Datasheet MRF148A Datasheet (M A COM)

Page 1
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
   
N–Channel Enhancement–Mode
Designed for power amplifier applications in industrial, commercial and
amateur radio equipment to 175 MHz.
Superior High Order IMD
Specified 50 Volts, 30 MHz Characteristics
Output Power = 30 Watts Power Gain = 18 dB (Typ) Efficiency = 40% (Typ)
IMD
IMD
100% Tested For Load Mismatch At All Phase Angles With
30:1 VSWR
Lower Reverse Transfer Capacitance (3.0 pF Typical)
(30 W PEP) — –35 dB (Typ)
(d3)
(30 W PEP) — –60 dB (Typ)
(d1 1)
D
Order this document
by MRF148/D

30 W, to 175 MHz
N–CHANNEL MOS
LINEAR RF POWER
FET
G
S
CASE 211–07, STYLE 2
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage V Drain–Gate Voltage V Gate–Source Voltage V Drain Current — Continuous I Total Device Dissipation @ TC = 25°C
Derate above 25°C Storage Temperature Range T Operating Junction Temperature T
DSS
DGO
GS
D
P
D
stg
J
120 Vdc 120 Vdc ±40 Vdc
6.0 Adc
115
0.66
–65 to +150 °C
200 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case R
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
θJC
1.52 °C/W
Watts
W/°C
Replaces MRF148/D
1
Page 2
ELECTRICAL CHARACTERISTICS (T
Characteristic Symbol Min Typ Max Unit
= 25°C unless otherwise noted.)
C
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 10 mA) V Zero Gate Voltage Drain Current (VDS = 50 V, VGS = 0) I Gate–Body Leakage Current (VGS = 20 V, VDS = 0) I
(BR)DSS
DSS GSS
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 10 mA) V Drain–Source On–Voltage (VGS = 10 V, ID = 2.5 A) V Forward Transconductance (VDS = 10 V, ID = 2.5 A) g
GS(th)
DS(on)
DYNAMIC CHARACTERISTICS
Input Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C Output Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C Reverse Transfer Capacitance (VDS = 50 V, VGS = 0, f = 1.0 MHz) C
iss
oss
rss
FUNCTIONAL TESTS (SSB)
Common Source Amplifier Power Gain (30 MHz)
(VDD = 50 V, P Drain Efficiency (30 W PEP)
(VDD = 50 V, f = 30 MHz, IDQ = 100 mA) (30 W CW) Intermodulation Distortion
(VDD = 50 V, P
f = 30; 30.001 MHz, IDQ = 100 mA) Load Mismatch
(VDD = 50 V, P
IDQ = 100 mA, VSWR 30:1 at all Phase Angles)
= 30 W (PEP), IDQ = 100 mA) (175 MHz)
out
= 30 W (PEP),
out
= 30 W (PEP), f = 30; 30.001 MHz,
out
G
η
IMD
IMD
(d11)
ψ
CLASS A PERFORMANCE
Intermodulation Distortion (1) and Power Gain
(VDD = 50 V, P
f2 = 30.001 MHz, IDQ = 1.0 A)
NOTE:
1. To MIL–STD–1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.
= 10 W (PEP), f1 = 30 MHz,
out
IMD
G
PS
IMD
(d9–13)
fs
ps
(d3)
(d3)
125 Vdc
1.0 mAdc — 100 nAdc
1.0 2.5 5.0 Vdc
1.0 3.0 5.0 Vdc
0.8 1.2 mhos
62 pF — 35 pF — 3.0 pF
— —
— —
No Degradation in Output Power
— — —
18 15
40 50
–35 –60
20 –50 –70
— —
— —
— —
— — —
dB
%
dB
dB
BIAS
+
0–10 V
RF
INPUT
C1, C2, C3, C4, C5, C6 — 0.1 µF Ceramic Chip or Equivalent C7 — 10 µF, 100 V Electrolytic C8 — 100 pF Dipped Mica L1 — VK200 20/4B Ferrite Choke or Equivalent (3.0 µH) L2 — Ferrite Bead(s), 2.0 µH
Replaces MRF148/D
2
T1
L1
C1
C8
R3
R1
C2
R2
C4 C5 C6 C7
DUT
T2
C3
R4
Figure 1. 2.0 to 50 MHz Broadband Test Circuit
L2
+
R1, R2 — 200 , 1/2 W Carbon R3 — 4.7 , 1/2 W Carbon R4 — 470 , 1.0 W Carbon T1 — 4:1 Impedance Transformer T2 — 1:2 Impedance Transformer
+
50 V
RF
OUTPUT
Page 3
25
60
20
15
10
POWER GAIN (dB)
5
0
2 5 10 20 20050 100
VDD = 50 V IDQ = 100 mA P
= 30 W (PEP)
out
f, FREQUENCY (MHz)
Figure 2. Power Gain versus Frequency Figure 3. Output Power versus Input Power
–30
–40
–50
–30
V
= 50 V, IDQ = 100 mA, TONE SEPARATION 1 kHz
DD
d
3
d
5
, OUTPUT POWER (WATTS)
out
P
2000
150 MHz30 MHz
1000
40
20
0
60 40
20
0
VDD = 50 V
40 V
IDQ = 100 mA
VDD = 50 V
40 V
IDQ = 100 mA
0 0.5 1 1.5 2 2.5
Pin, INPUT POWER (WATTS)
VDS = 30 V
VDS = 15 V
150 MHz30 MHz
d
–40
IMD, INTERMODULATION DISTORTION (dB)
–50
010203040
+ BIAS
0–6 V
RF INPUT
C1 — 91 pF Unelco Type MCM 01/010 C2, C4 — 0.1 µF Erie Red Cap C3 — Allen Bradley 680 pF Feed Thru C5 — 1.0 µF, 50 Vdc Electrolytic C6 — 15 pF Unelco Type J101 C7 — 24 pF Unelco Type MCM 01/010 L1 — 2 Turns #18 AWG, 5/16 ID
3
d
5
P
, OUTPUT POWER (WATTS PEP)
out
Figure 4. IMD versus P
R2
C3
C2
R1
C1
T1
out
L2
DUT
L2 — 4 Turns #18 AWG, 5/16 ID R1 — 1.0 Ohm, 1/4 W Carbon R2 — 2000 Ohm, 1/4 W Carbon RFC1 — VK200 21/4B T1 — 4:1 Transformer, 1.75 Subminiature
T1 — Coaxial Cable
, UNITY GAIN FREQUENCY (MHz)
T
f
0
01234
I
, DRAIN CURRENT (AMPS)
D
Figure 5. Common Source Unity Gain Frequency
versus Drain Current
C7
+ 50 Vdc
RF OUTPUT
50
12.5
C4
RFC1
L1
+
C5
C6
T1 — 4:1 Impedance Ratio
T1 — Transformer, Line T1 — Impedance = 25
Replaces MRF148/D
3
Figure 6. 150 MHz T est Circuit
Page 4
2
1
, DRAIN CURRENT (AMPS)
DS
I
V
= 10 V
DS
gfs = 1.2 mho
10
7 5
3 2
1
0.7
0.5
, DRAIN CURRENT (AMPS)
D
0.3
I
0.2
TC = 25°C
0
0246810
13579
V
, GATE–SOURCE VOLTAGE (VOLTS)
GS
0.1
0.2 0.4
0.7 1 2 4 7 10 20 40 70 100 200 VDS, DRAIN–SOURCE VOLTAGE (VOL TS)
Figure 7. Gate Voltage versus Drain Current Figure 8. DC Safe Operating Area (SOA)
175
150
50 30
175
ZOL*
Replaces MRF148/D
4
f = 2.0 MHz
15
Z
in
7.0
4.0 f = 2.0 MHz
ZOL* = Conjugate of the optimum load impedance
ZOL* = into which the device output operates at a ZOL* = given output power, voltage and frequency.
VDD = 50 V IDQ = 100 mA P
= 30 W PEP
out
Gate Shunted By 100
Figure 9. Impedance Coordinates — 50 Ohm
Characteristic Impedance
Page 5
RF POWER MOSFET CONSIDERA TIONS
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate–to–drain (Cgd), and gate–to–source (Cgs). The PN junction formed during the fabrication of the RF MOSFET results in a junction capaci­tance from drain–to–source (Cds).
These capacitances are characterized as input (C output (C
) and reverse transfer (C
oss
) capacitances on data
rss
iss
sheets. The relationships between the inter–terminal capaci­tances and those given on data sheets are shown below. The C
can be specified in two ways:
iss
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operat­ing conditions in RF applications.
DRAIN
C
ds
SOURCE
C
= Cgd + C
iss
C
oss
C
= C
rss
= Cgd + C
gd
gs
ds
GATE
C
gd
C
gs
LINEARITY AND GAIN CHARACTERISTICS
In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional informa­tion on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to fT for bipolar transistors.
Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.
DRAIN CHARACTERISTICS
),
One figure of merit for a FET is its static resistance in the
full–on condition. This on–resistance, V
DS(on)
, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate–source voltage and drain current. For MOSFETs, V
has a positive temperature
DS(on)
coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.
GATE CHARACTERISTICS
The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high — on the order of 109 ohms — resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage slightly in excess of the gate–to–source threshold voltage, V
GS(th)
.
Gate Voltage Rating — Never exceed the gate voltage rating. Exceeding the rated VGS can result in permanent damage to the oxide layer in the gate region.
Gate Termination — The gates of these devices are essentially capacitors. Circuits that leave the gate open–cir­cuited or floating should be avoided. These conditions can result in turn–on of the devices due to voltage build–up on the input capacitor due to leakage currents or pickup.
Gate Protection — These devices do not have an internal monolithic zener diode from gate–to–source. If gate protection is required, an external zener diode is recommended.
Replaces MRF148/D
5
EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY
Collector Drain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Emitter Source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Base Gate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
R
CE(sat)
V
V
V
=
(BR)CES
V
CBO
I
C
I
CES
I
EBO
V
BE(on)
CE(sat)
C
ib
C
ob
h
fe
CE(sat)
I
C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
V
(BR)DSS
V
DGO
I
D
I
DSS
I
GSS
V
GS(th)
V
DS(on)
C
iss
C
oss
g
fs
r
DS(on)
V
=
DS(on)
I
D
Page 6
P ACKAGE DIMENSIONS
A
U
M
Q
1
4
32
S
K
M
B
R
D
J
H
C
E
SEATING PLANE
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX MIN MAX
A 0.960 0.990 24.39 25.14 B 0.370 0.390 9.40 9.90 C 0.229 0.281 5.82 7.13 D 0.215 0.235 5.47 5.96 E 0.085 0.105 2.16 2.66 H 0.150 0.108 3.81 4.57 J 0.004 0.006 0.11 0.15 K 0.395 0.405 10.04 10.28 M 40 50 40 50
____
Q 0.113 0.130 2.88 3.30 R 0.245 0.255 6.23 6.47 S 0.790 0.810 20.07 20.57 U 0.720 0.730 18.29 18.54
STYLE 2:
PIN 1. SOURCE
2. GATE
3. SOURCE
4. DRAIN
MILLIMETERSINCHES
CASE 211–07
ISSUE N
Specifications subject to change without notice.
n
North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n
Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
Replaces MRF148/D
6
Loading...