Datasheet MCTV35P60F1D Datasheet (Intersil)

Page 1
Semiconductor
MCTV35P60F1D
April 1999
PROCESS OBSOLETE - NO NEW DESIGNS
Features
PART WITHDRAWN
• 35A, -600V = -1.35V (Max) at I = 35A and +150oC
•V
TM
• 800A Surge Current Capability
• 800A/µs di/dt Capability
• MOS Insulated Gate Control
• 50A Gate Turn-Off Capability at +150
o
C
• Anti-Parallel Diode
Description
The MCT is an MOS Controlled Thyristor designed for s witch­ing currents on and offby negative and positive pulsed control of an insulated MOS gate. It is designed for use in motor con­trols, inverters, line switches and other power switching appli­cations. The MCT is especially suited for resonant (zero voltage or zero current switching) applications. The SCR like forward drop greatly reduces conduction pow er loss .
MCTs allow the control of high power circuits with very small amounts of input energy. They feature the high peak current capability common to SCR type thyristors, and operate at junction temperatures up to +150 This device features a discrete anti-parallel diode that shunts current around the MCT in the reverse direction without introducing carriers into the depletion region.
PART NUMBER INFORMATION
PART NUMBER PACKAGE BRAND
MCTV35P60F1D TO-247 M35P60F1D
NOTE: When ordering, use the entire part number.
Formerly developmental type TA9789 (MCT) and TA49054 (diode).
o
C with active switching.
35A, 600V P-Type MOS Controlled
Thyristor (MCT) with Anti-Parallel Diode
JEDEC STYLE TO-247
A
A
K
GR
G
Symbol
GA
K
Absolute Maximum Ratings T
Peak Off-State Voltage (See Figure 11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Continuous Cathode Current (See Figure 2)
TC = +25oC (Package Limited). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
TC = +90oC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Non-repetitive Peak Cathode Current (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
Peak Controllable Current (See Figure 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I
Gate-Anode Voltage (Continuous). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
Gate-Anode Voltage (Peak) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V
Rate of Change of Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . dv/dt SeeFigure 11
Rate of Change of Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .di/dt 800 A/µs
Maximum Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P
Linear Derating Factor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.43 W/oC
Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TJ,T
Maximum Lead Temperature for Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T
(0.063" (1.6mm) from case for 10s) NOTE: 1. Maximum Pulse Width of 250µs (Half Sine) Assume TJ (Initial) = +90oC and TJ (Final) = TJ (Max) = +150oC
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper ESD Handling Procedures. Copyright
© Harris Corporation 1999
= +25oC, Unless Otherwise Specified
C
2-8
MCTV35P60F1D UNITS
DRM
K25
K115 KSM
KC
GA1
GAM
T
STG
L
-600 V
60 35
800 A
50 A
±20 V ±25 V
178 W
-55 to +150 260
File Number 3694.4
A A
o
C
o
C
Page 2
Specifications MCTV35P60F1D
Electrical Specifications T
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
Peak Off-State Blocking Current
On-State Voltage V
Gate-Anode Leakage Current
Input Capacitance C
Current Turn-On Delay Time
Current Rise Time t
Current Turn-Off Delay Time t
Current Fall Time t
Turn-Off Energy E
= +25oC, Unless Otherwise Specified
C
I
DRM
VKA = -600V TC = +150oC- - 5 mA
VGA = +18V TC = +25oC - - 200 µA
IK = I
K115
V
= -7V
GA
VGA = ±20V - - 100 nA
VKA = -20V, TJ = +25oC
I
GAS
TM
ISS
VGA = +18V
t
D(ON)I
L = 200µH, IK = I
K115
RG = 1, VGA = +18V, -7V TJ = +125oC
RI
D(OFF)I
FI
OFF
VKA = -300V
TC = +150oC - - 1.35 V
= +25oC - - 1.4 V
T
C
-5-nF
- 140 - ns
- 180 - ns
- 640 - ns
- 1.1 1.4 µs
- 5.6 - mJ
Thermal Resistance (MCT) R
Thermal Resistance (Diode) R
Diode Forward Voltage V
Diode Reverse Recovery Time t
θJC
θJC
KA
RR
IKA= 35A - - 1.4 V
IKA= 35A, di/dt = 100A/µs - - 600 ns
Typical Performance Curves
100
PULSE TEST PULSE DURATION = 250µs
50
DUTY CYCLE < 2%
30 20
10
TJ = +150oC
5 3
, CATHODE CURRENT (A)
K
I
2
1
0 0.5 1.0 1.5 2.0
VTM, CATHODE VOLTAGE (V)
TJ = -40oC
TJ = +25oC
-.6.7oC/W
- 1.1 1.2
= +150oC
T
100
80
PACKAGE LIMIT
60
40
20
, DC CATHODE CURRENT (A)
K
I
0
20 40 60 80 100 120 140 160
TC, CASE TEMPERATURE (oC)
MCT SWITCHING LIMIT
DIODE
J
MCT
o
C/W
FIGURE 1. CATHODECURRENT vs SATURATION VOLTAGE
(TYPICAL)
FIGURE 2. MAXIMUM CONTINUOUS CATHODE CURRENT
2-9
Page 3
MCTV35P60F1D
Typical Performance Curves
T
= +150oC, RG = 1, L = 200µH
200
175
150
125
100
, TURN-ON DELAY (ns)
D(ON)I
75
t
50
0 102030405060
VKA = -200V
IK, CATHODE CURRENT (A)
J
(Continued)
VKA = -300V
FIGURE 3. TURN-ON DELAY vs CATHODE CURRENT
(TYPICAL)
200
150
VKA= -200V
TJ = +150oC, RG = 1, L = 200mH
= +150oC, RG = 1, L = 200µH
T
1100
1000
900
800
700
, TURN-OFF DELAY (ns)
600
D(OFF)I
500
t
400
0102030
VKA = -200V
IK, CATHODE CURRENT (A)
J
VKA = -300V
40
50
FIGURE 4. TURN-OFF DELAY vs CATHODE CURRENT
(TYPICAL)
1.5
1.25
VKA = -200V
TJ = +150oC, RG = 1, L = 200µH
60
100
RISE TIME (ns)
RI,
t
50
0
0 102030405060
VKA= -300V
IK, CATHODE CURRENT (A)
FIGURE 5. TURN-ON RISE TIME vs CATHODE CURRENT
(TYPICAL)
T
= +150oC, RG = 1, L = 200µH
5
VKA= -300V
3
2
1
,TURN-ON SWITCHING LOSS (mJ)
ON
E
0.5 0 102030405060
IK, CATHODE CURRENT (A)
J
VKA= -200V
1
, FALL TIME (µs)
FI
t
0.75
0.5 0102030
I
VKA = -300V
40
, CATHODE CURRENT (A)
K
50 60
FIGURE 6. TURN-OFF FALL TIME vs CATHODE CURRENT
(TYPICAL)
T
= +150oC, RG = 1, L = 200µH
10
5
VKA = -300V
1
0.5
, TURN-OFF SWITCHING LOSS (mJ)
OFF
E
0.1 0
10
20
IK, CATHODE CURRENT (A)
J
VKA = -200V
30 40 50 60
FIGURE 7. TURN-ON ENERGY LOSS vs CATHODE CURRENT
(TYPICAL)
FIGURE8. TURN-OFF ENERGYLOSSvsCATHODECURRENT
(TYPICAL)
2-10
Page 4
MCTV35P60F1D
Typical Performance Curves
100
(Continued)
TC = +90oC, L = 200µH
50 30
20
VKA = -300V
VKA = -200V
10
f
5 3
2
, MAX OPERATING FREQUENCY (kHz)
1
MAX
f
= (PD - PC) / E
f
MAX2
PD: ALLOWABLE DISSIPATION
: CONDUCTION DISSIPATION
P
C
(P
DUTY FACTOR = 50%)
C
R
= 0.7oC/W
θJC
5 10 20 30 50 100
= 0.05/ t
MAX1
D(ON)I
+ t
D(OFF)I
SWITCH
)
IK, CATHODE CURRENT (A)
FIGURE9. OPERATING FREQUENCYvsCATHODE CURRENT
(TYPICAL)
TJ = +150oC, VGA = 18V
-725
-700
-675
-650
-625
-600
-575
-550
-525
-500
, BREAKDOWN VOLTAGE (V)
-475
DRM
-450
V
-425
0.1 1 10 100 1000 10000
dv/dt (V/µs)
T
= +150oC, VGA = 18V, L = 100µH
60
J
50
40
30
20
TURN-OFF
SAFE OPERATING AREA
10
PEAK CATHODE CURRENT (A)
0
0
-100 -200
-300 -400
-500
VKA, PEAK TURN OFF VOLTAGE (V)
FIGURE 10. TURN-OFF CAPABILITY vs ANODE-CATHODE
VOLTAGE
200
CS = 0.1µF, TJ = +150oC
100
C
= 0.1µF, TJ = +25oC
S
= 1µF, TJ = +150oC
C
S
50
20
10
, SPIKE VOLTAGE (V)
SPIKE
5
V
2
0 5 10 15 20 25 30 35 40
CS = 2µF, TJ = +150oC
= 1µF, TJ = +25oC
C
S
= 2µF, TJ = +25oC
C
S
di/dt (A/µs)
-600
FIGURE 11. BLOCKING VOLTAGE vs dv/dt FIGURE 12. SPIKE VOLTAGE vs di/dt (TYPICAL)
100
PULSE TEST PULSE DURATION = 250µs
50
DUTY CYCLE < 2% 30 20
10
TJ = +150oC
TJ = -40oC
5
TJ = +25oC
3 2
, CATHODE-ANODE CURRENT (A)
KA
I
1
0 0.5 1 1.5 2
V
, ANODE-CATHODE VOLTAGE (V)
AK
FIGURE 13. DIODE CATHODE-ANODE CURRENT vs VOLTAGE
(TYPICAL)
1,000
500
t
RR
TJ = +25oC, di/dt = 100A/µs
300
t
200
A
100
50 30
20
, REVERSE RECOVERY TIMES (ns)
RR
t
10
0 10203040
I
KA
t
B
, CATHODE-ANODE CURRENT (A)
FIGURE 14. DIODE REVERSE RECOVERY TIMES vs CURRENT
(TYPICAL)
2-11
Page 5
Test Circuits
200µH
I
K
DUT
MCTV35P60F1D
V
G
1
­+
V
K
9V
-
+
500
-
20V
10k
+
V
A
C
S
DUT
9V
-
+
4.7k
I
K
+
-
FIGURE 15. SWITCHING TEST CIRCUIT FIGURE 16. V
MAXIMUM RISE AND FALL TIME OF VG IS 200ns
V
G
10%
-V
KA
90%
I
K
10%
t
D(OFF)I
t
FI
90%
t
D(ON)I
t
RI
FIGURE 17. SWITCHING TEST WAVEFORMS
Operating Frequency Information
Operating frequency information for a typical device (Figure 9) is presented as a guide for estimating device per­formance for a specific application. Other typical frequency vs cathode current (I tion shown for a typical unit in Figures 3 to 8. The operating frequency plot (Figure 9) of a typical device shows f f
whichever is lower at each point. The information is
MAX2
based on measurements of a typical device and is bounded by the maximum rated junction temperature.
f
is defined by f
MAX1
+t
D(OFF)I
deadtime (the denominator) has been arbitrarily held to 10% of the on-state time for a 50% duty factor. Other definitions are possible. t the leading edge of the input pulse and the point where the cathode current rises to 10% of its maximum value. t is defined as the 90% point of the trailing edge of the input pulse and the point where the cathode current falls to 90% of
) plots are possible using the informa-
AK
MAX1
MAX1
= 0.05 / (t
D(ON)I
D(ON)I+tD(OFF)I
is defined as the 10% point of
). t
or
D(ON)I
D(OFF)I
TEST CIRCUIT
SPIKE
V
G
di/dt
I
K
V
AK
FIGURE 18. V
V
SPIKE
V
TEST WAVEFORMS
SPIKE
TM
its maximum value. Device delay can establish an additional frequency limiting condition for an application other than T
JMAX.tD(OFF)I
is important when controlling output ripple
under a lightly loaded condition. f
is defined by f
MAX2
allowable dissipation (P R
. The sum of device switching and conduction losses
θ
JC
must not exceed P
. A 50% duty factor was used (Figure 9)
D
and the conduction losses (P (V
AK•IAK
) / (duty factor/100). EONis defined as the sum of
=(PD-PC)/(EON+E
MAX2
) is defined by PD=(T
D
) are approximated by PC=
C
). The
OFF
JMAX-TC
)/
the instantaneous power loss starting at the leading edge of the input pulse and ending at the point where the anode­cathode voltage equals saturation voltage (V
AK=VTM
). E
OFF
is defined as the sum of the instantaneous power loss start­ing at the trailing edge of the input pulse and ending at the point where the cathode current equals zero (I
= 0).
K
2-12
Loading...