Typ. Max.
Transmit Power Amp
Linear Output Power 6 dBm Gain 23 dB Output P1dB 12 dBm Output Impedance 50 Input IP3 0 dBm Input Impedance 50
Power Down Control
Logical Controls “ON” VCC-0.3V VCC+0.3V V Voltage supplied to the input, not to exceed
3.6V Logical Controls “OFF” -0.3 0 0.3 V Voltage supplied to the input. Control Input Impe dance >1 M RSSI Response Time 1.8 µs<
8pF on RSSI output.
RX V
GC
Response TIme 200 ns Full step in gain, to 90% of final ou tput level.
RX EN Response TIme 2 µs I/Q output VALID TX EN Response TIme 330 ns To IF output VALID V
PD
to RX Response TIme 1.33 ms To I/Q output VALID
V
PD
to TX Response TIme 50 µs To IF output VALID
IF LO Input
The IF LO is divided by 2 and split into quadrature signals to drive the frequency
mixers. Input Impedance 1050-j1200 f=560MHz Input Power Range -15 -10 0 dBm peak Input Frequency 90 1000 MHz (2x IF Frequency)
RF LO Input
Input Impedance 33-j110 f=2.16GHz untun ed. Input Power Range -15 0 dBm Input Frequency 2000 2400 MHz
Power Supply
Voltage 2.7 3.3 3.6 V Total Current Consumption V
CC
=3.3V, Baseband BW 1MHz to 40MHz
Sleep Mode Current 1 µAPD=0,RXEN=1,TXEN=1 PA Driver Current 48 mA RX Current BW (MHz)
0-11 65 mA 12-20 70 mA 20-30 110 mA
TX Current BW (MHz) Excluding PA Driver
0-11 95 mA 12-20 105 mA 20-30 115 mA
2-5
RF2938
Rev A8 010418
11
TRANSCEIVERS
Pin Function Description Interface Schematic
1NC
No internal connection. May be grounded or connected on adjacent signal or left floating. Connect to ground for best results.
2NC
No internal connection. May be grounded or connected on adjacent signal or left floating. Connect to ground for best results.
3PD
This pin is used to power up or down the transmit and receive base­band sections. A logic h igh powers up the quad demod mixers, TX and RX GmC LPF’s, baseband VGA amps, data amps, and IF LO buffer amp/ phase splitter. A logic low powers down the entire IC for sleep mode. Also, see State Decode Table.
4RXEN
Enable pin for the receiver 15dB gain IF amp and the RX VGA amp. Powers up all receiver functions when PD is high, turns off the receiver IF circuits w hen low. Also, see State Decode Table.
See pin 3.
5TXEN
This pin is used to enable the transmit upconverter, buffer amps, 15db IF amp, quad mod mixers, TX LO buffer, TX VGA, and PAdriver.TX EN is active low, when TX EN <1V,the transmit circuit is active if PD is high. A logi c high (TX EN >2V) disables the transmit IF/RF circuitry and quad mod. Also, see State Decode Table.
See pin 3.
6VCC1
Power supply for RX VGA amplifier, IC logic and RX references.
7RXIFIN
IF input for receiver section. Must have DC blocking cap. The capacitor value should be appropriate for the IF frequency. External matching to 50recommended. For half duplex operation, connect RX IF IN and TX IF IN signals together after the DC blocking caps, then run a trans­mission line from the output of the IF SAW.AC coupling capacito r must be less than 150pF to prevent delay in switching RX to TX/TX to RX.
See pin 8.
8TXIFIN
Input for the TX IF signal after SAW filter. E xternal DC blocking cap required. External matching to 50recommended. For half duplex operation, connect RX IF IN and TX IF IN signals together after the DC blocking caps, then run a transmission line from the output of the IF SAW. AC coupling capacitor must be less than 150pF to prevent delay in switching RX to TX/TX to RX.
9VCC9
Power supply for the TX 15dB gain amp and TX VGA.
10 TX VGC
Gain control setting for the transmit VGA. Positive slope.
11 IF LO
IF LO input. Must have DC blocking cap. The capacitor value should be appropriate for the IF frequency. LO frequency=2xIF. Quad mod/ demod phase accuracy requires low harmonic content from IF LO, so it is recommended to use an n=3 LPF between the IF VCO and IF LO. This is a high impedance input and the recommended matching approach is to simply add a 100shunt r esistor at this input to con­strain the mismatch. This pin r equires a 6.5µA DC bias current. This can be accomplished wit h a 270kresistor to V
CC
for 3.3V operation.
12 VCC8
Power supply for IF LO buffer and quadrature phase network.
13 NC
No internal connection. May be grounded or connected on adjacent signal or left floating. Connect to ground for best results.
14 RF OUT
This is the output transistor of the power amp stag e. It is an open col­lector output. The output match is formed by an inductor to V
CC
,which
supplies DC and a series cap.
15 RF OUT
This is the output transistor of the power amp stag e. It is an open col­lector output. The output match is formed by an inductor to V
CC
,which
supplies DC and a series cap.
See pin 14.
16 VCC6
Power supply for the PA driver amp. This inductance to ground via decoupling, along w ith an internal series capacitor,forms the interstage match.
See pin 14.
10k
ESD
VCC
To Logic
Pins
3, 4, 5
DC Block
50Ωµstrip
IF SAW Filter
Pin 7
Pin 8
IF VC O
C2
150 pF
IF LO
Pin 11
Recomm ended M atching
Network for IF LO
100
270 k
V
CC
From
TX RF
Image Filter
Bias
VCC6
Pin16
V
CC
C
BYP
22 nF
V
CC
C
BYP
22 nF
PA OUT
Pin14
PA OUT
Pin15
PA IN
Pin18
Power
Amp
Output
34mA14mA
µstrip
Bias
2-6
RF2938
Rev A8 010418
11
TRANSCEIVERS
Pin Function Description Interface Schematic
17 NC
No internal connection. May be grounded or conne cted on adjacent signal or left floating. Connect to ground for bes t results.
18 PA IN
Input to the power amplifier stag e. This is a 50input. Requires DC blocking/tuning cap.
See pin 14.
19 NC
No internal connection. May be grounded or conne cted on adjacent signal or left floating. Connect to ground for bes t results.
20 VCC5
Supply for the RF LO buffe r, RF upconverter and amplifier.
21 RF LO
Single ended LO input for the transmit upconverter. External matching to 50and a DC block are required.
See pin 20.
22 RF OUT
Upconverted Transmit signal . This 50output is intended to drive an RF filter to suppress the undesired sideband, harmonics, and other out­of-band mixer products.
See pin 20.
23 IF1 OUT-
The inverting open collector output of the quadrature modulator. This pin needs t o be externally b iased and DC isolated from o ther parts of the circuit. This output can drive a Balun with IF1 OUT+, to convert to unbalanced to drive a SAW filter. The Balun can be either broadband (transformer) or narrowband (discrete LC matching). Alternatively, just IF1 OUT+ can be used to drive a SAW single-ended with an RF choke (high Z at IF) from V
CC
to IF1 OUT-.
24 NC
No internal connection. May be grounded or conne cted on adjacent signal or left floating. Connect to ground for bes t results.
25 IF1 OUT+
The non-inverting open collector output of the quadrature modulator. This pin needs to be external ly bias ed and DC isolated from other parts of the circuit. This output can drive a Balun with IF1 OUT-, t o convert to unbalanced to drive a SAW filter. The Balun can be either broadband (transformer) or narrowband (discrete LC matching). Alternatively, just IF1 OUT+ can be used to drive a SAW single-ended with an RF choke (high Z at IF) from V
CC
to IF1 OUT+.
See pin 23.
26 TXI BP
This is the in-phase modulator bypass pin. A 10nF capacitor to ground is recommended.
27 TXI DATA
I input to the baseband 5 pole Bessel LPF for the transmit modulator.
28 TXQ BP
This is the quadrature modulator bypass pin. A 10nF capacitor to ground is recomm ended.
29 TXQ DATA
Q input to the baseband 5 pole Bessel LPF for the transmit modulator.
30 VCC4
Power supply for quadrature modulator.
31 I OUT
Baseband analog signal output for in-phase channel. 500mV
P-P
linear output.
32 RXI DATA
Logic-level data output for the in-phase channel. This is a digital output signal obtained from the output of a Schmitt trigger.
0.3V to VCC3 - 0.3V swing minimum.
33 Q OUT
Baseband analog signal output for quadrature channel. 500mV
P-P
linear output.
34 RXQ DATA
Logic-level data output for the quadrature channel. This is a digital out­put signal obtai ned from the output of a Schmitt trigger.
0.3V to VCC3 - 0.3V swing minimum.
35 NC
No internal connection. May be grounded or conne cted on adjacent signal or left floating. Connect to ground for bes t results.
C
BLOCK
22 pF
To TX RF
Image Filter
12mA
From
TX VGA
V
CC
C
BYP
22 nF
VCC5
Pin20
V
CC
C
BYP
22 nF
RF OUT
Pin22
VB
RF LO
Pin21
From
RF VCO
IF1 OUT+ IF1 OUT-
2-7
RF2938
Rev A8 010418
11
TRANSCEIVERS
Pin Function Description Interface Schematic
36 NC
No internal connection. May be grounded or connected on adjacent signal or left floating. Connect to ground for best results.
37 NC
No internal connection. May be grounded or connected on adjacent signal or left floating. Connect to ground for best results.
38 RSSI
Received signal strength indicator. C onnect 8.2pF to ground. Output impedance is 40kin parallel with 2pF.
39 DCFB I
DC feedback capacitor for in-phase channel. Requires decoupling capacitor to ground. (22nF recommended)
40 DCFB Q
DC feedback capacitor for quadrature channel. Requires capacitor to ground. (22nF recommended)
41 VCC3
Supply for the I and Q data amps.This pin shoul d be bypassed with a 10nF capacitor connected as direct as possible to GND3. Ground this pin if data amps are not used.
42 VREF 2
Gain control re ference voltage. No current should be drawn from this pin (<50µA). 2.0V nominal.
43 NC
No internal connection. May be grounded or connected on adjacent signal or left floating. Connect to ground for best results.
44 BW CTRL
This pin requires a resistor to ground to set the baseband LPF band­width of the receiver and transmit GmC filter amps.
45 VCC2
Supply for the I and Q baseband and Gm C filters. This pin should be bypassed with a 10nF capacitor.
46 VREF 1
This is a bypass pin for the bias circuits of the GmC filter amps and for I/Q inputs. No current should be d rawn from this pin (<10µA). 1.7V nominal.
47 RX VGC
Receiver IF and baseband amp gain control voltage. Negative slope.
48 NC
No internal connection. May be grounded or connected on adjacent signal or left floating. Connect to ground for best results.
Pkg
Base
Ground for all circuitry in the device. A very low inductance from the base to the PCB groundplane is essential for good performance. Use an array of vias immediately underneath the device.
ESD
This diode structure is used to provide electrostatic discharge protec­tion to 3kV using the Human body model. The following pins are pro­tected: 3-6, 9, 10, 12, 26-34, 38-42, 44-47.
V
CC
2-8
RF2938
Rev A8 010418
11
TRANSCEIVERS
State Decode Table
Input Pins Internally Decoded Signals
PD RX EN TX EN BB EN RXIF EN TXRF EN
Sleep Mode 0 x x 0 0 0
Baseband Only 1 0 1 1 0 0
Receive Mode 1 1 1 1 1 0
Transmit Mode 1 0 0 1 0 1
Full Duplex 1 1 0 1 1 1
NOTES BB_EN Enables:
TX_LPF’s and buffers Quad Demodulator mixers Baseband VGA and gm -C LPF’s Data Amplifiers IF LO buffer/phase splitters
RXIF_EN Enables:
Front-end IF amplifier (RX) RX IF VGA amplifiers
TXRF_EN Enables:
Front-end IF amplifier (TX) TX VGA RF upconverter and buffer PA driver RF LO buffer Quad Modulator mixers
2-9
RF2938
Rev A8 010418
11
TRANSCEIVERS
Detailed Functional Block Diagram
Logic
15 dB
15 dB
REF
Phase
Splitter
25 dB
BW
Control
DC
Feedback
gm-C
LPF
+5 dB
gm-C
LPF
DC
Feedback
gm-C
LPF
TX
Bias
gm-C
LPF
Σ
-1.5 dB
3.5 dB
0-30 dB
VCC8
12
IF LO
11
TX VGC
10
VCC9
9
TX IF IN
8
RX IF IN
7
VCC1
6
TX EN
5
RX EN
4
PD
3
NC
2
NC
1
IF1 OUT-
23
NC
2422
RF OUT
RF LO
21
VCC5
20
NC
19
PA IN
18
NC
17
VCC6
1615
RF OUT
RF OUT
14
NC
13
NC
36
NC
35
QOUT
33
IOUT
31
VCC4
30
TXQ DATA
29
TXI DATA
27
TXI BP
26
IF1 OUT+
25
44
BW CTRL
NC
48
RX VGC
47
VREF 1
46
VCC2
45
NC
43
VREF 2
42
VCC341DCFB Q
40
DCFB I
39
RSSI
38
NC
37
RX
TX
Β2
0dB
+6 dB
+6 dB
0dB
0-30 dB
+5 dB
RXQ DATA
34
RXI DATA
32
TXQ BP
28
-20to-3dB
-6 to
37 dB
2-10
RF2938
Rev A8 010418
11
TRANSCEIVERS
Theory of Operation
RECEIVER RX IF AGC/Mixer
The front end of the IF AGC starts with a single-ended input and a constant gain amp of 15dB. This first amp stage sets the noise figure and input impedance of the IF section, and its output is taken differentially. The rest of the signal path is differential until the final baseband output, which is converted back to single-ended. Fol­lowing the front end amp are multiple stages of vari­able gain differential amplifiers, giving the IF signal path a gain range of 9dB to 52dB. The noise figure (in max gain mode) of the IF amplifiers is 5dB, which should not degrade the system noise figure.
The IF to BB mixers are double-balanced, differential in, differential out, mixers with 5dB conversion gain. The LO for each of these mixers is shifted 90° so that the I and Q signals are separated in the mixers.
RX Baseband Amps, Filters, Data Slicers, and DC Feedback
At baseband frequency, there are multiple AGC amplifi­ers offering a gain range of 0dB to 30dB. Following these amplifiers are fully integrated gm-C low pass fil­ters to further filter out-of-band signals and spurs that get through the SAW filter, anti-alias the signal prior to the A/D converter, and to band-limit the signal and noise to achieve optimal signal-to-noise ratio. The 3dB cut-off frequency of these low pass filters is program­mable with a single external resistor, and continuously variablefrom1MHzto35MHz.Afive-poleBesseltype filter response was chosen because it is optimal for data systems due to its flat delay response and clean step response. Butterworth and Chebychev type filters ring when given a step input making them less ideal for data sys tems.
The filter outputs, with +6dBm gain, drive the linear 500mV
PP
signal off-chip, but also connect inter nally to
a data slicer which squares up the signal to CMOS lev­els, and drives this “data” signal off-chip. This data slicer is a high speed CMOS comparator with 30mV of hysteresis and self-aligned input DC offset. This data slicer can be independently disabled if only the linear outputs are desired.
DC feedback is built into the baseband amplifier sec­tion to correct for input offsets. Large DC offsets can arisewhenamixerLOleakstothemixerinputand then mixes with itself. DC offsets can also result from random transistor mismatches. A large external capac­itor is needed for the DC feedback to set the high pass
cutoff, and this capacitor is reused to set the DC input levelfor the self-aligned data slicer.
RSSI and V
GC
Operation
The receive signal path also has an RSSI output which is the sum of both the I and Q channels. The RSSI has about 60dBm of dynamic range and the RSSI charac­teristic is optimized to give best linearity and dynamic range at a VGC setting of 1.4V.It is recommended that thesystemsetsVGCto1.4VtotakeanRSSIreading to make channel activity and signal level decisions, then adjusts VGC to obtain optimum dynamic range from the I
OUT
and Q
OUT
outputs.
LO Input Buffers RF LO Buffer
The RF LO input has a limiting amplifier before the mixeronboththeRF2444(RX)andRF2938(TX).This limiting amplifier design and layout is identical on both ICs, which will make the input impedance the same as well. Having this amplifier between the VCO and mixer minimizes any reverse effect the mixer has on the VCO, expands the range of acceptableLO input levels, and holds the LO input impedance constant when switching between RX and TX. The LO input power range is -18dBm to +5dBm, which should make it easy to interface to any VCO and frequency synthesizer.
IF LO Buffer
The IF LO input has a limiting amplifier before the phase splitting network to amplify the signal and help isolate the VCO from the IC. Also, the LO input signal must be twice the desired intermediate frequency. This simplifies the quadrature network and helps reduce the LO leakage onto the RX_IF input pin (since the LO input is now at a d ifferent frequency than the IF). The amplitude of this input needs to be between -15dBm and 0dBm. Excessive IF LO harmonic content affects phase balance of the modulator and demodulator so it is recommended that a simple n=3 low pass filter is included between VCO and IF LO input. The IF LO input requires a DC bias current of +6.5µA. This can be accomplished with a 270kresistor to V
CC
for 3.3V
operation. Failing to provide this will cause a phase imbalance in the IF LO quadrature divider of up to 8°, whichinturncausesasimilarimbalanceintheI/Qout­puts and the T
X
modulator.
2-11
RF2938
Rev A8 010418
11
TRANSCEIVERS
TRANSMITTER TX LPF and Mixers
The transmit section star ts with a pair of 5-pole Bessel filters identical to the filters in the receive section and with the same 3dB frequency. These filters pre-shape and band-limit the digital or analog input signals prior to the first upconversion to IF. These filters have a high input impedance and expect an input signal of 200 mV
PP
typical. Following these low pass filters are
the I/Q quadrature upconverter mixers. Each of these mixers is half the size and half the current of the RF to IF downconverter on the RF2444. Recall that this upconverted signal may dr ive the same SAW filter (in half duplex mode) as the RF2444 and therefore share thesameload.HavingthesumofthetwoBBtoIFmix­ers equal in size and DC current to the RF to IF mixer, will minimize the time required to switch between RX and TX, and will facilitate the best impedance match to the filter.
TX VGA
The AGC after the S AW filter starts with a switch and a constant gain amplifier of 15dB, which is identical to the circuitry on the receive IF AGC. This was, done, as on the RX signal path, so that the input impedance will remain constant for different TX gain control voltages. Following this 15dB gain amplifier is a single stage of gain control offering 15dB gain range. The main pur­pose of adding this variable gain is to give the system the flexibility to use different SAW filters and image fil­ters with different insertion loss values. This gain could also be adjusted real time, if desired.
TX Upconverter
The IF to RF upconverter is a double-balanced differ­ential mixer with a differential to single-ended con­verter on the output to supply 0dBm peak linear power to the image filter. The upconverted SSB signal should have -6dBm power at this point, and the image will have the same power, but due to the correlated nature of the signal and image, the output must support 0dBm of linear power to maintain linearly.
+6 dBm PA Driver
The SSB output of the upconverter is -6dBm of linear power. The image filter should have at most 4dB of insertion loss while removing the image, LO, 2LO and any other spurs. The filter output should supply the PA driver input -10dBm of power.
The PA driver is a two-stage class A amplifier with 10 dB gain per stage and capable of delivering 6dBm of linear power to a 50load, and has a 1dB compres­sion point of 12dBm. For lower power applications, this PAdrivercanbeusedtodrivea50Ω antenna directly.
2-12
RF2938
Rev A8 010418
11
TRANSCEIVERS
RX
15 dB Gain
IL = 3 -4 d B
2.4 to 2.483 GHz
LNA
Dual Gain Modes
-5 dB a nd +10 dB
Gain
Select
RF2444
SSOP-16 EPP
Filter
2.4 to 2.483 GHz
SAW
IL = 10 dB m ax
RX
TX
15 dB
15 dB
IF A m p
-15dBto35dBGain
DATA Q
OUT Q
RSSI
DATA I
OUT I
Filter
Filter
Selectable LPF
TX
Σ
I INPUT
Q INPUT
15 dB Gain
Range
+45°
-45°
IL = 3-4 dB
2.4 to 2.483 GHz
10 dBm
PA Driver
RF2938
TQFP-48 EPP
VGC1
VGC2
Base Band Amp.
Active Selectable LPF
(f
C
=1MHzto40MHz)
0-30 dB Gain
RF Micro Devices
2.4 G Hz ISM Chipset
23 dBm or 33 dBm
External PA
RF2126
IF
VCO
RF
VCO
RF2517
SSOP-28
Dual
Frequency
Synthesizer
Discrete
Pin Diode
Β
2
Figure 1. Entire Chipset Functional Block Diagram
2-13
RF2938
Rev A8 010418
11
TRANSCEIVERS
Evaluation Board Schematic
(Download Bill of Materi als from www.rfmd.com.)
Σ
Baseband Amp
Active Selectable
LPF (f
c
=1 MHz to 40 MHz)
0-30 dB Gain
Active Selectable
LPF (f
c
=1 MHz to 40 MHz)
I
Q
I
Q
+45
°
-45°
TX_EN
15 dB
15 dB
Gain Range
RX_EN
15 dB -15 dB to
35 dB Gain
IF Amp
Β 2
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
48 454647 44 43 42 41 40 39 38 37
13 161514 17 18 19 20 21 22 23 24
C13
100 pF
R5
10
VCC
C16
22 nF
C7
100 pF
L6
27 nH
C25 1pF
50 Ωµstrip
J3
IF LO
C21
22 nF
VCC
GC TX
C3
100 pF
L9
68 nH
C36 2pF
50 Ωµstrip
J2
TX IF I N
L2
150 nH
50 Ωµstrip
C4
100 pF
J1
RX IF IN
PD
VCC
TX EN
RX EN
C26
12 pF
L1
2.7 nH
VCC
R3* 0
50 Ωµstrip
R10*
0
C23
22 nF
50 Ωµstrip
J4
PA OUT
C24
22 nF
VCC
C27
2pF
50 Ωµstrip
J5
PA IN
VCC
C22
22 nF
C28
22 pF
L3
3.9 nH
C29 3pF
50 Ωµstrip
J6
RF LO
R8
1k
L7
220 nH
C31 3pF
C32 3pF
L8
39 nH
C34
22 nF
VCC
C38* 5pF
C33
5pF
50 Ωµstrip
J8
IF OUT
INOUT
SAWTEK 855392
FL1*
50 Ωµstrip
L4
3.9 nH
C25
22 nF
C30
22 pF
50 Ωµstrip
J7
R
FOUT
C1
10 nF
C2
10 nF
C5
0.1 uF
50 Ωµstrip
J9
IIN
C6
0.1 uF
50 Ωµstrip
J10
QIN
VCC
C20
22 nF
50 Ωµstrip
J11
IOUT
50 Ωµstrip
J14
Q
DATA
50 Ωµstrip
J13
QOUT
50 Ωµstrip
J12
IDATA
C17 8pF
50 Ωµstrip
J15
RSSI
C18
22 nF
C19
22 nF
C11
10 nF
C10
10 nFR410 k
C15
100 pF
R7
10
C14
100 pF
R6 0
VCC
VGC
NOTES:
1) R4 is used to set the bandwidth of the GMC Filters.
2) Pins 14 through 22 contain 2.4 GHz signals. Place tuning/bypass components as close as possible. Make all lines on these pins 50 Ω.
3) For normal operation, move C33 to C38 and install all components with an asterisk.
*Do not populate.
P1
1 2 3
CON3
P1-3 GCTX
GND
VCCP1-1
C9
10 nF
C12
4.7 uF
+
P2
1 2 3
CON3
P2-3 RXEN
GND
P2-1 TXEN
P3
1 2 3
CON3
P3-3 VGC
GND
P3-1 PD
2938400, Rev
-
R1
270 k
2-14
RF2938
Rev A8 010418
11
TRANSCEIVERS
Evaluation Board Layout
Board Size 2.580” x 2.086”
Thickness: Top to Ground Laminate, 0.008”; Ground to Bottom Laminate, 0.023”;
Board Material FR-4; Multi-Layer
2-15
RF2938
Rev A8 010418
11
TRANSCEIVERS
VINversus P
OUT
(VCC=2.7V to 3.6V, I & Q in=1MHz, RBW=10k
ΩΩΩΩ
, IF LO=560MHz@-10dBm)
-17.0
-16.0
-15.0
-14.0
-13.0
-12.0
-11.0
-10.0
-9.0
-8.0
-7.0
-6.0
-5.0
-4.0
-3.0
100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0
VIN(mV
P-P
)
P
OUT
(dBm)
Pout, -40°C Pout, 25°C Pout, 85°C
VINversus Amplitude Error
(VCC=2.7V to 3.6V, I & Q in=1MHz, RBW=10k
ΩΩΩΩ
, IF LO=560MHz@-10dBm)
0.00
0.10
0.20
0.30
0.40
0.50
0.60
0 100 200 300 400 500 600 700 800
VIN(mV
P-P
)
Amplitude Error (dB)
Ampl Err, -40°C Ampl Err, 25°C Ampl Err, 85°C
TX IF P
OUT
versus IF LO
(VCC=3.15V,I & Q in=1MHz@100mV
P-P,RBW
=10k
ΩΩΩΩ
, IF LO=560MHz)
-16.4
-16.2
-16.0
-15.8
-15.6
-15.4
-15.2
-15.0
-14.8
-14.6
-14.4
-25.0 -20.0 -15.0 -10.0 -5.0 0.0
IF LO (dBm)
TX IF P
OUT
(dBm)
Pout, -40°C Pout, 25°C Pout, 85°C
LO & 2LO Out versus IF LO (V
CC
=3.15V, IF LO=560MHz)
-62.0
-60.0
-58.0
-56.0
-54.0
-52.0
-50.0
-48.0
-46.0
-44.0
-42.0
-40.0
-38.0
-36.0
-34.0
-32.0
-30.0
-28.0
-26.0
-24.0
-22.0
-25.0 -20.0 -15.0 -10.0 -5.0 0.0
IF LO (dBm)
LO Out (dBm)
LO_out,-40°C 2LO_out,-40°C LO_out,25°C 2LO_out,25°C LO_out,85°C 2LO_out,85°C
RF Conversion Gain versus RF LO Level
(VCC=3.15V, Tx IF in=280MHz@-50dBm, RF LO=2160MHz)
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
-20.0 -18.0 -16.0 -14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
RF LO (dBm)
Gain (dB)
25C Gain 85C Gain
-40C Gain
RF LO
OUT
&RF2LO
OUT
versus RF LO Level
(VCC=3.15V,
VGC=1.5V, Tx IF in=280MHz@-50dBm, RF LO=2160MHz, 2LO
OUT
=4320MHz)
-50.0
-45.0
-40.0
-35.0
-30.0
-25.0
-20.0
-15.0
-10.0
-5.0
0.0
-20.0 -18.0 -16.0 -14.0 -12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
RF LO (dBm)
LO
OUT
(dBm)
25C LOout 85C LOout
-40C LOout 25C 2LOout 85C 2LOout
2-16
RF2938
Rev A8 010418
11
TRANSCEIVERS
RF Conversion Gain versus VGC
(VCC=2.7V, Tx IF in=280Mhz-50dBm, RF LO=2160MHz@-10dBm)
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
VGC (VDC)
Gain (dB)
25C Gain 85C Gain
-40C
RF Conversion Gain versus VGC
(VCC=3.15V, Tx IF in=280MHz@-50dBm, RF LO=2160MHz @-10dBm)
7.0
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
0.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5
VGC (VDC)
Gain (dB)
25C Gain 85C Gain
-
40C Gain
RF Conversion Gain versus VGC
(VCC=3.6V, Tx IF in=280MHz@-50dBm, RF LO=2160MHz@-10dBm)
8.0
9.0
10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0
22.0
23.0
24.0
25.0
26.0
27.0
28.0
29.0
30.0
31.0
32.0
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
VGC (VDC)
Gain (dB)
25C Gain 85C Gain
-40C Gain
IF-RFIIP3 versus VGC
(VCC=2.7V, Tx IF in=12dB Below IP1dB, RF LO=2160MHz@-10dBm)
-23.0
-22.0
-21.0
-20.0
-19.0
-18.0
-17.0
-16.0
-15.0
-14.0
-13.0
-12.0
-11.0
-10.0
-9.0
-8.0
-7.0
0.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5
VGC (VDC)
IIP3 (dBm)
25C IIP3 85C IIP3
-40C IIP3
IF-RF IIP3 versus VGC
(VCC=3.15V, Tx IF in=12dB Below IP1dB, RF LO=2160MHz@-10dBm)
-24.0
-23.0
-22.0
-21.0
-20.0
-19.0
-18.0
-17.0
-16.0
-15.0
-14.0
-13.0
-12.0
-11.0
-10.0
-9.0
-8.0
-7.0
0.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5
VGC (VDC)
IIP3 (dBm)
25C IIP3 85C IIP3
-40C IIP3
IF-RFIIP3 versus VGC
(VCC=3.6V, Tx IF in=12dB Below IP1dB, RF LO=2160MHz@-10dBm)
-25.0
-24.0
-23.0
-22.0
-21.0
-20.0
-19.0
-18.0
-17.0
-16.0
-15.0
-14.0
-13.0
-12.0
-11.0
-10.0
-9.0
-8.0
-7.0
0.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5
VGC (VDC)
IIP3 (dBm)
25C IIP3 85C IIP3
-
40C IIP3
2-17
RF2938
Rev A8 010418
11
TRANSCEIVERS
IF-RF OP1dBversus VGC
(VCC=2.7V, Tx IF in=280Mhz, RF LO=2160MHz@-10dBm)
-10.5
-10.0
-9.5
-9.0
-8.5
-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
VGC (VDC)
OP1dB (dBm)
25C OP1dB 85C OP1dB
-40C OP1dB
IF-RFOP1dBversus VGC
(VCC=3.15V, Tx IF in=280MHz, RF LO=2160MHz@-10dBm)
-10.5
-10.0
-9.5
-9.0
-8.5
-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
0.50.60.70.80.91.01.11.21.31.41.51.61.71.81.92.02.12.22.32.42.5
VGC (VDC)
OP1dB (dBm)
25C OP1dB 85C OP1dB
-40C OP1dB
IF-RF OP1dBversus VGC
(VCC=3.6V, Tx IF in=280MHz, RF LO=2160MHz@-10dBm)
-10.0
-9.5
-9.0
-8.5
-8.0
-7.5
-7.0
-6.5
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
-3.0
0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5
VGC (VDC)
OP1dB (dBm)
25C OP1dB 85C OP1dB
-40C OP1dB
ICCversus R
BW
(Temp=Ambient, VCC=3.15V, GC TX=1.5V,
I & Q in=100mV
P-P
, IF LO=-10dBm)
60.0
70.0
80.0
90.0
100.0
110.0
120.0
130.0
140.0
150.0
160.0
170.0
180.0
190.0
200.0
210.0
1.0 10.0 100. 0 1000.0
RBW[kΩ]
I
CC
[mA]
Tx Icc Rx Icc Total Icc
RX 3dB BW versus R
BW
(Temp=Ambient,VCC=3.15V, V
GC
=
1.6V,
RX IF
IN
=-67dBm, IF LO=560MHz@-10dBm)
0.0
5.0
10.0
15.0
20.0
25.0
30.0
1.0 10.0 100.0 1000.0
RBW[kΩ]
3 dB BW Point [MHz]
TX 3dB BW point versus R
BW
(Broadband50
ΩΩΩΩ
matchonIFout,Temp=Ambient,
VCC=3.15V,GCTX=1.5V, I & Qin=100mV
P-P
, IFLO=560MHz @-10dBm)
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
1.0 10.0 100.0 1000.0
RBW[kΩ]
3dB BW Point [MHz]
2-18
RF2938
Rev A8 010418
11
TRANSCEIVERS
RX ICCversus V
CC
(VGC=1.2Vto 2.0V,I & Q_out=500mV
P-P
,
IF LO=560MHz@-10dBm, RBW=100k
Ω)
Ω)Ω)
Ω)
59.00
59.50
60.00
60.50
61.00
61.50
62.00
62.50
63.00
63.50
64.00
64.50
65.00
65.50
66.00
66.50
67.00
67.50
68.00
68.50
69.00
69.50
70.00
2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6
VCC(VDC)
I
CC
(mA)
Icc,-40°C Icc, +25°C Icc, +85°C
RX Gain versus V
GC
(VCC=2.7-3.6V, RX IFIN=280.5MHz, RBW=100k
ΩΩΩΩ
,
I&Q
out=500mV
P-P
, IF LO=560MHz@-10dBm)
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00
55.00
60.00
65.00
70.00
75.00
80.00
85.00
90.00
95.00
100.00
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
VGC (VDC)
Gain (dB)
Gain, -40°C Gain, +25°C Gain, +85°C
Input P1dB versus V
GC
(Temp=Ambient,VCC=3.15V,
RX IF
IN
=280.5MHz, RBW=100k
ΩΩΩΩ
, IF LO=560MHz@-10dBm)
-85.00
-80.00
-75.00
-70.00
-65.00
-60.00
-55.00
-50.00
-45.00
-40.00
-35.00
-30.00
-25.00
-20.00
-15.00
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
VGC[VDC]
Input P1dB [dBm]
Noise Figure versus V
GC
(Temp=Ambient,VCC=3.15V,
RX IF
IN
=291MHz, RBW=5.1k
ΩΩΩΩ
, IF LO=560MHz@-10dBm)
4.00
6.00
8.00
10.00
12.00
14.00
16.00
18.00
20.00
22.00
24.00
26.00
28.00
30.00
32.00
34.00
36.00
38.00
1.21.31.41.51.61.71.81.92.0
VGC[VDC]
Noise Figure [dB]
I & Q Amplitude Balance versus V
GC
(VCC=3.15V, RX IF
IN
=
280.5MHz,
R
BW
=100k
ΩΩΩΩ
, I & Q out=500mV
P-P
, IF LO=560MHz@-10dBm)
0.00
0.50
1.00
1.50
2.00
2.50
3.00
1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
VGC(VDC)
I & Q Amplitude Error (dB)
Ampl_Err, -40°C Ampl_Err, +25°C Ampl_Err, +85°C
I & Q Phase Balance versus V
GC
(VCC=2.7-3.6V,
RX IF
IN
=280.5MHz, RBW=100k
ΩΩΩΩ
, I & Q out=500mV
P-P
, IF LO=560MHz@-10dBm)
0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00
11.00
12.00
1.21.31.41.51.61.71.81.92.0
VGC(VDC)
I&QPhaseError(
o
)
Phase Err, -40°C Phase Err, +25°C Phase Err, +85°C
2-19
RF2938
Rev A8 010418
11
TRANSCEIVERS
RSSI versus VGC(VCC=3.15V, Temp=25oC, IF LO=-10dBm)
0.600
0.700
0.800
0.900
1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.000
2.100
2.200
2.300
2.400
2.500
2.600
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
RF Lvl (dBm)
RSSI (VDC)
RSSI,VGC=1.2V RSSI,VGC=1.4V RSSI,VGC=1.6V RSSI,VGC=1.8V RSSI,VGC=2.0V
RSSIversus VCC(VGC=1.4V, Temp=25oC, IF LO=-10dBm)
1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.000
2.100
2.200
2.300
2.400
2.500
2.600
2.700
2.800
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
RF Lvl (dBm)
RSSI (VDC)
RSSI,Vcc=2.7V RSSI,Vcc=3.15V RSSI,Vcc=3.6V
PA Gain versus V
CC
(PA in=2440MHz@-30dBm)
19.00
19.25
19.50
19.75
20.00
20.25
20.50
20.75
21.00
21.25
21.50
21.75
22.00
22.25
22.50
22.75
23.00
23.25
23.50
23.75
24.00
2.70 3.15 3.60
VCC(V)
Gain (dB)
-40C Gain 25C Gain 85C Gain
RSSI versus Temp (VCC=3.15V, VGC=1.4V, IF LO=-10dBm)
1.000
1.100
1.200
1.300
1.400
1.500
1.600
1.700
1.800
1.900
2.000
2.100
2.200
2.300
2.400
2.500
2.600
-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
RF Lvl (dBm)
RSSI (VDC)
RSSI,-40°C RSSI,+25°C RSSI,+85°C
PA IIP3 versus V
CC
(PA in=2439 & 2440MHz@13dB Below IP1dB Point)
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
2.70 3.15 3.60
VCC(V)
IIP3 (dBm)
-40C IIP3 25C IIP3 85C IIP3
PA OP1dB versus V
CC
(PA in=2440MHz)
12.00
12.25
12.50
12.75
13.00
13.25
13.50
13.75
14.00
14.25
14.50
2.70 3.15 3.60
VCC(V)
OP1dB (dBm)
-40C OP1dB 25C OP1dB 85C OP1dB
2-20
RF2938
Rev A8 010418
11
TRANSCEIVERS
PA 2f0 versus V
CC
(PA in=2440MHz@-15dBm, 2nd Harmonic=4800MHz)
31.25
31.50
31.75
32.00
32.25
32.50
32.75
33.00
33.25
33.50
33.75
34.00
34.25
34.50
34.75
35.00
2.70 3.15 3.60
VCC(V)
2f0 (dBc)
-40C 2fo 25C 2fo 85C 2fo
Loading...