Datasheet MRF136 Datasheet (M A COM)

Page 1
Rating
Symbol
Value
Unit
Characteristic
Symbol
Max
Unit
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
    
  
Designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range, in single ended configuration.
Guaranteed 28 Volt, 150 MHz Performance Output Power = 15 Watts Narrowband Gain = 16 dB (Typ) Efficiency = 60% (Typical)
Small–Signal and Large–Signal Characterization
100% Tested For Load Mismatch At All Phase
Angles With 30:1 VSWR
Excellent Thermal Stability , Ideally Suited For Class A Operation
Facilitates Manual Gain Control, ALC and Modulation Techniques
G
D
Order this document
by MRF136/D

15 W, to 400 MHz
N–CHANNEL
MOS BROADBAND
RF POWER FET
CASE 211–07, STYLE 2
S
MAXIMUM RATINGS
Drain–Source Voltage V Drain–Gate Voltage (RGS = 1.0 M) V Gate–Source Voltage V Drain Current — Continuous I Total Device Dissipation @ TC = 25°C
Derate above 25°C Storage Temperature Range T Operating Junction Temperature T
DSS
DGR
GS
D
P
D
stg
J
65 Vdc 65 Vdc
±40 Vdc
2.5 Adc 55
0.314
–65 to +150 °C
200 °C
THERMAL CHARACTERISTICS
Thermal Resistance, Junction to Case R
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.
θJC
3.2 °C/W
Watts
W/°C
REV 7
1
Page 2
ELECTRICAL CHARACTERISTICS (T
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS (1)
Drain–Source Breakdown Voltage
(VGS = 0, ID = 5.0 mA)
Zero–Gate Voltage Drain Current
(VDS = 28 V, VGS = 0)
Gate–Source Leakage Current
(VGS = 40 V, VDS = 0)
ON CHARACTERISTICS (1)
Gate Threshold Voltage
(VDS = 10 V, ID = 25 mA)
Forward Transconductance
(VDS = 10 V, ID = 250 mA)
DYNAMIC CHARACTERISTICS (1)
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
FUNCTIONAL CHARACTERISTICS
Noise Figure
(VDS = 28 Vdc, ID = 500 mA, f = 150 MHz)
Common Source Power Gain (Figure 1)
(VDD = 28 Vdc, P
Drain Efficiency (Figure 1)
(VDD = 28 Vdc, P
Electrical Ruggedness (Figure 1)
(VDD = 28 Vdc, P VSWR 30:1 at all Phase Angles)
NOTES:
1. Each side measured separately.
= 15 W, f = 150 MHz, IDQ = 25 mA)
out
= 15 W, f = 150 MHz, IDQ = 25 mA)
out
= 15 W, f = 150 MHz, IDQ = 25 mA,
out
= 25°C unless otherwise noted.)
C
V
(BR)DSS
V
65 Vdc
I
DSS
I
GSS
GS(th)
g
fs
C
iss
C
oss
C
rss
NF 1.0 dB
G
ps
η 50 60 %
ψ
2.0 mAdc
1.0 µAdc
1.0 3.0 6.0 Vdc
250 400 mmhos
24 pF
27 pF
5.5 pF
13 16 dB
No Degradation in Output Power
REV 7
2
Page 3
BIAS
ADJUST
R3
R2
D1
R4
C7
C8
C10
+ –
RFC1
C9
RFC2
C11
VDD = +28 V
RF INPUT
R1
C1
C1, C2 — Arco 406, 15–115 pF or Equivalent C3 — Arco 404, 8–60 pF or Equivalent C4 — 43 pF Mini–Unelco or Equivalent C5 — 24 pF Mini–Unelco or Equivalent C6 — 680 pF, 100 Mils Chip C7 — 0.01 µF Ceramic C8 — 100 µF, 40 V C9 — 0.1 µF Ceramic C10, C11 — 680 pF Feedthru D1 — 1N5925A Motorola Zener
L1
C2
DUT
Figure 1. 150 MHz T est Circuit
L2
C4
L1 — 2 Turns, 0.29 ID, #18 AWG, 0.10 Long L2 — 2 Turns, 0.23 ID, #18 AWG, 0.10 Long L3 — 2–1/4 Turns, 0.29 ID, #18 AWG, 0.125 Long RFC1 — 20 Turns, 0.30 ID, #20 AWG Enamel Closewound RFC2 — Ferroxcube VK–200 — 19/4B R1 — 27 , 1 W Thin Film R2 — 10 k, 1/4 W R3 — 10 Turns, 10 k R4 — 1.8 k, 1/2 W Board Material — 0.062 G10, 1 oz. Cu Clad, Double Sided
L3
C3
C6
RF OUTPUT
C5
REV 7
3
Page 4
TYPICAL CHARACTERISTICS
2020 18 16 14 12 10
8 6
, OUTPUT POWER (WATTS)
out
4
P
2 0
0 200 600 800 1000
f = 100 MHz
Pin, INPUT POWER (MILLWA TTS)
150 MHz 200 MHz
VDD = 28 V IDQ = 25 mA
400
10
9 8 7 6 5 4 3
, OUTPUT POWER (WATTS)
out
2
P
1 0
0 200 400 600 800 1000
f = 100 MHz
200 MHz
Pin, INPUT POWER (MILLWA TTS)
Figure 2. Output Power versus Input Power Figure 3. Output Power versus Input Power
20 18
f = 400 MHz
16
IDQ = 25 mA
14 12 10
8 6
, OUTPUT POWER (WATTS)
out
4
P
2 0
01234
P
, INPUT POWER (WATTS)
in
VDD = 28 V
VDD = 13.5 V
24 21 18 15 12
9
, OUTPUT POWER (WATTS)
6
out
P
3 0
12 16 20 24 28
14 18 22 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 600 mW
Figure 4. Output Power versus Input Power Figure 5. Output Power versus Supply Voltage
150 MHz
VDD = 13.5 V IDQ = 25 mA
400 mW
200 mW
IDQ = 25 mA f = 100 MHz
24 21 18 15 12
9
, OUTPUT POWER (WATTS)
6
out
P
3 0
12 16 20 24 28
14 18 22 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 900 mW
IDQ = 25 mA f = 150 MHz
Figure 6. Output Power versus Supply Voltage Figure 7. Output Power versus Supply Voltage
REV 7
4
600 mW
300 mW
24 21 18 15 12
9
, OUTPUT POWER (WATTS)
6
out
P
3 0
12 16 20 24 28
14 18 22 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 1 W
0.7 W
0.4 W
IDQ = 25 mA f = 200 MHz
Page 5
TYPICAL CHARACTERISTICS
20
IDQ = 25 mA
18
f = 400 MHz
16 14 12 10
8 6
, OUTPUT POWER (WATTS)
out
4
P
2 0
12 16 20 24 28
14 18 22 26
VDD, SUPPLY VOLTAGE (VOL TS)
Pin = 3 W
2 W
1 W
16
VDD = 28 V
14
IDQ = 25 mA Pin = CONSTANT
12 10
8
TYPICAL DEVICE
6
SHOWN, V
, OUTPUT POWER (WATTS)
4
out
P
2 0
–7
–6 –5 –4 –3 –2 –1 0 1 2 3
400 MHz
= 3 V
GS(th)
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Figure 8. Output Power versus Supply Voltage Figure 9. Output Power versus Gate Voltage
2
1.8 TYPICAL DEVICE
1.6 SHOWN, V
1.4
1.2
1
0.8
0.6
, DRAIN CURRENT (MILLAMPS)
0.4
D
I
0.2
0
04567
123
= 3 V
GS(th)
VDS = 10 V
V
, GATE–SOURCE VOLTAGE (VOLTS)
DS
Figure 10. Drain Current versus Gate Voltage
(Transfer Characteristics)
1.04
1.03
1.02
1.01 1
0.99
0.98
0.97
0.96
, GATE-SOURCE VOLTAGE (NORMALIZED)
0.95
GS
V
0.94
–25 25 75 125 175
VDS = 28 V
25 mA
0 50 100 150
TC, CASE TEMPERATURE (
Figure 11. Gate–Source Voltage versus
Case T emperature
400 MHz150 MHz
ID = 750 mA
500 mA
°
C)
250 mA
100
180
60
40
C, CAPACIT ANCE (pF)
20
0
016202428
C
oss
C
iss
C
rss
4812
V
, DRAIN–SOURCE VOLTAGE (VOLTS)
DS
VGS = 0 V f = 1 MHz
10
5 3
2
TC = 25°C
1
, DRAIN CURRENT (AMPS)
D
0.3
I
0.2
0.1 13020 50 100
23 5
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
10 70
Figure 12. Capacitance versus Drain–Source V oltage Figure 13. DC Safe Operating Area
REV 7
5
Page 6
TYPICAL CHARACTERISTICS
TYPICAL 400 MHz PERFORMANCE
40 35 30 25 20 15
, OUTPUT POWER (WATTS)
10
out
P
5 0
0 1 2.5 3.5
0.5 1.5 2 3 Pin, INPUT POWER (WATTS)
VDD = 28 V IDQ = 100 mA f = 400 MHz
40
VDD = 28 V
35
IDQ = 100 mA Pin = CONSTANT
30
TYPICAL DEVICE
25
SHOWN, V
20 15
, OUTPUT POWER (WATTS)
10
out
P
5 0
–4 –2 0 2 4
–3 –1 1 3
= 3 V
GS(th)
VGS, GATE–SOURCE VOLTAGE (VOLTS)
Figure 14. Output Power versus Input Power Figure 15. Output Power versus Gate Voltage
f = 400 MHz
REV 7
6
Page 7
150
Zin{
f = 100 MHz
400
200
400
200
ZOL*
150
VDD = 28 V, IDQ = 25 mA,
P
= 15 W
out
f
MHz
100 150 200 400
{
27 Ω Shunt Resistor Gate–to–Ground
Z
{
in
OHMS
7.5 – j9.73
4.11 – j7.56
2.66 – j6.39
2.39 – j2.18
Figure 16. Large–Signal Series Equivalent
Input Impedance, Zin†
400
225
f = 100 MHz
VDD = 28 V, IDQ = 25 mA,
P
= 15 W
out
f
MHz
100 150 200 400
ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.
ZOL*
OHMS
13.7 – j16.8
9.08 – j15.38
4.74 – j8.92
4.28 – j4.17
Figure 17. Large–Signal Series Equivalent
Output Impedance, ZOL*
Zin & ZOL* are given from drain–to–drain and gate–to–gate respectively.
REV 7
7
150
Z
100
400
in
225
ZOL*
150
100
50
f = 30 MHz
50
f = 30 MHz
VDD = 28 V, IDQ = 100 mA,
P
= 30 W
out
f
MHz
30
50 100 150 225 400
Feedback loops: 560 ohms in series with 0.1 µF Drain to gate, each side of push–pull FET ZOL* = Conjugate of the optimum load imped­ance into which the device operates at a given output power, voltage and frequency.
Z
{
in
Ohms
59.3 – j24 48 – j33.5
20.5 – j34.2
4.77 – j25.4 3 – j9.5
2.34 – j3.31
ZOL*
Ohms
40.1 – j8.52 37 – j11.9 29 – j16.5
20.6 – j19 13 – j16.7
10.2 – j14.3
Figure 18. Input and Outut Impedance
Page 8
S
f
f
(MHz)
2.0 0.988 –11 41.19 173 0.006 67 0.729 –12
5.0 0.970 –27 40.07 164 0.014 62 0.720 –31 10 0.923 –52 35.94 149 0.026 54 0.714 –58 20 0.837 –88 27.23 129 0.040 36 0.690 –96 30 0.784 –111 20.75 117 0.046 27 0.684 –118 40 0.751 –125 16.49 108 0.048 22 0.680 –131 50 0.733 –135 13.41 103 0.050 19 0.679 –139 60 0.720 –142 11.43 99 0.050 16 0.678 –145 70 0.709 –147 9.871 96 0.050 14 0.679 –149 80 0.707 –152 8.663 93 0.051 13 0.683 –153 90 0.706 –155 7.784 91 0.051 13 0.682 –155
100 0.708 –157 7.008 88 0.051 13 0.680 – 157 110 0.711 –159 6.435 86 0.051 14 0.681 –158 120 0.714 –161 5.899 85 0.051 15 0.682 – 159 130 0.717 –163 5.439 82 0.052 16 0.684 – 160 140 0.720 –164 5.068 80 0.052 17 0.684 – 161 150 0.723 –165 4.709 80 0.052 18 0.686 – 161 160 0.727 –166 4.455 78 0.052 18 0.690 – 161 170 0.732 –167 4.200 77 0.052 18 0.694 – 162 180 0.735 –168 3.967 75 0.052 19 0.699 – 162 190 0.738 –169 3.756 74 0.052 19 0.703 – 163 200 0.740 –170 3.545 73 0.052 20 0.706 – 163 225 0.746 –171 3.140 69 0.053 22 0.717 – 163 250 0.742 –172 2.783 67 0.053 25 0.724 – 163 275 0.744 –173 2.540 64 0.054 27 0.724 – 163 300 0.751 –174 2.323 60 0.055 29 0.736 – 163 325 0.757 –175 2.140 58 0.058 32 0.749 – 163 350 0.760 –176 1.963 54 0.059 35 0.758 – 163 375 0.762 –177 1.838 52 0.062 38 0.768 – 163 400 0.774 –179 1.696 50 0.065 41 0.783 – 163 425 0.775 –179 1.590 48 0.068 43 0.793 – 163 450 0.781 +179 1.493 46 0.071 46 0.805 –163 475 0.787 +177 1.415 43 0.074 47 0.813 –164 500 0.792 +176 1.332 40 0.079 48 0.825 –164 525 0.797 +175 1.259 38 0.083 50 0.831 –164 550 0.801 +175 1.185 37 0.088 51 0.843 –164 575 0.810 +174 1.145 36 0.094 52 0.855 –164 600 0.816 +173 1.091 34 0.101 52 0.869 –165 625 0.818 +171 1.041 32 0.106 53 0.871 –165 650 0.825 +170 0.994 30 0.112 53 0.884 –165 675 0.834 +169 0.962 29 0.119 53 0.890 –165 700 0.837 +168 0.922 27 0.127 53 0.906 –166 725 0.836 +167 0.879 25 0.133 52 0.909 –167 750 0.841 +166 0.838 25 0.140 53 0.917 –167 775 0.844 +165 0.824 24 0.148 52 0.933 –167 800 0.846 +163 0.785 21 0.154 50 0.941 –168
|S11| φ |S21| φ |S12| φ |S22| φ
11
S
21
S
12
S
22
T able 1. Common Source Scattering Parameters
VDS = 28 V, ID = 0.5 A
REV 7
8
Page 9
+j50
+j25
+j100
+j150
+j10
f = 800 MHz
10 25 50 100 150 250 500
0
400
150
–j10
70
S
11
+j250
+j500
–j500
–j250
–j150
–j25
–j100
–j50
Figure 19. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
+90
°
+120
°
+60
°
f = 800 MHz
+150
°
S
12
600
+30
°
400
0.06
180
°
–150
°
0.14 0.10
0.16 0.12 0.08 0.04
–120
0.020.18
°
–90
70
–60
°
–30
0
°
°
°
Figure 20. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
+90
°
+120
70
°
+60
°
100
+150
180
°
–150
°
S
21
8
426
150
400
f = 800 MHz
°
–120
°
–90
°
–60
+30
°
0
°
–30
°
°
Figure 21. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
+j50
+j25
+j100
+j150
+j10
+j250
+j500
10 25 50 100 150 250 500
0
f = 800 MHz
–j10
400
70
–j25
150
S
22
–j100
–j500
–j250
–j150
–j50
Figure 22. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
REV 7
9
Page 10
DESIGN CONSIDERATIONS
The MRF136 is an RF power N–Channel enhancement mode field–effect transistor (FET) designed especially for HF and VHF power amplifier applications. M/A-COM RF MOS FETs feature planar design for optimum manufacturability.
M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.
The major advantages of RF power FET s include high gain, low noise, simple bias systems, relative immunity from ther­mal runaway, and the ability to withstand severely mis­matched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.
DC BIAS
The MRF136 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied without gate bias. A positive gate voltage causes drain current to flow (see Figure 10). RF power FETs require forward bias for optimum gain and power output. A Class AB condition with quiescent drain current (IDQ) in the 25 –100 mA range is sufficient for many applications. For special requirements such as linear amplification, IDQ may have to be adjusted to optimize the critical parameters.
The MOS gate is a dc open circuit. Since the gate bias circuit does not have to deliver any current to the FET, a simple resistive divider arrangement may sometimes suffice for this function. Special applications may require more elaborate gate bias systems.
GAIN CONTROL
Power output of the MRF136 may be controlled from rated values down to the milliwatt region (>20 dB reduction in power output with constant input power) by varying the dc gate
voltage. This feature, not available in bipolar RF power devices, facilitates the incorporation of manual gain control, AGC/ALC and modulation schemes into system designs. A full range of power output control may require dc gate voltage excursions into the negative region.
AMPLIFIER DESIGN
Impedance matching networks similar to those used with bipolar transistors are suitable for MRF136. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Both small signal scattering parameters and large signal impedance parameters are provided. Large signal impedances should be used for network designs wherever possible. While the s parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies outside those presented in the large signal impedance plots.
RF power FETs are triode devices and are therefore not unilateral. This, coupled with the very high gain, yields a device capable of self oscillation. Stability may be achieved using techniques such as drain loading, input shunt resistive loading, or feedback. S parameter stability analysis can provide useful information in the selection of loading and/or feedback to insure stable operation. The MRF136 was characterized with a 27 ohm input shunt loading resistor.
For further discussion of RF amplifier stability and the use of two port parameters in RF amplifier design, see M/A-COM Application Note AN215A.
LOW NOISE OPERATION
Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving imped­ance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended.
REV 7
10
Page 11
P ACKAGE DIMENSIONS
A
U
M
Q
1
4
32
S
K
M
B
R
D
J
H
C
E
SEATING PLANE
NOTES:
STYLE 2:
PIN 1. SOURCE
2. GATE
3. SOURCE
4. DRAIN
1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
DIM MIN MAX MIN MAX
A 0.960 0.990 24.39 25.14 B 0.370 0.390 9.40 9.90 C 0.229 0.281 5.82 7.13 D 0.215 0.235 5.47 5.96
E 0.085 0.105 2.16 2.66
H 0.150 0.108 3.81 4.57
J 0.004 0.006 0.11 0.15 K 0.395 0.405 10.04 10.28 M 40 50 40 50
____
Q 0.113 0.130 2.88 3.30 R 0.245 0.255 6.23 6.47
S 0.790 0.810 20.07 20.57 U 0.720 0.730 18.29 18.54
MILLIMETERSINCHES
CASE 211–07
ISSUE N
Specifications subject to change without notice.
n
North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n
Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 7
11
Loading...