Page 1
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
RF Power
Field Ef fect T ransistors
N–Channel Enhancement Mode MOSFETs
Designed primarily for wideband large–signal output and driver from 30–500
MHz.
• MRF166C — Guaranteed Performance at 500 MHz, 28 Vdc
Output Power = 20 W
Gain = 13.5 dB
Efficiency = 50%
• Replacement for Industry Standards such as MRF136, DV2820, BLF244,
SD1902, and ST1001
• 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
• Facilitates Manual Gain Control, ALC and Modulation Techniques
• Excellent Thermal Stability , Ideally Suited for Class A Operation
• Low C
• Circuit board photomaster available upon request by
contacting RF Tactical Marketing in Phoenix, AZ.
— 4.0 pF @ VDS = 28 V
rss
Order this document
by MRF166C/D
MRF166C
20 W, 500 MHz
MOSFET
BROADBAND
RF POWER FETs
G
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Gate Voltage V
Drain–Gate Voltage
(RGS = 1.0 MΩ)
Gate–Source Voltage V
Drain Current — Continuous I
Total Device Dissipation @ TC = 25°C
Derate Above 25°C
Storage Temperature Range T
Operating Junction Temperature T
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
V
D
DSS
DGR
GS
D
P
D
stg
J
θ JC
CASE 319–07, STYLE 3
S
65 Vdc
65 Vdc
± 20 Adc
4.0 Adc
70
0.4
–65 to 150 °C
200 ° C
2.5 ° C/W
Watts
W/° C
NOTE — CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 10
1
Page 2
ELECTRICAL CHARACTERISTICS (T
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage
(VGS = 0 V, ID = 5.0 mA)
Zero Gate Voltage Drain Current
(VDS = 28 V, VGS = 0 V)
Gate–Source Leakage Current
(VGS = 20 V, VDS = 0 V)
ON CHARACTERISTICS
Gate Threshold Voltage
(VDS = 10 V, ID = 25 mA)
Forward Transconductance
(VDS = 10 V, ID = 1.5 A)
DYNAMIC CHARACTERISTICS
Input Capacitance
(VDS = 28 V, VGS = 0 V, f = 1.0 MHz)
Output Capacitance
(VDS = 28 V, VGS = 0 V, f = 1.0 MHz)
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0 V, f = 1.0 MHz)
FUNCTIONAL CHARACTERISTICS
Common Source Power Gain
(VDD = 28 V, P
Drain Efficiency
(VDD = 28 V, P
Electrical Ruggedness
(VDD = 28 V, P
Load VSWR 30:1 at All Phase Angles)
= 20 W, f = 500 MHz, IDQ = 25 mA)
out
= 20 W, f = 500 MHz, IDQ = 25 mA)
out
= 20 W, f = 500 MHz, IDQ = 25 mA,
out
= 25° C unless otherwise noted)
C
V
(BR)DSS
I
DSS
I
GSS
V
GS(th)
g
C
C
oss
C
G
ψ No Degradation in Output Power
65 — — V
— — 0.5 mA
— — 1.0 µ A
1.5 3.0 4.5 V
fs
iss
rss
ps
η 50 55 — %
0.8 1.1 — mhos
— 28 — pF
— 30 — pF
— 4.0 — pF
13.5 16 — dB
REV 10
2
Page 3
RF
INPUT
Z3
BIAS
C1
R3
RFC1
C9
C8
R2
C4
RFC2
R1
Z1
C2
C3
DUT
Z2
C5
C10
C6
C7
VDD = 28 V
+
C11
–
OUTPUT
Z4
+
Vdc
–
RF
C1, C7 200 pF, Chip Capacitor
C2, C6 2–10 pF, Trimmer Capacitor, Johansen
C3 27 pF, ATC 100 mil Chip Capacitor
C4, C8 0.1 µ F, Chip Capacitor
C5 15 pF, ATC 100 mil Chip Capacitor
C9, C10 680 pF, Feedthru Capacitor
C11 50 µ F, 50 V, Electrolytic Capacitor
R1 120 Ω , 1/2 W Resistor
R2 10 kΩ , 1/2 W Resistor
R3 1 kΩ , 1/2 W Resistor
RFC1 Ferroxcube VK200 19/4B
RFC2 10 Turns AWG #18, 0.125″ I.D., Enameled
Board Material 0.062″ Teflon Fiberglass
1 oz. Copper Clad Both Sides
εr = 2.56
Figure 1. MRF166C 500 MHz T est Circuit
TYPICAL CHARACTERISTICS
100
Z1 0.120″ x 3.3″ , Microstrip Line
350 mils
C2
600 mils
C3
Z2 0.120″ x 2.1″ , Microstrip Line
C5 C6
825 mils
1650 mils
Z3, Z4 0.120″ x 0.25″ , Microstrip Line
10
C
oss
C
iss
C
rss
C, CAPACITANCE (pF)
50
20
10
5
2
1
VGS = 0 V
f = 1 MHz
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
Figure 2. Capacitance versus Drain–Source V oltage
REV 10
3
TC = 25°C
1
, DRAIN CURRENT (AMPS)
D
I
25 20 15 10 5 0
0.1
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
100 10 0
Figure 3. DC Safe Operating Area
Page 4
TYPICAL CHARACTERISTICS
, OUTPUT POWER (WATTS)
out
P
, OUTPUT POWER (WATTS)
out
P
32
28
275 MHz
24
20
16
12
8
4
0
400 MHz
f = 500 MHz
Pin, INPUT POWER (WA TTS)
Figure 4. Output Power versus Input Power
40
f = 500 MHz
35
IDQ = 25 mA
30
25
20
15
10
5
VDD = 28 V
IDQ = 25 mA
0.4 0.3 0.2 0.55
0.5 0.45 0.35 0.25 0.15 0.1 0.05 0
Pin = 1 W
0.5 W
0.18 W
0.6
, OUTPUT POWER (WATTS)
out
P
, OUTPUT POWER (WATTS)
out
P
12
10
8
6
4
2
0
400 MHz
f = 500 MHz
Pin, INPUT POWER (WA TTS)
Figure 5. Output Power versus Input Power
35
f = 400 MHz
30
IDQ = 25 mA
25
20
15
10
5
VDD = 13.5 V
IDQ = 25 mA
0.4 0.35 0.25 0.1
Pin = 0.5 W
0.3 W
0.15 W
0.5
0.45 0.3 0.2 0.15 0.05 0
0
Pin, INPUT POWER (WA TTS)
Figure 6. Output Power versus Supply Voltage
28
26 24 22 20 18 16 14 12
0
Pin, INPUT POWER (WA TTS)
28 26 24 22 20 18 16 14 12
Figure 7. Output Power versus Supply Voltage
REV 10
4
Page 5
400 MHz
500 MHz
500 MHz
400 MHz
ZOL*
Zo = 10 Ω
f = 290 MHz
VDD = 28 V, IDQ = 25 mA, P
f
MHz
500
400
290
ZOL* =Conjugate of the optimum load impedance into
which the device output operates at a given output
power, voltage and frequency.
Z
in
Ohms
2.09 – j2.77
0.93 – j3.80
2.63 – j7.58
= 20 Watts
out
ZOL*
Ohms
4.87 – j2.63
3.09 – j5.24
7.35 – j8.67
Z
in
f = 290 MHz
Figure 8. Series Equivalent Input and Output Impedance
REV 10
5
Figure 9. MRF166C T est Fixture
Page 6
MHz
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
T able 1. Common Source S–Parameters (VDS = 12.5 V, ID = 1.25 A)
S
11
|S11| φ |S21| φ |S12| φ |S22| φ
0.840
0.836
0.832
0.829
0.826
0.822
0.818
0.819
0.821
0.821
0.820
0.818
0.820
0.821
0.820
0.820
0.820
0.821
0.822
0.823
0.825
0.827
0.827
0.827
0.829
0.831
0.832
0.832
0.831
0.833
0.836
0.837
0.838
0.839
0.840
0.843
0.845
0.846
0.846
0.847
0.848
0.850
–142
–151
–156
–159
–162
–164
–165
–167
–168
–169
–169
–170
–170
–171
–171
–171
–172
–172
–173
–173
–173
–173
–174
–174
–174
–174
–174
–174
–174
–175
–175
–175
–175
–175
–176
–176
–176
–176
–176
–176
–176
–176
22.59
17.4
14.1
12.0
10.4
9.09
8.07
7.28
6.61
6.00
5.56
5.22
4.86
4.52
4.23
4.03
3.86
3.62
3.39
3.25
3.12
2.96
2.83
2.71
2.62
2.52
2.42
2.32
2.25
2.18
2.10
2.00
1.95
1.90
1.84
1.77
1.71
1.66
1.64
1.59
1.52
1.48
S
21
105
100
97
94
91
90
89
87
85
83
83
82
80
79
79
78
76
75
75
74
72
71
70
70
69
68
66
66
66
65
63
62
62
61
60
59
59
58
57
56
56
56
0.025
0.025
0.026
0.026
0.026
0.026
0.027
0.027
0.027
0.026
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.027
0.028
0.026
0.027
0.026
0.027
0.027
0.027
0.027
0.027
0.027
0.028
0.027
0.028
0.028
0.028
0.028
0.028
0.029
0.030
0.030
0.030
0.030
S
12
20
17
15
14
14
14
14
14
14
15
16
17
17
17
20
20
20
20
22
24
23
24
26
27
28
29
30
32
33
34
35
35
39
39
40
41
42
46
46
46
47
49
0.727
0.743
0.751
0.764
0.763
0.763
0.765
0.774
0.773
0.771
0.778
0.785
0.786
0.781
0.774
0.799
0.799
0.784
0.780
0.795
0.823
0.791
0.789
0.791
0.801
0.807
0.788
0.792
0.797
0.810
0.812
0.789
0.806
0.817
0.817
0.811
0.805
0.801
0.845
0.836
0.823
0.816
S
22
–155
–161
–164
–166
–168
–169
–170
–171
–172
–172
–172
–172
–173
–173
–172
–173
–174
–175
–174
–173
–175
–175
–174
–174
–174
–175
–175
–175
–174
–174
–175
–176
–173
–174
–175
–175
–175
–172
–174
–176
–176
–174
REV 10
6
Page 7
REV 10
7
f
f
MHz
MHz
450
460
470
480
490
500
600
700
800
900
1000
MHz
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
T able 1. Common Source S–Parameters (VDS = 12.5 V, ID = 1.25 A) (continued)
S
22
–174
–178
–176
–176
–175
–175
180
179
174
176
173
0.851
0.853
0.853
0.856
0.857
0.859
0.857
0.884
0.881
0.890
0.897
S
12
51
48
51
53
54
54
73
65
83
71
60
0.851
0.849
0.830
0.834
0.841
0.847
0.877
0.881
0.890
0.885
0.931
1.47
1.42
1.37
1.34
1.32
1.28
S
21
54
53
53
53
52
51
41
34
30
26
24
0.032
0.032
0.031
0.032
0.033
0.034
0.032
0.047
0.031
0.069
0.090
S
11
–176
–177
–177
–177
–177
–177
178
176
173
172
170
0.988
0.789
0.684
0.580
0.503
T able 2. Common Source S–Parameters (VDS = 28 V, ID = 1.25 A)
S
11
|S11| φ |S21| φ |S12| φ |S22| φ
0.842
0.831
0.822
0.816
0.812
0.806
0.801
0.802
0.805
0.805
0.803
0.801
0.803
0.804
0.803
0.804
0.806
0.806
0.807
0.809
0.812
0.814
0.815
0.816
0.818
0.821
0.822
0.823
–125
–136
–143
–148
–152
–155
–157
–159
–161
–162
–163
–164
–165
–165
–166
–166
–166
–167
–168
–168
–168
–169
–169
–169
–169
–169
–170
–170
29.6
23.2
19.0
16.2
14.1
12.4
11.1
9.97
9.04
8.22
7.59
7.09
6.61
6.16
5.77
5.49
5.25
4.92
4.60
4.40
4.21
3.99
3.83
3.66
3.52
3.39
3.25
3.11
S
21
113
106
101
98
95
92
90
88
86
84
83
82
80
79
78
77
75
73
73
72
70
69
68
67
66
65
63
62
0.024
0.025
0.026
0.026
0.027
0.026
0.027
0.027
0.027
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.026
0.025
0.025
0.025
0.025
0.024
0.024
0.024
0.024
0.025
0.024
0.023
S
12
28
22
19
17
16
15
14
13
13
13
14
14
14
14
16
17
16
16
17
19
19
20
21
22
23
24
26
28
0.586
0.607
0.613
0.626
0.635
0.643
0.650
0.656
0.654
0.654
0.663
0.673
0.675
0.674
0.672
0.697
0.700
0.688
0.680
0.689
0.713
0.701
0.707
0.711
0.715
0.718
0.708
0.715
S
22
–136
–145
–151
–155
–157
–159
–160
–161
–163
–163
–163
–164
–164
–164
–164
–164
–165
–166
–165
–165
–167
–167
–166
–166
–166
–167
–168
–167
φ |S22| φ |S 12| φ |S 21| φ |S 11|
Page 8
f
f
MHz
MHz
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
600
700
800
900
1000
T able 2. Common Source S–Parameters (VDS = 28 V, ID = 1.25 A) (continued)
S
12
29
31
33
33
37
39
39
38
40
46
46
46
49
52
53
51
54
57
56
57
77
75
78
74
69
0.822
0.825
0.828
0.830
0.832
0.834
0.836
0.839
0.840
0.841
0.842
0.844
0.845
0.846
0.849
0.853
0.855
0.857
0.857
0.859
0.862
0.893
0.890
0.895
0.905
2.99
2.89
2.78
2.66
2.59
2.52
2.44
2.34
2.26
2.19
2.14
2.09
1.99
1.93
1.91
1.84
1.77
1.72
1.68
1.64
1.18
S
21
62
61
60
59
58
57
56
55
54
54
53
51
51
51
49
48
47
47
47
46
33
26
22
17
14
0.023
0.024
0.024
0.024
0.024
0.024
0.023
0.023
0.024
0.024
0.025
0.026
0.027
0.026
0.027
0.027
0.027
0.027
0.027
0.029
0.036
0.043
0.043
0.065
0.086
S
11
–170
–170
–171
–171
–171
–171
–171
–172
–172
–172
–172
–172
–173
–173
–173
–173
–173
–174
–174
–174
–179
178
175
173
171
0.921
0.771
0.635
0.544
0.725
0.734
0.736
0.724
0.739
0.757
0.755
0.745
0.738
0.735
0.787
0.790
0.777
0.770
0.794
0.803
0.787
0.789
0.796
0.802
0.851
0.856
0.880
0.882
0.931
S
22
φ |S22| φ |S 12| φ |S 21| φ |S 11|
–166
–166
–167
–168
–166
–166
–167
–167
–168
–166
–167
–168
–168
–167
–167
–171
–170
–169
–168
–169
–173
–175
–178
–178
178
REV 10
8
Page 9
P ACKAGE DIMENSIONS
IDENTIFICATION
NOTCH
H
M
Q 2 PL
0.15 (0.006) T A N
-N-
K
M
C
E
-T-
M M
M M
SEATING
PLANE
M
M M
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
INCHES MILLIMETER
MIN MIN MAX MAX
DIM
0.965
A
0.355
B
0.230
C
0.115
D
0.102
E
0.075
F
0.160
H
0.004
J
0.090
K
0.725 BSC 18.42 BSC
L
0.225
N
0.125
Q
STYLE 3:
PIN 1. SOURCE (COMMON)
2. GATE (INPUT)
3. SOURCE (COMMON)
4. SOURCE (COMMON)
5. DRAIN (OUTPUT)
6. SOURCE (COMMON)
0.985
0.375
0.260
0.125
0.114
0.085
0.170
0.006
0.110
0.241
0.135
24.52
9.02
5.85
2.93
2.59
1.91
4.07
0.11
2.29
5.72
3.18
25.01
9.52
6.60
3.17
2.90
2.15
4.31
0.15
2.79
6.12
3.42
-AL
4 5 6
123
F
D 2 PL
0.38 (0.015) T A N
B
0.38 (0.015) T A N
J
CASE 319–07
ISSUE M
Specifications subject to change without notice.
n
North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n
Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
R EV 10
9