Datasheet MCP3903 Datasheet

MCP3903
Six Channel Delta Sigma A/D Converter
Features
• Six Synchronous Sampling 16/24-bit Resolution Delta-Sigma A/D Converters with Proprietary Multi-Bit Architecture
• 91 dB SINAD, -100 dBc Total Harmonic Distortion
(THD) (up to 35
harmonic), 102 dB Spurious-free
Dynamic Range (SFDR) for Each Channel
• Programmable Data Rate up to 64 ksps
• Ultra Low-Power Shutdown Mode with <2 μA
• -115 dB Crosstalk Between any Two Channels
• Low Drift Internal Voltage Reference: 5 ppm/°C
• Differential Voltage Reference Input Pins
• High Gain PGA on Each Channel (up to 32 V/V)
• Phase Delay Compensation Between Each Pair of Channels with 1 μs Time Resolution
• High-Speed Addressable 10 MHz SPI Interface with Mode 0,0 and 1,1 Compatibility
• Independent Analog and Digital Power Supplies
4.5V - 5.5V AV
, 2.7V - 3.6V DV
DD
DD
• Available in Small 28-lead SSOP Package
• Extended Temperature Range: -40°C to +125°C
Applications
• Energy Metering and Power Measurement
• Portable Instrumentation
• Medical and Power Monitoring
Description
The MCP3903 is a six-channel Analog Front End (AFE) containing three pairs made out of two synchronous sampling Delta-Sigma Analog-to-Digital Converters (ADC) with PGA, a phase delay compensation block, internal voltage reference, and high-speed 10 MHz SPI compatible serial interface. The converters contain a proprietary dithering algorithm for reduced idle tones and improved THD.
The internal register map contains 24-bit wide ADC data words, a modulator output register as well as six 24-bit writable control registers to program gain, over-sampling ratio, phase, resolution, dithering, shut-down, reset and several communication features.
The communication is largely simplified with various Continuous Read modes that can be accessed by the Direct Memory Access (DMA) of an MCU and with separate Data Ready pins that can directly be connected to the Interrupt Request (IRQ) input of an MCU. The MCP3903 is capable of interfacing to a large variety of voltage and current sensors including shunts, current transformers, Rogowski coils, and Hall-effect sensors.
Package Type
28-Lead SSOP
AV
DD
CH0+ CH0­CH1­CH1+ CH2+ CH2­CH3-
CH3+
CH4+
CH4­CH5­CH5+
REFIN/OUT+
1
2 3 4 5
6 7 8
9
10
11 12
13
DV
28
DD
RESET
27 26
SDI
25
SDO SCK
24
CS
23
OSC2
22
OSC1
21
DRC
20
19
DRB
DRA
18
DGND
17
AGND
16
1514
REFIN-
© 2011 Microchip Technology Inc. DS25048B-page 1
MCP3903
Functional Block Diagram
REFIN/OUT+
REFIN -
CH0+
CH0-
CH1+
CH1-
CH2+
CH2-
CH3+
CH3-
Voltage
Reference
+
-
VREFEXT
V
REF
DUAL DS
DUAL DS ADC
REF
+
-
+
­PGA
+
-
+
­PGA
PGA
PGA
-
V
REF
AV
ANALOG
+V
Δ -Σ
Modulator
Δ -Σ
Modulator
ADC
Δ -Σ
Modulator
Δ -Σ
Modulator
DD
DV
DD
DIGITAL
SINC
SINC
SINC
SINC
AMCLK
DMCLK/DRCLK
3
DATA_CH0<23:0>
Phase
Φ
Shifter
3
3
Phase
Φ
Shifter
3
PHASEA <7:0>
DATA_CH1<23:0>
DATA_CH2<23:0>
PHASEB <7:0>
DATA_CH3<23:0>
Clock
Generation
DMCLK
Digital SPI
Interface
Xtal Oscillator
MCLK
OSR<1:0> PRE<1:0>
OSC1
OSC2
A
DR
DRB
CH4+
CH4-
CH5+
CH5-
POR AV
DD
Monitoring
+
-
PGA
+
­PGA
DUAL DS ADC
AGND DGND
Δ -Σ
Modulator
Δ -Σ
Modulator
SINC
Φ
SINC
POR
3
Phase
Shifter
3
DATA_CH4<23:0>
PHASEC <7:0>
DATA_CH5<23:0>
DRC
SDO
RESET SDI SCK CS
DS25048B-page 2 © 2011 Microchip Technology Inc.
MCP3903
1.0 ELECTRICAL

1.1 RELIABILITY TARGETS

CHARACTERISTICS
The Reliability Targets section includes the absolute maximum ratings for the device, defining the values that will cause no long term damage regardless of duration.
These tables also represent the testing requirements per the Max. and Min. columns.
TABLE 1-1: ANALOG SPECIFICATIONS TARGET TABLE
Electrical Specifications: Unless otherwise indicated, all parameters apply at AV
3.6V, Internal V GAIN = 1, V
Param.
Num.
Internal Voltage Reference
A001 V
A002 TC
A003 ZOUT
V oltage Reference Input
A004 Input Capacitance 10 pF
A005 V
A006 V
A007 V
ADC Performance
A008 Resolution (No Missing
A009 f
A010 f
Note 1: This specification implies that the ADC output is valid over this entire differential range, i.e. there is no distortion or
instability across this input range. Dynamic Performance is specified at -0.5 dB below the maximum signal range, V
IN
2: See terminology section for definition. 3: This parameter is established by characterization and not 100% tested. 4: For these operating currents, the following configuration bit settings apply: Config Register Settings:
SHUTDOWN<5:0> = 000000, RESET<5:0> = 000000; VREFEXT = 0, CLKEXT = 0.
5: For these operating currents, the following configuration bit settings apply: Config Register Settings:
SHUTDOWN<5:0> = 111111, VREFEXT = 1, CLKEXT = 1.
6: Applies to all gains. Offset error is dependant on PGA gain setting. 7: Outside of this range, ADC accuracy is not specified. An extended input range of +/- 6V can be applied continuously to
the part with no risk for damage.
8: For proper operation and to keep ADC accuracy, AMCLK should always be in the range of 1 to 5 MHz with BOOST bits
off. With BOOST bits on, AMCLK should be in the range of 1 to 8.192 MHz. AMCLK = MCLK/PRESCALE. When using a crystal, CLKEXT bit should be equal to ‘0’.
, MCLK = 4 MHz;PRESCALE = 1; OSR = 64; fS = 1 MHz; fD = 15.625 ksps; TA = -40°C to +125°C,
REF
= 1VPP = 353mV
IN
@ 50/60 Hz.
RMS
Symbol Characteristic Min. Typ. Max. Units Test Conditions
REF
REF
REF+
Voltage -2% 2.35 +2% V VREFEXT = 0
Tempco 5 ppm/°C VREFEXT = 0
REF
Output Impedance 7 kΩ AVDD=5V,
REF
Differential Input Voltage Range (V
REF+
- V
REF-
)
Absolute Voltage on REFIN+
2.2 2.6 V V
1.9 2.9 V VREFEXT = 1
pin
REF-
Absolute Voltage on REFIN-
-0.3 +0.3 V V
pin
Codes)
Sampling Frequency See Tab le 4 -2 kHz fS = DMCLK = MCLK / (4 x
S
Output Data Rate See Tab l e 4 -2 ksps fD = DRCLK= DMCLK / OSR
D
= -0.5 dBFS @ 50/60 Hz = 333 mV
RMS
, V
REF
= 2.4V.
ABSOLUTE MAXIMUM RATINGS †
VDD...................................................................................7.0V
Digital inputs and outputs w.r.t. A Analog input w.r.t. A
input w.r.t. A
V
REF
Storage temperature..................................... -65°C to +150°C
Ambient temp. with power applied................ -65°C to +125°C
Soldering temperature of leads (10 seconds)............. +300°C
ESD on the analog inputs (HBM,MM)................. 5.0 kV, 500V
ESD on all other pins (HBM,MM)........................ 5.0 kV, 500V
..................................... ....-6V to +6V
GND
................................-0.6V to VDD +0.6V
GND
= 4.5 to 5.5V, DVDD = 2.7 to
DD
VREFEXT = 0
VREFEXT = 1
to AGND when VREFEXT=0
24 bits OSR = 256 (see Table 5-2)
PRESCALE)
= MCLK / (4 x PRESCALE x OSR)
........-0.6V to VDD +0.6V
GND
= (V
REF
should be connected
REF-
REF+
- V
REF-
),
© 2011 Microchip Technology Inc. DS25048B-page 3
MCP3903
TABLE 1-1: ANALOG SPECIFICATIONS TARGET TABLE (CONTINUED)
Electrical Specifications: Unless otherwise indicated, all parameters apply at AV
3.6V, Internal V GAIN = 1, V
Param.
Num.
A011 CHn+- Analog Input Absolute
, MCLK = 4 MHz;PRESCALE = 1; OSR = 64; fS = 1 MHz; fD = 15.625 ksps; TA = -40°C to +125°C,
REF
= 1VPP = 353mV
IN
@ 50/60 Hz.
RMS
Symbol Characteristic Min. Typ. Max. Units Test Conditions
-1 +1 V All analog input channels,
Voltage
A012 A
Analog Input Leakage
IN
1nA(Note 4)
Current
A013 (CH
CH
A014 V
Differential Input Voltage
-
n+
)
Range
n-
Offset Error -3 3 mV (Note 6)(Note 2)
OS
500 /
GAIN
A015 Offset Error Drift 1 μV/C From -40°C to 125°C A016 GE Gain Error -3 3 % All Gains
A017 Gain Error Drift 2 ppm/°C From -40°C to 125°C
A018 INL Integral Non-Linearity 15 ppm GAIN = 1, DITHER = ON
A019 Z
A020 SINAD Signal-to-Noise and
Input Impedance 350 kΩ Proportional to 1/AMCLK
IN
89 91 dB T = 25°C
Distortion Ratio
80 81.5 dB
A021 THD Total Harmonic Distortion -100 -97 dB OSR = 256, DITHER = ON;
-90 -87 dB
A022 SNR Signal To Noise Ratio 90 91.5 dB T = 25°C
80 81.5 dB
A023 SFDR Spurious Free Dynamic
102 dB OSR = 256, DITHER = ON;
Range
91 dB
A024 CTALK Crosstalk (50 / 60 Hz) -115 dB OSR = 256, DITHER = ON;
A025 AC PSRR AC Power Supply Rejection -68 dB AV
A026 DC PSRR DC Power Supply Rejection -68 dB AVDD = 4.5 to 5.5V, DVDD =
A027 CMRR DC Common Mode Rejection
—-75 — dBV
Ratio
Oscillator Input
Note 1: This specification implies that the ADC output is valid over this entire differential range, i.e. there is no distortion or
instability across this input range. Dynamic Performance is specified at -0.5 dB below the maximum signal range, V
= -0.5 dBFS @ 50/60 Hz = 333 mV
IN
2: See terminology section for definition. 3: This parameter is established by characterization and not 100% tested. 4: For these operating currents, the following configuration bit settings apply: Config Register Settings:
SHUTDOWN<5:0> = 000000, RESET<5:0> = 000000; VREFEXT = 0, CLKEXT = 0.
5: For these operating currents, the following configuration bit settings apply: Config Register Settings:
SHUTDOWN<5:0> = 111111, VREFEXT = 1, CLKEXT = 1.
6: Applies to all gains. Offset error is dependant on PGA gain setting. 7: Outside of this range, ADC accuracy is not specified. An extended input range of +/- 6V can be applied continuously to
the part with no risk for damage.
8: For proper operation and to keep ADC accuracy, AMCLK should always be in the range of 1 to 5 MHz with BOOST bits
off. With BOOST bits on, AMCLK should be in the range of 1 to 8.192 MHz. AMCLK = MCLK/PRESCALE. When using a crystal, CLKEXT bit should be equal to ‘0’.
RMS
, V
REF
= 2.4V.
= 4.5 to 5.5V, DVDD = 2.7 to
DD
measured to AGND
(Note 7)
mV
P
(Note 1)
(Note 2)(Note 3)
(Note 2) (Note 3)
(Note 2)(Note 3)
= 5V + 1Vpp @ 50 Hz
DD
3.3V
varies from -1V to +1V;
CM
(Note 2)
DS25048B-page 4 © 2011 Microchip Technology Inc.
MCP3903
TABLE 1-1: ANALOG SPECIFICATIONS TARGET TABLE (CONTINUED)
Electrical Specifications: Unless otherwise indicated, all parameters apply at AV
3.6V, Internal V GAIN = 1, V
Param.
Num.
A028 MCLK Master Clock Frequency
, MCLK = 4 MHz;PRESCALE = 1; OSR = 64; fS = 1 MHz; fD = 15.625 ksps; TA = -40°C to +125°C,
REF
= 1VPP = 353mV
IN
@ 50/60 Hz.
RMS
Symbol Characteristic Min. Typ. Max. Units Test Conditions
1 16.384 MHz (Note 8)
Range
Power Specifications
P001 AV
P002 DV
P003 AI
Operating Voltage, Analog 4.5 5.5 V
DD
Operating Voltage, Digital 2.7 3.6 V
DD
Operating Current, Analog
DD
7.1 9 mA BOOST bits low on all chan-
(Note 4)
12.3 16.8 mA BOOST bits high on all
P004 DI
Operating Current, Digital 1.2 1.7 mA DVDD = 3.6V, MCLK =
DD
—2.4 3.4 mADV
P005 I
DDS,A
Shutdown Current, Analog 1 μA -40°C to 85°C, AV
—— 3 μA -40°C to 125°C, AV
P006 I
DDS,D
Shutdown Current, Digital 1 μA -40°C to 85°C, DV
—— 5 μA -40°C to 125°C, DV
Note 1: This specification implies that the ADC output is valid over this entire differential range, i.e. there is no distortion or
instability across this input range. Dynamic Performance is specified at -0.5 dB below the maximum signal range, V
= -0.5 dBFS @ 50/60 Hz = 333 mV
IN
2: See terminology section for definition. 3: This parameter is established by characterization and not 100% tested. 4: For these operating currents, the following configuration bit settings apply: Config Register Settings:
SHUTDOWN<5:0> = 000000, RESET<5:0> = 000000; VREFEXT = 0, CLKEXT = 0.
5: For these operating currents, the following configuration bit settings apply: Config Register Settings:
SHUTDOWN<5:0> = 111111, VREFEXT = 1, CLKEXT = 1.
6: Applies to all gains. Offset error is dependant on PGA gain setting. 7: Outside of this range, ADC accuracy is not specified. An extended input range of +/- 6V can be applied continuously to
the part with no risk for damage.
8: For proper operation and to keep ADC accuracy, AMCLK should always be in the range of 1 to 5 MHz with BOOST bits
off. With BOOST bits on, AMCLK should be in the range of 1 to 8.192 MHz. AMCLK = MCLK/PRESCALE. When using a crystal, CLKEXT bit should be equal to ‘0’.
RMS
, V
REF
= 2.4V.
= 4.5 to 5.5V, DVDD = 2.7 to
DD
nels
channels
4MHz
= 3.6V, MCLK =
DD
8.192 MHz
only, (Note 5)
only, (Note 5)
only, (Note 5)
only, (Note 5)
DD
DD
DD
DD
pin
pin
pin
pin
© 2011 Microchip Technology Inc. DS25048B-page 5
MCP3903

1.2 SERIAL INTERFACE CHARACTERISTICS

SERIAL INTERFACE SPECIFICATIONS
Electrical Specifications: Unless otherwise indicated, all parameters apply at AV
= 2.7 to 3.6V, -40°C < TA <+125°C, C
DV
DD
Parameters Sym Min Typ Max Units Conditions
LOAD
= 30 pF.
= 4.5 to 5.5V,
DD
Serial Clock frequency f
CS
setup time t
hold time
CS
disable time t
CS
Data setup time t
Data hold time t
Serial Clock high time t
Serial Clock low time t
Serial Clock delay time t
Serial Clock enable time t
Output valid from SCK low t
Output hold time t
Output disable time t
Reset Pulse Width (RESET
Data Transfer Time to DR
)t
(Data Ready) t
DODR
Data Ready Pulse Low Time t
Schmitt Trigger High-level Input voltage
SCK
CSS
t
CSH
CSD
SU
HD
HI
LO
CLD
CLE
DO
HO
DIS
MCLR
DRP
V
IH1
—— 10MHz2.7 ≤ DVDD < 3.6 50 ns 2.7 ≤ DVDD < 3.6
100 ns 2.7 ≤ DVDD < 3.6
50 ns — 10 ns 2.7 ≤ DVDD < 3.6 20 ns 2.7 ≤ DVDD < 3.6 40 ns 2.7 ≤ DVDD < 3.6 40 ns 2.7 ≤ DVDD < 3.6
50 ns
50 ns — — 50 ns 2.7 ≤ DVDD < 3.6
0——ns
50 ns 2.7 ≤ DVDD < 3.6
100 ns 2.7 ≤ DVDD < 3.6
—50ns2.7 ≤ DVDD < 3.6
1/
DMCLK
.7 DV
—DVDD +1 V
DD
(All digital inputs)
Schmitt Trigger Low-level input voltage
V
IL1
-0.3 0.25
(All digital inputs)
Hysteresis of Schmitt Trigger Inputs
V
HYS
50 mV
(All digital inputs)
Low-level output voltage, SDO pin V
Low-level output voltage, DRn
pins V
High-level output voltage, SDO pin V
OL
OL
OH
0.4 V SDO pin only, IOL = 2 mA,
DVDD -
V SDO pin only,
0.5
High-level output voltage, DRn
pins
only
Input leakage current I
Output leakage current I
Internal capacitance (all inputs and
V
OH
DVDD -
——VDRn pins only,
0.5
LI
LO
C
INT
±1 µA CS = DVDD, Inputs tied to
±1 µA CS = DVDD, Inputs tied to
—— 7 pFT
outputs)
Note 1: This parameter is periodically sampled and not 100% tested.
—µs2.7 ≤ DV
DD
V
DV
DD
DV
= 3.3V
DD
0.4 V DRn pins only, I
= +1.5 mA, DVDD =3.3V
OL
I
= -2 mA, DVDD = 3.3V
OH
I
= -1.5 mA, DVDD=3.3V
OH
OR DGND
DV
DD
OR DGND
DV
DD
= 25°C, SCK = 1.0 MHz
A
= 3.3V (Note 1)
DV
DD
< 3.6
DS25048B-page 6 © 2011 Microchip Technology Inc.
TEMPERATURE CHARACTERISTICS
Electrical Specifications: Unless otherwise indicated, all parameters apply at AV
3.3 V.
Parameters Sym Min Typ Max Units Conditions
Temperature Ranges
Operating Temperature Range T
Storage Temperature Range T
Thermal Package Resistances
Thermal Resistance, 28-lead
θ
SSOP
Note 1: The internal junction temperature (T
CS
f
SCK
t
t
HI
LO
SCK
-40 +125 °C (Note 1)
A
-65 +150 °C
A
JA
—71 °C/W
) must not exceed the absolute maximum specification of +150°C.
J
MCP3903
= 4.5 to 5.5V, DVDD = 2.7 to
DD
t
CSH
Mode 1,1 Mode 0,0
t
DO
SDO
SDI
MSB out
Don’t Care

FIGURE 1-1: Serial Output Timing Diagram.

CS
SCK
SDI
SDO
t
CSS
Mode 1,1 Mode 0,0
t
SU
MSB in
t
HD
f
SCK
t
t
HI
LO
HI-Z
t
HO
LSB in
t
CSH
t
DIS
LSB out
t
CSD
t
CLE
t
CLD

FIGURE 1-2: Serial Input Timing Diagram.

© 2011 Microchip Technology Inc. DS25048B-page 7
MCP3903
H
DR
t
DODR
SCK
SDO

FIGURE 1-3: Data Ready Pulse Timing Diagram.

H
1 / DRCLK
t
DRP
Timing Waveform for t
DO
SCK
t
DO
SDO
Timing Waveform for MDAT0/1
Modulator Output
OSC1/CLKI
t
DOMDAT
MDAT0/1

FIGURE 1-4: Specific Timing Diagrams.

OSC1
OSC2
Digital Buffer
Crystal Oscillator
CLKEXT
1
MCLK AMCLK
0
Multiplexer Clock Divider Clock Divider Clock Divider
PRESCALE<1:0>
Prescale
1 /
CS
SDO
1 / 4
Timing Waveform for t
V
IH
90%
t
DIS
10%
OSR<1:0>
f
ADC
S
Sampling Rate
1 / OSR
DMCLK
DIS
HI-Z
ADC
f
D
Output Data Rate
DRCLK

FIGURE 1-5: MCP3903 Clock Detail.

DS25048B-page 8 © 2011 Microchip Technology Inc.
MCP3903

2.0 TYPI CAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
Note: Unless otherwise indicated, AV
= 1; OSR = 64; GAIN = 1; Dithering OFF; V
.
= 5.0V, DV
DD

FIGURE 2-1: Spectral Response.

= 3.3 V; Internal V
DD
= -0.5 dBFS @ 60 Hz.
IN
; TA = +25°C, MCLK = 4 MHz; PRESCALE
REF

FIGURE 2-4: Spectral Response.

FIGURE 2-2: Spectral Response.

FIGURE 2-3: Spectral Response.

© 2011 Microchip Technology Inc. DS25048B-page 9

FIGURE 2-5: Spectral Response.

FIGURE 2-6: Spectral Response.

MCP3903
85
Note: Unless otherwise indicated, AV
64; GAIN = 1; Dithering OFF; V
.
IN
= 5.0V, DV
DD
= -0.5 dBFS @ 60 Hz.

FIGURE 2-7: Spectral Response.

120
120
120
120
120
120
120
ic
100
100
100
100
100
100
)
ynamic
80
80
80
80
80
60
60
60
60
60
ge (dB)
Free Dynamic
40
40
40
40
Range (dB)
Range (dB)
Range (dB)
Range (dB)
ious Free Dynamic
20
20
20
Spurious Free Dynamic
Spurious Free Dynamic
Spurious Free Dynamic
0
0
32 64 128 256
32 64 128 256
Dithering ON
Dithering ON
Dithering ON
Dithering ON
Dithering ON
Dithering ON
Dithering ON
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Oversampling Ratio (OSR)

FIGURE 2-8: Spurious Free Dynamic Range vs Oversampling Ratio.

= 3.3 V; TA = +25°C, MCLK = 4 MHz; PRESCALE = 1; OSR =
DD
100
100
100
100
100
100
100
95
95
95
95
95
95 90
90
90
90
90
90
)
85
85
85
85
85
85 80
80
80
80
80 75
75
75
75
75
AD (dB)
70
70
70
70
SINAD (dB)
SINAD (dB)
SINAD (dB)
SINAD (dB)
65
65
65
65 60
60
60 55
55
55 50
50
OSR = 64
OSR = 64
OSR = 64
OSR = 64
OSR = 64
OSR = 32
OSR = 32
OSR = 32
OSR = 32
12481632
12481632
OSR = 256
OSR = 256
OSR = 256
OSR = 256
OSR = 256
OSR = 256
OSR = 128
OSR = 128
OSR = 128
OSR = 128
OSR = 128
GAIN (V/V)

FIGURE 2-10: Signal-to-Noise and Distortion vs. Gain (Dithering OFF).

100
100
100
100
100
100
100
95
95
95
95
95
95 90
90
90
90
90
90 85
85
85
85
85 80
80
80
80
80
D (dB)
75
75
75
75
75 70
70
70
70
SINAD (dB)
SINAD (dB)
SINAD (dB)
SINAD (dB)
65
65
65 60
60
60 55
55
55 50
50
OSR = 64
OSR = 64
OSR = 64
OSR = 64
OSR = 32
OSR = 32
OSR = 32
12481632
12481632
OSR = 256
OSR = 256
OSR = 256
OSR = 256
OSR = 256
OSR = 256
GAIN (V/V)
OSR = 128
OSR = 128
OSR = 128
OSR = 128
OSR = 128

FIGURE 2-11: Signal-to-Noise and Distortion vs. Gain (Dithering ON).

120
120
120
120
120
120
120
Dithering ON
Dithering ON
Dithering ON
Dithering ON
Dithering ON
100
100
100
100
100
100
)
80
80
80
80
80
60
60
60
60
60
AD (dB)
40
40
40
40
SINAD (dB)
SINAD (dB)
SINAD (dB)
SINAD (dB)
20
20
20
0
0
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
32 64 128 256
32 64 128 256
Dithering ON
Oversampling Ratio (OSR)

FIGURE 2-9: Signal-to-Noise and Distortion vs. Oversampling Ratio.

FIGURE 2-12: Total Harmonic Distortion vs. Oversampling Ratio.

DS25048B-page 10 © 2011 Microchip Technology Inc.
MCP3903
Note: Unless otherwise indicated, AV
64; GAIN = 1; Dithering OFF; V
.
-60
-60
-60
-60
-60
-60
-60
n
-70
-70
-70
-70
-70
-70
tortion
-80
-80
-80
-80
-80
-90
-90
-90
-90
-90
Bc)
nic Distortion
(dBc)
(dBc)
(dBc)
(dBc)
-100
-100
-100
-100
armonic Distortion
-110
-110
-110 otal Harmonic Distortion Total Harmonic Distortion
Total Harmonic Distortion
-120
-120
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering ON
Dithering ON
Dithering ON
20 50 100 200 500 1000 2000
20 50 100 200 500 1000 2000
Input Frequency (Hz)
IN
= 5.0V, DV
DD
= -0.5 dBFS @ 60 Hz.
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz OSR=64
OSR=64
OSR=64
OSR=64
OSR=64
OSR=64

FIGURE 2-13: Total Harmonic Distortion vs. Input Signal Frequency.

0
0
0
0
0
0
0
on
-20
-20
-20
-20
-20
-20
istortion
-40
-40
-40
-40
-40
-
-60
-60
-60
-60
-60
dBc)
onic Distortion
(dBc)
(dBc)
(dBc)
(dBc)
-80
-80
-80
-80
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz OSR=64
OSR=64
OSR=64
OSR=64
OSR=64
OSR=64
Harmonic Distortion
-100
-100
-100
Total Harmonic Distortion
Total Harmonic Distortion
Total Harmonic Distortion
-
-120
-120
-40 -20 0 25 45 85 105 125
-40 -20 0 25 45 85 105 125
Temperature (°C)
°

FIGURE 2-14: Total Harmonic Distortion vs. Temperature.

= 3.3 V; TA = +25°C, MCLK = 4 MHz; PRESCALE = 1; OSR =
DD
120
120
120
120
120
120
120
100
100
100
100
100
100
80
80
80
80
80
D (dB)
60
60
60
60
60
40
40
40
40
SINAD (dB)
SINAD (dB)
SINAD (dB)
SINAD (dB)
20
20
20
0
0
-40 -20 0 25 45 85 105 125
-40 -20 0 25 45 85 105 125
Temperature (°C)
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz OSR=64
OSR=64
OSR=64
OSR=64
OSR=64
OSR=64

FIGURE 2-16: Signal-to-Noise and Distortion vs. Temperature.

90
90
90
90
90
90
90 80
80
80
80
80
80 70
70
70
70
70
70 60
60
60
60
60
60
B)
50
50
50
50
50 40
40
40
40
40
AD (dB)
30
30
30
30
SINAD (dB)
SINAD (dB)
SINAD (dB)
SINAD (dB)
20
20
20
20 10
10
10
0
0
0
-10
-10
0.00001 0.001 0.1 10 1000
0.00001 0.001 0.1 10 1000 Input Signal Amplitude (mV)

FIGURE 2-17: Signal-to-Noise and Distortion vs. Input Signal Amplitude.

100
100
100
100
100
100
100
90
90
90
90
90
90 80
80
80
80
80
80
)
70
70
70
70
70
70 60
60
60
60
60 50
50
50
50
50
AD (dB)
40
40
40
40
SINAD (dB)
SINAD (dB)
SINAD (dB)
SINAD (dB)
30
30
30
30 20
20
20 10
10
10
0
0
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering OFF
Dithering ON
Dithering ON
Dithering ON
Dithering ON
Dithering ON
Dithering ON
=
fs=15.625KHz
fs=15.625KHz
fs=15.625KHz OSR=64
OSR=64
OSR=64
20 50 100 200 500 1000 2000
20 50 100 200 500 1000 2000
Input Frequency (Hz)

FIGURE 2-15: Signal-to-Noise and Distortion vs. Input Signal Frequency.

© 2011 Microchip Technology Inc. DS25048B-page 11

FIGURE 2-18: Signal-to-Noise and Distortion vs. Master Clock.

MCP3903
Note: Unless otherwise indicated, AV
64; GAIN = 1; Dithering OFF; V
1.40
1.40
1.40
1.40
1.40
1.40
1.40
1.20
1.20
1.20
1.20
1.20
1.20
1.00
1.00
1.00
1.00
1.00
1.00
(mV)
0.80
0.80
0.80
0.80
0.80
0.60
0.60
0.60
0.60
0.60
Error (mV)
0.40
0.40
0.40
0.40
0.40
0.20
0.20
0.20
0.20
ffset Error (mV)
0.00
0.00
0.00
Offset Error (mV)
Offset Error (mV)
Offset Error (mV)
-0.20
-0.20
-0.20
-
-0.40
-0.40
G=1
G=1
G=1
G=1
G=1
G=1
G=4
G=4
G=4
G=32
G=32
G=32
-40 -20 0 25 45 85 105 125
-40 -20 0 25 45 85 105 125
Temperature (°C)
IN
= 5.0V, DV
DD
DD
= -0.5 dBFS @ 60 Hz.
G=8
G=8
G=8
G=8
G=8
G=8
G=8
G=16
G=16
G=16
G=16
G=16
G=16
G=2
G=2
G=2
G=2
G=2
°

FIGURE 2-19: Offset Error vs. Temperature (Channel 0).

1.60
1.60
1.60
1.60
1.60
1.60
1.60
1.40
1.40
1.40
1.40
1.40
1.40
1.20
1.20
1.20
1.20
1.20
1.20
(mV)
1.00
1.00
1.00
1.00
1.00
0.80
0.80
0.80
0.80
0.80
Error (mV)
0.60
0.60
0.60
0.60
ffset Error (mV)
0.40
0.40
0.40
0.40
Offset Error (mV)
Offset Error (mV)
Offset Error (mV)
0.20
0.20
0.20
0.00
0.00
0.00
CH2
CH2
CH2
CH2
CH2
-40 -20 0 25 45 85 105 125
-40 -20 0 25 45 85 105 125
CH1
CH1
CH1
CH1
CH1
CH1
CH1
CH0
CH0
CH0
CH0
CH0
Temperature (°C)
Temperature (°C)
CH3
CH3
CH3
CH3
CH3
CH3
CH3
CH4
CH4
CH4
CH4
CH5
CH5
CH5
CH5
CH5

FIGURE 2-20: Channel-to-Channel Offset Match vs. Temperature.

= 3.3 V; TA = +25°C, MCLK = 4 MHz; PRESCALE = 1; OSR =
2.360
2.360
2.360
2.360
2.360
2.360
2.360
V)
2.355
2.355
2.355
2.355
2.355
2.355
rence (V)
2.350
2.350
2.350
2.350
2.350
Reference (V)
ltage Reference (V)
2.345
2.345
2.345
2.345
Int. Voltage Reference (V)
Int. Voltage Reference (V)
Int. Voltage Reference (V)
2.340
2.340
-40 -20 0 25 45 85 105 125
-40 -20 0 25 45 85 105 125
Temperature (°C)
°

FIGURE 2-22: Internal Voltage Reference vs. Temperature.

2.35473
2.35473
2.35473
2.35473
2.35473
2.35473
2.35473
2.35472
2.35472
2.35472
2.35472
2.35472
2.35472
2.35471
2.35471
2.35471
2.35471
2.35471
2.35471
ce (V)
2.35470
2.35470
2.35470
2.35470
2.35470
eference (V)
2.35469
2.35469
2.35469
2.35469
ge Reference (V)
2.35468
2.35468
2.35468
2.35468
2.35467
2.35467
2.35467
t. Voltage Reference (V)
2.35466
2.35466
Int. Voltage Reference (V)
Int. Voltage Reference (V)
4.5 5 5.5
4.5 5 5.5 Power Supply (V)

FIGURE 2-23: Internal Voltage Reference vs. Supply Voltage.

0.00
0.00
0.00
0.00
0.00
0.00
0.00
G=1
G=1
G=1
G=1
G=1
G=16
G=16
G=16
G=16
G=16
G=1
-0.05
-0.05
-0.05
-0.05
-0.05
-0.05
%)
-0.10
-0.10
-0.10
-0.10
-0.10
-
G=2
G=2
G=2
G=2
-0.15
-0.15
-0.15
-0.15
-0.15
Error (%)
-0.20
-0.20
-0.20
-0.20
Gain Error (%)
Gain Error (%)
Gain Error (%)
Gain Error (%)
-0.25
-0.25
-0.25
-0.30
-0.30
G=2
G=32
G=32
G=32
G=32
G=4
G=4
G=4
-40 -20 0 25 45 85 105 125
-40 -20 0 25 45 85 105 125
G=8
G=8
G=8
G=8
G=8
G=8
Temperature (°C)

FIGURE 2-21: Gain Error vs. Temperature.

FIGURE 2-24: Noise Histogram.

DS25048B-page 12 © 2011 Microchip Technology Inc.
MCP3903
Note: Unless otherwise indicated, AV
64; GAIN = 1; Dithering OFF; V
50
50
50
50
50
50
50 40
40
40
40
40
40 30
30
30
30
30
30 20
20
20
20
20
20
)
10
10
10
10
10
0
0
0
0
0
(ppm)
-10
-10
-10
-10
INL (ppm)
INL (ppm)
INL (ppm)
INL (ppm)
-20
-20
-20
-20
-30
-30
-30
-40
-40
-40
-50
-50
-50
-0.5 -0.25 0 0.25 0.5
-0.5 -0.25 0 0.25 0.5
CH1
CH1
CH1
CH1
CH1
Input Voltage (V)
Input Voltage (V)
IN
= 5.0V, DV
DD
= -0.5 dBFS @ 60 Hz.

FIGURE 2-25: Integral Non-Linearity (Dithering OFF).

50
50
50
50
50
50
50 40
40
40
40
40
40 30
30
30
30
30
30 20
20
20
20
20
20 10
10
10
10
10
0
0
0
0
0
ppm)
-10
-10
-10
-10
-20
-20
-20
-20
INL (ppm)
INL (ppm)
INL (ppm)
INL (ppm)
-30
-30
-30
-40
-40
-40
-
-50
-50
-0.5 -0.25 0 0.25 0.5
-0.5 -0.25 0 0.25 0.5 Input Voltage (V)
Input Voltage (V)
CH0
CH0
CH0
CH0
CH0
CH0
CH1
CH1
CH1
CH1
CH1
CH0
CH0
CH0
CH0
CH0
CH0
= 3.3 V; TA = +25°C, MCLK = 4 MHz; PRESCALE = 1; OSR =
DD

FIGURE 2-26: Integral Non-Linearity (Dithering ON).

9
9
9
9
9
9
9
8
8
8
8
8
8
7
7
7
7
7
7
6
6
6
6
6
5
5
5
5
5
(mA)
4
4
4
4
IDD (mA)
IDD (mA)
IDD (mA)
IDD (mA)
3
3
3
3
2
2
2
1
1
1
0
0
1234
1234
AIDD Boost OFF
AIDD Boost OFF
AIDD Boost OFF
AIDD Boost OFF
AIDD Boost OFF
AIDD Boost OFF
DIDD
DIDD
DIDD
MCLK Frequency(MHz)

FIGURE 2-27: Operating Current vs. Master Clock (MCLK).

© 2011 Microchip Technology Inc. DS25048B-page 13
MCP3903

3.0 PIN DESCRIPTION

TABLE 3-1: PIN FUNCTION TABLE

Pin No. Symbol Function
1AV
2 CH0+ Non-Inverting Analog Input Pin for Channel 0
3 CH0- Inverting Analog Input Pin for Channel 0
4 CH1- Inverting Analog Input Pin for Channel 1
5 CH1+ Non-Inverting Analog Input Pin for Channel 1
6 CH2+ Non-Inverting Analog Input Pin for Channel 2
7 CH2- Inverting Analog Input Pin for Channel 2
8 CH3- Inverting Analog Input Pin for Channel 3
9 CH3+ Non-Inverting Analog Input Pin for Channel 3
10 CH4+ Non-Inverting Analog Input Pin for Channel 4
11 CH4- Inverting Analog Input Pin for Channel 4
12 CH5- Inverting Analog Input Pin for Channel 5
13 CH5+ Non-Inverting Analog Input Pin for Channel 5
14 REFIN+/OUT Non-Inverting Voltage Reference Input and Internal Reference Output Pin
15 REFIN- Inverting Voltage Reference Input Pin
16 A
17 D
18 DR
19 DR
20 DR
21 OSC1 Oscillator Crystal Connection Pin or Clock Input Pin
22 OSC2 Oscillator Crystal Connection Pin
23 CS
24 SCK Serial Interface Clock Pin
25 SDO Serial Interface Data Output Pin
26 SDI Serial Interface Data Input Pin
27 RESET
28 DV
DD
GND
GND
A Data Ready Signal Output for channels pair A
B Data Ready Signal Output for channels pair B
C Data Ready Signal Output for channels pair C
DD
Analog Power Supply Pin
Analog Ground Pin, Return Path for internal analog circuitry
Digital Ground Pin, Return Path for internal digital circuitry
Chip Select for Serial Interface
Master Reset Logic Input Pin
Digital Power Supply Pin

3.1 RESET

This pin is active low and places the entire chip in a reset state when active.
When RESET value, no communication can take place, no clock is distributed inside the part. This state is equivalent to a POR state.
Since the default state of the ADCs is on, the analog power consumption when RESET when RESET is largely reduced because this current consumption is essentially dynamic and is reduced drastically when there is no clock running. All the analog biases are
DS25048B-page 14 © 2011 Microchip Technology Inc.
=0, all registers are reset to their default
= 0 is equivalent to
= 1. Only the digital power consumption
enabled during a reset so that the part is fully operational just after a RESET is Schmitt triggered.
3.2 Digital V
DV
is the power supply pin for the digital circuitry
DD
within the MCP3903. This pin requires appropriate bypass capacitors and should be maintained between
2.7V and 3.6V for specified operation.
DD
(DV
rising edge. This input
)
DD
MCP3903
3.3 Analog V
AV
is the power supply pin for the analog circuitry
DD
within the MCP3903.
This pin requires appropriate bypass capacitors and should be maintained to 5V ±10% for specified operation.
DD
(AV
DD
)

3.4 ADC Differential Analog Inputs(CHn+/CHn-)

CHn- and CHn+, are the two fully-differential analog voltage inputs for the Delta-Sigma ADCs. There are six channels in total grouped in three channel pairs.
The linear and specified region of the channels are dependent on the PGA gain. This region corresponds to a differential voltage range of ±500 mV/GAIN with
= 2.4V. The maximum absolute voltage, with
V
REF
respect to AGND, for each CHn+/- input pin is +/-1V with no distortion and ±6V with no breaking after continuous voltage.

3.5 Analog Ground (AGND)

AGND is the ground connection to internal analog circuitry (ADCs, PGA, voltage reference, POR). To ensure accuracy and noise cancellation, this pin must be connected to the same ground as DGND, preferably with a star connection. If an analog ground plane is available, it is recommended that this pin be tied to this plane of the PCB. This plane should also reference all other analog circuitry in the system.

3.6 Non-Inverting Reference Input, Internal Reference Output (REFIN+/OUT)

This pin is the non-inverting side of the differential voltage reference input for all ADCs or the internal voltage reference output. When VREFEXT = 1, and an external voltage reference source can be used, the internal voltage reference is disabled. When using an external differential voltage reference, it should be connected to its V
When using an external single-ended reference, it should be connected to this pin.
When VREFEXT = 0, the internal voltage reference is enabled and connected to this pin through a switch. This voltage reference has minimal drive capability and thus needs proper buffering and bypass capacitances (10 μF tantalum in parallel with 0.1 μF ceramic) if used as a voltage source.
For optimal performance, bypass capacitances should be connected between this pin and AGND at all times even when the internal voltage reference is used.
REF+
pin.

3.7 Inverting Reference Input (REFIN-)

This pin is the inverting side of the differential voltage reference input for both ADCs. When using an external differential voltage reference, it should be connected to its V voltage reference, or when VREFEXT = 0 (Default) and using the internal voltage reference, this pin should be directly connected to AGND.
pin. When using an external single-ended
REF-

3.8 Digital Ground Connection (DGND)

DGND is the ground connection to internal digital circuitry (SINC filters, oscillator, serial interface). To ensure accuracy and noise cancellation, DGND must be connected to the same ground as AGND, preferably with a star connection. If a digital ground plane is available, it is recommended that this pin be tied to this plane of the Printed Circuit Board (PCB). This plane should also reference all other digital circuitry in the system.

3.9 DRn (Data Ready Pins)

The Data Ready pins indicate if a new conversion result is ready to be read on each of the A, B and C pairs of ADCs. The default state of this pin is high when DR_HIZN=1 and is high impedance when DR_HIZN=0 (Default). After each conversion is finished, a low pulse will take place on the data ready pins to indicate the conversion result is ready as an interrupt. This pulse is synchronous with the master clock and has a defined and constant width.
The Data Ready pins are independent of the SPI interface and act like an interrupt output.The Data Ready pins state is not latched and the pulse width (and period) are both determined by the MCLK frequency, over-sampling rate, and internal clock pre­scale settings. The DR pulse width is equal to one DMCLK period and the frequency of the pulses is equal to DRCLK (see Figure 1-3).
Note: These pins should not be left floating
when DR_HIZ resistor connected to DV mended.
bit is low; a 100k pull-up
is recom-
DD
© 2011 Microchip Technology Inc. DS25048B-page 15
MCP3903

3.10 Oscillator And Master Clock Input Pins (OSC1/CLKI, OSC2)

OSC1/CLKI and OSC2 provide the master clock for the device. When CLKEXT = 0 (Default), a resonant crystal or clock source with a similar sinusoidal waveform must be placed across these pins to ensure proper operation. The typical clock frequency specified is 4 MHz. However, the clock frequency can be 1 MHz to 5 MHz without disturbing ADC accuracy. With the current boost circuit enabled, the master clock can be used up to 8.192 MHz without disturbing ADC accuracy. Appropriate load capacitance should be connected to these pins for proper operation.
Note: When CLKEXT = 1, the crystal oscillator
is disabled, as well as the OSC2 input. The OSC1 becomes the master clock input CLKI, direct path for an external clock source, for example a clock source generated by an MCU.

3.11 CS (Chip Select)

This pin is the SPI Chip Select that enables the serial communication. When this pin is high, no communication can take place. A chip select falling edge initiates the serial communication and a chip select rising edge terminates the communication. No communication can take place even when CS and when RESET
This input is Schmitt-triggered.
is low.
is low

3.12 SCK (Serial Data Clock)

This is the serial clock pin for SPI communication. Data is clocked into the device on the RISING edge of SCK. Data is clocked out of the device on the FALLING edge of SCK. The MCP3903 interface is compatible with both SPI 0,0 and 1,1 modes. The maximum clock speed specified is 10 MHz. This input is Schmitt triggered.

3.13 SDO (Serial Data Output)

This is the SPI data output pin. Data is clocked out of the device on the FALLING edge of SCK. This pin stays at high impedance during the control byte. It also stays at high impedance during the whole communication for write commands and when the CS pin is high or when the RESET pin is low. This pin is active only when a read command is processed. Each read is processed by a packet of 24 bits (size of each register), except on the ADC output registers when WIDTH=0.

3.14 SDI (Serial Data Input)

This is the SPI data input pin. Data is clocked into the device on the RISING edge of SCK. When CS is low, this pin is used to communicate with a series of 8-bit commands. The interface is half-duplex (inputs and outputs do not happen at the same time). Each communication starts with a chip select falling edge followed by an 8-bit control byte entered through the SDI pin. Each write is processed by packets of 24 bits (size of each register). Each command is either a Read or a Write command. Toggling SDI during a Read command has no effect. This input is Schmitt-triggered.
DS25048B-page 16 © 2011 Microchip Technology Inc.
MCP3903

4.0 TERMINOLOGY AND FORMULAS

This section defines the terms and formulas used throughout this data sheet. The following terms are defined:
MCLK - Master Clock
AMCLK - Analog Master Clock
DMCLK - Digital Master Clock
DRCLK - Data Rate Clock
OSR - Oversampling Ratio
Offset Error
Gain Error
Integral Non-Linearity Error
Signal-To-Noise Ratio (SNR)
Signal-To-Noise Ratio And Distortion (SINAD)
Total Harmonic Distortion (THD)
Spurious-Free Dynamic Range (SFDR)
MCP3903 Delta-Sigma Architecture
Idle Tones
Dithering
Crosstalk
PSRR
CMRR
ADC Reset Mode
Hard Reset Mode (RESET = 0)
ADC Shutdown Mode
Full Shutdown Mode

4.1 MCLK - Master Clock

4.2 AMCLK - Analog Master Clock

This is the clock frequency that is present on the analog portion of the device, after prescaling has occurred via the CONFIG PRESCALE<1:0> register bits. The analog portion includes the PGAs and the two sigma-delta modulators.
EQUATION 4-1:
AMCLK
MCLK
------------------------------ -=
PRESCALE
T ABLE 4-1: MCP3903 OVERSAMPLING
RATIO SETTINGS
Config
PRE<1:0>
00AMCLK = MCLK/ 1 (default) 01 AMCLK = MCLK/ 2 10 AMCLK = MCLK/ 4 11 AMCLK = MCLK/ 8
Analog Master Clock
Prescale

4.3 DMCLK - Digital Master Clock

This is the clock frequency that is present on the digital portion of the device, after prescaling and division by 4. This is also the sampling frequency, that is the rate at which the modulator outputs are refreshed. Each period of this clock corresponds to one sample and one modulator output.
EQUATION 4-2:
DMCLK
AMCLK
--------------------­4
MCLK
----------------------------------------== 4 PRESCALE×
This is the fastest clock present in the device. This is the frequency of the crystal placed at the OSC1/OSC2 inputs when CLKEXT = 0 or the frequency of the clock input at the OSC1/CLKI when CLKEXT = 1.

4.4 DRCLK - Data Rate Clock

This is the output data rate i.e. the rate at which the ADCs output new data. Each new data is signaled by a data ready pulse on the DR pin.
This data rate is depending on the OSR and the prescaler with the following formula:
EQUATION 4-3:
DMCLK
DRCLK
© 2011 Microchip Technology Inc. DS25048B-page 17
---------------------­OSR
AMCLK
--------------------­4OSR×
-----------------------------------------------------------=== 4 OSR PRESCALE××
MCLK
Loading...
+ 37 hidden pages