Datasheet M29W320DT, M29W320DB Datasheet (ST)

Page 1
查询M29W320供应商
FEATURES SUMMARY
SUPPLY VOLTAGE
–V
–V
ACCESS TIME: 70, 90ns
PROGRAMMING TIME
– 10µs per Byte/Word typical
67 MEMORY BLOCKS
– 1 Boot Block (Top or Bottom Location) – 2 Parameter and 64 Main Blocks
PROGRAM/ERA SE CONTROLLER
– Embedded Byte/Word Program algorithms
ERASE SUSPEND and RESUME MODES
– Read and Program another Block during
UNLOCK BYPASS PROGRAM COMMAND
– Faster Production/Batch Progra mming
V
PP
PROTECT
TEMPORARY BLOCK UNPROTECTION
MODE
COMMON FLASH INTERFACE
– 64 bit Security Code
LOW POWER CONSUMPTION
– Standby and Automatic Standby
100,000 PROGRAM/ERASE CYCL ES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h – Top Device Code M29W320DT: 22CAh – Bottom Device Code M29W320D B: 22CBh
2.7V to 3.6V for Program, Erase and
CC =
Read
=12V for Fast Program (optional)
PP
Erase Suspend
/WP PIN for F AST PROGRAM and WRIT E
M29W320DT
M29W320DB
32 Mbit (4Mb x8 or 2Mb x16, Boot Block)
3V Supp l y Fl ash Memory
Figure 1. Packages
TSOP48 (N)
12 x 20mm
FBGA
TFBGA63 (ZA) TFBGA48 (ZE)
1/46August 2005
Page 2
M29W320DT, M29W320DB
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Figure 3. TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
Figure 4. TFBGA63 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 5. TFBGA48 Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 6. Block Addresses (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 7. Block Addresses (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Address Inputs (A0-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Data Input/Output or Address Input (DQ15A–1).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chip Enable (E Output Enable (G Write Enable (W V
Write Protect (V
PP/
Reset/Block Temporary Unprotect (RP).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Ready/Busy Output (RB Byte/Word Organization Select (BYTE V
Supply Voltage (2.7V to 3.6V).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
CC
V
Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
SS
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
WP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
PP/
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block Protect and Chip Unprotect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 8. Bus Operations, BYTE Table 2. Bus Operations, BYTE
= VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
= VIH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Read/Reset Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Read CFI Query Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/46
Page 3
M29W320DT, M29W320DB
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Unlock Bypass Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Unlock Bypass Program Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 4
Block Erase Command.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Erase Suspend Comma nd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5
Block Protect and Chip Unprotect Commands.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Com m ands , 16-bit mode, BYTE Table 4. Com m ands , 8-bit mode, BYTE
Table 5. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 18
STATUS REGISTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 6. Status Register Bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 9. Data Polling Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10.Data Toggle Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
= VIH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
= VIL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 8. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 11.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 9. Dev ice Capacitanc e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10.DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 13.Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 11.Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 14.Write AC Waveforms, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 12.Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 15.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 13. Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 16.Reset/Block Temporary Unprotect AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 14.Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 17.Accelerated Program Timing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 8
Figure 18.TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Bottom View Package Out line . . 28
Table 15. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm, Package Mechani c al Data . . . . . 28
Figure 19.TFBGA63 7x11mm - 6x8 active ball array, 0.8mm pitch, Package Outline. . . . . . . . . . .29
Table 16. TF BGA 63 7x11mm - 6x8 active ball array, 0.8mm pitch, Package Mechanical Data . . . 29
3/46
Page 4
M29W320DT, M29W320DB
Figure 20.TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline. . . . . . 30
Table 17. TF BGA 48 6x8m m - 6x8 Ball Array, 0.8mm Pitch, Package M echanical Data. . . . . . . . . 30
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 18.Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
APPENDIX A.BLOCK ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 19.Top Boot Block Addresses, M29W320DT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 20.Bottom Boot Block Addresses, M29W320DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
APPENDIX B.COMMON FLASH INTERFACE (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 21.Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 22.CFI Query Identification String. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 23.CFI Query System Interface Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 24. Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 25. Prim ary Algorithm-Spec ific Extended Query Tabl e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 26.Security Code Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
APPENDIX C.BLOCK PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 8
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 27. Programmer Technique Bus Operations, BYTE
= VIH or V
IL . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 21.Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Figure 22.Programmer Equipment Chip Unprotect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 23.In-System Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 24.In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 28.Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4/46
Page 5
SUMMARY DESCRIPTION
The M29W320D is a 32 Mbit (4Mb x8 or 2Mb x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be per­formed using a single low voltage (2.7 to 3.6V) supply. On power-up the memory d efaults to its Read mode where it can be read in the same way as a ROM or EPROM.
The memory is divided into blocks that can be erased independently so it is possible to pres erve valid data while old data is erased. Each block can be protected independently to prevent accidental Program or Erase commands from modifying the memory. Program and Erase c omm ands are wri t­ten to the Command Interface of t he memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents. The end of a program or erase op eration can be de tected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards.
The blocks in the memory are as ymmetrically ar­ranged, see Figure 6. and Figure 7., Table 19. and Table 20.The first or l ast 6 4 Kby tes h ave been di­vided into four additional blocks. The 16 Kbyte Boot Block can be used for small initialization code to start the microprocessor, the two 8 Kbyte Pa­rameter Blocks can be used for p aramet er storag e and the remaining 32 K byte is a sm all Ma in Block where the application may be stored.
Chip Enable, Output Enable and Write Enable sig­nals control the bus operation of the memory. They allow simple conne ction to most micropro­cessors, often without additional logic.
The memory is offered in TSOP48 (12 x 20mm) TFBGA63 (7x11mm, 0.8mm pitch) and TFBGA48 (6x8mm, 0.8mm pitch) packages. The memory is supplied with all the bi t s erased (set to 1 ).
M29W320DT, M29W320DB
Figure 2. Logic Diagram
VPP/WP
V
CC
21
A0-A20
W
E
G
RP
BYTE
M29W320DT M29W320DB
V
SS
Table 1. Signal Names
A0-A20 Address Inputs DQ0-DQ7 Data Inputs/Outputs DQ8-DQ14 Data Inputs/Outputs DQ15A–1 Data Input/Output or Address Input E G
Chip Enable Output Enable
15
DQ0-DQ14
DQ15A–1
RB
AI90189B
W RP RB BYTE V
CC
VPP/WP
V
SS
NC Not Connected Internally
Write Enable Reset/Block Temporary Unprotect Ready/Busy Output Byte/Word Organization Select Supply Voltage VPP/Write Protect
Ground
5/46
Page 6
M29W320DT, M29W320DB
Figure 3. TSOP Connections
A15
1
48 A14 A13 A12 A11 A10 DQ14
A9
A8 A19 A20
W RP NC
12
M29W320DT M29W320DB
13
37 36
VPP/WP
RB
A18 A17
A7 A6 A5 A4 A3 A2 A1
24 25
AI90190
A16 BYTE V
SS
DQ15A–1 DQ7
DQ6 DQ13 DQ5 DQ12 DQ4 V
CC
DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G V
SS
E A0
6/46
Page 7
Figure 4. TFBGA63 Connections (Top view through packa ge)
M29W320DT, M29W320DB
654321
A
B
NC
NC
(1)
(1)
C
D
E
F
G
H
NC
A3
A4
A2
A1
A0
(1)
A7
A17
A6
RB
V
/
PP
A18
A5 A20
DQ0
E
DQ8
DQ2
DQ10
WP
W
RP
NC
A19
DQ5
DQ12
A9
A8
A10
A11
DQ7
DQ14
NC
NC
A13
A12
A14
A15
A16
BYTE
(1)
(1)
NC
NC
87
(1)
(1)
J
K
L
NC
M
NC
G
V
SS
(1)
NC
(1)
NC
DQ9
DQ1
(1)
(1)
DQ11
DQ3
V
CC
DQ4
Note: 1. Balls are shorted together via the substrate but not connected to the die.
DQ13
DQ6
DQ15
A–1
V
SS
NC
NC
NC
NC
(1)
(1)
AI05525B
(1)
(1)
7/46
Page 8
M29W320DT, M29W320DB
Figure 5. TFBGA48 Connections (Top view through packa ge)
654321
A
B
C
D
E
F
G
H
A3
A4
A2
A1
A0
E
G
V
SS
A7
A17
A6
A5 A20
DQ0
DQ8
DQ9
DQ1
RB
V
PP
A18
DQ2
DQ10
DQ11
DQ3
/
WP
W
RP
NC
A19
DQ5
DQ12
V
CC
DQ4
A9
A8
A10
A11
DQ7
DQ14
DQ13
DQ6
A13
A12
A14
A15
A16
BYTE
DQ15
A–1
V
SS
AI08084
8/46
Page 9
Figure 6. Block Addresses (x8)
M29W320DT, M29W320DB
M29W320DT
Top Boot Block Addresses (x8)
3FFFFFh
3FC000h 3FBFFFh
3FA000h 3F9FFFh
3F8000h
3F7FFFh
3F0000h
3EFFFFh
3E0000h
01FFFFh
010000h
00FFFFh
000000h
16 KByte
8 KByte
8 KByte
32 KByte
64 KByte
64 KByte
64 KByte
Total of 63
64 KByte Blocks
Bottom Boot Block Addresses (x8)
3FFFFFh
3F0000h
3EFFFFh
3E0000h
01FFFFh
010000h
00FFFFh
008000h
007FFFh
006000h
005FFFh
004000h
003FFFh
000000h
M29W320DB
64 KByte
64 KByte
64 KByte
32 KByte
8 KByte
8 KByte
16 KByte
Total of 63
64 KByte Blocks
Note: Also see APPEN DIX A., Table 19 . and Table 20. for a full listing of the Block Add res ses.
AI90192
9/46
Page 10
M29W320DT, M29W320DB
Figure 7. Block Addresses (x16)
Top Boot Block Addresses (x16)
1FFFFFh
1FE000h
1FDFFFh
1FD000h
1FCFFFh
1FC000h
1FBFFFh
1F8000h
1F7FFFh
1F0000h
00FFFFh
008000h
007FFFh
000000h
M29W320DT
8 KWord
4 KWord
4 KWord
16 KWord
32 KWord
32 KWord
32 KWord
Total of 63
32 KWord Blocks
Bottom Boot Block Addresses (x16)
1FFFFFh
1F8000h
1F7FFFh
1F0000h
00FFFFh
008000h
007FFFh
004000h
003FFFh
003000h
002FFFh
002000h
001FFFh
000000h
M29W320DB
32 KWord
32 KWord
32 KWord
16 KWord
4 KWord
4 KWord
8 KWord
Total of 63
32 KWord Blocks
Note: Also see Appendix APPENDIX A., Table 19. and Table 20. for a full listing of the Block Addresses.
AI90193
10/46
Page 11
SIGNAL DESCRIPTIONS
See Figure 2., Logic Diagram, and Table 1., Signal Names, for a brief overview of the signals connect­ed to this device.
Address Inputs (A0-A20). The Address Inputs select the cell s in the memory arra y to access du r­ing Bus Read operations. During Bus Write opera­tions they control the commands sent to the Command Interface of the internal state machine.
Data Inputs/Outputs (DQ0-DQ7). The Data I/O outputs the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the internal sta te ma­chine.
Data Inputs/Outputs (DQ8-DQ14). The Data I/O outputs the data stored at the selected address during a Bus Read operation when B YTE
. When BYTE is Low, VIL, these pins are not
V
IH
is High,
used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored.
Data Input/Output o r Address Input (DQ15A –1).
When BYTE
is High, VIH, this pin behaves as a
Data Input/Output pin (as DQ8-DQ14). When
is Low, VIL, this pin behaves as an address
BYTE pin; DQ15A–1 Low will select the LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data Input/Output to include this pin when
is High and ref erences to the Address In-
BYTE puts to include this pin when BYTE
is Low except
when stated explicitly otherwise.
Chip Enable (E
). The Chip Enable, E, activates
the memory, allowing Bus Read and Bus Write op­erations to be performed. When Chip Enable is High, V
Output Enable (G
, all other pins are ignored.
IH
). The Output E nable, G, con-
trols the Bus Read operation of the memory.
Write Enable (W
). The Write Enable, W, controls
the Bus Write operation of the memory’s Com­mand Interf a ce .
Write Protect (VPP/WP). The VPP/Write
V
PP/
Protect
pin provides two functions. The VPP func­tion allo ws the memory to us e an external hi gh volt age power s u pply to r educe th e time req ui red for Unlock Bypass Program operations. The Writ e Pro tec t fu nct io n prov i des a ha rd wa re me th­od of protecting the 16 Kbyte Boot Block. The
/Write Protect pin must not be left floating or
V
PP
unconnected. When V
/Write Protect is Low, VIL, the memo ry
PP
protects the 16 Kbyte Boot Block; Program and Erase operations in this block are ignored while
/Write Protect is Low.
V
PP
M29W320DT, M29W320DB
When V reverts to the previous protection status of the 16 Kbyte boot block. Program and Erase operations can now modify the data in the 16 Kbyte Boot Block unless the block is protected using Block Protection.
When V ory automatically enters the Unlock Bypass mode. When V mal operation resumes. During Unlock Bypass Program operations the mem ory draws I the pin to supply the programming circuits. See the description of the Unlock Bypass c ommand in the Command Interface section. The transitions from
to VPP and from VPP to VIH must be slower
V
IH
than t Never raise V
mode except Read m ode, otherwise the memory may be left in an indeterminate state.
A 0.1µF ca pacitor should be connected between the V to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Unlock Bypass Program, I
Reset/Block Temporary Unprotect (RP). The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that have b een protected.
Note that if V outermost boot block will remain protect even if RP is at V
A Hardware Reset is achieved by holding Reset/ Block Temporary Unprotect Low, V t
PLPX
goes High, V Read and Bus Write operations after t t
RHEL
Output section, Table 1 4. and Figure 16., Reset/ Temporary Unprotect AC Characteristics for more details.
Holding RP protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from V t
PHPHH
Ready/Busy Output (RB
is an open-drain output that can be used to identify when the device is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, V pedance during Read mode, Auto Select mode and Erase Suspend mode.
/Write Protect is High, VIH, the memory
PP
/Write Protect is raised to V
PP
/Write Protect returns to VIH or VIL nor-
PP
, see Figure 17..
VHVPP
/Write Protect to VPP from any
PP
/Write Protect pin and the VSS Ground pin
PP
.
PP
/WP is at VIL, then the 16 KByte
PP
.
ID
the mem-
PP
from
PP
, for at least
IL
. After Reset/Block Temporary Unprotect
, the memory will be ready for Bus
IH
PHEL
or
, whichever occurs last. See the Ready/Busy
at VID will temporarily unprotect the
to VID must be slower than
IH
.
). The Ready/Busy pin
. Ready/Busy is high-im-
OL
11/46
Page 12
M29W320DT, M29W320DB
Note that if VPP/WP is at VIL, then the 16 KByte outermost boot block will remain protect even if RP is at V
ID
.
After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy be­comes high-impedance. See Table 14. and Figure Figure 16., Reset/Temporary Unprotect AC Char­acteristics.
The use of an open-drain output allows the Ready/ Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy.
Byte/Word Organization Select (BYTE
). The
Byte/Word Organization Select pin is used to switch between the x8 and x16 Bus modes of the memory. When Byte/Word Organization Select is Low, V High, V
, the memory is in x8 mode, when it is
IL
, the memory is in x16 mode.
IH
Supply Voltage (2.7V to 3.6V). VCC pro-
V
CC
vides the power supply for all operations (Read, Program and Erase).
The Command Interface is disabled when the V
CC
Supply Voltage is less than the L ockout Voltage,
. This prevents Bus Write operations from ac-
V
LKO
cidentally damaging the data during power up, power down and power surges. If the Program/ Erase Controller is programming or erasing during this time then the operation aborts and the memo­ry contents being altered will be invalid.
A 0.1µF ca pacitor should be connected between the V
Supply Voltage pin and the VSS Ground
CC
pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during Program and Erase operations, I
Ground. VSS is the reference for all voltage
V
SS
CC3
.
measurements.
12/46
Page 13
BUS OPERATIONS
There are five standard bus operations that control the device. These are Bus Read, Bus Write, Ou t­put Disable, Standby and Automatic Standby. See Figure 8. and Table 2., Bus Operations, for a sum­mary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations.
Bus Read. Bus Read operations read from the memory cells, or specific registers in the Com­mand Interface. A valid Bus Read operation in­volves setting the desired address on the Address Inputs, applying a Low sig nal, V
, to Chip Enable
IL
and Output Enable and keeping Write Enable High, V
. The Data Inputs/Outputs will output the
IH
value, see Figure 13., Read Mode AC Waveforms, and Table 11., Read AC Characteristics, for de­tails of when the output becomes valid.
Bus Write. Bus Write operations write to the Command Interface. A valid Bus Write operation begins by setting the desire d address on t he Ad­dress Inputs. The Address Inputs are latc hed by the Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The Data Inputs/Outputs a re latched by the Com­mand Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output En­able must remain High, V
, during the whole Bus
IH
Write operation. See Figure 14. and Figure 15., Write AC Waveforms, and Table 12. and Table
13., Write AC Characteristics, for details of the tim­ing requirements.
Output Disa bl e . T he Data Inputs/Outputs are in the high impedance s tate when Output Enable is High, V
Standby. When Chip Enable is High, V
.
IH
, the
IH
memory enters Standby mode and the Data In-
M29W320DT, M29W320DB
puts/Outputs pins are placed in the high-imped­ance state. To reduce t he Supply Current to the Standby Supply Current, I be held within V
± 0.2V. For the Standby current
level see Table 10., DC Characteristics. During program or erase operations the memory
will continue to use the Program/Erase Supply Current, I
, for Program or Erase operations un-
CC3
til the operation completes. Automatic Standby. If CMOS levels (V
are used to drive the bus and the bus is inactive for 300ns or more the memory enters Automatic Standby where the internal Supply Current is re­duced to the Standby Supply Current, I Data Inputs/Outputs will still output data if a Bus Read operation is in progress.
Special Bus Operations
Additional bus operations can be performed to read the Electronic Signature and also to apply and remove Block Protection. These bus opera­tions are intended for use by programming equip­ment and are not usually used in applications. They require V
to be applied to some pins.
ID
Electronic Signature. The memory has two codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying t he signals listed in Figure 8. and Table 2., Bus Operations.
Block Protect and Chip Unprotect.
can be separately protected against accidental Program or Erase. T he whole chip can be unpro­tected to allow the data inside the blocks to be changed.
Block Protect and Chip Unprote ct operations are described in APPENDIX C..
, Chip Enable should
CC2
CC
CC2
Each block
± 0.2V)
. The
Figure 8. Bus Operations, BYTE
Operation E G W
Bus Read Bus Write Output Disable X Standby Read Manufacturer
Code
Read Device Code
Note: X = VIL or VIH.
V V
V
V
V
V
IL
IL
IH
IL
IL
IL
V
IH
V
IH
X X X Hi-Z Hi-Z
V
IL
V
IL
= V
IL
Address Inputs
DQ15A–1, A0-A20
V
Cell Address Hi-Z Data Output
IH
V
Command Address Hi-Z Data Input
IL
V
X Hi-Z Hi-Z
IH
A0 = VIL, A1 = VIL, A9 = VID,
V
IH
Others VIL or V A0 = VIH, A1 = VIL,
V
IH
A9 = VID, Others VIL or V
IH
IH
Data Inputs/Outputs
DQ14-DQ8 DQ7-DQ0
Hi-Z 20h
Hi-Z
CAh (M29W320DT) CBh (M29W320DB)
13/46
Page 14
M29W320DT, M29W320DB
Table 2. Bus Operations, BYTE = V
Operation E G W
Bus Read Bus Write Output Disable X Standby Read Manufacturer
Code
Read Device Code
Note: X = VIL or VIH.
V V
V
V
V
V
IL
IL
IH
IL
IL
IL
V
IH
V
IH
XXX Hi-Z
V
IL
V
IL
IH
Address Inputs
A0-A20
V
Cell Address Data Output
IH
V
Command Address Data Input
IL
V
XHi-Z
IH
A0 = VIL, A1 = VIL, A9 = VID,
V
IH
Others V A0 = VIH, A1 = VIL, A9 = VID,
V
IH
Others VIL or V
or V
IL
IH
IH
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
0020h
22CAh (M29W320DT) 22CBh (M29W320DB)
14/46
Page 15
COMMAND INTERFACE
All Bus Write operations t o the me mory are in ter­preted by the Command Interface. Commands consist of one or more sequential Bus Write oper­ations. Failure to observe a valid sequence of Bus Write operations will result in the memory return­ing to Read mode. The long command sequences are imposed to maximize data security.
The address used for the commands changes de­pending on whether the memory is in 16-bit or 8­bit mode. See either Table 3., or Table 4., depend­ing on the configuration that is being used, for a summary of the commands.
Read/Reset Command. The Read/Reset com­mand returns the memory to its Read mode where it behaves like a ROM or EPROM, unless other­wise stated. It also resets the errors in th e Status Register. Either one or three Bus Write operations can be used to issue the Read/Reset command.
The Read/Reset Command can be issued, be­tween Bus Write cycles before the start of a pro­gram or erase operation, to return the device to read mode. Once the program or erase operation has started the Read/Reset command is no longer accepted. The Read/Reset command will not abort an Erase operation when issued while in Erase Suspend.
Auto Select Command. The Auto Select com­mand is used to read the Manufacturer C ode, the Device Code and the Block Protection Status. Three consecutive Bus Write operations are re­quired to issue the Auto Select command. Once the Auto Select comma nd is issued the memory remains in Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/ Reset commands are accepted in Auto Select mode, all other commands are ignored.
From the Auto Select mode the Manufacturer Code can be read using a Bus Read operation with A0 = V may be set to either V
and A1 = VIL. The other address bits
IL
or VIH. The Manufa cturer
IL
Code for STMicroelectronics is 0020h. The Device Code can be read using a Bus Read
operation with A0 = V address bits may be set to e ither V
and A1 = VIL. The other
IH
or VIH. The
IL
Device Code for the M29W320DT is 22CAh and for the M29W320DB is 22CBh.
The B lock Prot ection S tatus of each block c an be read using a Bus Read operation with A0 = V A1 = V
, and A 12 - A20 specify i ng the address of
IH
IL
the bl ock. T he oth er addr ess bit s may b e set t o ei­ther V
or VIH. If the ad dress ed bloc k is pro tecte d
IL
then 01h is output on Data Inputs/Outputs DQ0­DQ7, otherwise 00h is output.
Read CFI Query Command. The Read CFI Query Command is used to read data from the Common Flash Interface (CFI) Memory Area. This
M29W320DT, M29W320DB
command is valid when the device is in the Read Array mode, or when the device is i n Autoselected mode.
One Bus Write cycle is required to issue the Read CFI Query Command. Once the command is is­sued subsequent Bus Read ope rations read from the Common Flash Interface Memory Area.
The Read/Reset command m ust be issued to re­turn the device to the previous mode (the Read Ar­ray mode or Autoselected mode). A second Read/ Reset command would be needed if the device is to be put in the Read Array mode from Autoselect­ed mode.
See APPENDIX B., Table 21., Table 22., Table
23., Table 24., Table 25. and T able 26. for details on the information contained in the Common Flash Interface (CFI) memory area.
Program Command. The Program command can be used to program a value to one address in the memory array at a time. The command re­quires four Bus Write operations, the final write op­eration latches the address and data in the internal state machine and starts the Program/Erase Con­troller.
If the address falls in a pro tected block then the Program command is ignored, the data remains unchanged. The Status Register is never read and no error condition is given.
During the program operat ion the memo ry will ig­nore all commands. I t is not possible to issue any command to abort or pause the operation. Typical program times are given in Table 5.. Bus Read op­erations during the program o peration will output the Status Register on the Data Inputs/Outputs. See the section on the S tatus Register for more details.
After the program operation has completed the memory will retu rn to the Read mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Regis­ter. A Read/Reset command must be issued to re­set the error condition and return to Read mode.
Note that the Program command cannot change a bit set at ’0’ bac k to ’1’. One of the E rase Com­mands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’.
Unlock Bypass Command. The Unlock Bypass
,
command is used in conjunction with the Unlock Bypass Program command to program the memo­ry. When the cycle time to the device is long (as with some EPROM programmers) considerable time saving can be made by using these com­mands. Three Bus Write operations are requ ired to issue the Unlock Bypass command.
15/46
Page 16
M29W320DT, M29W320DB
Once the Unlock Bypas s command has bee n is­sued the memory will only accept the Unl ock By­pass Program command and the Unlock Bypass Reset command. The memory can be read as if in Read mode.
The memory offers accelerated program opera­tions through the V system asserts V
/Write Protect pin. When the
PP
on the VPP/Write Protect pin,
PP
the m emory automa tically enters the Unlock By­pass mode. The system may then write the two­cycle Unlock Bypass program command se­quence. The memory uses the higher voltage on the V
/Write Protect pin, to accelerate the Unlock
PP
Bypass Program operation. Never raise V
/Write Protect to VPP from any
PP
mode except Read m ode, otherwise the memory may be left in an indeterminate state.
Unlock Bypass Program Command. The Un­lock Bypass Prog ram comma nd can be used to program one address in the memory array at a time. The command requires two Bus Write oper­ations, the final write operation latches the ad­dress and data in the internal state machine and starts the Program/Erase Controller.
The Program operation using the Unlock Bypass Program command behaves identically to the Pro­gram operation using the Program command. The operation cannot be abort ed, the Status Regi ster is read and protected blocks cannot be pro­grammed. Errors must be reset using the Read/ Reset command, which l eaves the device in Un­lock Bypass Mode. See the Program command for details on the behavior.
Unlock Bypass Reset Command. The Unlock Bypass Reset command can be used to ret urn to Read/Reset mode from Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from Unlock Bypass Mode.
Chip Erase Command. The Chip Erase com­mand can be used to erase the entire chip. Six Bus Write operations are required to issue the Chip Erase Command and start the Program/Erase Controller.
If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protect e d th e Chip Erase op erat i on ap­pears to start but will terminate within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored.
During the erase operation the memory will ignore all commands, including the Erase Suspen d com­mand. It is not possible to i ssue any c ommand t o abort the operation. Typical chip erase times are given in Table 5.. All Bus Read operations du ring the Chip Erase operation will output the Status
Register on the Data Inputs/Outputs. See the sec­tion on the Status Register for more details.
After the Chip Erase operation has com pleted the memory will retu rn to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Regis­ter. A Read/Reset command must be issued to re­set the error condition and return to Read Mode.
The Chip Erase Command sets all of the bits in un­protected blocks of the memory to ’1’. All previous data is lost.
Block Erase Command. The Block Erase com­mand can be u sed to erase a list of one or more blocks. Six Bus Write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth Bus Write operation using the address of the additional block. The Block Erase operation starts the Program/Erase Controller about 50µs after the last Bus Write operation. Once the Program/Erase Controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50µs of the last block. The 50µs timer restarts when an additional block is selected. The Status Register can be read after the sixth Bus Write operation. See the Status Register sec­tion for details on how t o identify if the Program/ Erase Controller has started the Block Erase oper­ation.
If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are pro tected the Block Erase operation appears to start but will terminate within about 100µs, leaving the data un­changed. No error condition is given when protect­ed blocks are ignored.
During the Block Erase operation the me mory wi ll ignore all commands except the Erase Susp end command. Typical b lock e rase tim es are given in Table 5.. All Bus Read operations during the Block Erase ope ration will out pu t the S t a tus Re gister on the Data Inputs/Outputs. See the sec tion on the Status Register for more details.
After the Block Erase operation has completed the memory will retu rn to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Regis­ter. A Read/Reset command must be issued to re­set the error condition and return to Read mode.
The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All previous data in the selected blocks is lost.
Erase Suspend Command. The Erase Suspend Command may be used to temporarily suspend a Block Erase operation and return the memory to Read mode. The command requires one Bus Write operation.
16/46
Page 17
M29W320DT, M29W320DB
The Program/Erase Controller will sus pend within the Erase Suspend Latency Time (refer to Table 5. for value) of the Erase Suspend Command being issued. Once the Program/Erase Controller has stopped the memory will be set to Read mode and the Erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the Program/Erase Controller starts) then the Erase is suspended immedi ately and wi ll start im­mediately when the Erase Resume Comm and is issued. It is not possible to select any further blocks to erase after the Era se Resume.
During Erase Suspend it is possible to Read and Program cells in blocks that are not being erased; both Read and Program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended block then the Program command is ignored and the data remains unchanged. The Status Register is not read and no error condi tion is given. Read-
ing from blocks that are being erased will output the Status Register.
It is also possible t o issue the Auto Select, Read CFI Query and Unlock Bypass commands during an Erase Suspend. The Read/Reset command must be issued to return the device to Read Array mode before the Resume command will be ac­cepted.
Erase Resume Command. The Erase Resume command must be used to restart the Program/ Erase Controller after an Erase Suspend. The de­vice must be in Read Array mode before t he Re­sume command will be accepted. An erase can be suspended and resumed more than once.
Block Protect and Chip Unprotect Commands.
Each block can be separately protected against accidental Program or E rase. The whol e c hip can be unprotected to allow the data inside the blo cks to be changed.
Block Protect and Chip Unprote ct operations are described in APPENDIX C..
17/46
Page 18
M29W320DT, M29W320DB
Table 3. Commands, 16-bit mode, BYTE = V
IH
Bus Write Operations
Command
1st 2nd 3rd 4th 5th 6th
Length
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
1X F0
Read/Reset
3555 AA2AA 55 X F0 Auto Select 3 555 AA 2AA 55 555 90 Program 4 555 AA 2AA 55 555 A0 PA PD Unlock Bypass 3 555 AA 2AA 55 555 20 Unlock Bypass
Program
2X A0PAPD
Unlock Bypass Reset 2 X 90 X 00 Chip Erase 6 555 AA 2AA 55 555 80 555 AA 2AA 55 555 10 Block Erase 6+ 555 AA 2AA 55 555 80 555 AA 2AA 55 BA 30 Erase Suspend 1 X B0 Erase Resume 1 X 30 Read CFI Query 1 55 98
Note: X Don’t Care, PA P rogram Addre ss, PD Program Data, BA Any address in the Blo ck . All values in th e table are in hexadecimal.
The Comm and In terf ace o nly uses A– 1, A 0-A1 0 a nd DQ0-D Q7 to v er ify t he co mman ds ; A1 1-A2 0, D Q8- DQ14 a nd DQ 15 ar e D on’t Care. DQ15A–1 is A–1 when BYTE Read/Reset. After a Rea d/Re se t comman d, read th e memor y a s normal until anot her com m and is iss ued . Read /Res et co mmand is ignored during algori t hm execution.
Auto Select. Afte r an Auto Select command, read Manuf ac tu rer ID , Dev ice ID or Block Prote ction Status. Program , Un lock By pass P rogr am, Chip Eras e, Bl ock Er ase. After these commands read the Status Register until the Program/
Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations unt i l T i m eout Bit is set.
Unlock B ypa ss. Af t er the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypas s Reset commands. Unlock B ypa ss Reset. After the Unlock By pass Reset com m and read the memory as normal un til another com m and is issued. Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program com-
mands on no n-erasing blocks as normal. Erase Resume. After the Erase Resume command the suspended Era se operatio n resumes, read the Status Registe r until the Pro­gram/ Erase Controller completes an d the memor y returns t o Re ad Mode. CFI Query. Comm and is valid when device is ready to read array dat a or when device i s i n autoselecte d m ode.
is VIL or DQ15 when BYTE is VIH.
18/46
Page 19
M29W320DT, M29W320DB
Table 4. Commands, 8-bit mode, BYTE = V
IL
Bus Write Operations
Command
1st 2nd 3rd 4th 5th 6th
Length
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
1X F0 Read/Reset
3 AAA AA 555 55 X F0 Auto Select 3 AAA AA 555 55 AAA 90 Program 4 AAA AA 555 55 AAA A0 PA PD Unlock Bypass 3 AAA AA 555 55 AAA 20 Unlock Bypass
Program
2X A0PAPD
Unlock Bypass Reset 2 X 90 X 00 Chip Erase 6 AAA AA 555 55 AAA 80 AAA AA 555 55 AAA 10 Block Erase 6+ AAA AA 555 55 AAA 80 AAA AA 555 55 BA 30 Erase Suspend 1 X B0 Erase Resume 1 X 30 Read CFI Query 1 AA 98
Note: X Don’t Care, PA P rogram Addre ss, PD Program Data, BA Any address in the Blo ck . All values in th e table are in hexadecimal.
The Comm and In terf ace o nly uses A– 1, A 0-A1 0 a nd DQ0-D Q7 to v er ify t he co mman ds ; A1 1-A2 0, D Q8- DQ14 a nd DQ 15 ar e D on’t Care. DQ15A–1 is A–1 when BYTE
Read/Reset. After a Rea d/Re se t comman d, read th e memor y a s normal until anot her com m and is iss ued . Read /Res et co mmand is ignored during algori t hm execution.
Auto Select. Afte r an Auto Select command, read Manuf ac tu rer ID , Dev ice ID or Block Prote ction Status. Program , Un lock By pass P rogr am, Chip Eras e, Bl ock Er ase. After these commands read the Status Register until the Program/
Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations unt i l T i m eout Bit is set.
Unlock B ypa ss. Af t er the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypas s Reset commands. Unlock B ypa ss Reset. After the Unlock By pass Reset com m and read the memory as normal un til another com m and is issued. Erase Suspend. After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program com-
mands on no n-erasing blocks as normal. Erase Resume. After the Erase Resume command the suspended Era se operatio n resumes, read the Status Registe r until the Pro-
gram/ Erase Controller completes an d the memor y returns t o Re ad Mode. CFI Query. Comm and is valid when device is ready to read array dat a or when device i s i n autoselecte d m ode.
is VIL or DQ15 when BYTE is VIH.
19/46
Page 20
M29W320DT, M29W320DB
Table 5. Program, Erase Times and Progra m , Erase Endu ran ce Cycle s
Parameter Min
Chip Erase 40 Block Erase (64 KBytes) 0.8 Erase Suspend Latency Time 15 Program (Byte or Word) 10 Accelerated Program (Byte or Word) 8 Chip Program (Byte by Byte) 40 Chip Program (Word by Word) 20
Program/Erase Cycles (per Block) 100,000 cycles Data Retention 20 years
Note: 1. Typical values measured at room temperature and nominal volt ages.
2. Sample d, but not 100% tested.
3. Maximum value measured at wors t case conditions for both temperature and V
4. Maximum value measured at wors t case conditions for both temperature and V
CC CC
(1, 2)
Typ
after 100,0 0 program/era s e cycles. .
Max
200
6
25 200 150 200 100
(4)
(4)
(3)
(3)
(3)
(3)
(3)
(2)
Unit
µs µs µs
s s
s s
STATUS REGISTER
Bus Read operations from any address always read the Status Register during Program and Erase operations. It is also read during Erase Sus­pend when an address within a block being erased is accessed.
The bits in the Status Register are summari zed in Table 6., Status Register Bits.
Data Polling Bit (DQ7). The Data Polling Bit can be used to identify whether the Program/Erase Controller has successfully completed its opera­tion or if it has responded to an Erase Suspend. The Data Polling Bit is out put on DQ7 when the Status Register is read.
During Program operations the Data Polling Bit outputs the complement of the bit being pro­grammed to DQ7. After successful completion of the Program operation the memory returns to Read mode and Bus Read operations from the ad­dress just programmed o utput DQ7, not its com­plement.
During Er ase ope ratio ns the D ata Pollin g Bit ou t­puts ’0’, the complement of the erased state of DQ7. After successful completion of the Erase op­eration the memory returns to Read Mode.
In Erase Suspend mode the Data Polling Bit will output a ’1’ during a Bus Read operation within a block being erased. The Data Polling Bit will change from a ’0’ to a ’1’ when the Program/Erase Controller has suspended the Erase operation.
Figure Figure 9., Data Polling Flowchart, gives an example of how to use the Data Polling Bit. A Valid
Address is the address being program med or an address within the block being erased.
Toggle Bit (DQ6). The Toggle Bit can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has re­sponded to an Erase Suspen d. The Toggle Bit is output on DQ6 when the Status Register is read.
During Program and Erase operations the Toggle Bit changes from ’0’ to ’ 1’ to ’0’, etc., with succes­sive Bus Read operations at any address. After successful completion of the operation the memo­ry returns to Read mode.
During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has suspended the Erase operation.
If any attempt is made to erase a protected bl ock, the operation is abort ed, no error is sig nalled and DQ6 toggles for approximately 100µs. If any at­tempt is made to program a protected block or a suspended block, the operation is abort ed, no er­ror is signalled and DQ6 toggles for approximately 1µs.
Figure Figure 10., Dat a Toggle Flowchart , gives an example of how to use the Data Toggle Bit.
Error Bit (DQ5). The Error Bit can be used to identify errors detected by the Program/Erase Controller. The Error Bit i s set to ’1’ when a P ro­gram, Block Erase or Chip Erase operation fails to write the correct data to the memory. If the Error Bit is set a Read/Rese t comm and must be issued
20/46
Page 21
M29W320DT, M29W320DB
before other commands are issued. The Error bit is output on DQ5 when the Status Register is read.
Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to do so will set DQ5 to ‘1’. A Bus Read operation to that ad­dress will s h ow the bit is s ti ll ‘0’. One o f th e Erase commands must b e used to set all the bits in a block or in the whole memory from ’0’ to ’1’.
Erase Timer Bit (DQ3). The Erase Timer Bit can be used to identify the start of Program/Erase Controller operation during a Block Erase com­mand. Once the Program/Erase Controller starts erasing the Erase Timer Bit is set to ’1’. Before the Program/Erase Controller starts the Erase Timer Bit is set to ’0’ and additional blocks to be erased may be written to the Command Interface. The Erase Timer Bit is output on DQ3 when the Status Register is read.
Alternative Toggle Bit (DQ2). The Alternative Toggle Bit can be used to monitor the Program/ Erase controller during Erase operations. The Al­ternative Toggle Bit is output on DQ2 when the
During Chip Erase and Block Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with successive Bus Read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to Read mode.
During Erase Suspend the Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read operations from addresses within the blocks being erased. Bus Read operations to ad­dresses within blocks not being erased will ou tput the memory cell data as if in Read mode.
After an Erase operation that c auses the Error Bit to be set the Alternative Toggle Bit can be used to identify which block or blocks have caused the er­ror. The Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with successive B us Read Opera­tions from addresses within blocks that have not erased correctly. The Alternative Toggle B it does not change if the addressed block has erased cor­rectly.
Status Register is read.
Table 6. Status Register Bits
Operation Address DQ7 DQ6 DQ5 DQ3 DQ2 RB
Program Any Address DQ7 Toggle0––0 Program During Erase
Suspend Program Error Any Address DQ7
Any Address DQ7
Toggle0––0
Toggle1––0
Chip Erase Any Address 0 Toggle 0 1 Toggle 0 Block Erase before
timeout
Block Erase
Erase Suspend
Erase Error
Note: Unspecified data bits shou ld be i gnored.
Erasing Block 0 Toggle 0 0 Toggle 0
Non-Erasing Block 0 Toggle 0 0 No Toggle 0
Erasing Block 0 Toggle 0 1 Toggle 0
Non-Erasing Block 0 Toggle 0 1 No Toggle 0
Erasing Block 1 No Toggle 0 Toggle 1
Non-Erasing Block Data read as normal 1
Good Block Address 0 Toggle 1 1 No Toggle 0
Faulty Block Address 0 Toggle 1 1 Toggle 0
21/46
Page 22
M29W320DT, M29W320DB
Figure 9. Dat a Po ll i ng Fl o w chart Figure 10. Dat a Toggle Flowc hart
START
READ DQ5 & DQ7
at VALID ADDRESS
DQ7
DATA
NO
DQ5
READ DQ7
at VALID ADDRESS
DQ7
DATA
FAIL PASS
= 1
YES
=
NO
YES
YES
=
NO
AI90194
START
READ DQ6
READ
DQ5 & DQ6
DQ6
=
TOGGLE
YES
NO
DQ5
= 1
YES
READ DQ6
TWICE
DQ6
=
TOGGLE
YES
FAIL PASS
NO
NO
AI01370C
22/46
Page 23
M29W320DT, M29W320DB
MAXIMUM RATING
Stressing the device above the rating listed in the Absolute Maximum Ratings table may c ause per­manent damage to the device. Exposure to Abso­lute Maximum Rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at
Table 7. Absolute Maximum Ratings
Symbol Parameter Min Max Unit
T
BIAS
T
STG
V
IO
V
CC
V
ID
V
PP
Note: 1. Minim um voltage may un dershoot to –2V during transi tion and for les s t han 20ns during transitions.
2. Maximum volta ge m ay overshoot to V
Temperature Under Bias –50 125 °C Storage Temperature –65 150 °C
Input or Output Voltage
(1,2)
Supply Voltage –0.6 4 V Identification Voltage –0.6 13.5 V Program Voltage –0.6 13.5 V
+2V during tra nsition and fo r l ess than 20ns duri ng transitions.
CC
these or any other conditions above those indicat­ed in the Operating sections of this specification is not implied. Refer also to the STMicroelectronics SURE Program and other relevan t quality docu­ments.
V
–0.6
CC
+0.6
V
23/46
Page 24
M29W320DT, M29W320DB
DC AND AC PARAMETERS
This section summarizes t he operating m easure­ment conditions, and the DC and AC characteris­tics of the device. The parameters in the D C and AC characteristics Tables that follow, are derived from tests performed under the Measurement
Table 8. Operating and AC Measurement Conditions
Conditions summarized in Table 8., Operating and AC Measurement Conditions. Designers should check that the operating cond itions in their circuit match the operating conditions when relying on the quoted parameters.
M29W320D
Parameter
Min Max Min Max
Supply Voltage
V
CC
3.0 3.6 2.7 3.6 V Ambient Operating Temperature –40 85 –40 85 °C Load Capacitance (C
)
L
30 30 pF Input Rise and Fall Times 10 10 ns Input Pulse Voltages Input and Output Timing Ref. Voltages
0 to V
CC
VCC/2 VCC/2
0 to V
CC
Figure 11. AC Measurement I/ O Wav eform Figure 12. AC Measurement Lo a d Circuit
V
PP
V
CC
VCC/2
0V
AI90196
V
CC
DEVICE UNDER
TEST
V
CC
Unit70 90
V V
25k
0.1µF
0.1µF
CL includes JIG capacitance
Table 9. Device Capacitance
Symbol Parameter Test Condition Min Max Unit
C
IN
C
OUT
Note: Sampled only, not 100% tested.
Input Capacitance Output Capacitance
24/46
V
V
OUT
IN
= 0V
= 0V
6pF
12 pF
C
25k
L
AI90197
Page 25
M29W320DT, M29W320DB
Table 10. DC Characteristics
Symbol Parameter Test Condition Min Typ. Max Unit
I
Input Leakage Current
LI
I
I
CC1
I
CC2
I
CC3
V V
V
I
V
V
V
V
Note: 1. Sampled only, not 100% tested.
Output Leakage Curren t
LO
Supply Current (Read)
Supply Current (Standby)
Supply Current (Program /
(1)
Erase)
Input Low Voltage –0.5 0.8 V
IL
Input High Voltage
IH
Voltage for V
PP
Program Acceleration Current for V
PP
Program Acceleration Output Low Voltage
OL
Output High Voltage IOH = –100µA
OH
Identification Voltage 11.5 12.5 V
ID
I
Identification Current
ID
Program/Erase Lockout
LKO
Supply Voltage
PP
PP
/WP
/WP
0V V
0V ≤ V
= VIL, G = VIH,
E
f = 6MHz
E
= VCC ±0.2V,
RP = VCC ±0.2V
Program/
Erase
Controller
active
= 3.0V ±10%
V
CC
= 3.0V ±10%
V
CC
I
= 1.8mA
OL
A9 = V
IN
OUT
V
V
V
VILor V
V
ID
CC
CC
PP
PP
V
/WP =
IH
/WP =
PP
±1 ±1
510mA
35 100
20 mA
20 mA
0.7V
CC
VCC +0.3
11.5 12.5 V
10 mA
0.45 V
V
–0.4
CC
100
1.8 2.3 V
µA µA
µA
V
V
µA
25/46
Page 26
M29W320DT, M29W320DB
Figure 13. Read Mode AC Waveforms
A0-A20/ A–1
tAVQV tAXQX
E
tAVAV VALID
tELQV
tELQX tEHQZ
G
tGLQX tGHQX
tGLQV
DQ0-DQ7/ DQ8-DQ15
tBHQV
BYTE
tELBL/tELBH tBLQZ
Table 11. Read AC Characteristics
Symbol Alt Parameter Test Condition
E
t
AVAV
t
AVQV
(1)
t
ELQX
t
ELQV
(1)
t
GLQX
t
GLQV
(1)
t
EHQZ
(1)
t
GHQZ
t
EHQX
t
GHQX
t
AXQX
t
ELBL
t
ELBH
t
BLQZ
t
BHQV
Note: 1. Sampled only, not 100% tested.
t
RC
t
ACC
t
LZ
t
CE
t
OLZ
t
OE
t
HZ
t
DF
t
OH
t
ELFL
t
ELFH
t
FLQZ
t
FHQV
Address Valid to Next Address Valid
Address Valid to Output Valid
Chip Enable Low to Output Transition Chip Enable Low to Output Valid
Output Enable Low to Output Transition
Output Enable Low to Output Valid Chip Enable High to Output Hi-Z
Output Enable High to Output Hi-Z
Chip Enable, Output Enable or Address Transition to Output Transition
Chip Enable to BYTE Low or High Max 5 5 ns
BYTE Low to Output Hi-Z Max 25 30 ns BYTE High to Output Valid Max 30 40 ns
= VIL,
G
= V
E
= VIL,
G = V G
= V
G
= V
= V
E
E
= V
G
= V
E
= V
IL
IL
IL
IL
IL
IL
IL
IL
tEHQX
tGHQZ
VALID
AI90198
M29W320D
Unit
70 90
Min 70 90 ns
Max 70 90 ns
Min 0 0 ns
Max 70 90 ns
Min 0 0 ns
Max 30 35 ns Max 25 30 ns
Max 25 30 ns
Min 0 0 ns
26/46
Page 27
Figure 14. Write AC Waveforms, Write Enable Controlled
tAVAV
A0-A20/ A–1
tAVWL
E
VALID
M29W320DT, M29W320DB
tWLAX
tWHEH
tELWL
G
tWLWHtGHWL
W
tDVWH
DQ0-DQ7/ DQ8-DQ15
V
CC
RB
tVCHEL
VALID
tWHRL
Table 12. Write AC Characteristics, Write Enable Controlled
Symbol Alt Parameter
t
AVAV
t
ELWL
t
WLWH
t
DVWH
t
WHDX
t
WHEH
t
WHWL
t
AVWL
t
WLAX
t
GHWL
t
WHGL
(1)
t
WHRL
t
VCHEL
Note: 1. Sampled only, not 100% tested.
t
WC
t
CS
t
WP
t
DS
t
DH
t
CH
t
WPH
t
AS
t
AH
t
OEH
t
BUSY
t
VCS
Address Valid to Next Address Valid Min 70 90 ns Chip Enable Low to Write Enable Low Min 0 0 ns Write Enable Low to Write Enable High Min 45 50 ns Input Valid to Write Enable High Min 45 50 ns Write Enable High to Input Transition Min 0 0 ns Write Enable High to Chip Enable High Min 0 0 ns Write Enable High to Write Enable Low Min 30 30 ns Address Valid to Write Enable Low Min 0 0 ns Write Enable Low to Address Transition Min 45 50 ns Output Enable High to Write Enable Low Min 0 0 ns Write Enable High to Output Enable Low Min 0 0 ns Program/Erase Valid to RB Low Max 30 35 ns VCC High to Chip Enable Low
tWHGL
tWHWL
tWHDX
AI90199
M29W320D
Unit
70 90
Min 50 50 µs
27/46
Page 28
M29W320DT, M29W320DB
Figure 15. Write AC Waveforms, Chip Enable Controlled
tAVAV
A0-A20/ A–1
tAVEL
W
VALID
tELAX
tEHWH
tWLEL
G
tELEHtGHEL
E
tDVEH
DQ0-DQ7/ DQ8-DQ15
V
CC
RB
tVCHWL
VALID
tEHRL
Table 13. Write AC Characteristics, Chip Enable Controlled
Symbol Alt Parameter
t
AVAV
t
WLEL
t
ELEH
t
DVEH
t
EHDX
t
EHWH
t
EHEL
t
AVEL
t
ELAX
t
GHEL
t
EHGL
(1)
t
EHRL
t
VCHWL
Note: 1. Sampled only, not 100% tested.
t
WC
t
WS
t
CP
t
DS
t
DH
t
WH
t
CPH
t
AS
t
AH
t
OEH
t
BUSY
t
VCS
Address Valid to Next Address Valid Min 70 90 ns Write Enable Low to Chip Enable Low Min 0 0 ns Chip Enable Low to Chip Enable High Min 45 50 ns Input Valid to Chip Enable High Min 45 50 ns Chip Enable High to Input Transition Min 0 0 ns Chip Enable High to Write Enable High Min 0 0 ns Chip Enable High to Chip Enable Low Min 30 30 ns Address Valid to Chip Enable Low Min 0 0 ns Chip Enable Low to Address Transition Min 45 50 ns Output Enable High Chip Enable Low Min 0 0 ns Chip Enable High to Output Enable Low Min 0 0 ns Program/Erase Valid to RB Low Max 30 35 ns VCC High to Write Enable Low
tEHGL
tEHEL
tEHDX
AI90200
M29W320D
Unit
70 90
Min 50 50 µs
28/46
Page 29
Figure 16. Reset/Block Temporary Unprotect AC Waveforms
E, G
W,
tPHWL, tPHEL, tPHGL
RB
RP
tPLPX
tPLYH
Table 14. Reset/Block Temporary Unprotect AC Characteristics
Symbol Alt Parameter
(1)
t
PHWL
t
PHEL
(1)
t
PHGL
(1)
t
RHWL
(1)
t
RHEL
(1)
t
RHGL
t
PLPX
(1)
t
PLYH
(1)
t
PHPHH
(1)
t
VHVPP
Note: 1. Sampled only, not 100% tested.
t
t
t
t
READY
t
VIDR
RP High to Write Enable Low, Chip Enable Low,
RH
Output Enable Low
RB High to Write Enable Low, Chip Enable Low,
RB
Output Enable Low
RP Pulse Width Min 500 500 ns
RP
RP Low to Read Mode Max 10 10 µs RP Rise Time to V
ID
VPP Rise and Fall Time
M29W320DT, M29W320DB
tRHWL, tRHEL, tRHGL
tPHPHH
AI02931B
M29W320D
Unit
70 90
Min 50 50 ns
Min 0 0 ns
Min 500 500 ns Min 250 250 ns
Figure 17. Accelerated Program Timing Wavefo rms
V
PP
VPP/WP
V
or V
IL
IH
tVHVPP
tVHVPP
AI90202
29/46
Page 30
M29W320DT, M29W320DB
PACKAGE MECHANICAL
Figure 18. TSOP48 Lead Plastic Thin Small Outline, 12x20 Mm, Bottom View Packag e Outline
1
48
e
D1
24
E1
B
25
L1
A2
E
DIE
LA1 α
C
CP
Note: Drawing not to scale.
Table 15. TSOP48 Lead Plastic Thin Small Outline, 12x20 mm , Packag e Mechani cal D ata
Symbol
Typ Min Max Typ Min Max
A 1.200 0.0472
A1 0.100 0.050 0.150 0.0039 0.0020 0.0059
millimeters inches
A
TSOP-G
A2 1.000 0.950 1.050 0.0394 0.0374 0.0413
B 0.220 0.170 0.270 0.0087 0.0067 0.0106
C 0.100 0.210 0.0039 0.0083 CP 0.080 0.0031 D1 12.000 11.900 12.100 0.4724 0.4685 0.4764
E 20.000 19.800 20.200 0.7874 0.7795 0.7953
E1 18.400 18.300 18.500 0.7244 0.7205 0.7283
e 0.500 0.0197 – L 0.600 0.500 0.700 0.0236 0.0197 0.0276
L1 0.800 0.0315
α 305305
30/46
Page 31
M29W320DT, M29W320DB
Figure 19. TFBGA63 7x11mm - 6x8 active ball array, 0.8mm pitc h, Package Ou tline
D
D1
FD
SD
e
E
Note: Drawing is not to scale.
E1
BALL "A1"
A
SE
FE
eb
A2
A1
BGA-Z33
ddd
Table 16. TFBGA63 7x11mm - 6x8 active ball array, 0.8mm pitch, Package Mech anical Data
Symbol
Typ Min Max Typ Min Max
A 1.200 0.0472 A1 0.250 0.0098 A2 0.900 0.0354
b 0.350 0.450 0.0138 0.0177
D 7.000 6.900 7.100 0.2756 0.2717 0.2795
millimeters inches
D1 5.600 0.2205
ddd 0.100 0.0039
E 11.000 10.900 11.100 0.4331 0.4291 0.4370 E1 8.800 0.3465
e 0.800 0.0315
FD 0.700 0.0276 – FE 1.100 0.0433 – SD 0.400 0.0157 – SE 0.400 0.0157
31/46
Page 32
M29W320DT, M29W320DB
Figure 20. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Bottom View Package Outline
D
FD
FE
D1
SD
SE
BALL "A1"
E1E
e
e
A
b
A2
A1
BGA-Z32
Note: Drawing not to scale.
Table 17. TFBGA48 6x8mm - 6x8 Ball Array, 0.8mm Pitch, Package Mech anical Data
Symbol
Typ Min Max Typ Min Max
A 1.200 0.0472 A1 0.260 0.0102
millimeters inches
ddd
A2 0.900 0.0354
b 0.350 0.450 0.0138 0.0177
D 6.000 5.900 6.100 0.2362 0.2323 0.2402
D1 4.000 0.1575
ddd 0.100 0.0039
E 8.000 7.900 8.100 0.3150 0.3110 0.3189 E1 5.600 0.2205
e 0.800 0.0315
FD 1.000 0.0394 – FE 1.200 0.0472 – SD 0.400 0.0157 – SE 0.400 0.0157
32/46
Page 33
M29W320DT, M29W320DB
PART NUMBERING
Table 18. Ordering Information Scheme
Example: M29W320DB 90 N 1 T
Device Type
M29
Operating Voltage
W = V
Device Function
320D = 32 Mbit (x8/x16), Boot Block
Array Matrix
T = Top Boot B = Bottom Boot
Speed
70 = 70 ns 90 = 90 ns
= 2.7 to 3.6V
CC
Package
N = TSOP48: 12 x 20 mm ZA = TFBGA63: 7x11mm, 0.80 mm pitch ZE = TFBGA48: 6 x 8mm, 0.8mm pitch
Temperature Rang e
1 = 0 to 70 °C 6 = –40 to 85 °C
Option
Blank = Standard Packing T = Tape & Reel Packing E = Lead-free Package, Standard Packing F = Lead-free Package, Tape & Reel Packing
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Pac kage, et c...) or for further information on any aspect of this de­vice, please contact the ST Sales Office nearest to you.
33/46
Page 34
M29W320DT, M29W320DB
APPENDIX A. BLOCK ADDRESS TABLE
Table 19. Top Boot Block Addresses, M29W320DT
Size
#
(KByte/ KWord)
66 16/8 3FC000h-3FFFFFh 1FE000h-1FFFFFh 65 8/4 3FA000h-3FBFFFh 1FD000h-1FDFFFh 64 8/4 3F8000h-3F9FFFh 1FC000h-1FCFFFh 63 32/16 3F0000h-3F7FFFh 1F8000h-1FBFFFh 62 64/32 3E0000h-3EFFFFh 1F0000h-1F7FFFh 61 64/32 3D0000h-3DFFFFh 1E8000h-1EFFFFh 60 64/32 3C0000h-3CFFFFh 1E0000h-1E7FFFh 59 64/32 3B0000h-3BFFFFh 1D8000h-1DFFFFh 58 64/32 3A0000h-3AFFFFh 1D0000h-1D7FFFh 57 64/32 390000h-39FFFFh 1C8000h-1CFFFFh 56 64/32 380000h-18FFFFh 1C0000h-1C7FFFh 55 64/32 370000h-37FFFFh 1B8000h-1BFFFFh 54 64/32 360000h-36FFFFh 1B0000h-1B7FFFh 53 64/32 350000h-35FFFFh 1A8000h-1AFFFFh 52 64/32 340000h-34FFFFh 1A0000h-1A7FFFh 51 64/32 330000h-33FFFFh 198000h-19FFFFh 50 64/32 320000h-32FFFFh 190000h-197FFFh 49 64/32 310000h-31FFFFh 188000h-18FFFFh 48 64/32 300000h-30FFFFh 180000h-187FFFh 47 64/32 2F0000h-2FFFFFh 178000h-17FFFFh 46 64/32 2E0000h-2EFFFFh 170000h-177FFFh 45 64/32 2D0000h-2DFFFFh 168000h-16FFFFh 44 64/32 2C0000h-2CFFFFh 160000h-167FFFh 43 64/32 2B0000h-2BFFFFh 158000h-15FFFFh 42 64/32 2A0000h-2AFFFFh 150000h-157FFFh 41 64/32 290000h-29FFFFh 148000h-14FFFFh 40 64/32 280000h-28FFFFh 140000h-147FFFh 39 64/32 270000h-27FFFFh 138000h-13FFFFh 38 64/32 260000h-26FFFFh 130000h-137FFFh 37 64/32 250000h-25FFFFh 128000h-12FFFFh 36 64/32 240000h-24FFFFh 120000h-127FFFh 35 64/32 230000h-23FFFFh 118000h-11FFFFh
Address Ran ge
(x8)
Address R ange
(x16)
34 64/32 220000h-22FFFFh 110000h-117FFFh 33 64/32 210000h-21FFFFh 108000h-10FFFFh 32 64/32 200000h-20FFFFh 100000h-107FFFh 31 64/32 1F0000h-1FFFFFh 0F8000h-0FBFFFh 30 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh 29 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 28 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh 27 64/32 1B0000h-1BFFFFh 0D8000h-0DFFFFh 26 64/32 1A0000h-1AFFFFh 0D0000h-0D7FFFh 25 64/32 190000h-19FFFFh 0C8000h-0CFFFFh 24 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 23 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 22 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 21 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 20 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 19 64/32 130000h-13FFFFh 098000h-09FFFFh 18 64/32 120000h-12FFFFh 090000h-097FFFh 17 64/32 110000h-11FFFFh 088000h-08FFFFh 16 64/32 100000h-10FFFFh 080000h-087FFFh 15 64/32 0F0000h-0FFFFFh 078000h-07FFFFh 14 64/32 0E0000h-0EFFFFh 070000h-077FFFh 13 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 12 64/32 0C0000h-0CFFFFh 060000h-067FFFh 11 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 10 64/32 0A0000h-0AFFFFh 050000h-057FFFh
9 64/32 090000h-09FFFFh 048000h-04FFFFh 8 64/32 080000h-08FFFFh 040000h-047FFFh 7 64/32 070000h-07FFFFh 038000h-03FFFFh 6 64/32 060000h-06FFFFh 030000h-037FFFh 5 64/32 050000h-05FFFFh 028000h-02FFFFh 4 64/32 040000h-04FFFFh 020000h-027FFFh 3 64/32 030000h-03FFFFh 018000h-01FFFFh 2 64/32 020000h-02FFFFh 010000h-017FFFh 1 64/32 010000h-01FFFFh 008000h-00FFFFh 0 64/32 000000h-00FFFFh 000000h-007FFFh
34/46
Page 35
M29W320DT, M29W320DB
Table 20. Bottom Boot Block Addresses, M29W320DB
Size
#
(KByte/ KWord)
66 64/32 3F0000h-3FFFFFh 1F8000h-1FFFFFh 65 64/32 3E0000h-3EFFFFh 1F0000h-1F7FFFh 64 64/32 3D0000h-3DFFFFh 1E8000h-1EFFFFh 63 64/32 3C0000h-3CFFFFh 1E0000h-1E7FFFh 62 64/32 3B0000h-3BFFFFh 1D8000h-1DFFFFh 61 64/32 3A0000h-3AFFFFh 1D0000h-1D7FFFh 60 64/32 390000h-39FFFFh 1C8000h-1CFFFFh 59 64/32 380000h-18FFFFh 1C0000h-1C7FFFh 58 64/32 370000h-37FFFFh 1B8000h-1BFFFFh 57 64/32 360000h-36FFFFh 1B0000h-1B7FFFh 56 64/32 350000h-35FFFFh 1A8000h-1AFFFFh 55 64/32 340000h-34FFFFh 1A0000h-1A7FFFh 54 64/32 330000h-33FFFFh 198000h-19FFFFh 53 64/32 320000h-32FFFFh 190000h-197FFFh 52 64/32 310000h-31FFFFh 188000h-18FFFFh 51 64/32 300000h-30FFFFh 180000h-187FFFh 50 64/32 2F0000h-2FFFFFh 178000h-17FFFFh 49 64/32 2E0000h-2EFFFFh 170000h-177FFFh 48 64/32 2D0000h-2DFFFFh 168000h-16FFFFh 47 64/32 2C0000h-2CFFFFh 160000h-167FFFh 46 64/32 2B0000h-2BFFFFh 158000h-15FFFFh 45 64/32 2A0000h-2AFFFFh 150000h-157FFFh 44 64/32 290000h-29FFFFh 148000h-14FFFFh 43 64/32 280000h-28FFFFh 140000h-147FFFh 42 64/32 270000h-27FFFFh 138000h-13FFFFh 41 64/32 260000h-26FFFFh 130000h-137FFFh 40 64/32 250000h-25FFFFh 128000h-12FFFFh 39 64/32 240000h-24FFFFh 120000h-127FFFh 38 64/32 230000h-23FFFFh 118000h-11FFFFh 37 64/32 220000h-22FFFFh 110000h-117FFFh 36 64/32 210000h-21FFFFh 108000h-10FFFFh 35 64/32 200000h-20FFFFh 100000h-107FFFh
Address Ran ge
(x8)
Address R ange
(x16)
34 64/32 1F0000h-1FFFFFh 0F8000h-0FBFFFh 33 64/32 1E0000h-1EFFFFh 0F0000h-0F7FFFh 32 64/32 1D0000h-1DFFFFh 0E8000h-0EFFFFh 31 64/32 1C0000h-1CFFFFh 0E0000h-0E7FFFh 30 64/32 1B0000h-1BFFFFh 0D8000h-0DFFFFh 29 64/32 1A0000h-1AFFFFh 0D0000h-0D7FFFh 28 64/32 190000h-19FFFFh 0C8000h-0CFFFFh 27 64/32 180000h-18FFFFh 0C0000h-0C7FFFh 26 64/32 170000h-17FFFFh 0B8000h-0BFFFFh 25 64/32 160000h-16FFFFh 0B0000h-0B7FFFh 24 64/32 150000h-15FFFFh 0A8000h-0AFFFFh 23 64/32 140000h-14FFFFh 0A0000h-0A7FFFh 22 64/32 130000h-13FFFFh 098000h-09FFFFh 21 64/32 120000h-12FFFFh 090000h-097FFFh 20 64/32 110000h-11FFFFh 088000h-08FFFFh 19 64/32 100000h-10FFFFh 080000h-087FFFh 18 64/32 0F0000h-0FFFFFh 078000h-07FFFFh 17 64/32 0E0000h-0EFFFFh 070000h-077FFFh 16 64/32 0D0000h-0DFFFFh 068000h-06FFFFh 15 64/32 0C0000h-0CFFFFh 060000h-067FFFh 14 64/32 0B0000h-0BFFFFh 058000h-05FFFFh 13 64/32 0A0000h-0AFFFFh 050000h-057FFFh 12 64/32 090000h-09FFFFh 048000h-04FFFFh 11 64/32 080000h-08FFFFh 040000h-047FFFh 10 64/32 070000h-07FFFFh 038000h-03FFFFh
9 64/32 060000h-06FFFFh 030000h-037FFFh 8 64/32 050000h-05FFFFh 028000h-02FFFFh 7 64/32 040000h-04FFFFh 020000h-027FFFh 6 64/32 030000h-03FFFFh 018000h-01FFFFh 5 64/32 020000h-02FFFFh 010000h-017FFFh 4 64/32 010000h-01FFFFh 008000h-00FFFFh 3 32/16 008000h-00FFFFh 004000h-007FFFh 2 8/4 006000h-007FFFh 003000h-003FFFh 1 8/4 004000h-005FFFh 002000h-002FFFh 0 16/8 000000h-003FFFh 000000h-001FFFh
35/46
Page 36
M29W320DT, M29W320DB
APPENDIX B. COMMON FLASH INTERFACE (CFI)
The Common Flash Interface is a JEDEC ap­proved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to det ermine various electrical and timing p arameters, density information and functions su pported by the mem­ory. The system can interface easily with the de­vice, enabling the software to upgrade itself when necessary.
When the CFI Query Command is issued the de­vice enters CFI Query mode and the data structure
Table 21. Query Structure Overview
Address
x16 x8
10h 20h CFI Query Identification String Command set ID and algorithm data offset
1Bh 36h System Interface Information Device timing & voltage information
27h 4Eh Device Geometry Definition Flash device layout
40h 80h
61h C2h Security Code Area 64 bit unique device number
Note: Query dat a ar e al ways pr esente d on t h e l owest or der data ou t pu t s.
Primary Algorithm-specific Extended Query table
Sub-section Name Description
is read from the memory. Table 21., Table 22., Ta­ble 23., Table 24., Table 25. and Tab le 26. show the addresses used to retrieve the data.
The CFI data structure also contains a security area where a 64 bit unique security number is writ­ten (see Table 26., Security Code area). This area can be accessed only in Read mode by the final user. It is impossible to change the security num ­ber after it has been written by ST. Issue a Read command to return to Read mode.
Additional information specific to the Primary Algorithm (optional)
Table 22. CFI Query Identification String
Address
x16 x8
10h 20h 0051h “Q” 11h 22h 0052h Query Unique ASCII String "QRY" "R" 12h 24h 0059h "Y" 13h 26h 0002h 14h 28h 0000h 15h 2Ah 0040h 16h 2Ch 0000h 17h 2Eh 0000h 18h 30h 0000h 19h 32h 0000h
1Ah 34h 0000h
Note: Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’.
Data Description Value
Primary Algorithm Command Set and Control Interface ID code 16 bit ID code defining a specific algorithm
Address for Primary Algorithm extended Query table (see Table 24.) P = 40h
Alternate Vendor Command Set and Control Interface ID Code second vendor - specified algorithm supported
Address for Alternate Algorithm extended Query table
AMD
Compatible
NA
NA
36/46
Page 37
Table 23. CFI Query System Interface Information
Address
x16 x8
1Bh 36h 0027h
1Ch 38h 0036h
1Dh 3Ah 00B5h
1Eh 3Ch 00C5h
1Fh 3Eh 0004h 20h 40h 0000h 21h 42h 000Ah 22h 44h 0000h 23h 46h 0005h 24h 48h 0000h 25h 4Ah 0004h 26h 4Ch 0000h
Data Description Value
Logic Supply Minimum Program/Erase voltage
V
CC
bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV
Logic Supply Maximum Program/Erase voltage
V
CC
bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV
V
[Programming] Supply Minimum Program/Erase voltage
PP
bit 7 to 4HEX value in volts bit 3 to 0BCD value in 100 mV
V
[Programming] Supply Maximum Program/Erase voltage
PP
bit 7 to 4HEX value in volts
bit 3 to 0BCD value in 100 mV Typical timeout per single byte/word program = 2 Typical timeout for minimum size write buffer program = 2 Typical timeout per individual block erase = 2 Typical timeout for full chip erase = 2 Maximum timeout for byte/word program = 2 Maximum timeout for write buffer program = 2 Maximum timeout per individual block erase = 2 Maximum timeout for chip erase = 2
M29W320DT, M29W320DB
n
ms
n
ms
n
times typical
n
n
times typical
n
µs
n
times typical
n
times typical
µs
2.7V
3.6V
11.5V
12.5V
16µs
NA
1s
NA
512µs
NA
16s
NA
Table 24. Device Geometry Definition
Address
x16 x8
27h 4Eh 0016h 28h
29h 2Ah
2Bh
50h 52h
54h 56h
2Ch 58h 0004h
2Dh 2Eh
2Fh 30h
31h 32h
33h 34h
5Ah
5Ch 5Eh
60h 62h
64h 66h
68h
Data Description Value
Device Size = 2
0002h 0000h
0000h 0000h
Flash Device Interface Code description
Maximum number of bytes in multi-byte program or page = 2 Number of Erase Block Regions within the device.
It specifies the number of regions within the device containing contiguous Erase Blocks of the same size.
0000h 0000h
0040h 0000h
0001h 0000h
0020h 0000h
Region 1 Information Number of identical size erase block = 0000h+1
Region 1 Information Block size in Region 1 = 0040h * 256 byte
Region 2 Information Number of identical size erase block = 0001h+1
Region 2 Information Block size in Region 2 = 0020h * 256 byte
n
in number of bytes
4 MByte
x8, x16
Async.
n
NA
4
1
16 Kbyte
2
8 Kbyte
37/46
Page 38
M29W320DT, M29W320DB
Address
x16 x8
35h 36h
37h 38h
39h 3Ah
3Bh 3Ch
6Ah 6Ch
6Eh
70h 72h
74h 76h
78h
Data Description Value
0000h 0000h
0080h 0000h
003Eh 0000h
0000h 0001h
Region 3 Information Number of identical size erase block = 0000h+1
Region 3 Information Block size in Region 3 = 0080h * 256 byte
Region 4 Information Number of identical-size erase block = 003Eh+1
Region 4 Information Block size in Region 4 = 0100h * 256 byte
Table 25. Primary Algorithm-Specific Extended Qu ery Ta ble
Address
x16 x8
40h 80h 0050h 41h 82h 0052h "R" 42h 84h 0049h "I" 43h 86h 00 31h M ajor versio n number, ASCII "1" 44h 88h 00 30h M inor versio n number, ASCII "0" 45h 8Ah 0000h Address Sensitive Unlock (bits 1 to 0)
46h 8Ch 0002h Erase Suspend
47h 8Eh 0001h Block Protection
48h 90h 0001h Temporary Block Unprotect
49h 92h 0004h Block Protect /Unprotect
4Ah 94h 0000h Simultaneous Operations, 00 = not supported No
Data Description Value
Primary Algorithm extended Query table unique ASCII string “PRI”
00 = required, 01= not required Silicon Revision Number (bits 7 to 2)
00 = not supported, 01 = Read only, 02 = Read and Write
00 = not supported, x = number of blocks in per group
00 = not supported, 01 = supported
04 = M29W400B
1
32 Kbyte
63
64 Kbyte
"P"
Yes
2
1
Yes
4
4Bh 96h 0000h Burst Mode, 00 = not supported, 01 = supported No 4Ch 98h 0000h Page Mode, 00 = not supported, 01 = 4 page word, 02 = 8 page word No 4Dh 9Ah 00B5h V
4Eh 9Ch 00C5h V
4Fh 9Eh 000xh Top/Bo ttom Boot Block Flag
38/46
Supply Minimum Program/Erase voltage
PP
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
Supply Minimum Program/Erase voltage
PP
bit 7 to 4 HEX value in volts bit 3 to 0 BCD value in 100 mV
02h = Bottom Boot device, 03h = Top Boot device
11.5V
12.5V
Page 39
Table 26. Security Code Area
Address
x16 x8
61h C3h, C2h XXXX 62h C5h, C4h XXXX 63h C7h, C6h XXXX 64h C9h, C8h XXXX
M29W320DT, M29W320DB
Data Description
64 bit: unique device number
39/46
Page 40
M29W320DT, M29W320DB
APPENDIX C. BLOCK PROTECTION
Block protection can be used to prevent any oper­ation from modifying the data s tored in the Flash. Each Block can be protected individually. Once protected, Program and Erase operations on the block fail to change the data.
There are three techniques that can be used to control Block Protection, these are the Program­mer technique, the In-System technique and Tem­porary Unprotection. Temporary Unprotection is controlled by the Reset/Block Temporary Unpro­tection pin, RP scriptions section.
Unlike the Command Interface of the Program/ Erase Controller, the techniques for protecting and unprotecting blocks change between different Flash memory suppliers. For example , the tech­niques for AMD parts will not work on STMicro­electronics parts. Care should be taken when changing drivers for one part to work on another.
Programm er Te chnique
The Programmer techniq ue uses high (V age levels on some of the bus pins. These cannot be achieved using a standard microprocessor bus, therefore the technique is recommended on ly for use in Programming Equipment.
To protect a block follow the flowch art in Figure Figure 21., Programmer Equipment Block Protect Flowchart. To unprotect the whole chip it is neces­sary to protect all of the blocks first, then all blocks can be unprotected at the same time. To unprotect the chip follow Figure Figure 22., Programmer Equipment Chip Unprotect Flowchart. Table 27. ,
; this is described in the Signal De-
) volt-
ID
Programmer Technique B us Operations, gives a summary of each operation.
The timing on these flowcharts is critical. Care should be taken t o ensure t hat, where a pause is specified, it is followed as closely as possible. Do not abort the procedure be fore reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.
In-System Technique
The In-System technique requires a high voltage level on the Reset/Blocks Temporary Unprotect pin, RP
. This can be achieved without violating the maximum ratings of the components on the micro­processor bus, therefore this technique is suitable for use after the Flash has been fitted to the sys­tem.
To protect a block follow the flowch art in Figure Figure 23., In-System Block Protect Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks f ir st, th en all th e blocks can be un ­protected at the same time. To unprotect the chip follow Figure Figure 24., In-System Chip Unpro­tect Flowchart.
The timing on these flowcharts is critical. Care should be taken t o ensure t hat, where a pause is specified, it is followed as closely as possible. Do not allow the microprocessor to serv ice interrupts that will upset the timing and do not abort the pro­cedure before reaching t he end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing.
Table 27. Programmer Technique Bus Op erati ons, BYTE
Operation E G W
Block Protect
Chip Unprotect
Block Protection Verify
Block Unprotection Verify
40/46
V
IL
V
IDVIDVIL
V
IL
V
IL
VIDVIL Pulse
Pulse
V
V
V
IL
IL
IH
V
IH
A9 = V
A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,
A0 = VIL, A1 = VIH, A6 = VIH, A9 = VID,
Address Inputs
A0-A20
, A12-A20 Block Address
ID
Others = X
A9 = V
, A12 = VIH, A15 = VIH
ID
Others = X
A12-A20 Block Address
Others = X
A12-A20 Block Address
Others = X
= VIH or V
IL
Data Inputs/Outputs
DQ15A–1, DQ14 -DQ0
X
X
Pass = XX01h
Retry = XX00h
Retry = XX01h
Pass = XX00h
Page 41
Figure 21. Programmer Equ ip m e nt B l ock P rot ect Flowchart
START
ADDRESS = BLOCK ADDRESS
W = V
IH
n = 0
G, A9 = VID,
E = V
IL
Wait 4µs
W = V
IL
Wait 100µs
M29W320DT, M29W320DB
Verify Protect Set-upEnd
W = V
IH
E, G = VIH,
A0, A6 = VIL,
A1 = V
IH
E = V
IL
Wait 4µs
G = V
IL
Wait 60ns
Read DATA
DATA
=
01h
YES
A9 = V
IH
E, G = V
IH
PASS
NO
++n
= 25
A9 = V
E, G = V
NO
YES
IH
IH
FAIL
AI03469
41/46
Page 42
M29W320DT, M29W320DB
Figure 22. Programmer Equipment Chip Unprotect Flowchart
START
PROTECT ALL BLOCKS
n = 0
CURRENT BLOCK = 0
Verify Unprotect Set-upEnd
A6, A12, A15 = V
E, G, A9 = V
Wait 4µs
W = V
Wait 10ms
W = V
E, G = V
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1, A6 = V
E = V
Wait 4µs
G = V
Wait 60ns
Read DATA
(1)
IH
ID
IL
IH
IH
IH
IL
IL
INCREMENT
CURRENT BLOCK
42/46
=
00h
YESNO
DATA
++n
NO
= 1000
YES
A9 = V
IH
E, G = V
IH
FAIL PASS
LAST
BLOCK
A9 = V
E, G = V
NO
YES
IH
IH
AI03470
Page 43
Figure 23. In-System Equipment Block Protect Flowchart
START
n = 0
RP = V
ID
M29W320DT, M29W320DB
Verify Protect Set-upEnd
ADDRESS = BLOCK ADDRESS
ADDRESS = BLOCK ADDRESS
ADDRESS = BLOCK ADDRESS
ADDRESS = BLOCK ADDRESS
WRITE 60h
A0 = VIL, A1 = VIH, A6 = V
WRITE 60h
A0 = VIL, A1 = VIH, A6 = V
Wait 100µs
WRITE 40h
A0 = VIL, A1 = VIH, A6 = V
Wait 4µs
READ DATA
A0 = VIL, A1 = VIH, A6 = V
DATA
RP = V
=
01h
NO
YES
IH
IL
IL
IL
IL
++n
= 25
NO
ISSUE READ/RESET
COMMAND
PASS
YES
RP = V
IH
ISSUE READ/RESET
COMMAND
FAIL
AI03471
43/46
Page 44
M29W320DT, M29W320DB
Figure 24. In-System Equipment Chip Unprotect Flowchart
START
PROTECT ALL BLOCKS
n = 0
CURRENT BLOCK = 0
RP = V
ID
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = V
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = V
IH
IH
Verify Unprotect Set-upEnd
ADDRESS = CURRENT BLOCK ADDRESS
ADDRESS = CURRENT BLOCK ADDRESS
++n
NO
= 1000
YES
RP = V
IH
ISSUE READ/RESET
COMMAND
Wait 10ms
WRITE 40h
A0 = VIL, A1 = VIH, A6 = V
Wait 4µs
READ DATA
A0 = VIL, A1 = VIH, A6 = V
DATA
=
00h
YESNO
IH
IH
ISSUE READ/RESET
CURRENT BLOCK
LAST
BLOCK
YES
RP = V
IH
COMMAND
INCREMENT
NO
44/46
FAIL
PASS
AI03472
Page 45
REVISION HIST ORY
Table 28. Document Revision History
Date Version Revision Details
March-2001 -01 First Issue (Brief Data)
08-Jun-2001 -02 Document expanded to full Product Preview
22-Jun-2001 -03
27-Jul-2001 -04
05-Oct-2001 -05
07-Feb-2002 -06 TFBGA package changed from 48 ball to 63 ball
Minor text corrections to Read/Reset and Read CFI commands and Status Register Error and Toggle Bits.
Document type: from Product Preview to Preliminary Data TFBGA connections and Block Addresses (x16) diagrams clarification Write Protect and Block Unprotect clarification CFI Primary Algorithm table, Block Protection change
Added Block Protection Appendix “Write Protect/V
” pin renamed to “VPP/Write Protect” to be consistent with abbreviation.
PP
Changes to the VPP/WP pin description, Figure Figure 17. and Table 14.. IPP added to Table 10. and I Command section. Added V
clarified. Modified description of VPP/WP operation in Unlock Bypass
CC3
/WP decoupling capacitor to Figure Figure 12..
PP
Clarified Read/Reset operation during Erase Suspend.
M29W320DT, M29W320DB
05-Apr-2002 -07
Clarified allowable commands during block erase Clarified the mode the device returns to in the CFI Read Query command section
Erase Suspend Latency Time (typical and maximum) added to Program, Erase Times and Program, Erase Endurance Cycles table. Typical values added for Icc1 and Icc2 in DC characteristics table.
Description of Ready/Busy signal clarified (and Figure 16 modified)
19-Nov-2002 7.1
Logic Diagram and Data Toggle Flowchart corrected. Revision numbering modified: a minor revision will be indicated by incrementing the digit after the dot, and a major revision, by incrementing the digit before the dot (revision version 07 equals 7.0). Document promoted to full datasheet.
Data Retention added to Table 5., Program, Erase Times and Program, Erase Endurance
26-May-2003 7.2
Cycles, and Typical after 100k W/E Cycles column removed. TSOP48 package mechanical updated. Lead-free package options E and F added to Table 18., Ordering Information Scheme.
16-Aug-2005 8.0 TFBGA48 package added throughout document.
45/46
Page 46
M29W320DT, M29W320DB
Information furnished i s believed t o be accurate and reliab le. However, STMicr oelectronics assumes no respons ibili ty for the consequence s of use of such information nor f or any infri ngement of patents or other r ights of third parties which may result f rom its use. No l icense is granted by implicati on or otherwis e under any patent or pat en t ri ghts of STMic roelec tronic s. Specifi cat ions m entio ned i n thi s publ icat ion ar e s ubj ect to change without notice. This publication supersedes and r eplace s all i nfor mati on pr eviousl y suppli ed. STMi croel ectr onics p roduc ts are not authori zed f or use a s criti cal components in li fe s uppor t
Australia - Belgium - Brazil - Canada - China - Czech Repub lic - Finland - France - Germany - Hong Kong - India - Isra el - Italy - Japan - Malaysia - Malta
- Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2005 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
www.st.com
46/46
Loading...